2017年山东省济南市中考数学试卷(含答案)

合集下载

2017年中考数学真题试题(含答案)

2017年中考数学真题试题(含答案)

2017年中考数学试卷一、选择题(本大题共10小题,每小题4分,共40分)1.﹣2017的绝对值是()A.2017 B.﹣2017 C.12017D.﹣12017【答案】A.2.一组数据1,3,4,2,2的众数是()A.1 B.2 C.3 D.4【答案】B.3.单项式32xy的次数是()A.1 B.2 C.3 D.4【答案】D.4.如图,已知直线a∥b,c∥b,∠1=60°,则∠2的度数是()A.30°B.60°C.120°D.61°【答案】B.5.世界文化遗产长城总长约670000米,将数670000用科学记数法可表示为()A.6.7×104B.6.7×105C.6.7×106D.67×104【答案】B.6.如图,△ABC沿着BC方向平移得到△A′B′C′,点P是直线AA′上任意一点,若△ABC,△PB′C′的面积分别为S1,S2,则下列关系正确的是()A.S1>S2B.S1<S2C.S1=S2D.S1=2S2【答案】C.7.一个多边形的每个内角都等于144°,则这个多边形的边数是()A.8 B.9 C.10 D.11【答案】C.8.把不等式组231345xx x+>⎧⎨+≥⎩的解集表示在数轴上如下图,正确的是()A.B.C.D.【答案】B.9.如图,已知点A在反比例函数kyx=上,AC⊥x轴,垂足为点C,且△AOC的面积为4,则此反比例函数的表达式为()A.4yx=B.2yx=C.8yx=D.8yx=-【答案】C.10.观察下列关于自然数的式子:4×12﹣12①4×22﹣32②4×32﹣52③…根据上述规律,则第2017个式子的值是()A.8064 B.8065 C.8066 D.8067 【答案】D.二、填空题(本大题共8小题,每小题4分,共32分)11.5的相反数是 . 【答案】﹣5. 12.一组数据2,3,2,5,4的中位数是 .【答案】3.13.方程1201x x-=-的解为x = . 【答案】2.14.已知一元二次方程230x x k -+=有两个相等的实数根,则k = .【答案】94. 15.已知菱形的两条对角线的长分别是5cm ,6cm ,则菱形的面积是 cm 2.【答案】15.16.如图,身高为1.8米的某学生想测量学校旗杆的高度,当他站在B 处时,他头顶端的影子正好与旗杆顶端的影子重合,并测得AB =2米,BC =18米,则旗杆CD 的高度是 米.【答案】3.42.17.从﹣1,0,1,2这四个数中,任取两个不同的数作为点的坐标,则该点在第一象限的概率为 .【答案】16. 18.如图,在Rt △ABC 中,∠C =90°,点D 是AB 的中点,ED ⊥AB 交AC 于点E .设∠A =α,且tanα=13,则tan2α= .【答案】34.三、解答题19.(1)计算:101()4sin 60(3 1.732)122----+; (2)先化简,再求值:2261213x x x x x +-⋅-++,其中x =2. 【答案】(1)1;(2)21x -,2. 20.如图,已知:∠BAC =∠EAD ,AB =20.4,AC =48,AE =17,AD =40.求证:△ABC ∽△AED .【答案】证明见解析.21.某校为了了解九年级九年级学生体育测试情况,随机抽查了部分学生的体育测试成绩的样本,按A ,B ,C (A 等:成绩大于或等于80分;B 等:成绩大于或等于60分且小于80分;C 等:成绩小于60分)三个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给的信息解答下列问题:(1)请把条形统计图补充完整;(2)扇形统计图中A 等所在的扇形的圆心角等于 度;(3)若九年级有1000名学生,请你用此样本估计体育测试众60分以上(包括60分)的学生人数.【答案】(1)作图见解析;(2)108;(3)800.22.如图,已知点E ,F 分别是平行四边形ABCD 对角线BD 所在直线上的两点,连接AE ,CF ,请你添加一个条件,使得△ABE ≌△CDF ,并证明.【答案】证明见解析.四、解答题23.某商店以20元/千克的单价新进一批商品,经调查发现,在一段时间内,销售量y(千克)与销售单价x(元/千克)之间为一次函数关系,如图所示.(1)求y与x的函数表达式;(2)要使销售利润达到800元,销售单价应定为每千克多少元?【答案】(1)60(020)80(2080)xyx x<<⎧=⎨-+≤≤⎩;(2)40元或60元.五、解答题24.如图,已知在Rt△ABC中,∠ABC=90°,以AB为直径的⊙O与AC交于点D,点E是BC的中点,连接BD,DE.(1)若ADAB=13,求sin C;(2)求证:DE是⊙O的切线.【答案】(1)13;(2)证明见解析. 六、解答题 25.如图,抛物线2y x bx c =++经过点A (﹣1,0),B (0,﹣2),并与x 轴交于点C ,点M 是抛物线对称轴l 上任意一点(点M ,B ,C 三点不在同一直线上).(1)求该抛物线所表示的二次函数的表达式;(2)在抛物线上找出两点P 1,P 2,使得△MP 1P 2与△MCB 全等,并求出点P 1,P 2的坐标;(3)在对称轴上是否存在点Q ,使得∠BQC 为直角,若存在,作出点Q (用尺规作图,保留作图痕迹),并求出点Q 的坐标.【答案】(1)22y x x =--;(2)P 1(﹣1,0),P 2(1,﹣2)或P 1(2,0),P 2(52,74);(3)点Q 的坐标是:(1227-+1227--.。

2017年中考数学真题试题与答案(word版)

2017年中考数学真题试题与答案(word版)

XX★ 启用前2017 年中考题数学试卷一、选择题(本大题共 12 小题,每小题 3 分,共 36 分.在每小题给出的四个选项中,只有一个是符合题目要求的,把正确答案的标号填在答题卡内相应的位置上)1、计算2( 1) 的结果是()1B、2C、1D、 22、若∠α的余角是30°,则 cosα的值是()A 、213C、2D、3A 、B 、23223、下列运算正确的是()A 、2a a 1 B、a a2a2C、a a a2 D 、( a)2a24、下列图形是轴对称图形,又是中心对称图形的有()A、4 个B、3 个5、如图,在平行四边形∠1=()C、2 个D、1 个ABCD 中,∠ B=80 °, AE平分∠BAD交 BC于点E, CF∥ AE交 AE于点F,则A、 40°B、 50°C、 60°D、80°6、已知二次函数y ax2的图象开口向上,则直线y ax 1 经过的象限是()A 、第一、二、三象限 B、第二、三、四象限7、如图,你能看出这个倒立的水杯的俯视图是(C、第一、二、四象限)D、第一、三、四象限A B C D8、如图,是我市 5 月份某一周的最高气温统计图,则这组数据(最高气温)的众数与中位数分别是()A 、 28℃, 29℃B 、 28℃, 29.5℃C、 28℃, 30℃D 、 29℃, 29℃9、已知拋物线 y1 x2 2,当 1 x 5 时, y 的最大值是()2 35 7 A 、 2C 、B 、3D 、3 310、小英家的圆形镜子被打碎了,她拿了如图(网格中的每个小正方形边长为 1)的一块碎片到玻璃店,配制成形状、 大小与原来一致的镜面, 则这个镜面的半径是 ( )A 、 2B 、 5C 、22D 、311、如图,是反比例函数yk 1x和 yk 2 x( k 1k 2 )在第一象限的图象,直线AB ∥ x轴,并分别交两条曲线于A 、B 两点,若S AOB2 ,则k 2k 1 的值是()A 、 1B 、 2C 、 4D 、 812、一个容器装有1 升水,按照如下要求把水倒出:第1 次倒出1升水,第2 次倒出的水量是1升的1 ,223第 3 次倒出的水量是1 升的314,第4 次倒出的水量是14升的1 ,⋯按照这种倒水的方法,倒了5 10 次后容器内剩余的水量是()A 、10 升11B 、1 升9C 、110升D 、111升二、填空题(本大题共6 小题,每小题3 分,共 18 分 .把答案填在答题卡中的横线上)13、 2011的相反数是 __________14、近似数 0.618 有__________个有效数字.15、分解因式:a 3= __________16、如图,是某校三个年级学生人数分布扇形统计图,则九年级学生人数所占扇形的圆心角的度数为 __________C 'D 17、如图,等边△ ABC 绕点 B 逆时针旋转30°时,点 C 转到 C ′的位置, 且 BC ′与 AC 交于点 D ,则CD的值为 __________16 题图17 题图18 题图18、如图, AB 是半圆 O 的直径,以 0A 为直径的半圆O ′与弦 AC 交于点 D ,O ′ E ∥ AC ,并交 OC 于点E .则下列四个结论:①点 D 为 AC 的中点;② S O 'OE1S AOC ;③ AC 2AD;④四边形 O'DEO 是菱形.其中正确的结2论是 __________.(把所有正确的结论的序号都填上)三、解答题(本大题共 8 小题,满分共 66 分,解答过程写在答题卡上,解答应写出文字说明,证明过程或演算步骤) .19、计算: (1) 1(5) 034 .220、假日,小强在广场放风筝.如图,小强为了计算风筝离地面的高度,他测得风筝的仰角为 60°,已知风筝线 BC 的长为 10 米,小强的身高 AB 为 1.55 米,请你帮小强画出测量示意图,并计算出风筝离地面的高度.(结果精确到 1 米,参考数据2 ≈ 1.41 , 3≈ 1.73 )21、如图, △ OAB 的底边经过⊙ O 上的点 C ,且 OA=OB ,CA=CB ,⊙O 与 OA 、OB 分别交于 D 、E 两点.( 1)求证: AB 是⊙ O 的切线;( 2)若 D 为 OA 的中点,阴影部分的面积为33,求⊙ O 的半径 r .22、一个不透明的纸盒中装有大小相同的黑、白两种颜色的围棋,其中白色棋子 3 个(分别用白 A 、白 B 、白 C 表示),若从中任意摸出一个棋子,是白色棋子的概率为3 .4( 1)求纸盒中黑色棋子的个数;( 2)第一次任意摸出一个棋子(不放回) ,第二次再摸出一个棋子,请用树状图或列表的方法,求两次摸到相同颜色棋子的概率.23、上个月某超市购进了两批相同品种的水果,第一批用了 2000 元,第二批用了 5500 元,第二批购进水果的重量是第一批的 2.5 倍,且进价比第一批每千克多 1 元.( 1)求两批水果共购进了多少千克?( 2)在这两批水果总重量正常损耗 10%,其余全部售完的情况下,如果这两批水果的售价相同,且总利润率不低于 26%,那么售价至少定为每千克多少元?利润(利润率 =100%)进价AG为边作一个正方形AEFG ,24、如图,点G 是正方形ABCD 对角线 CA 的延长线上任意一点,以线段线段 EB 和 GD 相交于点 H.( 1)求证: EB=GD ;( 2)判断 EB 与 GD 的位置关系,并说明理由;( 3)若AB=2 , AG=2,求EB的长.25、已知抛物线y ax22ax 3a ( a 0) 与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,点 D 为抛物线的顶点.(1)求 A 、 B 的坐标;(2)过点 D 作 DH 丄 y 轴于点 H,若 DH=HC ,求 a 的值和直线 CD 的解析式;(3)在第( 2)小题的条件下,直线 CD 与 x 轴交于点 E,过线段 OB 的中点 N 作 NF 丄 x 轴,并交直线CD 于点 F,则直线 NF 上是否存在点 M ,使得点 M 到直线 CD 的距离等于点 M 到原点 O 的距离?若存在,求出点M 的坐标;若不存在,请说明理由.中考数学试题答案一、选择题题号123456789101112答案B A C C B D B A C B C D二、填空题13. 201114. 315.a(3 a)(3 a)°17.2318.①③④16. 144三、解答题19. 解:原式 =2-1-3+2 ,=0 .故答案为: 0 .20.解:∵一元二次方程 x2-4x+1=0 的两个实数根是 x1、 x2,∴ x1 +x 2=4 , x1?x2=1 ,∴( x1+x 2)2÷()=4 2÷2=4 ÷421.解:在 Rt △ CEB 中,sin60 °=,∴CE=BC?sin60°=10×≈8.65m,∴CD=CE+ED=8.65+1.55=10.≈210m,答:风筝离地面的高度为 10m .22.( 1)证明:连 OC ,如图,∵ OA=OB , CA=CB ,∴OC ⊥AB,∴AB 是⊙ O 的切线;(2)解:∵ D 为 OA 的中点, OD=OC=r ,∴ OA=2OC=2r ,∴∠ A=30°,∠ AOC=60°, AC=r,∴∠ AOB=120°, AB=2r,∴ S 阴影部分 =S △OAB -S 扇形ODE = ?OC?AB-=-,∴?r?2r- r2=-,∴ r=1 ,即⊙ O 的半径 r 为 1 .23. 解:( 1) 3÷-3=1 .答:黑色棋子有 1 个;( 2)共12 种情况,有 6 种情况两次摸到相同颜色棋子,所以概率为.24. 解:( 1)设第一批购进水果x 千克,则第二批购进水果 2.5 千克,依据题意得:,解得 x=200 ,经检验 x=200 是原方程的解,∴x+2.5x=700 ,答:这两批水果功够进 700 千克;( 2)设售价为每千克 a 元,则:,630a≥ 7500× 1.26,∴,∴a≥15,答:售价至少为每千克 15 元.25.( 1 )证明:在△ GAD 和△ EAB 中,∠ GAD=90° +∠ EAD ,∠ EAB=90° +∠ EAD ,∴∠ GAD= ∠ EAB ,又∵ AG=AE , AB=AD ,∴△ GAD ≌△ EAB ,∴EB=GD ;( 2) EB ⊥ GD ,理由如下:连接BD ,由( 1 )得:∠ ADG= ∠ ABE ,则在△ BDH 中,∠DHB=180° - (∠ HDB+ ∠ HBD )=180°-90 °=90°,∴EB⊥GD ;( 3)设BD与AC交于点O,∵ AB=AD=2在 Rt △ABD中, DB=,∴ EB=GD=.26. 解:( 1)由y=0得, ax 2-2ax-3a=0,∵ a≠0,∴ x2 -2x-3=0,解得1=-1,x2=3,∴点 A 的坐标( -1, 0),点 B 的坐标( 3,0);(2)由 y=ax 2 -2ax-3a ,令 x=0 ,得 y=-3a ,∴ C ( 0, -3a ),又∵ y=ax 2 -2ax-3a=a ( x-1 )2-4a ,得 D (1 , -4a ),∴ DH=1 , CH=-4a- ( -3a ) =-a ,∴ -a=1 ,∴ a=-1 ,∴C(0, 3),D(1,4),设直线 CD 的解析式为y=kx+b ,把 C、 D 两点的坐标代入得,,解得,∴直线 CD 的解析式为y=x+3 ;( 3)存在.由( 2)得, E(-3,0),N(-,0)∴F(,),EN= ,作 MQ⊥CD 于 Q,设存在满足条件的点M(,m),则FM=-m ,EF==,MQ=OM=由题意得: Rt △ FQM ∽ Rt △ FNE ,∴=,整理得 4m 2+36m-63=0 ,∴m2+9m=,m 2+9m+=+(m+ )2=m+ =±∴ m1=,m2=-,∴点 M 的坐标为M1(,),M2(,-).”可见,一个人的心胸和眼光,决定了他志向的短浅或高远;一个清代“红顶商人”胡雪岩说:“做生意顶要紧的是眼光,看得到一省,就能做一省的生意;看得到天下,就能做天下的生意;看得到外国,就能做外国的生意。

2017年济南市中考数学试卷(含答案解析版)

2017年济南市中考数学试卷(含答案解析版)

20XX年山东省济南市中考数学试卷一、选择题(本大题共15小题,每小题3分,共45分)1.(3分)在实数0,﹣2,√5,3中,最大的是()A.0B.﹣2C.√5D.32.(3分)如图所示的几何体,它的左视图是()A.B.C.D.3.(3分)20XX年5月5日国产大型客机C919首飞成功,圆了中国人的“大飞机梦”,它颜值高性能好,全长近39米,最大载客人数168人,最大航程约5550公里.数字5550用科学记数法表示为()A.0.555×104B.5.55×104C.5.55×103D.55.5×1034.(3分)如图,直线a∥b,直线l与a,b分别相交于A,B两点,AC⊥AB交b于点C,∠1=40°,则∠2的度数是()A.40°B.45°C.50°D.60°5.(3分)中国古代建筑中的窗格图案美观大方,寓意吉祥,下列绘出的图案中既是轴对称图形又是中心对称图形是( )A .B .C .D .6.(3分)化简a 2+ab a−b ÷ab a−b的结果是( )A .a 2B .a2a−bC .a−b bD .a+b b7.(3分)关于x 的方程x 2+5x +m=0的一个根为﹣2,则另一个根是( ) A .﹣6 B .﹣3 C .3D .68.(3分)《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x 人,物价为y 钱,以下列出的方程组正确的是( ) A .{y −8x =3y −7x =4 B .{y −8x =37x −y =4C .{8x −y =3y −7x =4D .{8x −y =37x −y =49.(3分)如图,五一旅游黄金周期间,某景区规定A 和B 为入口,C ,D ,E 为出口,小红随机选一个入口进入景区,游玩后任选一个出口离开,则她选择从A 入口进入、从C ,D 出口离开的概率是( )A.12B.13C.16D.2310.(3分)把直尺、三角尺和圆形螺母按如图所示放置于桌面上,∠CAB=60°,若量出AD=6cm,则圆形螺母的外直径是()A.12cm B.24cm C.6√3cm D.12√3cm11.(3分)将一次函数y=2x的图象向上平移2个单位后,当y>0时,x的取值范围是()A.x>﹣1B.x>1C.x>﹣2D.x>212.(3分)如图,为了测量山坡护坡石坝的坡度(坡面的铅直高度与水平宽度的比称为坡度),把一根长5m的竹竿AC斜靠在石坝旁,量出杆长1m处的D点离地面的高度DE=0.6m,又量的杆底与坝脚的距离AB=3m,则石坝的坡度为()A.34B.3C.35D.413.(3分)如图,正方形ABCD的对角线AC,BD相交于点O,AB=3√2,E为OC上一点,OE=1,连接BE,过点A作AF⊥BE于点F,与BD交于点G,则BF的长是()A.3√105B.2√2C.3√54D.3√2214.(3分)二次函数y=ax2+bx+c(a≠0)的图象经过点(﹣2,0),(x0,0),1<x0<2,与y轴的负半轴相交,且交点在(0,﹣2)的上方,下列结论:①b>0;②2a <b;③2a﹣b﹣1<0;④2a+c<0.其中正确结论的个数是()A.1B.2C.3D.415.(3分)如图1,有一正方形广场ABCD,图形中的线段均表示直行道路,BD̂表示一条以A为圆心,以AB为半径的圆弧形道路.如图2,在该广场的A处有一路灯,O是灯泡,夜晚小齐同学沿广场道路散步时,影子长度随行走路线的变化而变化,设他步行的路程为x (m)时,相应影子的长度为y (m),根据他步行的路线得到y 与x之间关系的大致图象如图3,则他行走的路线是()A.A→B→E→G B.A→E→D→C C.A→E→B→F D.A→B→D→C二、填空题(本大题共6小题,每小题3分,共18分)16.(3分)分解因式:x2﹣4x+4=.17.(3分)计算:|﹣2﹣4|+(√3)0=.18.(3分)在学校的歌咏比赛中,10名选手的成绩如统计图所示,则这10名选手成绩的众数是.19.(3分)如图,扇形纸叠扇完全打开后,扇形ABC的面积为300πcm2,∠BAC=120°,BD=2AD,则BD的长度为cm.20.(3分)如图,过点O的直线AB与反比例函数y=kx的图象交于A,B两点,A(2,1),直线BC∥y轴,与反比例函数y=−3kx(x<0)的图象交于点C,连接AC,则△ABC的面积为.21.(3分)定义:在平面直角坐标系xOy中,把从点P出发沿纵或横方向到达点Q (至多拐一次弯)的路径长称为P,Q的“实际距离”.如图,若P(﹣1,1),Q(2,3),则P,Q的“实际距离”为5,即PS+SQ=5或PT+TQ=5.环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A ,B ,C 三个小区的坐标分别为A (3,1),B (5,﹣3),C (﹣1,﹣5),若点M 表示单车停放点,且满足M 到A ,B ,C 的“实际距离”相等,则点M 的坐标为 .三、解答题(本大题共8小题,共57分)22.(6分)(1)先化简,再求值:(a +3)2﹣(a +2)(a +3),其中a=3. (2)解不等式组:{3x −5≥2(x −2)①x2>x −1②. 23.(4分)如图,在矩形ABCD ,AD=AE ,DF ⊥AE 于点F .求证:AB=DF .24.(4分)如图,AB 是⊙O 的直径,∠ACD=25°,求∠BAD 的度数.25.(8分)某小区响应济南市提出的“建绿透绿”号召,购买了银杏树和玉兰树共150棵用来美化小区环境,购买银杏树用了12000元,购买玉兰树用了9000元.已知玉兰树的单价是银杏树单价的1.5倍,那么银杏树和玉兰树的单价各是多少? 26.(8分)中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如图所示:本数(本)频数(人数)频率5a0.26180.36714b880.16合计c1(1)统计表中的a=,b=,c=;(2)请将频数分布表直方图补充完整;(3)求所有被调查学生课外阅读的平均本数;(4)若该校八年级共有1200名学生,请你分析该校八年级学生课外阅读7本及以上的人数.27.(9分)如图1,▱OABC的边OC在y轴的正半轴上,OC=3,A(2,1),反比例函数y=kx(x>0)的图象经过的B.(1)求点B的坐标和反比例函数的关系式;(2)如图2,直线MN分别与x轴、y轴的正半轴交于M,N两点,若点O和点B 关于直线MN成轴对称,求线段ON的长;(3)如图3,将线段OA延长交y=kx(x>0)的图象于点D,过B,D的直线分别交x轴、y轴于E,F两点,请探究线段ED与BF的数量关系,并说明理由.28.(9分)某学习小组的学生在学习中遇到了下面的问题:如图1,在△ABC和△ADE中,∠ACB=∠AED=90°,∠CAB=∠EAD=60°,点E,A,C 在同一条直线上,连接BD,点F是BD的中点,连接EF,CF,试判断△CEF的形状并说明理由.问题探究:(1)小婷同学提出解题思路:先探究△CEF的两条边是否相等,如EF=CF,以下是她的证明过程证明:延长线段EF交CB的延长线于点G.∵F是BD的中点,∴BF=DF.∴∠BGF=∠DEF.又∵∠BFG=∠DFE,∴△BGF≌△DEF().∵∠ACB=∠AED=90°,∴ED∥CG.∴EF=FG.∴CF=EF=12EG.请根据以上证明过程,解答下列两个问题:①在图1中作出证明中所描述的辅助线;②在证明的括号中填写理由(请在SAS,ASA,AAS,SSS中选择).(2)在(1)的探究结论的基础上,请你帮助小婷求出∠CEF的度数,并判断△CEF 的形状.问题拓展:(3)如图2,当△ADE绕点A逆时针旋转某个角度时,连接CE,延长DE交BC的延长线于点P,其他条件不变,判断△CEF的形状并给出证明.29.(9分)如图1,矩形OABC的顶点A,C的坐标分别为(4,0),(0,6),直线AD交B C于点D,tan∠OAD=2,抛物线M1:y=ax2+bx(a≠0)过A,D两点.(1)求点D的坐标和抛物线M1的表达式;(2)点P是抛物线M1对称轴上一动点,当∠CPA=90°时,求所有符合条件的点P的坐标;(3)如图2,点E(0,4),连接AE,将抛物线M1的图象向下平移m(m>0)个单位得到抛物线M2.①设点D平移后的对应点为点D′,当点D′恰好在直线AE上时,求m的值;②当1≤x≤m(m>1)时,若抛物线M2与直线AE有两个交点,求m的取值范围.20XX年山东省济南市中考数学试卷参考答案与试题解析一、选择题(本大题共15小题,每小题3分,共45分)1.(3分)(2017•济南)在实数0,﹣2,√5,3中,最大的是()A.0B.﹣2C.√5D.3【考点】2A:实数大小比较.【分析】根据正负数的大小比较,估算无理数的大小进行判断即可.【解答】解:2<√5<3,实数0,﹣2,√5,3中,最大的是3.故选D.【点评】本题考查了实数的大小比较,要注意无理数的大小范围.2.(3分)(2017•济南)如图所示的几何体,它的左视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】根据几何体确定出其左视图即可.【解答】解:根据题意得:几何体的左视图为:,故选A【点评】此题考查了简单组合体的三视图,锻炼了学生的思考能力和对几何体三种视图的空间想象能力.3.(3分)(2017•济南)20XX年5月5日国产大型客机C919首飞成功,圆了中国人的“大飞机梦”,它颜值高性能好,全长近39米,最大载客人数168人,最大航程约5550公里.数字5550用科学记数法表示为()A.0.555×104B.5.55×104C.5.55×103D.55.5×103【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:5550=5.55×103,故选C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2017•济南)如图,直线a∥b,直线l与a,b分别相交于A,B两点,AC ⊥AB交b于点C,∠1=40°,则∠2的度数是()A.40°B.45°C.50°D.60°【考点】JA:平行线的性质;J3:垂线.【分析】先根据平行线的性质求出∠ABC的度数,再根据垂直的定义和余角的性质求出∠2的度数.【解答】解:∵直线a∥b,∴∠1=∠CBA,∵∠1=40°,∴∠CBA=40°,∵AC⊥AB,∴∠2+∠CBA=90°,∴∠2=50°,故选C.【点评】本题主要考查了平行线的性质,解题的关键是掌握两直线平行,同位角相等.5.(3分)(2017•济南)中国古代建筑中的窗格图案美观大方,寓意吉祥,下列绘出的图案中既是轴对称图形又是中心对称图形是()A.B.C.D.【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:B是轴对称图形又是中心对称图形,故选:B.【点评】本题考查了中心对称图形,掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6.(3分)(2017•济南)化简a2+aba−b÷aba−b的结果是()A.a2B.a2a−bC.a−bbD.a+bb【考点】6A:分式的乘除法.【分析】先将分子因式分解,再将除法转化为乘法后约分即可.【解答】解:原式=a(a+b)a−b•a−bab=a+bb,故选:D.【点评】本题主要考查分式的乘除法,熟练掌握分式乘除法的运算法则是解题的关键.7.(3分)(2017•济南)关于x的方程x2+5x+m=0的一个根为﹣2,则另一个根是()A.﹣6B.﹣3C.3D.6【考点】AB:根与系数的关系.【分析】设方程的另一个根为n ,根据两根之和等于﹣b a,即可得出关于n 的一元一次方程,解之即可得出结论.【解答】解:设方程的另一个根为n ,则有﹣2+n=﹣5,解得:n=﹣3.故选C .【点评】本题考查了根与系数的关系,牢记两根之和等于﹣b a 、两根之积等于c a 是解题的关键.8.(3分)(2017•济南)《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x 人,物价为y 钱,以下列出的方程组正确的是( )A .{y −8x =3y −7x =4B .{y −8x =37x −y =4C .{8x −y =3y −7x =4D .{8x −y =37x −y =4【考点】99:由实际问题抽象出二元一次方程组.【分析】设合伙人数为x 人,物价为y 钱,根据题意得到相等关系:①8×人数﹣物品价值=3,②物品价值﹣7×人数=4,据此可列方程组.【解答】解:设合伙人数为x 人,物价为y 钱,根据题意,可列方程组:{8x −y =3y −7x =4, 故选:C .【点评】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系.9.(3分)(2017•济南)如图,五一旅游黄金周期间,某景区规定A 和B 为入口,C ,D ,E 为出口,小红随机选一个入口进入景区,游玩后任选一个出口离开,则她选择从A 入口进入、从C ,D 出口离开的概率是( )A .12B .13C .16D .23 【考点】X6:列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果,可求得聪聪从入口A 进入景区并从C ,D 出口离开的情况,再利用概率公式求解即可求得答案.【解答】解:画树形图如图得:由树形图可知所有可能的结果有6种,设小红从入口A 进入景区并从C ,D 出口离开的概率是P ,∵小红从入口A 进入景区并从C ,D 出口离开的有2种情况,∴P=13.故选:B .【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.10.(3分)(2017•济南)把直尺、三角尺和圆形螺母按如图所示放置于桌面上,∠CAB=60°,若量出AD=6cm ,则圆形螺母的外直径是( )A .12cmB .24cmC .6√3cmD .12√3cm【考点】MC :切线的性质.【分析】设圆形螺母的圆心为O ,连接OD ,OE ,OA ,如图所示:根据切线的性质得到AO 为∠DAB 的平分线,OD ⊥AC ,OD ⊥AC ,又∠CAB=60°,得到∠OAE=∠OAD=12∠DAB=60°,根据三角函数的定义求出OD 的长,即为圆的半径,进而确定出圆的直径.【解答】解:设圆形螺母的圆心为O ,与AB 切于E ,连接OD ,OE ,OA ,如图所示: ∵AD ,AB 分别为圆O 的切线,∴AO 为∠DAB 的平分线,OD ⊥AC ,OD ⊥AC ,又∠CAB=60°,∴∠OAE=∠OAD=12∠DAB=60°, 在Rt △AOD 中,∠OAD=60°,AD=6cm ,∴tan ∠OAD=tan60°=OD AD ,即OD 6=√3, ∴OD=6√3cm ,则圆形螺母的直径为12√3cm.故选D.【点评】此题考查了切线的性质,切线长定理,锐角三角函数定义,以及特殊角的三角函数值,熟练掌握性质及定理是解本题的关键.11.(3分)(2017•济南)将一次函数y=2x的图象向上平移2个单位后,当y>0时,x的取值范围是()A.x>﹣1B.x>1C.x>﹣2D.x>2【考点】F9:一次函数图象与几何变换.【分析】首先得出平移后解析式,进而求出函数与坐标轴交点,即可得出y>0时,x 的取值范围.【解答】解:∵将y=2x的图象向上平移2个单位,∴平移后解析式为:y=2x+2,当y=0时,x=﹣1,故y>0,则x的取值范围是:x>﹣1.故选A【点评】此题主要考查了一次函数图象与几何变换,正确得出平移后解析式是解题关键.12.(3分)(2017•济南)如图,为了测量山坡护坡石坝的坡度(坡面的铅直高度与水平宽度的比称为坡度),把一根长5m的竹竿AC斜靠在石坝旁,量出杆长1m处的D点离地面的高度DE=0.6m,又量的杆底与坝脚的距离AB=3m,则石坝的坡度为()A.34B.3C.35D.4【考点】T9:解直角三角形的应用﹣坡度坡角问题.【分析】先过C作CF⊥AB于F,根据DE∥CF,可得ADAC=DECF,进而得出CF=3,根据勾股定理可得AF的长,根据CF和BF的长可得石坝的坡度.【解答】解:如图,过C作CF⊥AB于F,则DE∥CF,∴ADAC=DECF,即15=0.6CF,解得CF=3,∴Rt△ACF中,AF=√52−32=4,又∵AB=3,∴BF=4﹣3=1,∴石坝的坡度为CFBF =31=3,故选:B.【点评】本题主要考查了坡度问题,在解决坡度的有关问题中,一般通过作高构成直角三角形,坡角即是一锐角,坡度实际就是一锐角的正切值,水平宽度或铅直高度都是直角边,实质也是解直角三角形问题.13.(3分)(2017•济南)如图,正方形ABCD的对角线AC,BD相交于点O,AB=3√2,E为OC上一点,OE=1,连接BE,过点A作AF⊥BE于点F,与BD交于点G,则BF 的长是()A.3√105B.2√2C.3√54D.3√22【考点】LE:正方形的性质;KD:全等三角形的判定与性质.【分析】根据正方形的性质、全等三角形的判定定理证明△GAO≌△EBO,得到OG=OE=1,证明△BFG∽△BOE,根据相似三角形的性质计算即可.【解答】解:∵四边形ABCD是正方形,AB=3√2,∴∠AOB=90°,AO=BO=CO=3,∵AF⊥BE,∴∠EBO=∠GAO,在△GAO和△EBO中,{∠GAO=∠EBO AO=BO∠AOG=∠BOE,∴△GAO≌△EBO,∴OG=OE=1,∴BG=2,在Rt△BOE中,BE=√OB2+OE2=√10,∵∠BFG=∠BOE=90°,∠GBF=∠EBO,∴△BFG∽△BOE,∴BFOB=BGBE,即BF3=√10,解得,BF=3√10 5,故选:A.【点评】本题考查的是正方形的性质、全等三角形的判定和性质以及相似三角形的判定和性质,掌握相关的判定定理和性质定理是解题的关键.14.(3分)(2017•济南)二次函数y=ax2+bx+c(a≠0)的图象经过点(﹣2,0),(x0,0),1<x0<2,与y轴的负半轴相交,且交点在(0,﹣2)的上方,下列结论:①b >0;②2a<b;③2a﹣b﹣1<0;④2a+c<0.其中正确结论的个数是()A.1B.2C.3D.4【考点】H4:二次函数图象与系数的关系.【分析】①由图象开口向上知a>0,由y=ax2+bx+c与x轴的另一个交点坐标为(x1,0 ),且1<x1<2,则该抛物线的对称轴为x=﹣b2a=−2+x12>﹣12,即ba<1,于是得到b>0;故①正确;②由x=﹣2时,4a﹣2b+c=0得2a﹣b=﹣c2,而﹣2<c>0,解不等式即可得到2a>b,所以②正确.③由②知2a﹣b<0,于是得到2a﹣b﹣1<0,故③正确;④把(﹣2,0)代入y=ax2+bx+c得:4a﹣2b+c=0,即2b=4a+c>0(因为b >0),等量代换得到2a+c<0,故④正确.【解答】解:如图:①由图象开口向上知a>0,由y=ax2+bx+c与x轴的另一个交点坐标为(x1,0 ),且1<x1<2,则该抛物线的对称轴为x=﹣=﹣b2a=−2+x12>﹣12,即ba<1,由a>0,两边都乘以a得:b>a,∵a>0,对称轴x=﹣b2a<0,∴b>0;故①正确;②由x=﹣2时,4a﹣2b+c=0得2a﹣b=﹣c2,而﹣2<c<0,∴2a﹣b>0,所以②错误.③∵2a﹣b<0,∴2a﹣b﹣1<0,故③正确;④∵把(﹣2,0)代入y=ax2+bx+c得:4a﹣2b+c=0,∴即2b=4a+c>0(因为b>0),∵当x=1时,a+b+c<0,∴2a+2b+2c<0,∴6a+3c<0,即2a+c<0,∴④正确;故选D.【点评】本题考查了二次函数图象与系数的关系,主要考查学生根据图形进行推理和辨析的能力,用了数形结合思想,题目比较好,但是难度偏大.15.(3分)(2017•济南)如图1,有一正方形广场ABCD,图形中的线段均表示直行̂表示一条以A为圆心,以AB为半径的圆弧形道路.如图2,在该广场的A 道路,BD处有一路灯,O是灯泡,夜晚小齐同学沿广场道路散步时,影子长度随行走路线的变化而变化,设他步行的路程为x (m)时,相应影子的长度为y (m),根据他步行的路线得到y与x之间关系的大致图象如图3,则他行走的路线是()A.A→B→E→G B.A→E→D→C C.A→E→B→F D.A→B→D→C【考点】E7:动点问题的函数图象.【分析】根据函数图象的中间一部分为水平方向的线段,可知沿着弧形道路步行,根据函数图象中第一段和第三段图象对应的x的范围相等,且均小于中间一段图象对应的x的范围,即可得出第一段函数图象对应的路径为正方形的边AB或AD,第三段函数图象对应的路径为BC或DC.【解答】解:根据图3可得,函数图象的中间一部分为水平方向的线段,故影子的长度不变,即沿着弧形道路步行,因为函数图象中第一段和第三段图象对应的x的范围相等,且均小于中间一段图象对应的x的范围,̂,故中间一段图象对应的路径为BD又因为第一段和第三段图象都从左往右上升,所以第一段函数图象对应的路径为正方形的边AB或AD,第三段函数图象对应的路径为BC或DC,故行走的路线是A→B→D→C(或A→D→B→C),故选:D.【点评】本题主要考查了动点问题的函数图象,解题时注意:在点光源的照射下,在不同位置,物体高度与影长不成比例.二、填空题(本大题共6小题,每小题3分,共18分)16.(3分)(2017•济南)分解因式:x2﹣4x+4=(x﹣2)2.【考点】54:因式分解﹣运用公式法.【分析】直接用完全平方公式分解即可.【解答】解:x2﹣4x+4=(x﹣2)2.【点评】本题主要考查利用完全平方公式分解因式.完全平方公式:(a﹣b)2=a2﹣2ab+b2.17.(3分)(2017•济南)计算:|﹣2﹣4|+(√3)0=7.【考点】2C:实数的运算;6E:零指数幂.【分析】直接利用绝对值的性质结合零指数幂的性质计算得出答案.【解答】解:|﹣2﹣4|+(√3)0=6+1=7.故答案为:7.【点评】此题主要考查了实数运算以及零指数幂的性质,正确化简各数是解题关键.18.(3分)(2017•济南)在学校的歌咏比赛中,10名选手的成绩如统计图所示,则这10名选手成绩的众数是90.【考点】W5:众数.【分析】根据众数的定义和给出的数据可直接得出答案.【解答】解:根据折线统计图可得:90分的人数有5个,人数最多,则众数是90;故答案为:90.【点评】此题考查了众数,掌握一组数据中出现次数最多的数据叫做这组数据的众数是本题的关键.19.(3分)(2017•济南)如图,扇形纸叠扇完全打开后,扇形ABC的面积为300πcm2,∠BAC=120°,BD=2AD,则BD的长度为20cm.【考点】MO :扇形面积的计算.【分析】设AD=x ,则AB=3x .由题意300π=120⋅π⋅(3x)2360,解方程即可. 【解答】解:设AD=x ,则AB=3x .由题意300π=120⋅π⋅(3x)2360, 解得x=10,∴BD=2x=20cm .故答案为20.【点评】本题考查扇形的面积公式、解题的关键是理解题意,学会利用参数构建方程解决问题,属于中考常考题型.20.(3分)(2017•济南)如图,过点O 的直线AB 与反比例函数y=k x的图象交于A ,B 两点,A (2,1),直线BC ∥y 轴,与反比例函数y=−3k x(x <0)的图象交于点C ,连接AC ,则△ABC 的面积为 8 .【考点】G8:反比例函数与一次函数的交点问题.【分析】由A (2,1)求得两个反比例函数分别为y=2x ,y=−6x ,与AB 的解析式y=12x ,解方程组求得B 的坐标,进而求得C 点的纵坐标,即可求得BC ,根据三角形的面积公式即可求得结论.【解答】解:∵A (2,1)在反比例函数y=k x的图象上, ∴k=2×1=2,∴两个反比例函数分别为y=2x ,y=−6x, 设AB 的解析式为y=kx ,把A (2,1)代入得,k=12, ∴y=12x , 解方程组{y =12x y =2x 得:{x 1=2y 1=1,{x 2=−2y 2=−1, ∴B (﹣2,﹣1),∵BC ∥y 轴,∴C 点的横坐标为﹣2,∴C 点的纵坐标为−6−2=3, ∴BC=3﹣(﹣1)=4,∴△ABC 的面积为12×4×4=8, 故答案为:8.【点评】本题主要考查了反比例函数于一次函数的交点问题,三角形的面积,正确的理解题意是解题的关键.21.(3分)(2017•济南)定义:在平面直角坐标系xOy 中,把从点P 出发沿纵或横方向到达点Q(至多拐一次弯)的路径长称为P,Q的“实际距离”.如图,若P(﹣1,1),Q(2,3),则P,Q的“实际距离”为5,即PS+SQ=5或PT+TQ=5.环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A,B,C三个小区的坐标分别为A (3,1),B(5,﹣3),C(﹣1,﹣5),若点M表示单车停放点,且满足M到A,B,C的“实际距离”相等,则点M的坐标为(1,﹣2).【考点】D3:坐标确定位置.【分析】直接利用实际距离的定义,结合A,B,C点的坐标,进而得出答案.【解答】解:由题意可得:M到A,B,C的“实际距离”相等,则点M的坐标为(1,﹣2),此时M到A,B,C的实际距离都为5.故答案为:(1,﹣2).【点评】此题主要考查了坐标确定位置,正确理解实际距离的定义是解题关键.三、解答题(本大题共8小题,共57分)22.(6分)(2017•济南)(1)先化简,再求值:(a+3)2﹣(a+2)(a+3),其中a=3.(2)解不等式组:{3x −5≥2(x −2)①x 2>x −1②. 【考点】4J :整式的混合运算—化简求值;CB :解一元一次不等式组.【分析】(1)根据完全平方公式和多项式乘多项式可以解答本题;(2)根据解不等式组的方法可以解答本题.【解答】解:(1)(a +3)2﹣(a +2)(a +3)=a 2+6a +9﹣a 2﹣5a ﹣6=a +3,当a=3时,原式=3+3=6;(2){3x −5≥2(x −2)①x 2>x −1② 由不等式①,得x ≥1,由不等式②,得x <2故原不等式组的解集是1≤x <2.【点评】.本题考查整式的混合运算﹣化简求值、解一元一次不等式组,解答本题的关键是明确它们各自的计算方法.23.(4分)(2017•济南)如图,在矩形ABCD ,AD=AE ,DF ⊥AE 于点F .求证:AB=DF .【考点】LB:矩形的性质;KD:全等三角形的判定与性质.【分析】利用矩形和直角三角形的性质得到∠AEB=∠EAD、∠AFD=∠B,从而证得两个三角形全等,可得结论.【解答】证明:∵四边形ABCD是矩形,∴AD∥BC,∠B=90°,∴∠AEB=∠DAE,∵DF⊥AE,∴∠AFD=∠B=90°,在△ABE和△DFA中∵{∠AEB=∠DAE ∠AFD=∠B AD=AE∴△ABE≌△DFA,∴AB=DF.【点评】本题考查了全等三角形的判定与性质、矩形的性质的知识,属于基础题,难度不是很大,熟练掌握全等三角形的判定与性质是关键.24.(4分)(2017•济南)如图,AB是⊙O的直径,∠ACD=25°,求∠BAD的度数.【考点】M5:圆周角定理.【分析】根据直径所对的圆周角是直角,构造直角三角形ABD,再根据同弧所对的圆周角相等,求得∠B的度数,即可求得∠BAD的度数.【解答】解:∵AB为⊙O直径∴∠ADB=90°∵相同的弧所对应的圆周角相等,且∠ACD=25°∴∠B=25°∴∠BAD=90°﹣∠B=65°.【点评】考查了圆周角定理的推论.利用直径所对的圆周角是直角是解题关键.25.(8分)(2017•济南)某小区响应济南市提出的“建绿透绿”号召,购买了银杏树和玉兰树共150棵用来美化小区环境,购买银杏树用了12000元,购买玉兰树用了9000元.已知玉兰树的单价是银杏树单价的1.5倍,那么银杏树和玉兰树的单价各是多少?【考点】B7:分式方程的应用.【分析】根据题意可以列出相应的分式方程,从而可以解答本题.【解答】解:设银杏树的单价为x元,则玉兰树的单价为1.5x元,12000 x +90001.5x=150,解得,x=120,经检验x=120是原分式方程的解,∴1.5x=180,答:银杏树和玉兰树的单价各是120元、180元.【点评】本题考查分式方程的应用,解答本题的关键是明确题意,列出相应的分式方程,注意分式方程要经验26.(8分)(2017•济南)中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如图所示:本数(本)频数(人数)频率5a0.26180.36714b880.16合计c1(1)统计表中的a=10,b=0.28,c=50;(2)请将频数分布表直方图补充完整;(3)求所有被调查学生课外阅读的平均本数;(4)若该校八年级共有1200名学生,请你分析该校八年级学生课外阅读7本及以上的人数.【考点】V8:频数(率)分布直方图;V5:用样本估计总体;V7:频数(率)分布表.【分析】(1)根据百分比=所占人数总人数计算即可;(2)求出a 组人数,画出直方图即可; (3)根据平均数的定义计算即可;(4)利用样本估计总体的思想解决问题即可; 【解答】解:(1)由题意c=18÷0.36=50,∴a=50×0.2=10,b=1450=0.28,故答案为10,0.28,50.(2)频数分布表直方图如图所示.(3)所有被调查学生课外阅读的平均本数=10×5+18×6+14×7+8×850=6.4(本)(4)该校八年级共有1200名学生,该校八年级学生课外阅读7本及以上的人数有1200×14+850=528(名).【点评】本题考查频数分布直方图、扇形统计图、样本估计总体等知识,解题的关键是熟练掌握基本概念,灵活运用所学知识解决问题,属于中考常考题型.27.(9分)(2017•济南)如图1,▱OABC的边OC在y轴的正半轴上,OC=3,A(2,1),反比例函数y=kx(x>0)的图象经过的B.(1)求点B的坐标和反比例函数的关系式;(2)如图2,直线MN分别与x轴、y轴的正半轴交于M,N两点,若点O和点B 关于直线MN成轴对称,求线段ON的长;(3)如图3,将线段OA延长交y=kx(x>0)的图象于点D,过B,D的直线分别交x轴、y轴于E,F两点,请探究线段ED与BF的数量关系,并说明理由.【考点】GB:反比例函数综合题.【分析】(1)利用平行四边形的性质求出点B的坐标即可解决问题;(2)根据两直线垂直的条件,求出直线MN的解析式即可解决问题;(3)结论:BF=DE.如图3中,延长BA交x轴于N,作DM⊥x轴于M,作NK∥EF交y轴于K.设ON=n,OM=m,ME=a.则BN=kn ,DM=km.由△EDM∽△EBN,推出EM EN =DMBN,即am+a−n=kmkn,可得a=m,由△KNO≌△DEM,推出DE=KN,再证明四边形NKFB是平行四边形,即可解决问题;【解答】解:(1)如图1中,。

2017年山东省济南市中考数学试卷(含标准答案解析版)

2017年山东省济南市中考数学试卷(含标准答案解析版)

2017年山东省济南市中考数学试卷一、选择题(本大题共15小题,每小题3分,共45分)1.(3分)在实数0,﹣2,√5,3中,最大的是()A.0B.﹣2C.√5D.32.(3分)如图所示的几何体,它的左视图是()A.B.C.D.3.(3分)2017年5月5日国产大型客机C919首飞成功,圆了中国人的“大飞机梦”,它颜值高性能好,全长近39米,最大载客人数168人,最大航程约5550公里.数字5550用科学记数法表示为()A.0.555×104B.5.55×104C.5.55×103D.55.5×1034.(3分)如图,直线a∥b,直线l与a,b分别相交于A,B两点,AC⊥AB交b于点C,∠1=40°,则∠2的度数是()第1页(共47页)第2页(共47页)A .40°B .45°C .50°D .60°5.(3分)中国古代建筑中的窗格图案美观大方,寓意吉祥,下列绘出的图案中既是轴对称图形又是中心对称图形是( )A .B .C .D .6.(3分)化简a 2+ab a−b ÷ab a−b的结果是( ) A .a 2 B .a2a−b C .a−b b D .a+b b7.(3分)关于x 的方程x 2+5x +m=0的一个根为﹣2,则另一个根是( )A .﹣6B .﹣3C .3D .68.(3分)《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x 人,物价为y 钱,以下列出的方程组正确的是( )A .{y −8x =3y −7x =4B .{y −8x =37x −y =4C .{8x −y =3y −7x =4D .{8x −y =37x −y =49.(3分)如图,五一旅游黄金周期间,某景区规定A 和B 为入口,C ,D ,E 为出口,小红随机选一个入口进入景区,游玩后任选一个出口离开,则她选择从A 入口进入、从C ,D 出口离开的概率是( )A.12B.13C.16D.2310.(3分)把直尺、三角尺和圆形螺母按如图所示放置于桌面上,∠CAB=60°,若量出AD=6cm,则圆形螺母的外直径是()A.12cm B.24cm C.6√3cm D.12√3cm11.(3分)将一次函数y=2x的图象向上平移2个单位后,当y>0时,x的取值范围是()A.x>﹣1B.x>1C.x>﹣2D.x>212.(3分)如图,为了测量山坡护坡石坝的坡度(坡面的铅直高度与水平宽度的比称为坡度),把一根长5m的竹竿AC斜靠在石坝旁,量出杆长1m处的D点离地面的高度DE=0.6m,又量的杆底与坝脚的距离AB=3m,则石坝的坡度为()第3页(共47页)第4页(共47页)A .34B .3C .35D .413.(3分)如图,正方形ABCD 的对角线AC ,BD 相交于点O ,AB=3√2,E 为OC 上一点,OE=1,连接BE ,过点A 作AF ⊥BE 于点F ,与BD 交于点G ,则BF 的长是( )A .3√105B .2√2C .3√54D .3√2214.(3分)二次函数y=ax 2+bx +c (a ≠0)的图象经过点(﹣2,0),(x 0,0),1<x 0<2,与y 轴的负半轴相交,且交点在(0,﹣2)的上方,下列结论:①b >0;②2a <b ;③2a ﹣b ﹣1<0;④2a +c <0.其中正确结论的个数是( )A .1B .2C .3D .415.(3分)如图1,有一正方形广场ABCD ,图形中的线段均表示直行道路,BD̂表示一条以A 为圆心,以AB 为半径的圆弧形道路.如图2,在该广场的A 处有一路灯,O 是灯泡,夜晚小齐同学沿广场道路散步时,影子长度随行走路线的变化而变化,设他步行的路程为x (m )时,相应影子的长度为y (m ),根据他步行的路线得到y 与x 之间关系的大致图象如图3,则他行走的路线是( )A .A→B→E→GB .A→E→D→C C .A→E→B→FD .A→B→D→C二、填空题(本大题共6小题,每小题3分,共18分)16.(3分)分解因式:x2﹣4x+4=.17.(3分)计算:|﹣2﹣4|+(√3)0=.18.(3分)在学校的歌咏比赛中,10名选手的成绩如统计图所示,则这10名选手成绩的众数是.19.(3分)如图,扇形纸叠扇完全打开后,扇形ABC的面积为300πcm2,∠BAC=120°,BD=2AD,则BD的长度为cm.20.(3分)如图,过点O的直线AB与反比例函数y=kx的图象交于A,B两点,A(2,1),直线BC∥y轴,与反比例函数y=−3kx(x<0)的图象交于点C,连接AC,则△ABC的面积为.第5页(共47页)第6页(共47页)21.(3分)定义:在平面直角坐标系xOy 中,把从点P 出发沿纵或横方向到达点Q (至多拐一次弯)的路径长称为P ,Q 的“实际距离”.如图,若P (﹣1,1),Q (2,3),则P ,Q 的“实际距离”为5,即PS +SQ=5或PT +TQ=5.环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A ,B ,C 三个小区的坐标分别为A (3,1),B (5,﹣3),C (﹣1,﹣5),若点M 表示单车停放点,且满足M 到A ,B ,C 的“实际距离”相等,则点M 的坐标为 .三、解答题(本大题共8小题,共57分)22.(6分)(1)先化简,再求值:(a +3)2﹣(a +2)(a +3),其中a=3.(2)解不等式组:{3x −5≥2(x −2)①x 2>x −1②. 23.(4分)如图,在矩形ABCD ,AD=AE ,DF ⊥AE 于点F .求证:AB=DF .第7页(共47页)24.(4分)如图,AB 是⊙O 的直径,∠ACD=25°,求∠BAD 的度数.25.(8分)某小区响应济南市提出的“建绿透绿”号召,购买了银杏树和玉兰树共150棵用来美化小区环境,购买银杏树用了12000元,购买玉兰树用了9000元.已知玉兰树的单价是银杏树单价的1.5倍,那么银杏树和玉兰树的单价各是多少?26.(8分)中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如图所示:本数(本) 频数(人数)频率5a 0.2 618 0.36 714 b 88 0.16 合计 c 1 (1)统计表中的a= ,b= ,c= ;第8页(共47页)(2)请将频数分布表直方图补充完整;(3)求所有被调查学生课外阅读的平均本数;(4)若该校八年级共有1200名学生,请你分析该校八年级学生课外阅读7本及以上的人数.27.(9分)如图1,▱OABC 的边OC 在y 轴的正半轴上,OC=3,A (2,1),反比例函数y=k x (x >0)的图象经过的B .(1)求点B 的坐标和反比例函数的关系式; (2)如图2,直线MN 分别与x 轴、y 轴的正半轴交于M ,N 两点,若点O 和点B 关于直线MN 成轴对称,求线段ON 的长;(3)如图3,将线段OA 延长交y=kx(x >0)的图象于点D ,过B ,D 的直线分别交x 轴、y 轴于E ,F 两点,请探究线段ED 与BF 的数量关系,并说明理由.28.(9分)某学习小组的学生在学习中遇到了下面的问题:如图1,在△ABC 和△ADE 中,∠ACB=∠AED=90°,∠CAB=∠EAD=60°,点E ,A ,C 在同一条直线上,连接BD ,点F 是BD 的中点,连接EF ,CF ,试判断△CEF 的形状并说明理由.问题探究:(1)小婷同学提出解题思路:先探究△CEF的两条边是否相等,如EF=CF,以下是她的证明过程证明:延长线段EF交CB的延长线于点G.∵F是BD的中点,∴BF=DF.∵∠ACB=∠AED=90°,∴ED∥CG.∴∠BGF=∠DEF.又∵∠BFG=∠DFE,∴△BGF≌△DEF().∴EF=FG.∴CF=EF=12EG.请根据以上证明过程,解答下列两个问题:①在图1中作出证明中所描述的辅助线;②在证明的括号中填写理由(请在SAS,ASA,AAS,SSS中选择).(2)在(1)的探究结论的基础上,请你帮助小婷求出∠CEF的度数,并判断△CEF 的形状.问题拓展:(3)如图2,当△ADE绕点A逆时针旋转某个角度时,连接CE,延长DE交BC的延长线于点P,其他条件不变,判断△CEF的形状并给出证明.第9页(共47页)29.(9分)如图1,矩形OABC的顶点A,C的坐标分别为(4,0),(0,6),直线AD交B C于点D,tan∠OAD=2,抛物线M1:y=ax2+bx(a≠0)过A,D两点.(1)求点D的坐标和抛物线M1的表达式;(2)点P是抛物线M1对称轴上一动点,当∠CPA=90°时,求所有符合条件的点P的坐标;(3)如图2,点E(0,4),连接AE,将抛物线M1的图象向下平移m(m>0)个单位得到抛物线M2.①设点D平移后的对应点为点D′,当点D′恰好在直线AE上时,求m的值;②当1≤x≤m(m>1)时,若抛物线M2与直线AE有两个交点,求m的取值范围.第10页(共47页)2017年山东省济南市中考数学试卷参考答案与试题解析一、选择题(本大题共15小题,每小题3分,共45分)1.(3分)(2017•济南)在实数0,﹣2,√5,3中,最大的是()A.0B.﹣2C.√5D.3【考点】2A:实数大小比较.【分析】根据正负数的大小比较,估算无理数的大小进行判断即可.【解答】解:2<√5<3,实数0,﹣2,√5,3中,最大的是3.故选D.【点评】本题考查了实数的大小比较,要注意无理数的大小范围.2.(3分)(2017•济南)如图所示的几何体,它的左视图是()第11页(共47页)A.B.C.D.【考点】U2:简单组合体的三视图.【分析】根据几何体确定出其左视图即可.【解答】解:根据题意得:几何体的左视图为:,故选A【点评】此题考查了简单组合体的三视图,锻炼了学生的思考能力和对几何体三种视图的空间想象能力.3.(3分)(2017•济南)2017年5月5日国产大型客机C919首飞成功,圆了中国人的“大飞机梦”,它颜值高性能好,全长近39米,最大载客人数168人,最大航程约5550公里.数字5550用科学记数法表示为()A.0.555×104B.5.55×104C.5.55×103D.55.5×103【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:5550=5.55×103,故选C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,第12页(共47页)其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2017•济南)如图,直线a∥b,直线l与a,b分别相交于A,B两点,AC ⊥AB交b于点C,∠1=40°,则∠2的度数是()A.40°B.45°C.50°D.60°【考点】JA:平行线的性质;J3:垂线.【分析】先根据平行线的性质求出∠ABC的度数,再根据垂直的定义和余角的性质求出∠2的度数.【解答】解:∵直线a∥b,∴∠1=∠CBA,∵∠1=40°,∴∠CBA=40°,∵AC⊥AB,∴∠2+∠CBA=90°,∴∠2=50°,故选C.【点评】本题主要考查了平行线的性质,解题的关键是掌握两直线平行,同位角相等.第13页(共47页)5.(3分)(2017•济南)中国古代建筑中的窗格图案美观大方,寓意吉祥,下列绘出的图案中既是轴对称图形又是中心对称图形是()A.B.C.D.【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:B是轴对称图形又是中心对称图形,故选:B.【点评】本题考查了中心对称图形,掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6.(3分)(2017•济南)化简a2+aba−b÷aba−b的结果是()A.a2B.a2a−bC.a−bbD.a+bb【考点】6A:分式的乘除法.【分析】先将分子因式分解,再将除法转化为乘法后约分即可.【解答】解:原式=a(a+b)a−b•a−bab=a+bb,第14页(共47页)第15页(共47页)故选:D .【点评】本题主要考查分式的乘除法,熟练掌握分式乘除法的运算法则是解题的关键.7.(3分)(2017•济南)关于x 的方程x 2+5x +m=0的一个根为﹣2,则另一个根是( )A .﹣6B .﹣3C .3D .6【考点】AB :根与系数的关系.【分析】设方程的另一个根为n ,根据两根之和等于﹣b a,即可得出关于n 的一元一次方程,解之即可得出结论.【解答】解:设方程的另一个根为n ,则有﹣2+n=﹣5,解得:n=﹣3.故选C .【点评】本题考查了根与系数的关系,牢记两根之和等于﹣b a 、两根之积等于c a是解题的关键.8.(3分)(2017•济南)《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x 人,物价为y 钱,以下列出的方程组正确的是( )A .{y −8x =3y −7x =4B .{y −8x =37x −y =4第16页(共47页)C .{8x −y =3y −7x =4D .{8x −y =37x −y =4【考点】99:由实际问题抽象出二元一次方程组.【分析】设合伙人数为x 人,物价为y 钱,根据题意得到相等关系:①8×人数﹣物品价值=3,②物品价值﹣7×人数=4,据此可列方程组.【解答】解:设合伙人数为x 人,物价为y 钱,根据题意,可列方程组:{8x −y =3y −7x =4, 故选:C .【点评】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系.9.(3分)(2017•济南)如图,五一旅游黄金周期间,某景区规定A 和B 为入口,C ,D ,E 为出口,小红随机选一个入口进入景区,游玩后任选一个出口离开,则她选择从A 入口进入、从C ,D 出口离开的概率是( )A .12B .13C .16D .23【考点】X6:列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果,可求得聪聪从入口A 进入景区并从C ,D 出口离开的情况,再利用概率公式求解即可求得答案.第17页(共47页)【解答】解:画树形图如图得:由树形图可知所有可能的结果有6种,设小红从入口A 进入景区并从C ,D 出口离开的概率是P ,∵小红从入口A 进入景区并从C ,D 出口离开的有2种情况,∴P=13. 故选:B .【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.10.(3分)(2017•济南)把直尺、三角尺和圆形螺母按如图所示放置于桌面上,∠CAB=60°,若量出AD=6cm ,则圆形螺母的外直径是( )A .12cmB .24cmC .6√3cmD .12√3cm【考点】MC :切线的性质.第18页(共47页)【分析】设圆形螺母的圆心为O ,连接OD ,OE ,OA ,如图所示:根据切线的性质得到AO 为∠DAB 的平分线,OD ⊥AC ,OD ⊥AC ,又∠CAB=60°,得到∠OAE=∠OAD=12∠DAB=60°,根据三角函数的定义求出OD 的长,即为圆的半径,进而确定出圆的直径.【解答】解:设圆形螺母的圆心为O ,与AB 切于E ,连接OD ,OE ,OA ,如图所示: ∵AD ,AB 分别为圆O 的切线,∴AO 为∠DAB 的平分线,OD ⊥AC ,OD ⊥AC ,又∠CAB=60°,∴∠OAE=∠OAD=12∠DAB=60°, 在Rt △AOD 中,∠OAD=60°,AD=6cm ,∴tan ∠OAD=tan60°=OD AD ,即OD 6=√3, ∴OD=6√3cm ,则圆形螺母的直径为12√3cm .故选D .【点评】此题考查了切线的性质,切线长定理,锐角三角函数定义,以及特殊角的三角函数值,熟练掌握性质及定理是解本题的关键.11.(3分)(2017•济南)将一次函数y=2x 的图象向上平移2个单位后,当y >0时,x 的取值范围是( )A.x>﹣1B.x>1C.x>﹣2D.x>2【考点】F9:一次函数图象与几何变换.【分析】首先得出平移后解析式,进而求出函数与坐标轴交点,即可得出y>0时,x 的取值范围.【解答】解:∵将y=2x的图象向上平移2个单位,∴平移后解析式为:y=2x+2,当y=0时,x=﹣1,故y>0,则x的取值范围是:x>﹣1.故选A【点评】此题主要考查了一次函数图象与几何变换,正确得出平移后解析式是解题关键.12.(3分)(2017•济南)如图,为了测量山坡护坡石坝的坡度(坡面的铅直高度与水平宽度的比称为坡度),把一根长5m的竹竿AC斜靠在石坝旁,量出杆长1m处的D点离地面的高度DE=0.6m,又量的杆底与坝脚的距离AB=3m,则石坝的坡度为()A.34B.3C.35D.4【考点】T9:解直角三角形的应用﹣坡度坡角问题.第19页(共47页)【分析】先过C作CF⊥AB于F,根据DE∥CF,可得ADAC=DECF,进而得出CF=3,根据勾股定理可得AF的长,根据CF和BF的长可得石坝的坡度.【解答】解:如图,过C作CF⊥AB于F,则DE∥CF,∴ADAC=DECF,即15=0.6CF,解得CF=3,∴Rt△ACF中,AF=√52−32=4,又∵AB=3,∴BF=4﹣3=1,∴石坝的坡度为CFBF =31=3,故选:B.【点评】本题主要考查了坡度问题,在解决坡度的有关问题中,一般通过作高构成直角三角形,坡角即是一锐角,坡度实际就是一锐角的正切值,水平宽度或铅直高度都是直角边,实质也是解直角三角形问题.13.(3分)(2017•济南)如图,正方形ABCD的对角线AC,BD相交于点O,AB=3√2,E为OC上一点,OE=1,连接BE,过点A作AF⊥BE于点F,与BD交于点G,则BF 的长是()第20页(共47页)A.3√105B.2√2C.3√54D.3√22【考点】LE:正方形的性质;KD:全等三角形的判定与性质.【分析】根据正方形的性质、全等三角形的判定定理证明△GAO≌△EBO,得到OG=OE=1,证明△BFG∽△BOE,根据相似三角形的性质计算即可.【解答】解:∵四边形ABCD是正方形,AB=3√2,∴∠AOB=90°,AO=BO=CO=3,∵AF⊥BE,∴∠EBO=∠GAO,在△GAO和△EBO中,{∠GAO=∠EBO AO=BO∠AOG=∠BOE,∴△GAO≌△EBO,∴OG=OE=1,∴BG=2,在Rt△BOE中,BE=√OB2+OE2=√10,∵∠BFG=∠BOE=90°,∠GBF=∠EBO,第21页(共47页)∴△BFG∽△BOE,∴BFOB=BGBE,即BF3=√10,解得,BF=3√10 5,故选:A.【点评】本题考查的是正方形的性质、全等三角形的判定和性质以及相似三角形的判定和性质,掌握相关的判定定理和性质定理是解题的关键.14.(3分)(2017•济南)二次函数y=ax2+bx+c(a≠0)的图象经过点(﹣2,0),(x0,0),1<x0<2,与y轴的负半轴相交,且交点在(0,﹣2)的上方,下列结论:①b >0;②2a<b;③2a﹣b﹣1<0;④2a+c<0.其中正确结论的个数是()A.1B.2C.3D.4【考点】H4:二次函数图象与系数的关系.【分析】①由图象开口向上知a>0,由y=ax2+bx+c与x轴的另一个交点坐标为(x1,0 ),且1<x1<2,则该抛物线的对称轴为x=﹣b2a=−2+x12>﹣12,即ba<1,于是得到b>0;故①正确;②由x=﹣2时,4a﹣2b+c=0得2a﹣b=﹣c2,而﹣2<c>0,解不等式即可得到2a>b,所以②正确.③由②知2a﹣b<0,于是得到2a﹣b﹣1<0,故③正确;④把(﹣2,0)代入y=ax2+bx+c得:4a﹣2b+c=0,即2b=4a+c>0(因为b >0),等量代换得到2a+c<0,故④正确.【解答】解:如图:①由图象开口向上知a>0,由y=ax2+bx+c与x轴的另一个交点坐标为(x1,0 ),且1<x1<2,第22页(共47页)则该抛物线的对称轴为x=﹣=﹣b2a=−2+x12>﹣12,即ba<1,由a>0,两边都乘以a得:b>a,∵a>0,对称轴x=﹣b2a<0,∴b>0;故①正确;②由x=﹣2时,4a﹣2b+c=0得2a﹣b=﹣c2,而﹣2<c<0,∴2a﹣b>0,所以②错误.③∵2a﹣b<0,∴2a﹣b﹣1<0,故③正确;④∵把(﹣2,0)代入y=ax2+bx+c得:4a﹣2b+c=0,∴即2b=4a+c>0(因为b>0),∵当x=1时,a+b+c<0,∴2a+2b+2c<0,∴6a+3c<0,即2a+c<0,∴④正确;故选D.第23页(共47页)第24页(共47页)【点评】本题考查了二次函数图象与系数的关系,主要考查学生根据图形进行推理和辨析的能力,用了数形结合思想,题目比较好,但是难度偏大.15.(3分)(2017•济南)如图1,有一正方形广场ABCD ,图形中的线段均表示直行道路,BD̂表示一条以A 为圆心,以AB 为半径的圆弧形道路.如图2,在该广场的A 处有一路灯,O 是灯泡,夜晚小齐同学沿广场道路散步时,影子长度随行走路线的变化而变化,设他步行的路程为x (m )时,相应影子的长度为y (m ),根据他步行的路线得到y 与x 之间关系的大致图象如图3,则他行走的路线是( )A .A→B→E→GB .A→E→D→C C .A→E→B→FD .A→B→D→C【考点】E7:动点问题的函数图象.【分析】根据函数图象的中间一部分为水平方向的线段,可知沿着弧形道路步行,根据函数图象中第一段和第三段图象对应的x 的范围相等,且均小于中间一段图象对应的x的范围,即可得出第一段函数图象对应的路径为正方形的边AB或AD,第三段函数图象对应的路径为BC或DC.【解答】解:根据图3可得,函数图象的中间一部分为水平方向的线段,故影子的长度不变,即沿着弧形道路步行,因为函数图象中第一段和第三段图象对应的x的范围相等,且均小于中间一段图象对应的x的范围,̂,故中间一段图象对应的路径为BD又因为第一段和第三段图象都从左往右上升,所以第一段函数图象对应的路径为正方形的边AB或AD,第三段函数图象对应的路径为BC或DC,故行走的路线是A→B→D→C(或A→D→B→C),故选:D.【点评】本题主要考查了动点问题的函数图象,解题时注意:在点光源的照射下,在不同位置,物体高度与影长不成比例.二、填空题(本大题共6小题,每小题3分,共18分)16.(3分)(2017•济南)分解因式:x2﹣4x+4=(x﹣2)2.【考点】54:因式分解﹣运用公式法.【分析】直接用完全平方公式分解即可.【解答】解:x2﹣4x+4=(x﹣2)2.【点评】本题主要考查利用完全平方公式分解因式.完全平方公式:(a﹣b)2=a2﹣2ab+b2.第25页(共47页)17.(3分)(2017•济南)计算:|﹣2﹣4|+(√3)0=7.【考点】2C:实数的运算;6E:零指数幂.【分析】直接利用绝对值的性质结合零指数幂的性质计算得出答案.【解答】解:|﹣2﹣4|+(√3)0=6+1=7.故答案为:7.【点评】此题主要考查了实数运算以及零指数幂的性质,正确化简各数是解题关键.18.(3分)(2017•济南)在学校的歌咏比赛中,10名选手的成绩如统计图所示,则这10名选手成绩的众数是90.【考点】W5:众数.【分析】根据众数的定义和给出的数据可直接得出答案.【解答】解:根据折线统计图可得:90分的人数有5个,人数最多,则众数是90;故答案为:90.【点评】此题考查了众数,掌握一组数据中出现次数最多的数据叫做这组数据的众数是本题的关键.第26页(共47页)第27页(共47页)19.(3分)(2017•济南)如图,扇形纸叠扇完全打开后,扇形ABC 的面积为300πcm 2,∠BAC=120°,BD=2AD ,则BD 的长度为 20 cm .【考点】MO :扇形面积的计算.【分析】设AD=x ,则AB=3x .由题意300π=120⋅π⋅(3x)2360,解方程即可. 【解答】解:设AD=x ,则AB=3x .由题意300π=120⋅π⋅(3x)2360, 解得x=10,∴BD=2x=20cm .故答案为20.【点评】本题考查扇形的面积公式、解题的关键是理解题意,学会利用参数构建方程解决问题,属于中考常考题型.20.(3分)(2017•济南)如图,过点O 的直线AB 与反比例函数y=k x的图象交于A ,B 两点,A (2,1),直线BC ∥y 轴,与反比例函数y=−3k x(x <0)的图象交于点C ,连接AC ,则△ABC 的面积为 8 .第28页(共47页)【考点】G8:反比例函数与一次函数的交点问题.【分析】由A (2,1)求得两个反比例函数分别为y=2x ,y=−6x ,与AB 的解析式y=12x ,解方程组求得B 的坐标,进而求得C 点的纵坐标,即可求得BC ,根据三角形的面积公式即可求得结论.【解答】解:∵A (2,1)在反比例函数y=k x的图象上, ∴k=2×1=2,∴两个反比例函数分别为y=2x ,y=−6x, 设AB 的解析式为y=kx ,把A (2,1)代入得,k=12, ∴y=12x , 解方程组{y =12x y =2x 得:{x 1=2y 1=1,{x 2=−2y 2=−1, ∴B (﹣2,﹣1),∵BC ∥y 轴,∴C 点的横坐标为﹣2,∴C 点的纵坐标为−6−2=3, ∴BC=3﹣(﹣1)=4,∴△ABC的面积为12×4×4=8,故答案为:8.【点评】本题主要考查了反比例函数于一次函数的交点问题,三角形的面积,正确的理解题意是解题的关键.21.(3分)(2017•济南)定义:在平面直角坐标系xOy中,把从点P出发沿纵或横方向到达点Q(至多拐一次弯)的路径长称为P,Q的“实际距离”.如图,若P(﹣1,1),Q(2,3),则P,Q的“实际距离”为5,即PS+SQ=5或PT+TQ=5.环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A,B,C三个小区的坐标分别为A (3,1),B(5,﹣3),C(﹣1,﹣5),若点M表示单车停放点,且满足M到A,B,C的“实际距离”相等,则点M的坐标为(1,﹣2).【考点】D3:坐标确定位置.【分析】直接利用实际距离的定义,结合A,B,C点的坐标,进而得出答案.【解答】解:由题意可得:M到A,B,C的“实际距离”相等,则点M的坐标为(1,﹣2),此时M到A,B,C的实际距离都为5.故答案为:(1,﹣2).第29页(共47页)第30页(共47页)【点评】此题主要考查了坐标确定位置,正确理解实际距离的定义是解题关键.三、解答题(本大题共8小题,共57分)22.(6分)(2017•济南)(1)先化简,再求值:(a +3)2﹣(a +2)(a +3),其中a=3.(2)解不等式组:{3x −5≥2(x −2)①x 2>x −1②. 【考点】4J :整式的混合运算—化简求值;CB :解一元一次不等式组.【分析】(1)根据完全平方公式和多项式乘多项式可以解答本题;(2)根据解不等式组的方法可以解答本题.【解答】解:(1)(a +3)2﹣(a +2)(a +3)=a 2+6a +9﹣a 2﹣5a ﹣6=a +3,当a=3时,原式=3+3=6;(2){3x −5≥2(x −2)①x 2>x −1②由不等式①,得x≥1,由不等式②,得x<2故原不等式组的解集是1≤x<2.【点评】.本题考查整式的混合运算﹣化简求值、解一元一次不等式组,解答本题的关键是明确它们各自的计算方法.23.(4分)(2017•济南)如图,在矩形ABCD,AD=AE,DF⊥AE于点F.求证:AB=DF.【考点】LB:矩形的性质;KD:全等三角形的判定与性质.【分析】利用矩形和直角三角形的性质得到∠AEB=∠EAD、∠AFD=∠B,从而证得两个三角形全等,可得结论.【解答】证明:∵四边形ABCD是矩形,∴AD∥BC,∠B=90°,∴∠AEB=∠DAE,∵DF⊥AE,∴∠AFD=∠B=90°,在△ABE和△DFA中第31页(共47页)第32页(共47页)∵{∠AEB =∠DAE ∠AFD =∠B AD =AE∴△ABE ≌△DFA , ∴AB=DF .【点评】本题考查了全等三角形的判定与性质、矩形的性质的知识,属于基础题,难度不是很大,熟练掌握全等三角形的判定与性质是关键.24.(4分)(2017•济南)如图,AB 是⊙O 的直径,∠ACD=25°,求∠BAD 的度数.【考点】M5:圆周角定理.【分析】根据直径所对的圆周角是直角,构造直角三角形ABD ,再根据同弧所对的圆周角相等,求得∠B 的度数,即可求得∠BAD 的度数. 【解答】解:∵AB 为⊙O 直径 ∴∠ADB=90°∵相同的弧所对应的圆周角相等,且∠ACD=25° ∴∠B=25°∴∠BAD=90°﹣∠B=65°.【点评】考查了圆周角定理的推论.利用直径所对的圆周角是直角是解题关键.25.(8分)(2017•济南)某小区响应济南市提出的“建绿透绿”号召,购买了银杏树和玉兰树共150棵用来美化小区环境,购买银杏树用了12000元,购买玉兰树用了9000元.已知玉兰树的单价是银杏树单价的1.5倍,那么银杏树和玉兰树的单价各是多少?【考点】B7:分式方程的应用.【分析】根据题意可以列出相应的分式方程,从而可以解答本题.【解答】解:设银杏树的单价为x元,则玉兰树的单价为1.5x元,12000 x +90001.5x=150,解得,x=120,经检验x=120是原分式方程的解,∴1.5x=180,答:银杏树和玉兰树的单价各是120元、180元.【点评】本题考查分式方程的应用,解答本题的关键是明确题意,列出相应的分式方程,注意分式方程要经验26.(8分)(2017•济南)中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如图所示:本数(本)频数(人数)频率5a0.26180.36第33页(共47页)714b880.16合计c1(1)统计表中的a=10,b=0.28,c=50;(2)请将频数分布表直方图补充完整;(3)求所有被调查学生课外阅读的平均本数;(4)若该校八年级共有1200名学生,请你分析该校八年级学生课外阅读7本及以上的人数.【考点】V8:频数(率)分布直方图;V5:用样本估计总体;V7:频数(率)分布表.【分析】(1)根据百分比=所占人数总人数计算即可;(2)求出a组人数,画出直方图即可;(3)根据平均数的定义计算即可;(4)利用样本估计总体的思想解决问题即可;【解答】解:(1)由题意c=18÷0.36=50,第34页(共47页)第35页(共47页)∴a=50×0.2=10,b=1450=0.28,故答案为10,0.28,50.(2)频数分布表直方图如图所示.(3)所有被调查学生课外阅读的平均本数=10×5+18×6+14×7+8×850=6.4(本)(4)该校八年级共有1200名学生,该校八年级学生课外阅读7本及以上的人数有1200×14+850=528(名).【点评】本题考查频数分布直方图、扇形统计图、样本估计总体等知识,解题的关键是熟练掌握基本概念,灵活运用所学知识解决问题,属于中考常考题型.27.(9分)(2017•济南)如图1,▱OABC 的边OC 在y 轴的正半轴上,OC=3,A (2,1),反比例函数y=k x(x >0)的图象经过的B.(1)求点B的坐标和反比例函数的关系式;(2)如图2,直线MN分别与x轴、y轴的正半轴交于M,N两点,若点O和点B 关于直线MN成轴对称,求线段ON的长;(3)如图3,将线段OA延长交y=kx(x>0)的图象于点D,过B,D的直线分别交x轴、y轴于E,F两点,请探究线段ED与BF的数量关系,并说明理由.【考点】GB:反比例函数综合题.【分析】(1)利用平行四边形的性质求出点B的坐标即可解决问题;(2)根据两直线垂直的条件,求出直线MN的解析式即可解决问题;(3)结论:BF=DE.如图3中,延长BA交x轴于N,作DM⊥x轴于M,作NK∥EF交y轴于K.设ON=n,OM=m,ME=a.则BN=kn ,DM=km.由△EDM∽△EBN,推出EM EN =DMBN,即am+a−n=kmkn,可得a=m,由△KNO≌△DEM,推出DE=KN,再证明四边形NKFB是平行四边形,即可解决问题;【解答】解:(1)如图1中,第36页(共47页)。

山东省济南市天桥区2017年中考数学二模试卷(带答案)

 山东省济南市天桥区2017年中考数学二模试卷(带答案)

2017年山东省济南市天桥区中考数学二模试卷一、选择题(共15小题,每小题3分,满分45分,在每小题给出的四个选项中,只有一个是符合题意的)1.﹣2的绝对值是()A.﹣2 B.﹣ C.D.22.已知空气的单位体积质量是0.01239g/cm3,数据0.001239用科学记数法可表示为()A.1.239×10﹣3B.1.239×10﹣2C.0.1239×10﹣2D.12.39×10﹣43.下列计算正确的是()A.(x+y)2=x2+y2B.(x﹣y)2=x2﹣2xy﹣y2C.x(x﹣1)=x2﹣1 D.(x+1)(x﹣1)=x2﹣14.如左图所示的正三棱柱,其主视图正确的为()A. B. C. D.5.如图,已知∠1=70°,如果CD∥BE,那么∠B的度数为()A.70° B.100°C.110°D.120°6.如图为一次函数y=kx+b(k≠0)的图象,则下列正确的是()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<07.如图,⊙O是△ABC的外接圆,连接OB、OC,若OB=BC,则∠BAC等于()A.60° B.45° C.30° D.20°8.若分式的值为零,则x的值为()A.0 B.1 C.﹣1 D.±19.如图,△DEF是由△ABC通过平移得到,且点B,E,C,F在同一条直线上.若BF=14,EC=6.则BE的长度是()A.2 B.4 C.5 D.310.下列命题是真命题的是()A.对角线互相平分的四边形是平行四边形B.对角线相等的四边形是矩形C.对角线互相垂直的四边形是菱形D.对角线互相垂直的四边形是正方形11.表记录了甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数与方差s2.甲乙丙丁平均数 x(cm)561 560 561 560方差s2(cm2)35 35 155 165根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择()A.甲B.乙C.丙D.丁12.新年里,一个小组有若干人,若每人给小组的其它成员赠送一张贺年卡,则全组送贺卡共72张,此小组人数为()A.7 B.8 C.9 D.1013.已知二次函数y=ax2+bx+c(a>0)的图象过点A(1,n),B(3,n),若点C(﹣1.y1),D(0,y2),E(6,y3)也在该二次函数图象上,则下列结论正确的是()A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y1<y3<y214.对于实数a,b,我们定义符号max{a,b}的意义为:当a≥b时,max{a,b}=a;当a<b时,max{a,b]=b;如:max{4,﹣2}=4,max{3,3}=3,若关于x的函数为y=max{x+3,﹣x+1},则该函数的最小值是()A.0 B.2 C.3 D.415.如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE沿BE折叠,点C恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF上的点H处,有下列结论:①∠EBG=45°;②AG+DF=FG;③△DEF∽△ABG;④S△ABG=S△FGH.其中正确的是()A.1个B.2个C.3个D.4个二、填空题(本大题共6个小题,每小题3分,共18分)16.分解因式:x2﹣4= .17.不等式3x﹣2>2x﹣1的解集是.18.如图,三角板的直角顶点在直线l上,若∠1=70°,则∠2= .19.一艘轮船在小岛A的北偏东60°距小岛80海里的B处,沿正西方向航行2小时后到达小岛的北偏西45°的C 处,则该船行驶的速度为海里/小时.20.一只小狗在如图所示的矩形草地ABCD内自由的玩耍,点P是矩形的边CD上一点,点E、点F分别为PA,PB的中点,连接EF,则这只小狗跑到△PEF内的概率是.21.如图,直线y=x与双曲线y=(x>0)交于点A,将直线y=x向下平移个6单位后,与双曲线y=(x>0)交于点B,与x轴交于点C,则C点的坐标为;若=2,则k= .三、解答题(本大题共7个小题,共57分.解答应写出文字说明、证明过程或演算步骤.)22.完成下列各题:(1)计算:2﹣1﹣(4﹣π)0+(2)解方程: =.23.完成下列各题:(1)如图,已知直线AB与⊙O相切于点C,且AC=BC,求证:OA=OB.(2)如图,矩形ABCD的两条对角线相交于点O,∠AOD=120°,AB=3,求AC的长.24.某汽车专卖店销售A,B两种型号的新能源汽车.上周售出I辆A型车和3辆B型车,销售额为96万元;本周已售出2辆A型车和1辆B型车,销售额为62万元.求每辆A型车和B型车的售价各为多少元.25.为了了解全校1500名学生对学校设置的篮球、羽毛球、乒乓球、踢毽子、跳绳共5项体育活动的喜爱情况,在全校范围内随机抽查部分学生,对他们喜爱的体育项目(每人只选一项)进行了问卷调查,将统计数据绘制成如图两幅不完整统计图,请根据图中提供的信息解答下列各题.(1)本次问卷调查共抽查了名学生;(2)请补全条形统计图;(3)请你估计该校约有名学生最喜爱打篮球;(4)学校准备从喜欢跳绳活动的4人(三男一女)中随机选取2人进行体能测试,请利用列表或树状图的方法,求抽到一男一女的概率.26.如图,反比例函数y=(x>0)与一次函数y=kx+6交于点C(2,4),一次函数图象与两坐标轴分别交于点A和点B,动点P从点A出发,沿AB以每秒1个单位长度的速度向点B运动;同时,动点Q从点O出发,沿OA 以相同的速度向点A运动,运动时间为t秒(0<t≤6),以点P为圆心,PA为半径的⊙P与AB交于点M,与OA交于点N,连接MN、MQ.(1)求m与k的值;(2)当t为何值时,点Q与点N重合;(3)若△MNQ的面积为S,试求S与t的函数关系式.27.在△ABC中,AB=AC,点D为直线BC上一动点(点D不与B、C重合)以AD为边作正方形ADEF,使∠DAF=∠BAC,连接CF.(1)如图1,当点D在线段BC上时,求证:BD=CF;(2)如图2,当点D在线段BC的延长线上,且∠BAC=90°时.①问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;②延长BA交CF于点G,连接GE,若AB=2,CD=BC,请求出GE的长.28.如图,抛物线y=ax2+bx﹣4与x轴交于点A(2,0)和点B,与y轴交于点C,顶点为点D,对称轴为直线x=﹣1,点E为线段AC的中点,点F为x轴上一动点.(1)直接写出点B的坐标,并求出抛物线的函数关系式;(2)当点F的横坐标为﹣3时,线段EF上存在点H,使△CDH的周长最小,请求出点H,使△CDH的周长最小,请求出点H的坐标;(3)在y轴左侧的抛物线上是否存在点P,使以P,F,C,D为顶点的四边形是平行四边形?若存在,请求出点P 的坐标;若不存在,请说明理由.2017年山东省济南市天桥区中考数学二模试卷参考答案与试题解析一、选择题(共15小题,每小题3分,满分45分,在每小题给出的四个选项中,只有一个是符合题意的)1.﹣2的绝对值是()A.﹣2 B.﹣ C.D.2【考点】15:绝对值.【分析】计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:∵﹣2<0,∴|﹣2|=﹣(﹣2)=2.故选D.2.已知空气的单位体积质量是0.01239g/cm3,数据0.001239用科学记数法可表示为()A.1.239×10﹣3B.1.239×10﹣2C.0.1239×10﹣2D.12.39×10﹣4【考点】1J:科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.001239=1.239×10﹣3,故选:A.3.下列计算正确的是()A.(x+y)2=x2+y2B.(x﹣y)2=x2﹣2xy﹣y2C.x(x﹣1)=x2﹣1 D.(x+1)(x﹣1)=x2﹣1【考点】4I:整式的混合运算.【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=x2+y2+2xy,不符合题意;B、原式=x2﹣2xy+y2,不符合题意;C、原式=x2﹣x,不符合题意;D、原式=x2﹣1,符合题意,故选D4.如左图所示的正三棱柱,其主视图正确的为()A. B. C. D.【考点】U1:简单几何体的三视图.【分析】画出从正面看到的图形即可.【解答】解:这个几何体的主视图为:故选:B.5.如图,已知∠1=70°,如果CD∥BE,那么∠B的度数为()A.70° B.100°C.110°D.120°【考点】JA:平行线的性质;J2:对顶角、邻补角.【分析】先求出∠1的对顶角,再根据两直线平行,同旁内角互补即可求出.【解答】解:如图,∵∠1=70°,∴∠2=∠1=70°,∵CD∥BE,∴∠B=180°﹣∠1=180°﹣70°=110°.故选:C.6.如图为一次函数y=kx+b(k≠0)的图象,则下列正确的是()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<0【考点】F7:一次函数图象与系数的关系.【分析】根据一次函数经过的象限可得k和b的取值.【解答】解:∵一次函数经过二、四象限,∴k<0,∵一次函数与y轴的交于正半轴,∴b>0.故选C.7.如图,⊙O是△ABC的外接圆,连接OB、OC,若OB=BC,则∠BAC等于()A.60° B.45° C.30° D.20°【考点】M5:圆周角定理;KM:等边三角形的判定与性质.【分析】由OB=BC,易得△OBC是等边三角形,继而求得∠BOC的度数,又由圆周角定理,即可求得∠BAC的度数.【解答】解:∵OB=BC=OC,∴△OBC是等边三角形,∴∠BOC=60°,∴∠BAC=∠BOC=30°.故选C.8.若分式的值为零,则x的值为()A.0 B.1 C.﹣1 D.±1【考点】63:分式的值为零的条件.【分析】根据分式为0的条件列出关于x的不等式组,求出x的值即可.【解答】解:∵分式的值为零,∴,解得x=1.故选B.9.如图,△DEF是由△ABC通过平移得到,且点B,E,C,F在同一条直线上.若BF=14,EC=6.则BE的长度是()A.2 B.4 C.5 D.3【考点】Q2:平移的性质.【分析】根据平移的性质可得BE=CF,然后列式其解即可.【解答】解:∵△DEF是由△ABC通过平移得到,∴BE=CF,∴BE=(BF﹣EC),∵BF=14,EC=6,∴BE=(14﹣6)=4.故选B.10.下列命题是真命题的是()A.对角线互相平分的四边形是平行四边形B.对角线相等的四边形是矩形C.对角线互相垂直的四边形是菱形D.对角线互相垂直的四边形是正方形【考点】O1:命题与定理.【分析】根据平行线四边形的判定方法对A进行判定;根据矩形的判定方法,对角线相等的平行四边形是矩形,则可对B进行判定;根据菱形的判定方法,对角线互相垂直的平行四边形是菱形,则可对C进行判定;根据正方形的判定方法,对角线互相垂直的矩形是正方形,则可对对D进行判定.【解答】解:A、对角线互相平分的四边形是平行四边形,所以A选项为真命题;B、对角线相等的平行四边形是矩形,所以B选项为假命题;C、对角线互相垂直的平行四边形是菱形,所以C选项为假命题;D、对角线互相垂直的矩形是正方形,所以D选项为假命题.故选A.11.表记录了甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数与方差s2.甲乙丙丁平均数 x(cm)561 560 561 560方差s2(cm2)35 35 155 165根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择()A.甲B.乙C.丙D.丁【考点】W7:方差;W2:加权平均数.【分析】根据方差的意义先比较出甲、乙、丙、丁的大小,再根据平均数的意义即可求出答案.【解答】解:∵S甲2=35,S乙2=35,S丙2=155,S丁2=165,∴S甲2=S乙2<S丙2<S丁2,∵=561, =560,∴>,∴从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择甲,故选:A.12.新年里,一个小组有若干人,若每人给小组的其它成员赠送一张贺年卡,则全组送贺卡共72张,此小组人数为()A.7 B.8 C.9 D.10【考点】AD:一元二次方程的应用.【分析】设这个小组的人数为x个,则每个人要送其他(x﹣1)个人贺卡,则共有(x﹣1)x张贺卡,等于72张,由此可列方程.【解答】解:设这个小组有x人,则根据题意可列方程为:(x﹣1)x=72,解得:x1=9,x2=﹣8(舍去).故选C.13.已知二次函数y=ax2+bx+c(a>0)的图象过点A(1,n),B(3,n),若点C(﹣1.y1),D(0,y2),E(6,y3)也在该二次函数图象上,则下列结论正确的是()A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y1<y3<y2【考点】H5:二次函数图象上点的坐标特征.【分析】先利用抛物线的对称性得到抛物线的对称轴为直线x=2,然后根据二次函数的性质,通过比较点C、D、E 到对称轴的距离的大小判断y1、y2、y3的大小.【解答】解:∵抛物线点A(1,n),B(3,n),∴抛物线的对称轴为直线x=2,∵点C(﹣1.y1)到直线x=2的距离为3,点D(0,y2)到直线x=2的距离为2,点E(6,y3)到直线x=1的距离为4,而抛物线的开口向上,∴y2<y1<y3.故选B.14.对于实数a,b,我们定义符号max{a,b}的意义为:当a≥b时,max{a,b}=a;当a<b时,max{a,b]=b;如:max{4,﹣2}=4,max{3,3}=3,若关于x的函数为y=max{x+3,﹣x+1},则该函数的最小值是()A.0 B.2 C.3 D.4【考点】E9:分段函数.【分析】分x≥﹣1和x<﹣1两种情况进行讨论计算,【解答】解:当x+3≥﹣x+1,即:x≥﹣1时,y=x+3,∴当x=﹣1时,y min=2,当x+3<﹣x+1,即:x<﹣1时,y=﹣x+1,∵x<﹣1,∴﹣x>1,∴﹣x+1>2,∴y>2,∴y min=2,故选B15.如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE沿BE折叠,点C恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF上的点H处,有下列结论:①∠EBG=45°;②AG+DF=FG;③△DEF∽△ABG;④S△ABG=S△FGH.其中正确的是()A.1个B.2个C.3个D.4个【考点】S9:相似三角形的判定与性质;PB:翻折变换(折叠问题).【分析】利用折叠性质得∠CBE=∠FBE,∠ABG=∠FBG,BF=BC=10,BH=BA=6,AG=GH,则可得到∠EBG=∠ABC,于是可对①进行判断;在Rt△ABF中利用勾股定理计算出AF=8,则DF=AD﹣AF=2,设AG=x,则GH=x,GF=8﹣x,HF=BF ﹣BH=4,利用勾股定理得到x2+42=(8﹣x)2,解得x=3,所以AG=3,GF=5,于是可对②进行判断;接着证明△ABF ∽△DFE,利用相似比得到,而=2,所以,所以△DEF与△ABG不相似,于是可对③进行判断;分别计算S△ABG和S△GHF可对④进行判断.【解答】解:∵△BCE沿BE折叠,点C恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF上的点H处,∴∠CBE=∠FBE,∠ABG=∠FBG,BF=BC=10,BH=BA=6,AG=GH,∴∠EBG=∠EBF+∠FBG=∠CBF+∠ABF=∠ABC=45°,所以①正确;在Rt△ABF中,AF==8,∴DF=AD﹣AF=10﹣8=2,设AG=x,则GH=x,GF=8﹣x,HF=BF﹣BH=10﹣6=4,在Rt△GFH中,∵GH2+HF2=GF2,∴x2+42=(8﹣x)2,解得x=3,∴GF=5,∴AG+DF=FG=5,所以②正确;∵△BCE沿BE折叠,点C恰落在边AD上的点F处∴∠BFE=∠C=90°,∴∠EFD+∠AFB=90°,而∠AFB+∠ABF=90°,∴∠ABF=∠EFD,∴△ABF∽△DFE,∴,∴,而=2,∴,∴△DEF与△ABG不相似;所以③错误.∵S△ABG=×6×3=9,S△GHF=×3×4=6,∴S△ABG=1.5S△FGH.所以④正确.故选C二、填空题(本大题共6个小题,每小题3分,共18分)16.分解因式:x2﹣4= (x+2)(x﹣2).【考点】54:因式分解﹣运用公式法.【分析】直接利用平方差公式进行因式分解即可.【解答】解:x2﹣4=(x+2)(x﹣2).故答案为:(x+2)(x﹣2).17.不等式3x﹣2>2x﹣1的解集是x>1 .【考点】C6:解一元一次不等式.【分析】根据解一元一次不等式基本步骤:移项、合并同类项即可得.【解答】解:移项,得:3x﹣2x>﹣1+2,合并同类项,可得:x>1,故答案为:x>118.如图,三角板的直角顶点在直线l上,若∠1=70°,则∠2= 20°.【考点】IL:余角和补角.【分析】由三角板的直角顶点在直线l上,根据平角的定义可知∠1与∠2互余,又∠1=70°,即可求得∠2的度数.【解答】解:如图,三角板的直角顶点在直线l上,则∠1+∠2=180°﹣90°=90°,∵∠1=70°,∴∠2=20°.故答案为20°.19.一艘轮船在小岛A的北偏东60°距小岛80海里的B处,沿正西方向航行2小时后到达小岛的北偏西45°的C 处,则该船行驶的速度为20+20海里/小时.【考点】TB:解直角三角形的应用﹣方向角问题;KU:勾股定理的应用.【分析】设该船行驶的速度为x海里/时,由已知可得BC=3x,AQ⊥BC,∠BAQ=60°,∠CAQ=45°,AB=80海里,在直角三角形ABQ中求出AQ、BQ,再在直角三角形AQC中求出CQ,得出BC=40+40=2x,解方程即可.【解答】解:如图所示:设该船行驶的速度为x海里/时,3小时后到达小岛的北偏西45°的C处,由题意得:AB=80海里,BC=2x海里,在直角三角形ABQ中,∠BAQ=60°,∴∠B=90°﹣60°=30°,∴AQ=AB=40,BQ=AQ=40,在直角三角形AQC中,∠CAQ=45°,∴CQ=AQ=40,∴BC=40+40=3=2x,解得:x=20+20.即该船行驶的速度为20+20海里/时;故答案为:20+20.20.一只小狗在如图所示的矩形草地ABCD内自由的玩耍,点P是矩形的边CD上一点,点E、点F分别为PA,PB的中点,连接EF,则这只小狗跑到△PEF内的概率是.【考点】X5:几何概率.【分析】根据概率的公式计算即可.【解答】解:因为,所以这只小狗跑到△PEF内的概率是,故答案为:.21.如图,直线y=x与双曲线y=(x>0)交于点A,将直线y=x向下平移个6单位后,与双曲线y=(x>0)交于点B,与x轴交于点C,则C点的坐标为(,0);若=2,则k= 12 .【考点】GB:反比例函数综合题.【分析】根据题意得到直线BC的解析式,令y=0,得到点C的坐标;根据直线AO和直线BC的解析式与双曲线y=联立求得A,B的坐标,再由已知条件=2,从而求出k值.【解答】解:∵将直线y=x向下平移个6单位后得到直线BC,∴直线BC解析式为:y=x﹣6,令y=0,得x﹣6=0,∴C点坐标为(,0);∵直线y=x与双曲线y=(x>0)交于点A,∴A(,),又∵直线y=x﹣6与双曲线y=(x>0)交于点B,且=2,∴B(+,),将B的坐标代入y=中,得(+)=k,解得k=12.故答案为:(,0),12.三、解答题(本大题共7个小题,共57分.解答应写出文字说明、证明过程或演算步骤.)22.完成下列各题:(1)计算:2﹣1﹣(4﹣π)0+(2)解方程: =.【考点】B3:解分式方程;6E:零指数幂;6F:负整数指数幂.【分析】(1)根据实数的运算,可得答案;(2)根据等式的性质,可得整式方程,根据解整式方程,可得答案.【解答】(1)解:原式=﹣1+=0;(2)解:两边都乘以(x﹣2)(2x+1),得3(x﹣2)=2x+1,化简,得x=7经检验:x=7是原分式方程的根.23.完成下列各题:(1)如图,已知直线AB与⊙O相切于点C,且AC=BC,求证:OA=OB.(2)如图,矩形ABCD的两条对角线相交于点O,∠AOD=120°,AB=3,求AC的长.【考点】MC:切线的性质;LB:矩形的性质.【分析】(1)根据线段垂直平分线的性质:线段垂直平分线上的点到两端点的距离相等来证明;(2)根据矩形性质得出AC=BD,OA=OB,求出∠AOB=60°,得出△AOB是等边三角形,求出∠ADB=30°,得出AC=BD=2AB=6cm即可.【解答】(1)证明:连接OC,∵直线AB与⊙O相切于点C,∴OC⊥AB,又∵AC=BC,∴OC垂直平分AB,∴OA=OB;(2)证明:∵四边形ABCD是矩形,∴AC=BD,OA=OC=AC,BO=DO=BD,∠BAD=90°,∴OA=OB,∵∠AOD=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴∠ABO=60°,∠ADB=30°,∴AC=BD=2AB=6cm.24.某汽车专卖店销售A,B两种型号的新能源汽车.上周售出I辆A型车和3辆B型车,销售额为96万元;本周已售出2辆A型车和1辆B型车,销售额为62万元.求每辆A型车和B型车的售价各为多少元.【考点】9A:二元一次方程组的应用.【分析】设每辆A型车的售价为x元,B型车的售价为y元,根据周售出I辆A型车和3辆B型车,销售额为96万元;售出2辆A型车和1辆B型车,销售额为62万元.列出方程组解答即可.【解答】解:设每辆A型车的售价为x万元,B型车的售价为y万元,由题意得,解得:.答:每辆A型车的售价为18万元,B型车的售价为26万元,25.为了了解全校1500名学生对学校设置的篮球、羽毛球、乒乓球、踢毽子、跳绳共5项体育活动的喜爱情况,在全校范围内随机抽查部分学生,对他们喜爱的体育项目(每人只选一项)进行了问卷调查,将统计数据绘制成如图两幅不完整统计图,请根据图中提供的信息解答下列各题.(1)本次问卷调查共抽查了50 名学生;(2)请补全条形统计图;(3)请你估计该校约有360 名学生最喜爱打篮球;(4)学校准备从喜欢跳绳活动的4人(三男一女)中随机选取2人进行体能测试,请利用列表或树状图的方法,求抽到一男一女的概率.【考点】X6:列表法与树状图法;V5:用样本估计总体;VB:扇形统计图;VC:条形统计图.【分析】(1)利用喜欢篮球的人数除以它所占的百分比可得到调查的总人数;(2)先计算出喜欢乒乓球的人数,然后补全条形统计图;(3)用1500乘以样本中喜欢篮球的百分比可估计出该校最喜爱打篮球的人数;(4)通过列表展示所有12种等可能的结果数,再找出一男一女的结果数,然后估计概率公式求解.【解答】解:(1)调查的总人数为12÷24%=50(人);(2)喜欢乒乓球的人数=50﹣12﹣17﹣7﹣4=10(人),补全条形统计图为:(3)1500×24%=36,所以估计该校约有360名学生最喜爱打篮球;故答案为50,360;(4)列表如下:男1 男2 男3 女男1 (男2,男1)(男3,男1)(女,男1)男2 (男1,男2)(男3,男2)(女,男2)男3 (男1,男3)(男2,男3)(女,男3)女(男1,女)(男2,女)(男3,女)共有12种等可能的结果数,其中一男一女的情况有6种,所以抽到一男一女的概率==.26.如图,反比例函数y=(x>0)与一次函数y=kx+6交于点C(2,4),一次函数图象与两坐标轴分别交于点A和点B,动点P从点A出发,沿AB以每秒1个单位长度的速度向点B运动;同时,动点Q从点O出发,沿OA 以相同的速度向点A运动,运动时间为t秒(0<t≤6),以点P为圆心,PA为半径的⊙P与AB交于点M,与OA交于点N,连接MN、MQ.(1)求m与k的值;(2)当t为何值时,点Q与点N重合;(3)若△MNQ的面积为S,试求S与t的函数关系式.【考点】GB:反比例函数综合题.【分析】(1)利用待定系数法直接求出m和k;(2)先求出AB,进而判断出△MAN∽△BAO,利用比例式得出AN和MN,即可得出ON,利用ON=OQ建立方程求解即可;(3)分两种情况利用三角形的面积公式即可得出结论.【解答】解:(1)将C(2,4)代入y=中得,m=8将(2,3)代入y=kx+6中得,2k+6=4∴k=﹣(2)由(1)知,k=﹣,∴直线AB的解析式为y=﹣x+6,∴A(6,0),B(0,6),∴AB=12∵AM是直径∴∠ANM=90°,∴∠ANM=∠AOB又∵∠MAN=∠BAO,∴△MAN∽△BAO,∴∵OQ=AP=t,AM=2AP=2t,OA=6,OB=6,AB=12∴∴AN=t,MN=t∴ON=OA﹣AN=6﹣t∵点Q与点N重合∴ON=OQ即6﹣t=t∴t=3(3)①当0<t≤3时,QN=OA﹣OQ﹣AN=6﹣2t∴S=QN•MN=(6﹣2t)•t=﹣t2+3t②当3<t≤6时,QN=OQ+NA﹣OA=t+t﹣6=2t﹣6∴S=QN•MN=(2t﹣6)•t=t2﹣3t,即:S=27.在△ABC中,AB=AC,点D为直线BC上一动点(点D不与B、C重合)以AD为边作正方形ADEF,使∠DAF=∠BAC,连接CF.(1)如图1,当点D在线段BC上时,求证:BD=CF;(2)如图2,当点D在线段BC的延长线上,且∠BAC=90°时.①问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;②延长BA交CF于点G,连接GE,若AB=2,CD=BC,请求出GE的长.【考点】LO:四边形综合题.【分析】(1)由SAS证明△DAB≌△FAC,得出对应边相等即可;(2)①由SAS证明△DAB≌△FAC,得出对应边相等即可;②过A作AH⊥BC于H,过E作EM⊥BD于M,EN⊥CF于N,证出∠ADH=∠DEM,由AAS证明△ADH≌△DEM,得出EM=DH=6,DM=AH=2,得出CN=EM=6,EN=CM=6,证出△BCG是等腰直角三角形,得出CG=BC=4,求出GN=2,由勾股定理求出GE 的长即可.【解答】(1)证明:菱形ADEF中,AD=AF,∵∠BAC=∠DAF,∴∠BAD=∠CAF,在△DAB与△FAC中,,∴△DAB≌△FAC(SAS),∴BD=CF;(2)解:①(1)中的结论仍然成立;理由如下:∵∠BAC=∠DAF=90°,∴∠BAD=∠CAF在△DAB与△FAC中,,∴△DAB≌△FAC(SAS),∴BD=CF;②过A作AH⊥BC于H,过E作EM⊥BD于M,EN⊥CF于N,如图所示:∵∠BAC=90°,AB=AC,∴BC=AB=4,AH=BH=HC=2,∴CD=BC=4,∴DH=6,CF=BD=8,∵四边形ADEF是正方形,∴AD=DE,∠ADE=90°,∵BC⊥CF,EM⊥BD,EN⊥CF,∴四边形CMEN是矩形,∴NE=CM,EM=CN,∵∠AHD=∠ADE=∠EMD=90°,∴∠ADH+∠EDM=∠EDM+∠DEM=90°,∴∠ADH=∠DEM,在△ADH与△DEM中,,∴△ADH≌△DEM(AAS),∴EM=DH=6,DM=AH=2,∴CN=EM=6,EN=CM=6,∵∠A BC=45°,∴∠BGC=45°,∴△BCG是等腰直角三角形,∴CG=BC=4,∴GN=2,∴GE===2.28.如图,抛物线y=ax2+bx﹣4与x轴交于点A(2,0)和点B,与y轴交于点C,顶点为点D,对称轴为直线x=﹣1,点E为线段AC的中点,点F为x轴上一动点.(1)直接写出点B的坐标,并求出抛物线的函数关系式;(2)当点F的横坐标为﹣3时,线段EF上存在点H,使△CDH的周长最小,请求出点H,使△CDH的周长最小,请求出点H的坐标;(3)在y轴左侧的抛物线上是否存在点P,使以P,F,C,D为顶点的四边形是平行四边形?若存在,请求出点P 的坐标;若不存在,请说明理由.【考点】HF:二次函数综合题.【分析】(1)根据轴对称,可得B点坐标,根据待定系数法,可得答案;(2)根据自变量与函数值的对应关系,可得C点坐标,根据配方法,可得D点坐标,根据勾股定理,可得CF的长,根据等腰三角形的性质,可得A,C关于EF对称,根据轴对称的性质,可得PA=PC,根据两点之间线段最短,可得P 是AD与EF的交点,根据解方程组,可得答案;(3)根据平行四边形的对角线互相平分,可得P点的纵坐标,根据自变量与函数值的对应关系,可得答案.【解答】解:(1)由A、B关于x=﹣1对称,得B(﹣4,0),∵抛物线y=ax2+bx﹣4过A(2,0)、B(﹣4,0),∴,解得:,∴y=x2+x﹣4,(2)如图1,当x=0时,y=﹣4,即C(0,﹣4),y=x2+x﹣4=(x+1)2﹣∴D(﹣1,﹣),∵E为线段AC的中点,A(2,0),C(0,﹣4),∴E(1,﹣2).∵点F横坐标为﹣3,∴F(﹣3,0),∴AF=5,CF===5,∴AF=CF,∵E为线段AC的中点,∴EF垂直平分AC,∴A、C关于直线EF轴对称,连接AD,与直线EF交点即为所求H,∴EF⊥AC.设直线EF关系式为y=k1x+b1,∴,解得:,∴直线EF:y=﹣x﹣,设直线AD关系式为y=k2x+b2,∴,解得:,∴y=x﹣3,联立AD,EF,得,∴,∴H(,﹣).(3)若CD为对角线,不存在;若CD为边,则PF∥CD且PF=CD,∵C(0,﹣4),D(﹣1,﹣),点F为x轴上一动点,如图2,PDCF是平行四边形,对角线的纵坐标为﹣,P点纵坐标﹣,当y=﹣时, x2+x﹣4=﹣,解得x1=﹣1+2(舍),x2=﹣1﹣2,∴P1(﹣1﹣2,﹣).如图3,PFDC是平行四边形,对角线的交点坐标为﹣2,P点坐标为,当y=时, x2+x﹣4=,解得x1=﹣1+(舍),x2=﹣1﹣,∴P2(﹣1﹣,).综上所述:在y轴左侧的抛物线上存在点P,使以P,F,C,D为顶点的四边形是平行四边形,点P的坐标(﹣1﹣2,﹣),(﹣1﹣,).。

2017年山东省济南市中考数学试题及答案ABC版

2017年山东省济南市中考数学试题及答案ABC版

文档目录:A.济南市2017年中考数学试题及答案B.北京市2017年中考数学试题及答案C.上海市2017年中考数学试题及答案A.济南市2017年中考数学试题及答案一、选择题(本大题共15小题,每小题3分,共45分)1.在实数0,-2,5,3中,最大的是( )A .0B .-2C . 5D .32.如图所示的几何体,它的左视图是( )3.2017年5月5日国产大型客机C919首飞成功,圆了中国人的“大飞机梦”,它颜值高性能好,全长近39米,最大载客人数168人,最大航程约5550公里.数字5550用科学记数法表示为( )A .0.555×104B .5.55×104C .5.55×103D .55.5×1034.如图,直线a ∥b ,直线l 与a ,b 分别相交于A ,B 两点,AC ⊥AB 交b 于点C ,∠1=40°,则∠2的度数是( )A .40°B .45°C .50°D .60°5.中国古代建筑中的窗格图案美观大方,寓意吉祥,下列绘出的图案中既是轴对称图形又是中心对称图形是( )6.化简a 2+ab a -b ÷ab a -b的结果是( ) A .a 2B .a 2a -b C .a -b b D .a +b b7.关于x 的方程x 2+5x +m =0的一个根为-2,则另一个根是( )A.-6 B.-3 C.3 D.68.《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x人,物价为y钱,以下列出的方程组正确的是( )9.如图,五一旅游黄金周期间,某景区规定A和B为入口,C,D,E为出口,小红随机选一个入口进入景区,游玩后任选一个出口离开,先她选择从A入口进入、从C,D出口离开的概率是( )A.12B.13C.16D.2310.把直尺、三角尺和圆形螺母按如图所示放置于桌面上,∠CAB=60°,若量出AD=6cm,则圆形螺母的外直径是( )A.12cm B.24cm C.63cm D.123cm11.将一次函数y=2x的图象向上平移2个单位后,当y>0时,x的取值范围是( )A.x>-1 B.x>1 C.x>-2 D.x>212.如图,为了测量山坡护坡石坝的坡度(坡面的铅直高度与水平宽度的比称为坡度),把一根长5m的竹竿AC斜靠在石坝旁,量出杆长1m处的D点离地面的高度DE=0.6m,又量的杆底与坝脚的距离AB=3m,则石坝的坡度为( )A.34B.3 C.35D.413.如图,正方形ABCD的对角线AC,BD相较于点O,AB=32,E为OC上一点,OE=1,连接BE,过点A作AF⊥BE于点F,与BD交于点G,则BF的长是( )A.3105B.2 2 C.354D.32214.二次函数y=ax2+bx+c(a≠0)的图象经过点(-2,0),(x0,0),1<x<2,与y 轴的负半轴相交,且交点在(0,-2)的上方,下列结论:①b >0;②2a <b ;③2a -b -1<0;④2a +c <0.其中正确结论的个数是( )A .1B .2C .3D .415.如图,有一正方形广场ABCD ,图形中的线段均表示直行道路,⌒BD 表示一条以A 为圆心,以AB 为半径的圆弧形道路.如图2,在该广场的A 处有一路灯,O 是灯泡,夜晚小齐同学沿广场道路散步时,影子长度随行走路线的变化而变化,设他步行的路程为x (m)时,相应影子的长度为y (m),根据他步行的路线得到y 与x 之间关系的大致图象如图3,则他行走的路线是( )A .A →B →E →GB .A →E →D →C C .A →E →B →FD .A →B →D →C二、填空题(本大题共6小题,每小题3分,共18分)16.分解因式:x 2-4x +4=__________.17.计算:│-2-4│+(3)0=________________.18.在学校的歌咏比赛中,10名选手的成绩如统计图所示,则这10名选手成绩的众数是_________________.19.如图,扇形纸叠扇完全打开后,扇形ABC 的面积为300πcm 2,∠BAC =120°,BD =2AD ,则BD 的长度为____________cm .20.如图,过点O 的直线AB 与反比例函数y =k x的图象交于A ,B 两点,A(2,1),直线BC ∥y 轴,与反比例函数y =-3k x(x <0)的图象交于点C ,连接AC ,则△ABC 的面积为_________________.21.定义:在平面直角坐标系xOy 中,把从点P 出发沿综或横方向到达点Q (至多拐一次弯)的路径长称为P ,Q 的“实际距离”.如图,若P(-1,1),Q(2,3),则P ,Q 的“实际距离”为5,即PS +SQ =5或PT +TQ =5.环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A ,B ,C 三个小区的坐标分别为A(3,1),B(5,-3),C(-1,-5),若点M 表示单车停放点,且满足M 到A ,B ,C 的“实际距离”相等,则点M 的坐标为______________.三、解答题(本大题共7小题,共57分)22.(1)先化简,再求值:(a +3)2-(a +2)(a +3),其中a =3.23.(1)如图,在矩形ABCD ,AD =AE ,DF ⊥AE 于点F .求证:AB =DF .(2)如图,AB 是⊙O 的直径,∠ACD =25°,求∠BAD 的度数.24.某小区响应济南市提出的“建绿透绿”号召,购买了银杏树和玉兰树共150棵用来美化小区环境,购买银杏树用了12000元,购买玉兰树用了9000元.已知玉兰树的单价是银杏树单价的1.5倍,那么银杏树和玉兰树的单价各是多少?25.中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如下所示:(1)统计表中的a =________,b =___________,c =____________;(2)请将频数分布表直方图补充完整;(3)求所有被调查学生课外阅读的平均本数;(4)若该校八年级共有1200名学生,请你分析该校八年级学生课外阅读7本及以上的人数.26.如图1,□OABC 的边OC 在y 轴的正半轴上,OC =3,A(2,1),反比例函数y =k x(x >0)的图象经过的B . (1)求点B 的坐标和反比例函数的关系式;(2)如图2,直线MN 分别与x 轴、y 轴的正半轴交于M ,N 两点,若点O 和点B 关于直线MN 成轴对称,求线段ON 的长;(3)如图3,将线段OA 延长交y =k x(x >0)的图象于点D ,过B ,D 的直线分别交x 轴、y 轴于E ,F 两点,请探究线段ED 与BF 的数量关系,并说明理由.27.某学习小组的学生在学习中遇到了下面的问题:如图1,在△ABC 和△ADE 中,∠ACB =∠AED =90°,∠CAB =∠EAD =60°,点E ,A ,C 在同一条直线上,连接BD ,点F 是BD 的中点,连接EF ,CF ,试判断△CEF 的形状并说明理由.问题探究:(1)小婷同学提出解题思路:先探究△CEF的两条边是否相等,如EF=CF,以下是她的证明过程请根据以上证明过程,解答下列两个问题:①在图1中作出证明中所描述的辅助线;②在证明的括号中填写理由(请在SAS,ASA,AAS,SSS中选择).(2)在(1)的探究结论的基础上,请你帮助小婷求出∠CEF的度数,并判断△CEF的形状.问题拓展:(3)如图2,当△ADE绕点A逆时针旋转某个角度时,连接CE,延长DE交BC的延长线于点P,其他条件不变,判断△CEF的形状并给出证明.28.如图1,矩形OABC的顶点A,C的坐标分别为(4,0),(0,6),直线AD交:y=ax2+bx(a≠0)过A,D两点.BC于点D,tan∠OAD=2,抛物线M1的表达式;(1)求点D的坐标和抛物线M1(2)点P是抛物线M对称轴上一动点,当∠CPA=90°时,求所有符合条件1的点P的坐标;(3)如图2,点E(0,4),连接AE,将抛物线M的图象向下平移m(m>0)1.个单位得到抛物线M2①设点D平移后的对应点为点D′,当点D′恰好在直线AE上时,求m的值;与直线AE有两个交点,求m的取值范②当1≤x≤m(m>1)时,若抛物线M2围.26.【解】(1)过点A作AP⊥x轴于点P,则AP=1,OP=2.又∵AB =OC =3,∴B(2,4).∵反比例函数y =k x(x >0)的图象经过的B , ∴4=k 2.∴k =8.∴反比例函数的关系式为y =8x. (2)设MN 交OB 于点H ,过点B 作BG ⊥y 轴于点G ,则BG =2,OG =4.∴OB =22+42=2 5.∵点H 是OB 的中点,∴点H(1,2).∴OH =12+22= 5. ∵∠OHN =∠OGB =90°,∠HON =∠GOB ,∴△OHN ∽△OGB ,∴ON OB =OH OG .∴ON 25=54.∴ON =2.5. (3)ED =BF . 理由:由点A (2,1)可得直线OA 的解析式为y =12x . 解方程组⎩⎪⎨⎪⎧y =12x y =8x,得⎩⎨⎧x 1=4y 1=2,⎩⎨⎧x 2=-2y 2=-4. ∵点D 在第一象限,∴D(4,2).由B(2,4),点D(4,2)可得直线BD 的解析式为y =-x +6.把y =0代入上式,得0=-x +6.解得x =6.∴E(6,0).∵ED =(6-4)2+(0-2)2=22,BF =(0-2)2+(6-4)2=2 2.∴ED =BF .27.【解】(1)①证明中所叙述的辅助线如下图所示:②证明的括号中的理由是:AAS.(2)△CEF 是等边三角形.证明如下:设AE =a ,AC =b ,则AD =2a ,AB =2b ,DE =3a ,BC =3b ,CE =a +b. ∵△BGF ≌△DEF,∴BG =DE =3a.∴CG =BC +BG =3(a +b).∵CB CG =3b 3(a +b)=b a +b ,CA CE =b a +b ,∴CB CG =CA CE . 又∵∠ACB =∠ECG ,∴△ACE ∽△ECG.∴∠CEF =∠CAB =60°.又∵CF =EF(已证),∴△CEF 是等边三角形.(3)△CEF 是等边三角形.如答案图2,过点B 作BN ∥DE ,交EF 的延长线于点N ,连接CN ,则∠DEF =∠FNB.又∵DF =BF ,∠DFE =∠BFN ,∴△DEF ≌△BNF .∴BN =DE ,EF =FN .设AC =a,AE =b,则BC =3a,DE =3b .∵∠AEP =∠ACP =90°,∴∠P +∠EAC =180°.∵DP ∥BN ,∴∠P +∠CBN =180°.∴∠CBN =∠EAC .在△AEC 和△BNC 中, ∵AE BN =AE DE =AC BC =33,∠CBN =∠EAC, ∴△AEC ∽△BNC.∴∠ECA =∠NCB.∴∠ECN =90°.又∵EF =FN ,∴CF =12EN =EF. 又∵∠CEF =60°,∴△CEF 是等边三角形.28.【解】(1)过点D 作DF ⊥OA 于点F ,则DF =6.∵tan ∠OAD =DF AF =2,∴AF =3.∴OF =1.∴D(1,6). 把A(4,0),D(1,6)分别代入 y =ax 2+bx(a ≠0),得⎩⎪⎨⎪⎧0=16a +4b 6=a +b .解得⎩⎪⎨⎪⎧a =-2b =8. ∴抛物线M 1的表达式为:y =-2x 2+8x.(2)连接AC ,则AC =42+62=213.∵y =-2x 2+8x =-2(x -2)2+8,∴抛物线M 1的对称轴是直线x =2.设直线x =2交OA 于点N ,则N(2,0).以AC 为半径作⊙M ,交直线x =2于P 1、P 2两点,分别连接P 1C 、P 1A 、P 2C 、P 2A ,则点P 1、P 2两点就是符合题意的点,且这两点的横坐标都是2.∵点M 是AC 的中点,∴点M (2,3).∴MN =2.∵P 1M 是Rt △CP 1A 的斜边上的中线,∴P 1M =12AC =13. ∴P 1N =MN +P 1M =3+13.∴点P 1(2,3+13).同理可得点P 2(2,3-13).(3)由A(4,0),点E (0,4)可得直线AE 的解析式为y =-x +4.①点D(1,6)平移后的对应点为点D′(1,6-m),∵点D′恰好在直线AE上∴6-m=-1+4.解得m=3.∴D′(1,3),m=3.②如答案图4,作直线x=1,它与直线AE的交点就是点D′(1,3).作直线x=m 交直线AE于点Q(m,-m+4).设抛物线M2的解析式为y=-2x2+8x-m.若要直线AE与抛物线M2有两个交点N1、N2,则关于x的一元二次方程-2x2+8x-m=-x+4有两个不相等的实数根,将该方程整理,得2x2+9x+m+4=0.由△=92-4×2(m+4)>0,解得m<498.又∵m>1,∴1<m<498.…………………………①∵1≤x≤m(m>1),∴抛物线M2与直线AE有两个交点N1、N2要在直线x=1与直线x=m所夹的区域内(含左、右边界).当点N1与点D′(1,3)重合时,把D′(1,3)的坐标代入y=-2x2+8x-m,可得m=3.∴m≥3…………………………………………………………………………②当点N2与点Q(m,-m+4)重合时,把点Q(m,-m+4)的坐标代入y=-2x2+8x -m,可得-m+4=-2m2+8m-m.解得m1=2+2,m2=2-2(不合题意,舍去).∴m ≥2+2………………………③由①、②、③可得符合题意的m 的取值范围为:2+2≤m <498.. B.北京市2017年中考数学试题及答案一、选择题(本题共30分,每小题3分)1.如图所示,点到直线的距离是( )A.线段的长度 B . 线段的长度C .线段的长度D .线段的长度2.若代数式有意义,则实数的取值范围是( ) A . B . C . D .3. 右图是某个几何题的展开图,该几何体是( )A . 三棱柱B . 圆锥C .四棱柱D . 圆柱4. 实数在数轴上的对应点的位置如图所示,则正确的结论是( )A .B . C. D .5.下列图形中,是轴对称图形但不是中心对称图形的是( )6.若正多边形的一个内角是1500,则该正多边形的边数是( )PA PB PC PD 4x x -0x =4x =0x ≠4x ≠,,,a b c d 4a >-0bd >a b >0b c +>A . 6B . 12 C. 16 D .187. 如果,那么代数式的值是( ) A . -3 B . -1 C. 1 D .38.下面的统计图反映了我国与“一带一路”沿线部分地区的贸易情况. 2011-2016年我国与东南亚地区和东欧地区的贸易额统计图(以上数据摘自《一带一路贸易合作大数据报告(2017)》)根据统计图提供的信息,下列推理不合理的是( )A .与2015年相比,2016年我国与东欧地区的贸易额有所增长B .2011-2016年,我国与东南亚地区的贸易额逐年增长C. 2011-2016年,我国与东南亚地区的贸易额的平均值超过4200亿美元D .2016年我国与东南亚地区的贸易额比我国与东欧地区的贸易额的3倍还多9.小苏和小林在右图所示的跑道上进行4×50米折返跑.在整个过程中,跑步者距起跑线的距离y (单位:m )与跑步时间(单位:s )的对应关系如下图所示.下列叙述正确的是( )A .两人从起跑线同时出发,同时到达终点2210a a +-=242a a a a ⎛⎫- ⎪-⎝⎭B.小苏跑全程的平均速度大于小林跑全程的平均速度C. 小苏前15s跑过的路程大于小林前15s跑过的路程D.小林在跑最后100m的过程中,与小苏相遇2次10. 下图显示了用计算机模拟随机投掷一枚图钉的某次实验的结果. 下面有三个推断:当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以“钉尖向上”的概率是0.616;随着实验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;若再次用计算机模拟实验,则当投掷次数为1000时,“钉尖向上”的概率一定是0.620.其中合理的是()A.① B.② C. ①② D.①③______________.12. 某活动小组购买了4个篮球和5个足二、填空题(本题共18分,每题3分)11. 写出一个比3大且比4小的无理数:球,一共花费了435元,其中篮球的单价比足球的单价多3元,求篮球的单价和足球的单价.设篮球的单价为x元,足球的单价为y元,依题意,可列方程组为____________.13.如图,在中,分别为的中点.若,则 .14.如图,为的直径,为上的点,.若,则 .15.如图,在平面直角坐标系中,可以看作是经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一中由得到的过程: .16.下图是“作已知直角三角形的外接圆”的尺规作图过程已知:,求作的外接圆.作法:如图.(1)分别以点和点为圆心,大于的长为半径作弧,两弧相交于两点;(2)作直线,交于点;(3)以为圆心,为半径作.即为所求作的圆. 请回答:该尺规作图的依据是 .三、解答题 (本题共72分,第17题-26题,每小题5分,第27题ABC ∆M N 、,AC BC 1CMN S ∆=ABNM S =四边形AB O C D 、O AD CD =040CAB ∠=CAD ∠=xOy AOB ∆OCD ∆OCD ∆AOB ∆0,90Rt ABC C ∆∠=Rt ABC ∆A B 12AB ,P Q PQ AB O O OA O O7分,第28题7分,第29题8分)解答应写出文字说明、证明过程或演算步骤.17. 计算: 18. 解不等式组: 19.如图,在中,,平分交于点. 求证:.20. 数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等(如图所示)”这一推论,他从这一推论出发,利用“出入相补”原理复原了《海岛算经》九题古证.,(以上材料来源于《古证复原的原理》、《吴文俊与中国数学》和《古代世界数学泰斗刘徽》)请根据上图完成这个推论的证明过程.证明:,(____________+____________).易知,,_____________=______________,______________=_____________.可得.(04cos3012+--()21571023x x x x ⎧+>-⎪⎨+>⎪⎩ABC ∆0,36AB AC A =∠=BD ABC ∠AC D AD BC =()ADC ANF FGC NFGD S S S S ∆∆∆=-+矩形ABC EBMF S S ∆=-矩形ADC ABC S S ∆∆=NFGD EBMF S S =矩形矩形21.关于的一元二次方程.(1)求证:方程总有两个实数根;(2)若方程有一根小于1,求k 的取值范围.22. 如图,在四边形中,为一条对角线,,为的中点,连接.(1)求证:四边形为菱形;(2)连接,若平分,求的长.23. 如图,在平面直角坐标系中,函数的图象与直线交于点. (1)求k 、m 的值;(2)已知点,过点作平行于轴的直线,交直线于点,过点作平行于轴的直线,交函数的图象于点. ①当时,判断线段与的数量关系,并说明理由; ②若,结合函数的图象,直接写出的取值范围.24.如图,是的一条弦,是的中点,过点作于点,过点作的切线交的延长线于点.x ()23220x k x k -+++=ABCD BD 0//,2,90AD BC AD BC ABD =∠=E AD BE AC AC ,1BAD BC ∠=AC xOy ()0k y x x=>2y x =-()3,A m ()(),0P n n n >P x 2y x =-M P y ()0k y x x=>N 1n =PM PN PN PM ≥n AB O E AB E EC OA ⊥C B O CE D25.某工厂甲、乙两个部门各有员工400人,为了解这两个部门员工的生产技能情况,进行了抽样调查,过程如下,请补充完整. 收集数据从甲、乙两个部门各随机抽取20名员工,进行了生产技能测试,测试成绩(百分制)如下:整理、描述数据按如下分数段整理、描述这两组样本数据:(说明:成绩80分及以上为生产技能优秀,70--79分为生产技能良好,60--69分为生产技能合格,60分以下为生产技能不合格) 分析数据两组样本数据的平均数、中位数、众数如下表所示: 得出结论:a.估计乙部门生产技能优秀的员工人数为____________;b.可以推断出_____________部门员工的生产技能水平较高,理由为_____________.(至少从两个不同的角度说明推断的合理性)26.如图,是所对弦上一动点,过点作交于点,连接,过点作于点.已知,设两点间的距离为,两点间的距离为.(当点与点或点重合时,的值为0)小东根据学习函数的经验,对函数随自变量的变化而变化的规律进行了探究.P AB AB P PM AB ⊥AB M MB P PN MB ⊥N 6AB cm =A P 、xcm P N 、ycm P A B y下面是小东的探究过程,请补充完整:(1)通过取点、画图、测量,得到了与的几组值,如下表: (说明:补全表格时相关数值保留一位小数)(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.(3)结合画出的函数图象,解决问题:当为等腰三角形时,的长度约为____________.27.在平面直角坐标系中,抛物线与轴交于点(点在点的左侧),与轴交于点.(1)求直线的表达式;(2)垂直于轴的直线与抛物线交于点,与直线交于点,若,结合函数的图象,求的取值范围.28.在等腰直角中,,是线段上一动点(与点不重合),连接,延长至点,使得,过点作于点,交于点.(1)若,求的大小(用含的式子表示).(2)用等式表示线段与之间的数量关系,并证明.xOy 243y x x =-+x A B 、A B y C BC y l ()()1122,,,P x y Q x y BC()33,N x y 123x x x <<123x x x ++ABC ∆090ACB ∠=P BC B C、AP BC Q CQ CP =Q QH AP ⊥H AB M PAC α∠=AMQ ∠αMB PQ29.在平面直角坐标系中的点和图形,给出如下的定义:若在图形上存在一点,使得两点间的距离小于或等于1,则称为图形的关联点.(1)当的半径为2时,①在点中,的关联点是_______________. ②点在直线上,若为的关联点,求点的横坐标的取值范围.(2)的圆心在轴上,半径为2,直线与轴、轴交于点.若线段上的所有点都是的关联点,直接写出圆心的横坐标的取值范围.C.上海市2017年中考数学试题及答案一、选择题(本大题共6题,每题4分,满分24分。

2017年山东省济南市中考数学试卷(含答案解析版)(2)(K12教育文档)

2017年山东省济南市中考数学试卷(含答案解析版)(2)(K12教育文档)

2017年山东省济南市中考数学试卷(含答案解析版)(2)(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017年山东省济南市中考数学试卷(含答案解析版)(2)(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017年山东省济南市中考数学试卷(含答案解析版)(2)(word版可编辑修改)的全部内容。

第1页(共57页)2017年山东省济南市中考数学试卷一、选择题(本大题共15小题,每小题3分,共45分)1.(3分)在实数0,﹣2,,3中,最大的是()A.0 B.﹣2 C . D.32.(3分)如图所示的几何体,它的左视图是( )A .B .C .D .3.(3分)2017年5月5日国产大型客机C919首飞成功,圆了中国人的“大飞机梦”,它颜值高性能好,全长近39米,最大载客人数168人,最大航程约5550公里.数字5550用科学记数法表示为()A.0。

555×104B.5。

55×104C.5。

55×103D.55.5×1034.(3分)如图,直线a∥b,直线l与a,b分别相交于A,B两点,AC⊥AB交b于点C,∠1=40°,则∠2的度数是()第2页(共57页)A.40°B.45°C.50°D.60°5.(3分)中国古代建筑中的窗格图案美观大方,寓意吉祥,下列绘出的图案中既是轴对称图形又是中心对称图形是()A .B .C .D .6.(3分)化简÷的结果是()A.a2B .C .D .7.(3分)关于x的方程x2+5x+m=0的一个根为﹣2,则另一个根是()A.﹣6 B.﹣3 C.3 D.68.(3分)《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x人,物价为y钱,以下列出的方程组正确的是()A .B .第3页(共57页)C .D .9.(3分)如图,五一旅游黄金周期间,某景区规定A和B为入口,C,D,E为出口,小红随机选一个入口进入景区,游玩后任选一个出口离开,则她选择从A入口进入、从C,D出口离开的概率是()A .B .C .D .10.(3分)把直尺、三角尺和圆形螺母按如图所示放置于桌面上,∠CAB=60°,若量出AD=6cm,则圆形螺母的外直径是( )A.12cm B.24cm C.6cm D.12cm11.(3分)将一次函数y=2x的图象向上平移2个单位后,当y>0时,x的取值范围是()A.x>﹣1 B.x>1 C.x>﹣2 D.x>2第4页(共57页)12.(3分)如图,为了测量山坡护坡石坝的坡度(坡面的铅直高度与水平宽度的比称为坡度),把一根长5m的竹竿AC斜靠在石坝旁,量出杆长1m处的D点离地面的高度DE=0.6m,又量的杆底与坝脚的距离AB=3m,则石坝的坡度为()A .B.3 C .D.4(3分)如图,正方形ABCD的对角线AC,BD相交于点O,AB=3,E为OC上一点,OE=1, 13.连接BE,过点A作AF⊥BE于点F,与BD交于点G,则BF的长是()A .B.2C .D .14.(3分)二次函数y=ax2+bx+c(a≠0)的图象经过点(﹣2,0),(x0,0),1<x0<2,与y轴的负半轴相交,且交点在(0,﹣2)的上方,下列结论:①b>0;②2a<b;③2a﹣b﹣1<0;④2a+c<0.其中正确结论的个数是()A.1 B.2 C.3 D.4第5页(共57页)15.(3分)如图1,有一正方形广场ABCD,图形中的线段均表示直行道路,表示一条以A为圆心,以AB为半径的圆弧形道路.如图2,在该广场的A处有一路灯,O 是灯泡,夜晚小齐同学沿广场道路散步时,影子长度随行走路线的变化而变化,设他步行的路程为x (m)时,相应影子的长度为y (m),根据他步行的路线得到y与x之间关系的大致图象如图3,则他行走的路线是()A.A→B→E→G B.A→E→D→C C.A→E→B→F D.A→B→D→C二、填空题(本大题共6小题,每小题3分,共18分)16.(3分)分解因式:x2﹣4x+4= .17.(3分)计算:|﹣2﹣4|+()0= .18.(3分)在学校的歌咏比赛中,10名选手的成绩如统计图所示,则这10名选手成绩的众数是.第6页(共57页)19.(3分)如图,扇形纸叠扇完全打开后,扇形ABC的面积为300πcm2,∠BAC=120°,BD=2AD,则BD的长度为cm.20.(3分)如图,过点O的直线AB与反比例函数y=的图象交于A,B两点,A(2,1),直线BC∥y轴,与反比例函数y=(x<0)的图象交于点C,连接AC,则△ABC 的面积为.21.(3分)定义:在平面直角坐标系xOy中,把从点P出发沿纵或横方向到达点Q(至多拐一次弯)的路径长称为P,Q的“实际距离”.如图,若P(﹣1,1),Q(2,3),第7页(共57页)则P,Q的“实际距离”为5,即PS+SQ=5或PT+TQ=5.环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A,B,C三个小区的坐标分别为A(3,1),B(5,﹣3),C(﹣1,﹣5),若点M表示单车停放点,且满足M到A,B,C的“实际距离”相等,则点M的坐标为.22.(6分)(1)先化简,再求值:(a+3)2﹣(a+2)(a+3),其中a=3.(2)解不等式组:.AE于点F.求证:AB=DF.23.(4分)如图,在矩形ABCD,AD=AE,DF⊥第8页(共57页)25.(8分)某小区响应济南市提出的“建绿透绿”号召,购买了银杏树和玉兰树共150棵用来美化小区环境,购买银杏树用了12000元,购买玉兰树用了9000元.已知玉兰树的单价是银杏树单价的1.5倍,那么银杏树和玉兰树的单价各是多少?26.(8分)中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如图所示:频率本数(本)频数(人数)5a0。

2017济南中考数学试卷及答案解析

2017济南中考数学试卷及答案解析

2017年山东省济南市中考数学试卷一、选择题(本大题共15小题,每小题3分,共45分)1、在实数0,﹣2,√5,3中,最大的是()A.0B.﹣2C.√D.32、如图所示的几何体,它的左视图是()A.B.C.D.3、2017年5月5日国产大型客机C919首飞成功,圆了中国人的“大飞机梦”,它颜值高性能好,全长近39米,最大载客人数168人,最大航程约5550公里.数字5550用科学记数法表示为()A.0.555×104B.5.55×104C.5.55×103D.55.5×1034、如图,直线a∥b,直线l与a,b分别相交于A,B两点,AC⊥AB 交b于点C,∠1=40°,则∠2的度数是()A.40°B.45°C.50°D.60°5、中国古代建筑中的窗格图案美观大方,寓意吉祥,下列绘出的图案中既是轴对称图形又是中心对称图形是()A.B.C.D.6、化简a 2+aba−b ÷aba−b的结果是()A.a2B.a2a−bC.a−bbD.a+bb7、关于x的方程x2+5x+m=0的一个根为﹣2,则另一个根是()A.﹣6B.﹣3C.3D.68、《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x 人,物价为y钱,以下列出的方程组正确的是()A.{y−8x=3 y−7x=4B.{y−8x=3 7x−y=4C.{8x−y=3 y−7x=4D.{8x−y=3 7x−y=49、如图,五一旅游黄金周期间,某景区规定A和B为入口,C,D,E 为出口,小红随机选一个入口进入景区,游玩后任选一个出口离开,则她选择从A入口进入、从C,D出口离开的概率是()A.12B.13C.16D.2310、把直尺、三角尺和圆形螺母按如图所示放置于桌面上,∠CAB=60°,若量出AD=6cm,则圆形螺母的外直径是()A.12cmB.24cmC.6√3cmD.12√3cm11、将一次函数y=2x的图象向上平移2个单位后,当y>0时,x的取值范围是()A.x>﹣1B.x>1C.x>﹣2D.x>212、如图,为了测量山坡护坡石坝的坡度(坡面的铅直高度与水平宽度的比称为坡度),把一根长5m的竹竿AC斜靠在石坝旁,量出杆长1m处的D点离地面的高度DE=0.6m,又量的杆底与坝脚的距离AB=3m,则石坝的坡度为()A.34B.3C.35D.413、如图,正方形ABCD的对角线AC,BD相交于点O,AB=3√E为OC上一点,OE=1,连接BE,过点A作AF⊥BE于点F,与BD交于点G,则BF的长是()A.3√105B.2√C.3√54D.3√2214、二次函数y=ax2+bx+c(a≠0)的图象经过点(﹣2,0),(x0,0),1<x0<2,与y轴的负半轴相交,且交点在(0,﹣2)的上方,下列结论:①b>0;②2a<b;③2a﹣b﹣1<0;④2a+c<0.其中正确结论的个数是()A.1B.2C.3D.415、如图1,有一正方形广场ABCD,图形中的线段均表示直行道路,̂表示一条以A为圆心,以AB为半径的圆弧形道路.如图2,在该BD广场的A处有一路灯,O是灯泡,夜晚小齐同学沿广场道路散步时,影子长度随行走路线的变化而变化,设他步行的路程为x (m)时,相应影子的长度为y (m),根据他步行的路线得到y与x之间关系的大致图象如图3,则他行走的路线是()A.A→B→E→GB.A→E→D→CC.A→E→B→FD.D.A→B→D→C二、填空题(本大题共6小题,每小题3分,共18分)16、分解因式:x2﹣4x+4= .17、计算:|﹣2﹣4|+(√3)0= .18、在学校的歌咏比赛中,10名选手的成绩如统计图所示,则这10名选手成绩的众数是.19、如图,扇形纸叠扇完全打开后,扇形ABC的面积为300π的图象交于A,B两点,20、如图,过点O的直线AB与反比例函数y=kx(x<0)的图象交于A(2,1),直线BC∥y轴,与反比例函数y=−3kx点C,连接AC,则△ABC的面积为.21、定义:在平面直角坐标系xOy中,把从点P出发沿纵或横方向到达点Q(至多拐一次弯)的路径长称为P,Q的“实际距离”.如图,若P(﹣1,1),Q(2,3),则P,Q的“实际距离”为5,即PS+SQ=5或PT+TQ=5.环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A,B,C三个小区的坐标分别为A(3,1),B(5,﹣3),C(﹣1,﹣5),若点M表示单车停放点,且满足M到A,B,C的“实际距离”相等,则点M的坐标为.三、解答题(本大题共8小题,共57分)22、1)先化简,再求值:(a+3)2﹣(a+2)(a+3),其中a=3.(2)解不等式组:{3x−5≥2(x−2)①x2>x−1②.23、如图,在矩形ABCD,AD=AE,DF⊥AE于点F.求证:AB=DF.24、如图,AB是⊙O的直径,∠ACD=25°,求∠BAD的度数.25、某小区响应济南市提出的“建绿透绿”号召,购买了银杏树和玉兰树共150棵用来美化小区环境,购买银杏树用了12000元,购买玉兰树用了9000元.已知玉兰树的单价是银杏树单价的1.5倍,那么银杏树和玉兰树的单价各是多少?26、中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如图所示:本数(本)频数(人数)频率5 a 0.26 18 0.367 14 b8 8 0.16合计 c 1(1)统计表中的a= ,b= ,c= ;(2)请将频数分布表直方图补充完整;(3)求所有被调查学生课外阅读的平均本数;(4)若该校八年级共有1200名学生,请你分析该校八年级学生课外阅读7本及以上的人数.27、如图1,▱OABC的边OC在y轴的正半轴上,OC=3,A(2,1),反比例函数y=kx (x>0)的图象经过的B.(1)求点B的坐标和反比例函数的关系式;(2)如图2,直线MN分别与x轴、y轴的正半轴交于M,N两点,若点O和点B关于直线MN成轴对称,求线段ON的长;(x>0)的图象于点D,过B,D (3)如图3,将线段OA延长交y=kx的直线分别交x轴、y轴于E,F两点,请探究线段ED与BF的数量关系,并说明理由.28、某学习小组的学生在学习中遇到了下面的问题:如图1,在△ABC和△ADE中,∠ACB=∠AED=90°,∠CAB=∠EAD=60°,点E ,A ,C 在同一条直线上,连接BD ,点F 是BD 的中点,连接EF ,CF ,试判断△CEF 的形状并说明理由.问题探究:(1)小婷同学提出解题思路:先探究△CEF 的两条边是否相等,如EF=CF ,以下是她的证明过程证明:延长线段EF 交CB 的延长线于点G .∵F 是BD 的中点,∴BF=DF .∵∠ACB=∠AED=90°,∴ED ∥CG .∴∠BGF=∠DEF . 又∵∠BFG=∠DFE , ∴△BGF ≌△DEF ( ). ∴EF=FG . ∴CF=EF=12EG . 请根据以上证明过程,解答下列两个问题:①在图1中作出证明中所描述的辅助线;②在证明的括号中填写理由(请在SAS ,ASA ,AAS ,SSS 中选择).(2)在(1)的探究结论的基础上,请你帮助小婷求出∠CEF的度数,并判断△CEF的形状.问题拓展:(3)如图2,当△ADE绕点A逆时针旋转某个角度时,连接CE,延长DE交BC的延长线于点P,其他条件不变,判断△CEF的形状并给出证明.29、如图1,矩形OABC的顶点A,C的坐标分别为(4,0),(0,6),直线AD交B C于点D,tan∠OAD=2,抛物线M1:y=ax2+bx(a≠0)过A,D两点.(1)求点D的坐标和抛物线M1的表达式;(2)点P是抛物线M1对称轴上一动点,当∠CPA=90°时,求所有符合条件的点P的坐标;(3)如图2,点E(0,4),连接AE,将抛物线M1的图象向下平移m (m>0)个单位得到抛物线M2.①设点D平移后的对应点为点D′,当点D′恰好在直线AE上时,求m的值;②当1≤x≤m(m>1)时,若抛物线M2与直线AE有两个交点,求m 的取值范围.答案解析一、选择题(本大题共15小题,每小题3分,共45分)1.(3分)(2017•济南)在实数0,﹣2,√,3中,最大的是()A.0 B.﹣2 C.√5D.3【考点】2A:实数大小比较.【分析】根据正负数的大小比较,估算无理数的大小进行判断即可.【解答】解:2<√3,实数0,﹣2,√3中,最大的是3.故选D.【点评】本题考查了实数的大小比较,要注意无理数的大小范围.2.(3分)(2017•济南)如图所示的几何体,它的左视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】根据几何体确定出其左视图即可.【解答】解:根据题意得:几何体的左视图为:,故选A【点评】此题考查了简单组合体的三视图,锻炼了学生的思考能力和对几何体三种视图的空间想象能力.3.(3分)(2017•济南)2017年5月5日国产大型客机C919首飞成功,圆了中国人的“大飞机梦”,它颜值高性能好,全长近39米,最大载客人数168人,最大航程约5550公里.数字5550用科学记数法表示为()A.0.555×104B.5.55×104C.5.55×103D.55.5×103【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:5550=5.55×103,故选C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2017•济南)如图,直线a∥b,直线l与a,b分别相交于A,B两点,AC⊥AB交b于点C,∠1=40°,则∠2的度数是()A.40° B.45° C.50° D.60°【考点】JA:平行线的性质;J3:垂线.【分析】先根据平行线的性质求出∠ABC的度数,再根据垂直的定义和余角的性质求出∠2的度数.【解答】解:∵直线a∥b,∴∠1=∠CBA,∵∠1=40°,∴∠CBA=40°,∵AC⊥AB,∴∠2+∠CBA=90°,∴∠2=50°,故选C.【点评】本题主要考查了平行线的性质,解题的关键是掌握两直线平行,同位角相等.5.(3分)(2017•济南)中国古代建筑中的窗格图案美观大方,寓意吉祥,下列绘出的图案中既是轴对称图形又是中心对称图形是( )A .B .C .D .【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:B 是轴对称图形又是中心对称图形,故选:B .【点评】本题考查了中心对称图形,掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6.(3分)(2017•济南)化简a 2+ab a−b ÷ab a−b 的结果是( ) A .a 2 B .a2a−b C .a−b b D .a+b b【考点】6A :分式的乘除法.【分析】先将分子因式分解,再将除法转化为乘法后约分即可.【解答】解:原式=a(a+b)a−b •a−b ab =a+b b , 故选:D .【点评】本题主要考查分式的乘除法,熟练掌握分式乘除法的运算法则是解题的关键.7.(3分)(2017•济南)关于x 的方程x 2+5x+m=0的一个根为﹣2,则另一个根是()A.﹣6 B.﹣3 C.3 D.6【考点】AB:根与系数的关系.【分析】设方程的另一个根为n,根据两根之和等于﹣ba,即可得出关于n的一元一次方程,解之即可得出结论.【解答】解:设方程的另一个根为n,则有﹣2+n=﹣5,解得:n=﹣3.故选C.【点评】本题考查了根与系数的关系,牢记两根之和等于﹣ba、两根之积等于ca是解题的关键.8.(3分)(2017•济南)《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x人,物价为y钱,以下列出的方程组正确的是()A.{y−8x=3y−7x=4B.{y−8x=37x−y=4C.{8x−y=3y−7x=4D.{8x−y=37x−y=4【考点】99:由实际问题抽象出二元一次方程组.【分析】设合伙人数为x人,物价为y钱,根据题意得到相等关系:①8×人数﹣物品价值=3,②物品价值﹣7×人数=4,据此可列方程组.【解答】解:设合伙人数为x人,物价为y钱,根据题意,可列方程组:{8x−y=3 y−7x=4,故选:C.【点评】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系.9.(3分)(2017•济南)如图,五一旅游黄金周期间,某景区规定A 和B为入口,C,D,E为出口,小红随机选一个入口进入景区,游玩后任选一个出口离开,则她选择从A入口进入、从C,D出口离开的概率是()A.12B.13C.16D.23【考点】X6:列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果,可求得聪聪从入口A进入景区并从C,D出口离开的情况,再利用概率公式求解即可求得答案.【解答】解:画树形图如图得:由树形图可知所有可能的结果有6种,设小红从入口A进入景区并从C,D出口离开的概率是P,∵小红从入口A进入景区并从C,D出口离开的有2种情况,∴P=1.3故选:B.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.10.(3分)(2017•济南)把直尺、三角尺和圆形螺母按如图所示放置于桌面上,∠CAB=60°,若量出AD=6cm,则圆形螺母的外直径是()A.12cm B.24cm C.6√3cm D.12√3cm【考点】MC:切线的性质.【分析】设圆形螺母的圆心为O,连接OD,OE,OA,如图所示:根据切线的性质得到AO为∠DAB的平分线,OD⊥AC,OD⊥AC,又∠CAB=60°,得到∠OAE=∠OAD=12∠DAB=60°,根据三角函数的定义求出OD的长,即为圆的半径,进而确定出圆的直径.【解答】解:设圆形螺母的圆心为O,与AB切于E,连接OD,OE,OA,如图所示:∵AD,AB分别为圆O的切线,∴AO为∠DAB的平分线,OD⊥AC,OD⊥AC,又∠CAB=60°,∴∠OAE=∠OAD=12∠DAB=60°,在Rt△AOD中,∠OAD=60°,AD=6cm,∴tan∠OAD=tan60°=ODAD ,即OD6=√3,∴OD=6√3cm,则圆形螺母的直径为12√3cm.故选D.【点评】此题考查了切线的性质,切线长定理,锐角三角函数定义,以及特殊角的三角函数值,熟练掌握性质及定理是解本题的关键.11.(3分)(2017•济南)将一次函数y=2x的图象向上平移2个单位后,当y>0时,x的取值范围是()A.x>﹣1 B.x>1 C.x>﹣2 D.x>2【考点】F9:一次函数图象与几何变换.【分析】首先得出平移后解析式,进而求出函数与坐标轴交点,即可得出y>0时,x的取值范围.【解答】解:∵将y=2x的图象向上平移2个单位,∴平移后解析式为:y=2x+2,当y=0时,x=﹣1,故y>0,则x的取值范围是:x>﹣1.故选A【点评】此题主要考查了一次函数图象与几何变换,正确得出平移后解析式是解题关键.12.(3分)(2017•济南)如图,为了测量山坡护坡石坝的坡度(坡面的铅直高度与水平宽度的比称为坡度),把一根长5m的竹竿AC斜靠在石坝旁,量出杆长1m处的D点离地面的高度DE=0.6m,又量的杆底与坝脚的距离AB=3m,则石坝的坡度为()A.34B.3 C.35D.4【考点】T9:解直角三角形的应用﹣坡度坡角问题.【分析】先过C 作CF ⊥AB 于F ,根据DE ∥CF ,可得AD AC =DE CF,进而得出CF=3,根据勾股定理可得AF 的长,根据CF 和BF 的长可得石坝的坡度.【解答】解:如图,过C 作CF ⊥AB 于F ,则DE ∥CF ,∴AD AC =DE CF,即15=0.6CF,解得CF=3,∴Rt △ACF 中,AF=√52−32=4, 又∵AB=3, ∴BF=4﹣3=1,∴石坝的坡度为CF BF =31=3,故选:B .【点评】本题主要考查了坡度问题,在解决坡度的有关问题中,一般通过作高构成直角三角形,坡角即是一锐角,坡度实际就是一锐角的正切值,水平宽度或铅直高度都是直角边,实质也是解直角三角形问题.13.(3分)(2017•济南)如图,正方形ABCD 的对角线AC ,BD 相交于点O ,AB=3√E 为OC 上一点,OE=1,连接BE ,过点A 作AF ⊥BE 于点F,与BD交于点G,则BF的长是()A.3√105B.2√2C.3√54D.3√22【考点】LE:正方形的性质;KD:全等三角形的判定与性质.【分析】根据正方形的性质、全等三角形的判定定理证明△GAO≌△EBO,得到OG=OE=1,证明△BFG∽△BOE,根据相似三角形的性质计算即可.【解答】解:∵四边形ABCD是正方形,AB=3√,∴∠AOB=90°,AO=BO=CO=3,∵AF⊥BE,∴∠EBO=∠GAO,在△GAO和△EBO中,{∠GAO=∠EBO AO=BO∠AOG=∠BOE,∴△GAO≌△EBO,∴OG=OE=1,∴BG=2,在Rt△BOE中,BE=√OB2+OE2=√10,∵∠BFG=∠BOE=90°,∠GBF=∠EBO , ∴△BFG ∽△BOE , ∴BF OB =BG BE,即BF3=√10,解得,BF=3√105,故选:A .【点评】本题考查的是正方形的性质、全等三角形的判定和性质以及相似三角形的判定和性质,掌握相关的判定定理和性质定理是解题的关键.14.(3分)(2017•济南)二次函数y=ax 2+bx+c (a ≠0)的图象经过点(﹣2,0),(x 0,0),1<x 0<2,与y 轴的负半轴相交,且交点在(0,﹣2)的上方,下列结论:①b >0;②2a <b ;③2a ﹣b ﹣1<0;④2a+c <0.其中正确结论的个数是( ) A .1 B .2 C .3 D .4【考点】H4:二次函数图象与系数的关系.【分析】①由图象开口向上知a >0,由y=ax 2+bx+c 与x 轴的另一个交点坐标为(x 1,0 ),且1<x 1<2,则该抛物线的对称轴为x=﹣b2a=−2+x 12>﹣12,即 b a <1,于是得到b >0;故①正确;②由x=﹣2时,4a ﹣2b+c=0得2a ﹣b=﹣c2,而﹣2<c >0,解不等式即可得到2a >b ,所以②正确.③由②知2a ﹣b <0,于是得到2a ﹣b ﹣1<0,故③正确;④把(﹣2,0)代入y=ax 2+bx+c 得:4a ﹣2b+c=0,即2b=4a+c >0(因为b >0),等量代换得到2a+c <0,故④正确.【解答】解:如图:①由图象开口向上知a>0,由y=ax2+bx+c与x轴的另一个交点坐标为(x1,0 ),且1<x1<2,则该抛物线的对称轴为x=﹣=﹣b2a =−2+x12>﹣12,即ba<1,由a>0,两边都乘以a得:b>a,∵a>0,对称轴x=﹣b2a<0,∴b>0;故①正确;②由x=﹣2时,4a﹣2b+c=0得2a﹣b=﹣c2,而﹣2<c<0,∴2a﹣b>0,所以②错误.③∵2a﹣b<0,∴2a﹣b﹣1<0,故③正确;④∵把(﹣2,0)代入y=ax2+bx+c得:4a﹣2b+c=0,∴即2b=4a+c>0(因为b>0),∵当x=1时,a+b+c<0,∴2a+2b+2c<0,∴6a+3c<0,即2a+c<0,∴④正确;故选D.【点评】本题考查了二次函数图象与系数的关系,主要考查学生根据图形进行推理和辨析的能力,用了数形结合思想,题目比较好,但是难度偏大.15.(3分)(2017•济南)如图1,有一正方形广场ABCD,图形中的线̂表示一条以A为圆心,以AB为半径的圆弧形段均表示直行道路,BD道路.如图2,在该广场的A处有一路灯,O是灯泡,夜晚小齐同学沿广场道路散步时,影子长度随行走路线的变化而变化,设他步行的路程为x (m)时,相应影子的长度为y (m),根据他步行的路线得到y与x之间关系的大致图象如图3,则他行走的路线是()A.A→B→E→G B.A→E→D→C C.A→E→B→F D.A→B→D→C【考点】E7:动点问题的函数图象.【分析】根据函数图象的中间一部分为水平方向的线段,可知沿着弧形道路步行,根据函数图象中第一段和第三段图象对应的x的范围相等,且均小于中间一段图象对应的x的范围,即可得出第一段函数图象对应的路径为正方形的边AB或AD,第三段函数图象对应的路径为BC或DC.【解答】解:根据图3可得,函数图象的中间一部分为水平方向的线段,故影子的长度不变,即沿着弧形道路步行,因为函数图象中第一段和第三段图象对应的x的范围相等,且均小于中间一段图象对应的x的范围,̂,故中间一段图象对应的路径为BD又因为第一段和第三段图象都从左往右上升,所以第一段函数图象对应的路径为正方形的边AB或AD,第三段函数图象对应的路径为BC或DC,故行走的路线是A→B→D→C(或A→D→B→C),故选:D.【点评】本题主要考查了动点问题的函数图象,解题时注意:在点光源的照射下,在不同位置,物体高度与影长不成比例.二、填空题(本大题共6小题,每小题3分,共18分)16.(3分)(2017•济南)分解因式:x2﹣4x+4= (x﹣2)2.【考点】54:因式分解﹣运用公式法.【分析】直接用完全平方公式分解即可.【解答】解:x2﹣4x+4=(x﹣2)2.【点评】本题主要考查利用完全平方公式分解因式.完全平方公式:(a﹣b)2=a2﹣2ab+b2.17.(3分)(2017•济南)计算:|﹣2﹣4|+(√3)0= 7 .【考点】2C:实数的运算;6E:零指数幂.【分析】直接利用绝对值的性质结合零指数幂的性质计算得出答案.【解答】解:|﹣2﹣4|+(√3)0=6+1=7.故答案为:7.【点评】此题主要考查了实数运算以及零指数幂的性质,正确化简各数是解题关键.18.(3分)(2017•济南)在学校的歌咏比赛中,10名选手的成绩如统计图所示,则这10名选手成绩的众数是90 .【考点】W5:众数.【分析】根据众数的定义和给出的数据可直接得出答案.【解答】解:根据折线统计图可得:90分的人数有5个,人数最多,则众数是90;故答案为:90.【点评】此题考查了众数,掌握一组数据中出现次数最多的数据叫做这组数据的众数是本题的关键.19.(3分)(2017•济南)如图,扇形纸叠扇完全打开后,扇形ABC的面积为300πcm2,∠BAC=120°,BD=2AD,则BD的长度为20 cm.【考点】MO:扇形面积的计算.【分析】设AD=x,则AB=3x.由题意300π=120⋅π⋅(3x)2360,解方程即可.【解答】解:设AD=x,则AB=3x.由题意300π=120⋅π⋅(3x)2360,解得x=10,∴BD=2x=20cm.故答案为20.【点评】本题考查扇形的面积公式、解题的关键是理解题意,学会利用参数构建方程解决问题,属于中考常考题型.20.(3分)(2017•济南)如图,过点O的直线AB与反比例函数y=kx的图象交于A ,B 两点,A (2,1),直线BC ∥y 轴,与反比例函数y=−3k x(x<0)的图象交于点C ,连接AC ,则△ABC 的面积为 8 .【考点】G8:反比例函数与一次函数的交点问题.【分析】由A (2,1)求得两个反比例函数分别为y=2x,y=−6x,与AB的解析式y=12x ,解方程组求得B 的坐标,进而求得C 点的纵坐标,即可求得BC ,根据三角形的面积公式即可求得结论. 【解答】解:∵A (2,1)在反比例函数y=kx的图象上, ∴k=2×1=2,∴两个反比例函数分别为y=2x,y=−6x,设AB 的解析式为y=kx ,把A (2,1)代入得,k=12, ∴y=12x ,解方程组{y =12x y =2x得:{x 1=2y 1=1,{x 2=−2y 2=−1, ∴B (﹣2,﹣1), ∵BC ∥y 轴,∴C 点的横坐标为﹣2, ∴C 点的纵坐标为−6−2=3,∴BC=3﹣(﹣1)=4,∴△ABC的面积为1×4×4=8,2故答案为:8.【点评】本题主要考查了反比例函数于一次函数的交点问题,三角形的面积,正确的理解题意是解题的关键.21.(3分)(2017•济南)定义:在平面直角坐标系xOy中,把从点P 出发沿纵或横方向到达点Q(至多拐一次弯)的路径长称为P,Q的“实际距离”.如图,若P(﹣1,1),Q(2,3),则P,Q的“实际距离”为5,即PS+SQ=5或PT+TQ=5.环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A,B,C三个小区的坐标分别为A(3,1),B(5,﹣3),C(﹣1,﹣5),若点M表示单车停放点,且满足M到A,B,C的“实际距离”相等,则点M的坐标为(1,﹣2).【考点】D3:坐标确定位置.【分析】直接利用实际距离的定义,结合A,B,C点的坐标,进而得出答案.【解答】解:由题意可得:M到A,B,C的“实际距离”相等,则点M的坐标为(1,﹣2),此时M到A,B,C的实际距离都为5.故答案为:(1,﹣2).【点评】此题主要考查了坐标确定位置,正确理解实际距离的定义是解题关键.三、解答题(本大题共8小题,共57分)22.(6分)(2017•济南)(1)先化简,再求值:(a+3)2﹣(a+2)(a+3),其中a=3.(2)解不等式组:{3x−5≥2(x−2)①x2>x−1②.【考点】4J:整式的混合运算—化简求值;CB:解一元一次不等式组.【分析】(1)根据完全平方公式和多项式乘多项式可以解答本题;(2)根据解不等式组的方法可以解答本题.【解答】解:(1)(a+3)2﹣(a+2)(a+3)=a2+6a+9﹣a2﹣5a﹣6=a+3,当a=3时,原式=3+3=6;(2){3x−5≥2(x−2)①x2>x−1②由不等式①,得x≥1,由不等式②,得x<2故原不等式组的解集是1≤x<2.【点评】.本题考查整式的混合运算﹣化简求值、解一元一次不等式组,解答本题的关键是明确它们各自的计算方法.23.(4分)(2017•济南)如图,在矩形ABCD,AD=AE,DF⊥AE于点F.求证:AB=DF.【考点】LB:矩形的性质;KD:全等三角形的判定与性质.【分析】利用矩形和直角三角形的性质得到∠AEB=∠EAD、∠AFD=∠B,从而证得两个三角形全等,可得结论.【解答】证明:∵四边形ABCD是矩形,∴AD∥BC,∠B=90°,∴∠AEB=∠DAE,∵DF⊥AE,∴∠AFD=∠B=90°, 在△ABE 和△DFA 中∵{∠AEB =∠DAE∠AFD =∠BAD =AE∴△ABE ≌△DFA , ∴AB=DF .【点评】本题考查了全等三角形的判定与性质、矩形的性质的知识,属于基础题,难度不是很大,熟练掌握全等三角形的判定与性质是关键.24.(4分)(2017•济南)如图,AB 是⊙O 的直径,∠ACD=25°,求∠BAD 的度数.【考点】M5:圆周角定理.【分析】根据直径所对的圆周角是直角,构造直角三角形ABD ,再根据同弧所对的圆周角相等,求得∠B 的度数,即可求得∠BAD 的度数. 【解答】解:∵AB 为⊙O 直径 ∴∠ADB=90°∵相同的弧所对应的圆周角相等,且∠ACD=25° ∴∠B=25°∴∠BAD=90°﹣∠B=65°.【点评】考查了圆周角定理的推论.利用直径所对的圆周角是直角是解题关键.25.(8分)(2017•济南)某小区响应济南市提出的“建绿透绿”号召,购买了银杏树和玉兰树共150棵用来美化小区环境,购买银杏树用了12000元,购买玉兰树用了9000元.已知玉兰树的单价是银杏树单价的1.5倍,那么银杏树和玉兰树的单价各是多少?【考点】B7:分式方程的应用.【分析】根据题意可以列出相应的分式方程,从而可以解答本题.【解答】解:设银杏树的单价为x元,则玉兰树的单价为1.5x元,12000x +90001.5x=150,解得,x=120,经检验x=120是原分式方程的解,∴1.5x=180,答:银杏树和玉兰树的单价各是120元、180元.【点评】本题考查分式方程的应用,解答本题的关键是明确题意,列出相应的分式方程,注意分式方程要经验26.(8分)(2017•济南)中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如图所示:本数(本)频数(人数)频率5 a 0.26 18 0.367 14 b8 8 0.16合计 c 1(1)统计表中的a= 10 ,b= 0.28 ,c= 50 ;(2)请将频数分布表直方图补充完整;(3)求所有被调查学生课外阅读的平均本数;(4)若该校八年级共有1200名学生,请你分析该校八年级学生课外阅读7本及以上的人数.【考点】V8:频数(率)分布直方图;V5:用样本估计总体;V7:频数(率)分布表.【分析】(1)根据百分比=所占人数总人数计算即可;(2)求出a组人数,画出直方图即可;(3)根据平均数的定义计算即可;(4)利用样本估计总体的思想解决问题即可;【解答】解:(1)由题意c=18÷0.36=50,=0.28,∴a=50×0.2=10,b=1450故答案为10,0.28,50.(2)频数分布表直方图如图所示.=6.4(3)所有被调查学生课外阅读的平均本数=10×5+18×6+14×7+8×850(本)(4)该校八年级共有1200名学生,该校八年级学生课外阅读7本及=528(名).以上的人数有1200×14+850【点评】本题考查频数分布直方图、扇形统计图、样本估计总体等知识,解题的关键是熟练掌握基本概念,灵活运用所学知识解决问题,属于中考常考题型.27.(9分)(2017•济南)如图1,▱OABC 的边OC 在y 轴的正半轴上,OC=3,A (2,1),反比例函数y=kx (x >0)的图象经过的B .(1)求点B 的坐标和反比例函数的关系式;(2)如图2,直线MN 分别与x 轴、y 轴的正半轴交于M ,N 两点,若点O 和点B 关于直线MN 成轴对称,求线段ON 的长;(3)如图3,将线段OA 延长交y=kx (x >0)的图象于点D ,过B ,D的直线分别交x 轴、y 轴于E ,F 两点,请探究线段ED 与BF 的数量关系,并说明理由.【考点】GB :反比例函数综合题.【分析】(1)利用平行四边形的性质求出点B 的坐标即可解决问题; (2)根据两直线垂直的条件,求出直线MN 的解析式即可解决问题; (3)结论:BF=DE .如图3中,延长BA 交x 轴于N ,作DM ⊥x 轴于M ,作NK ∥EF 交y 轴于K .设ON=n ,OM=m ,ME=a .则BN=kn,DM=km.由△EDM ∽△EBN ,推出EM EN =DM BN,即am+a−n=km k n,可得a=m ,由△KNO ≌△DEM ,推出DE=KN ,再证明四边形NKFB 是平行四边形,即可解决问题; 【解答】解:(1)如图1中,∵四边形OABC 是平行四边形, ∴AB=OC=3, ∵A (2,1), ∴B (2,4),把B (2,4)代入y=kx 中,得到k=8,∴反比例函数的解析式为y=8x.(2)如图2中,设K 是OB 的中点,则K (1,2).∵直线OB 的解析式为y=2x , ∴直线MN 的解析式为y=﹣12x+52,∴N (0,52), ∴ON=52.(3)结论:BF=DE .理由如下:如图3中,延长BA 交x 轴于N ,作DM ⊥x 轴于M ,作NK ∥EF 交y 轴。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年济南市中考数学试卷
一、选择题(每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.一元二次方程的根是
A. B.
C. D.
2.两个相似多边形的面积比是9∶16,其中小多边形的周长为36 cm,则大多边形的周长为
A.48 cm B.54 cm C.56 cm D.64 cm
3.端午节吃粽子是中华民族的传统习俗,小颖的妈妈买了2只红豆粽、3只碱水粽、5只干肉粽,粽子除内部馅料不同外其他均相同,若小颖随意吃一个,则吃到红豆粽的概率是
A. B. C. D.
4.中央电视台有一个非常受欢迎的娱乐节目《墙来了》,选手需按墙上的空洞造型摆成相同的姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一个几何体能恰好无缝隙地以三个不同形状的“姿势”穿过“墙”上的三个空洞(如图),则该几何体为
A B C D
5.如图,是的直径,弦,,.则阴影部分的面积是
A.32π B.16π C.16 D.32
6.二次函数的图象可由的图象
A.向左平移1个单位,再向下平移2个单位得到
B.向左平移1个单位,再向上平移2个单位得到
C.向右平移1个单位,再向下平移2个单位得到
D.向右平移1个单位,再向上平移2个单位得到
7.如图,在直角三角形中,,点是斜边的中点,经过、、三点,是弧上的一个点,且,则
A. B. C. D.
8.如图,直线与曲线交于点A,将直线向右平移6个单位后,与曲线交于点B,与轴交于点C,若,则的值为
A.12 B.14 C.18 D.24
二、填空题(每小题3分,共21分)
9.在实数范围内定义一种运算“”,其规则为,则方程的所有解的和为____________.
10.如图,,分别是正五边形的边,上的点,,连接,.将绕正五边形的中心按逆时针方向旋转到,旋转角为(),则
____________.
11.若,是一元二次方程的实根,且满足,,则实数的取值范围是____________.
12.设二次函数的图象经过点(3,0),(7,–8),当时,y随x的增大而减小,则实数a的取值范围是____________.
13.中,,cm,cm,以为圆心,为半径作圆,若圆与直线相切,则____________cm.
14.如图,将边长为6 cm的正方形折叠,使点落在边的中点处,折痕为,点落在处,与交于点,则的周长是____________cm.
第14题图第15题图
15.如图,一段抛物线:,记为,它与x轴交于点,;
将绕点旋转得,交x轴于点;
将绕点旋转得,交x轴于点;

如此进行下去,直至得.若在第13段抛物线上,则____________.
三、解答题(本大题共8小题,共75分.解答应写出文字说明、证明过程或演算步骤)
16.(本题8分)如图,一次函数与反比例函数的图象相交于,两点,已知.
(1)求及的值;
(2)不解关于x,y的方程组,直接写出点的坐标;
(3)根据图象,直接写出当时,自变量x的取值范围.
17.(本题9分)某单位计划于“十一”期间组织职工到清明上河园观光旅游.下面是领队与旅行社导游关于收费标准的一段对话:
领队:组团去清明上河园旅游每人收费是多少?
导游:如果人数不超过25人,人均旅游费用为100元.
领队:超过25人怎样优惠呢?
导游:如果超过25人,每增加1人,人均旅游费用降低2元,但人均旅游费用不得低于70元.
该单位按旅行社的收费标准组团游览清明上河园结束后,共支付给旅行社2700元.
请你根据上述信息,求该单位这次到清明上河园观光旅游的共有多少人?
18.(本题9分)某景区为了对一棵倾斜的古杉树进行保护,需测量其高度.如图,在地面上选取一点,测得,m,,求这棵古杉树的高度.(结果取整数)
参考数据:,,,.
19.(本题9分)在同一平面内,和如图①放置,其中.
小明做了如下操作:
将绕着边的中点旋转得到,将绕着边的中点旋转得到,如图②所示,请完成下列问题:
(1)试猜想四边形是什么特殊四边形,并说明理由;
(2)如图③,连接,,求证:四边形是平行四边形.
20.(本题9分)某校九年级举行毕业典礼,需要从九年级(1)班的2名男生、1名女生(男生用A,B 表示,女生用a表示)和九年级(2)班的1名男生、1名女生(男生用C表示,女生用b表示)共5人中随机选出2名主持人.
(1)用树状图或列表法列出所有可能情形;
(2)求2名主持人来自不同班级的概率;
(3)求2名主持人恰好1男1女的概率.
21.(本题10分)如图1,在中,,,点,分别是边,的中点,连接.将绕点按顺时针方向旋转,记旋转角为.
图1 图
2 备用图
(1)问题发现
①当时,_____________;
②当时,_____________.
(2)拓展探究
试判断:当时,的值有无变化?请仅就图2的情况给出证明.
(3)问题解决
当旋转至,,三点共线时,直接写出线段的长.
22.(本题10分)如图,内接于,为直径,点是弧的中点,连接,设,交于点,于点,交于点.
备用图
(1)求证:;
(2)判断与是否相等,并说明理由;
(3)当点为半圆弧的中点,小李通过操作发现,请问小李的发现是否正确?若正确,请说明理由;若不正确,请写出与正确的关系式.
23.(本题11分)如图,在平面直角坐标系中,抛物线经过,两点,且与y轴交于点,.动点从点出发,沿线段以每秒1个单位长度的速度向点移动,同时动点从点出发,沿线段以某一速度向点移动.
(1)求该抛物线的解析式;
(2)若经过秒的移动,线段被垂直平分,求此时的值;
(3)在第一象限的抛物线上取一点,使得,再在抛物线上找点(不与点,,重合),使得,求点的坐标.
9.1 10. 11. 12.或
13. 14.12 15.2
16.(本题8分)【解析】(1)将点的坐标分别代入一次函数与反比例函数,
可得,,解得,.(3分)
(2)∵,两点关于直线对称,∴点的坐标为.(6分)
(3)当时,自变量x的取值范围为或.(8分)
17.(本题9分)【解析】设该单位这次参加旅游的共有人,因为,所以.(2分)依题意得,即,解得,
.(4分)
①当时,,符合题意;(5分)
②当时,,不符合题意,应舍去.(6分)
由①②可得.(7分)答:该单位这次参加旅游的共有人.(9分)
18.(本题9分)【解析】如图,过点作于.(2分)
∵,,∴在中,,(4分)
在中,,∵m,∴,解得m,
(6分)∴m.(8分)故这棵古杉树的高度大约为m.(9分)
19.(本题9分)【解析】(1)四边形是菱形.(1分)
理由如下:∵将绕着边的中点旋转得到,∴,,(2分)
∵,∴,∴四边形是菱形.(4分)
(2)∵四边形是菱形,∴,且,∵将绕着边的中点旋转得到,∴,,(6分)∴四边形为平行四边形,∴,且,∴,,∴四边形是平行四边形.(9分)20.(本题9分)【解析】(1)列表可得:
B BA
共有20种等可能的结果.(3分)
(2)∵2名主持人来自不同班级的情况有12种,∴2名主持人来自不同班级的概率为.(6分)
(3)∵2名主持人恰好1男1女的情况有12种,∴2名主持人恰好1男1女的概率为.(9分)21.(本题10分)
【解析】(1)①当时,在中,,

点,分别是边,的中点,,,.
②当时,可得,,.(3分)
(2)无变化.如题图2中,在旋转过程中形状、大小不变,.
又,,,在中,
,,,的值不变.(6分)
(3)或.(10分)注:如图①,当在上方,且,,三点共线时,四边形为矩形,;如图②,当在下方,且,,三点共线时,为直角三角形,由勾股定理可得,∴,根据,可得.
图①图②
22.(本题10分)
【解析】(1)如图1,连接,∵是的直径,∴,∵于,∴,
∴,∴,∵点是弧的中点,∴
,∴,∴.(3分)
(2).理由如下:由(1)知,,∴,∴.(3)小李的发现是正确的.理由如下:如图2,延长,交于点,∵为半圆弧的中点,
是弧的中点,∴,,,
在和中,,∴,∴.(7分)
∵为直径,∴,∵为弧的中点,∴.在和
中,,∴,(9分)∴,∴
.(10分)
23.(本题11分)【解析】(1)将,代入,得,解得,故抛物线的解析式为.(3
分)
(2)如图,连接,由和,可得,。

相关文档
最新文档