高中数学类比推理综合测试题有答案
类比推理考试题目及答案

类比推理考试题目及答案一、单选题1. 题目:如果“苹果”是“水果”,那么“橘子”是______。
A. 蔬菜B. 水果C. 肉类D. 谷物答案:B2. 题目:如果“钢笔”是“书写工具”,那么“钢琴”是______。
A. 乐器B. 运动器材C. 办公设备D. 厨房用具答案:A3. 题目:如果“医生”是“治疗”,那么“教师”是______。
A. 诊断B. 教育C. 维修D. 管理答案:B4. 题目:如果“图书馆”是“书籍”,那么“体育馆”是______。
A. 运动B. 阅读C. 学习D. 娱乐答案:A5. 题目:如果“汽车”是“运输”,那么“飞机”是______。
A. 运输B. 通讯C. 导航D. 娱乐答案:A二、多选题1. 题目:如果“太阳”是“恒星”,那么以下哪些是“行星”?A. 地球B. 月亮C. 火星D. 金星答案:ACD2. 题目:如果“河流”是“流动”,那么以下哪些是“静止”?A. 湖泊B. 冰川C. 沙漠D. 海洋答案:ABC3. 题目:如果“电脑”是“电子设备”,那么以下哪些是“机械设备”?A. 打印机B. 汽车C. 洗衣机D. 手机答案:BC4. 题目:如果“音乐”是“艺术”,那么以下哪些是“科学”?A. 数学B. 物理C. 化学D. 绘画答案:ABC5. 题目:如果“蜜蜂”是“授粉”,那么以下哪些是“捕食”?A. 狮子B. 鲨鱼C. 老虎D. 蚂蚁答案:ABCD三、填空题1. 题目:如果“蜜蜂”是“花蜜”,那么“蚂蚁”是______。
答案:昆虫2. 题目:如果“狮子”是“草原”,那么“企鹅”是______。
答案:南极3. 题目:如果“书”是“阅读”,那么“电影”是______。
答案:观看4. 题目:如果“画家”是“画布”,那么“音乐家”是______。
答案:乐器5. 题目:如果“树木”是“森林”,那么“星星”是______。
答案:银河四、判断题1. 题目:如果“苹果”是“水果”,那么“香蕉”也是水果。
苏教版数学高二- 选修2-2试题 .2类比推理

2.1.1.2 类比推理一、填空题1.对命题“正三角形的内切圆切于三边中点”可类比猜想:正四面体的内切球切于四面各正三角形的________.【解析】 “边的中点”类比为“各面的中心”.【答案】 中心2.已知{b n }为等比数列,b 5=2,则b 1b 2b 3…b 9=29.若{a n }为等差数列,a 5=2,则{a n }的类似结论为________.【解析】 乘积类比和,幂类比积.∴a 1+a 2+a 3+…+a 9=2×9.【答案】 a 1+a 2+a 3+…+a 9=2×93.在平面上,若两个正三角形的边长的比为1∶2,则它们的面积比为1∶4,类似地,在空间内,若两个正四面体的棱长的比为1∶2,则它们的体积比为________.【解析】 若两个正四面体的棱长的比为1∶2,则它们的体积比为1∶8.事实上,由平面几何和立体几何的知识,可知很多比值在平面上成平方关系,在空间内成立方关系.【答案】 1∶84.在圆中,连结圆心和弦的中点的直线垂直于弦,类比圆的上述结论写出球的相应结论为________.【解析】 平面图形中的点线关系类比到空间为线面关系,对应得出球的相应结论:在球中,连结球心和截面圆的圆心的直线垂直于截面.【答案】 在球中,连结球心和截面圆的圆心的直线垂直于截面5.由代数式的乘法法则类比推导向量的数量积的运算法则:(1)“mn =nm”类比得“a·b =b·a”;(2)“(m +n)t =mt +nt”,类比得“(a +b)·c =a·c +b·c”;(3)“|m·n|=|m|·|n|”类比得“|a·b|=|a|·|b|”;(4)“ac bc =a b ”类比得“a·c b·c =a b”. 以上的式子中,类比得到的结论正确的序号是________.【解析】 (1)(2)均正确,(3)(4)不正确.【答案】 (1)(2)6.(2013·南通高二检测)已知正三角形内切圆的半径是高的13,把这个结论推广到空间正四面体,类似的结论是________.【解析】 原问题的解法为等面积法,即正三角形的面积S =12ah =3×12ar ⇒r =13h. 类比,用等体积法,V =13Sh =4×13r·S ⇒r =14h. 【答案】 正四面体的内切球的半径是高的147.对于大于1的自然数m 的n 次幂可用奇数进行如图2-1-9所示的“分裂”,仿此,记53的“分裂”中的最小数为a ,而52的“分裂”中最大的数是b ,则a +b =________.图2-1-9【解析】 ,,∴a =21,b =9,则a +b =30.【答案】 30图2-1-108.如图2-1-10所示,对于函数y =x 2(x >0)图象上任意两点A(a ,a 2),B(b ,b 2),线段AB 必在曲线段AB 的上方,点C 分向量AB →的比为λ(λ>0),过C 作x 轴的垂线,交曲线段AB 于C′,则由图象中点C 在点C′的上方可得不等式a 2+λb 21+λ>(a +λb 1+λ)2.请分析函数y =ln x(x >0)的图象,类比上述不等式可以得到的不等式是________.【解析】 y =x 2的图象在x >0时,图象下凹,且A(a ,a 2),B(b ,b 2),所以点C 的纵坐标是a 2+λb 21+λ,点C 与点C′的横坐标都是a +λb 1+λ,而点C′在曲线y =x 2上,点C 在点C′上方,所以y C =a 2+λb 21+λ>y C′=(a +λb 1+λ)2.y =ln x 的图象如图所示,图象上凸,∴y C <y C′,类比可得ln a +λln b 1+λ<ln a +λb 1+λ(a >0,b >0). 【答案】 ln a +λln b 1+λ<ln a +λb 1+λ(a >0,b >0) 二、解答题9.已知:等差数列{a n }的公差为d ,前n 项和为S n ,有如下的性质:(1)通项a n =a m +(n -m)·d.(2)若m +n =p +q ,且m ,n ,p ,q ∈N *,则a m +a n =a p +a q .(3)若m +n =2p ,且m ,n ,p ∈N *,则a m +a n =2a p .(4)S n ,S 2n /S n ,S 3n /S 2n 构成等差数列.类比上述性质,在等比数列{b n }中,写出相类似的性质.【解】 设等比数列{b n }中,公比为q ,前n 项和为S n .(1)通项a n =a m ·q n -m .(2)若m +n =p +q ,且m ,n ,p ,q ∈N *,则a m ·a n =a p ·a q .(3)若m +n =2p ,且m ,n ,p ∈N *,则a 2p =a m ·a n . (4)S n ,S 2n -S n ,S 3n -S 2n 构成等比数列.10.在Rt △ABC 中,若∠C =90°,则cos 2A +cos 2B =1.请在立体几何中给出四面体性质的猜想.【解】 如图,在Rt △ABC 中,cos 2A +cos 2B =(b c )2+(a c )2=a 2+b 2c2=1. 于是把结论类比到如图所示的四面体P -A′B′C′中,我们猜想:在三棱锥P -A′B′C′中,若三个侧面PA′B′,PB′C′,PC′A′两两互相垂直且分别与底面所成的角为α,β,γ,则cos 2α+cos 2β+cos 2γ=1.11.在等腰△ABC 中,AB =AC ,设P 为底边上任意一点,P 到两腰的距离分别为h 1,h 2,B 到腰AC 的距离为h ,则h 1+h 2=h ,类比到空间:在等腰四面体ABCD(对棱分别相等)中,有什么类似的结论?并给出证明.【解】 类比可得到如下结论:在等腰四面体ABCD 中,设P 为底面上任意一点,P 到三个侧面的距离分别为h 1,h 2,h 3,B 到侧面ACD 的距离为h ,则h 1+h 2+h 3=h.证明:连结PA,PB,PC,PD,易知△ABC≌△ACD≌△ABD,记它们的面积都是S,则四面体ABCD的体积V A—BCD=13Sh1+13Sh2+13Sh3=13Sh.故h1+h2+h3=h.。
类比推理考试题目及答案

类比推理考试题目及答案
一、类比推理考试题目
1. 题目一:如果“苹果”对于“水果”相当于“书籍”对于()。
A. 纸张
B. 知识
C. 书架
D. 阅读
2. 题目二:如果“医生”对于“病人”相当于“教师”对于()。
A. 学生
B. 教室
C. 课程
D. 教科书
3. 题目三:如果“钢笔”对于“书写”相当于“相机”对于()。
A. 摄影
B. 照片
C. 胶卷
D. 镜头
4. 题目四:如果“树木”对于“森林”相当于“水滴”对于()。
A. 河流
B. 海洋
C. 湖泊
D. 雨滴
5. 题目五:如果“汽车”对于“驾驶”相当于“飞机”对于()。
A. 飞行
B. 机场
C. 跑道
D. 飞行员
二、类比推理考试答案
1. 题目一答案:B
解析:苹果是水果的一种,书籍是知识的载体。
因此,“苹果”对于“水果”相当于“书籍”对于“知识”。
2. 题目二答案:A
解析:医生为病人提供医疗服务,教师为学生提供教育服务。
因此,“医生”对于“病人”相当于“教师”对于“学生”。
3. 题目三答案:A
解析:钢笔用于书写,相机用于摄影。
因此,“钢笔”对于“书写”相当于“相机”对于“摄影”。
4. 题目四答案:B
解析:树木是森林的组成部分,水滴是海洋的组成部分。
因此,“树木”对于“森林”相当于“水滴”对于“海洋”。
5. 题目五答案:A
解析:汽车用于驾驶,飞机用于飞行。
因此,“汽车”对于“驾驶”相当于“飞机”对于“飞行”。
2021年高考数学二轮复习 归纳与类比推理专题检测(含解析)

2021年高考数学二轮复习 归纳与类比推理专题检测(含解析)1.已知x >0,观察不等式x +1x≥2x ·1x =2,x +4x 2=x 2+x 2+4x 2≥33x 2·x 2·4x 2=3,…,由此可得一般结论:x +axn ≥n +1(n ∈N *),则a 的值为________. 答案 n n解析 根据已知,续写一个不等式:x +33x 3=x 3+x 3+x 3+33x 3≥44x 3·x 3·x 3·33x3=4,由此可得a =n n .2.在平面内点O 是直线AB 外一点,点C 在直线AB 上,若OC →=λOA →+μOB →,则λ+μ=1;类似地,如果点O 是空间内任一点,点A ,B ,C ,D 中任意三点均不共线,并且这四点在同一平面内,若DO →=xOA →+yOB →+zOC →,则x +y +z =________.答案 -1解析 在平面内,由三角形法则,得AB →=OB →-OA →,BC →=OC →-OB →. 因为A ,B ,C 三点共线, 所以存在实数t ,使AB →=tBC →, 即OB →-OA →=t (OC →-OB →),所以OC →=-1t OA →+(1t+1)OB →.因为OC →=λOA →+μOB →,所以λ=-1t ,μ=1t+1,所以λ+μ=1.类似地,在空间内可得OD →=λOA →+μOB →+ηOC →,λ+μ+η=1. 因为DO →=-OD →,所以x +y +z =-1.3.观察下列各式:55=3 125,56=15 625,57=78 125,58=390 625,59=1 953 125,…,则52 014的末四位数字为________.答案 5625解析 由观察易知55的末四位数字为3125,56的末四位数字为5625,57的末四位数字为8125,58的末四位数字为0625,59的末四位数字为3125,故周期T =4.又由于2 014=503×4+2,因此52 014的末四位数字是5625.4.观察下列各式:a +b =1,a 2+b 2=3,a 3+b 3=4,a 4+b 4=7,a 5+b 5=11,…,则a 10+b 10=________. 答案 123解析 记a n+b n=f (n ),则f (3)=f (1)+f (2)=1+3=4;f (4)=f (2)+f (3)=3+4=7;f (5)=f (3)+f (4)=11; f (6)=f (4)+f (5)=18;f (7)=f (5)+f (6)=29; f (8)=f (6)+f (7)=47;f (9)=f (7)+f (8)=76; f (10)=f (8)+f (9)=123,即a 10+b 10=123.5.已知正三角形内切圆的半径是其高的13,把这个结论推广到空间正四面体,类似的结论是________.答案 正四面体的内切球的半径是其高的14解析 设正四面体的每个面的面积是S ,高是h ,内切球半径为R ,由体积分割可得:13SR ×4=13Sh ,所以R =14h .6.观察下列等式: (1+1)=2×1(2+1)(2+2)=22×1×3(3+1)(3+2)(3+3)=23×1×3×5 …照此规律,第n 个等式可为______________.答案 (n +1)(n +2)…(n +n )=2n×1×3×…×(2n -1)解析 由已知的三个等式左边的变化规律,得第n 个等式左边为(n +1)(n +2)…(n +n ),由已知的三个等式右边的变化规律,得第n 个等式右边为2n与n 个奇数之积,即2n×1×3×…×(2n -1).7.(xx·湖北)古希腊毕达哥拉斯学派的数学家研究过各种多边形数,如三角形数1,3,6,10,…,第n 个三角形数为n (n +1)2=12n 2+12n ,记第n 个k 边形数为N (n ,k )(k ≥3),以下列出了部分k 边形数中第n 个数的表达式:三角形数 N (n,3)=12n 2+12n ,正方形数 N (n,4)=n 2,五边形数 N (n,5)=32n 2-12n ,六边形数 N (n,6)=2n 2-n ……………………………………… 可以推测N (n ,k )的表达式,由此计算N (10,24)=________________________________________________________________________. 答案 1 000解析 由N (n,4)=n 2,N (n,6)=2n 2-n ,可以推测:当k 为偶数时,N (n ,k )=k -22n 2+4-k2n ,∴N (10,24)=24-22×100+4-242×10=1 100-100=1 000.8.两点等分单位圆时,有相应正确关系为sin α+sin(π+α)=0;三点等分单位圆时,有相应正确关系为sin α+sin(α+2π3)+sin(α+4π3)=0.由此可以推知:四点等分单位圆时的相应正确关系为________________________.答案 sin α+sin(α+π2)+sin(α+π)+sin(α+3π2)=0解析 由类比推理可知,四点等分单位圆时,α与α+π的终边互为反向延长线,α+π2与α+3π2的终边互为反向延长线,如图.9.(xx·陕西)观察下列等式 12=1, 12-22=-3, 12-22+32=6, 12-22+32-42=-10, …照此规律,第n 个等式可为________.答案 12-22+32-42+…+(-1)n +1n 2=(-1)n +1·n (n +1)2解析 观察等式左边的式子,每次增加一项,故第n 个等式左边有n 项,指数都是2,且正、负相间,所以等式左边的通项为(-1)n +1n 2.等式右边的值的符号也是正、负相间,其绝对值分别为1,3,6,10,15,21,….设此数列为{a n },则a 2-a 1=2,a 3-a 2=3,a 4-a 3=4,a 5-a 4=5,…,a n -a n -1=n ,各式相加得a n -a 1=2+3+4+…+n ,即a n =1+2+3+…+n =n (n +1)2.所以第n 个等式为12-22+32-42+…+(-1)n +1n 2=(-1)n +1n (n +1)2.10.如图1是一个边长为1的正三角形,分别连结这个三角形三边中点,将原三角形剖分成4个三角形(如图2),再分别连结图2中一个小三角形三边的中点,又可将原三角形剖分成7个三角形(如图3),…,依此类推.设第n 个图中原三角形被剖分成a n 个三角形,则第4个图中最小三角形的边长为________;a 100=________.答案 18298解析 由三角形的生成规律得,后面的每一个图形中小三角形的边长均等于前一个图形中小三角形边长的12,即最小三角形的边长是以1为首项,12为公比的等比数列,则第4个图中最小三角形的边长等于1×123=18,由a 2-a 1=a 3-a 2=…=a n -a n -1=3可得,数列{a n }是首项为1,公差为3的等差数列,则a 100=a 1+99×3=1+297=298. 11.观察下列不等式:1+122<32, 1+122+132<53, 1+122+132+142<74, …照此规律,第五个...不等式为________. 答案 1+122+132+142+152+162<116解析 观察每行不等式的特点,每行不等式左端最后一个分数的分母与右端值的分母相等,且每行右端分数的分子构成等差数列.∴第五个不等式为1+122+132+142+152+162<116.12.(xx·陕西)观察分析下表中的数据:猜想一般凸多面体中F,V,E所满足的等式是____________.答案F+V-E=2解析观察F,V,E的变化得F+V-E=2.22650 587A 塺E130771 7833 砳 37022 909E 邞~28985 7139 焹-27561 6BA9 殩"g31580 7B5C 筜J6。
高中数学选修1-2北师大版 3.1.2 类比推理 作业2(含答案)

1.2类比推理1.下列说法正确的是()A.由合情推理得出的结论一定是正确的B.合情推理必须有前提有结论C.合情推理不能猜想D.合情推理得出的结论不能判断正误答案 B解析根据合情推理可知,合情推理必须有前提有结论.2.在平面上,若两个正三角形的边长比为1∶2,则它们的面积比为1∶4.类似地,在空间中,若两个正四面体的棱长比为1∶2,则它们的体积比为________.答案1∶8解析∵两个正三角形是相似的三角形,∴它们的面积之比是相似比的平方.同理,两个正四面体是相似的几何体,体积之比为相似比的立方,∴它们的体积比为1∶8.3.若数列{c n}是等差数列,则当d n=c1+c2+…+c nn时,数列{d n}也是等差数列,类比上述性质,若数列{a n}是各项均为正数的等比数列,则当b n=________时,数列{b n}也是等比数列.答案na1a2…a n[呈重点、现规律]1.合情推理主要包括归纳推理和类比推理.数学研究中,在得到一个新结论前,合情推理能帮助猜测和发现结论,在证明一个数学结论之前,合情推理常常能为证明提供思路与方向.2.合情推理的过程概括为从具体问题出发―→观察、分析、比较、联想―→归纳、类比―→提出猜想一、基础过关1.下列推理正确的是()A.把a(b+c)与log a(x+y)类比,则有log a(x+y)=log a x+log a yB.把a(b+c)与sin(x+y)类比,则有sin(x+y)=sin x+sin yC.把a(b+c)与a x+y类比,则有a x+y=a x+a yD.把a(b+c)与a·(b+c)类比,则有a·(b+c)=a·b+a·c答案 D2.下面几种推理是合情推理的是()①由圆的性质类比出球的有关性质;②由直角三角形、等腰三角形、等边三角形的内角和是180°,归纳出所有三角形的内角和都是180°;③张军某次考试成绩是100分,由此推出全班同学的成绩都是100分;④三角形内角和是180°,四边形内角和是360°,五边形内角和是540°,由此得凸n边形内角和是(n-2)·180°.A.①②B.①③C.①②④D.②④答案 C解析①是类比推理;②是归纳推理;④是归纳推理.所以①、②、④是合情推理.故C正确.3.对命题“正三角形的内切圆切于三边中点”可类比猜想:正四面体的内切球切于四面体各正三角形的()A.一条中线上的点,但不是中心B.一条垂线上的点,但不是垂心C.一条角平分线上的点,但不是内心D.中心答案 D解析由正四面体的内切球可知,内切球切于四个侧面的中心.4.设△ABC的三边长分别为a、b、c,△ABC的面积为S,内切圆半径为r,则r=2Sa+b+c,类比这个结论可知:四面体S-ABC的四个面的面积分别为S1、S2、S3、S4,内切球半径为r,四面体S-ABC的体积为V,则r等于()A.VS1+S2+S3+S4B.2VS1+S2+S3+S4C.3V S 1+S 2+S 3+S 4D.4VS 1+S 2+S 3+S 4答案 C解析 设四面体的内切球的球心为O ,则球心O 到四个面的距离都是R ,所以四面体的体积等于以O 为顶点,分别以四个面为底面的4个三棱锥体积的和.则四面体的体积为V 四面体A -BCD =13(S 1+S 2+S 3+S 4)R ,∴R =3VS 1+S 2+S 3+S 4.5.类比平面直角坐标系中△ABC 的重点G (x ,y )的坐标公式⎩⎨⎧x =x 1+x 2+x 33y =y 1+y 2+y33(其中A (x 1,y 1)、B (x 2,y 2)、C (x 3,y 3),猜想以A (x 1,y 1,z 1)、B (x 2,y 2,z 2)、C (x 3,y 3,z 3)、D (x 4,y 4,z 4)为顶点的四面体A —BCD 的重点G (x ,y ,z )的公式为________________________.答案⎩⎪⎨⎪⎧x =x 1+x 2+x 3+x 44y =y 1+y 2+y 3+y44z =z 1+z 2+z 3+z 446.公差为d (d ≠0)的等差数列{a n }中,S n 是{a n }的前n 项和,则数列S 20-S 10,S 30-S 20,S 40-S 30也成等差数列,且公差为100d ,类比上述结论,相应地在公比为q (q ≠1)的等比数列{b n }中,若T n 是数列{b n }的前n 项积,则有__________________________________.答案 T 20T 10,T 30T 20,T 40T 30也成等比数列,且公比为q 1007.如图(1),在平面内有面积关系S △PA ′B ′S △PAB =PA ′·PB ′PA ·PB ,写出图(2)中类似的体积关系,并证明你的结论.解 类比S △PA ′B ′S △PAB=PA ′·PB ′PA ·PB ,有V P —A ′B ′C ′V P —ABC =PA ′·PB ′·PC ′PA ·PB ·PC证明:如图:设C ′,C 到平面PAB 的距离分别为h ′,h .。
类比推理题库及标准答案(300题)

实用文档类比推理题库及标准答案(类比推理部分)1、作家:读者A.售货员:顾客B.主持人:广告C.官员:腐败D.经理:秘书【解答】此题属于专业人员与其面对的对象之间的类比推理题,故正确答案为A。
2、水果:苹果A.香梨:黄梨B.树木:树枝C.经济适用房:奔驰D.山:高山【解答】该题题干中水果与苹果两个词之间是一般和特殊的关系,所以答案为选项D。
选项B的两个词之间的关系是整体与部分的关系。
3、努力:成功A.原告:被告B.耕耘:收获C.城市:福利D.扩招:失业【解答】努力与成功两个词具有因果关系,即只有努力才能成功或者说努力是成功必不可少的原因之一,故正确答案为B。
4、书籍:纸张A.毛笔:宣纸B.橡皮:文具盒C.菜肴:萝卜D.飞机:宇宙飞船【解答】此题属于物品与制作材料的推理关系,故正确答案为C。
5、馒头:食物A.食品:巧克力B.头:身体C.手:食指D.钢铁:金属【解答】此题属于特殊与一般的推理关系,故正确答案为D。
实用文档6、稻谷:大米A.核桃:桃酥B.棉花:棉子C.西瓜:瓜子D.枪:子弹【解答】因为稻谷是大米的惟一来源,而棉花是棉子的惟一来源,故正确答案为B。
7、轮船:海洋A.河流:芦苇B.海洋:鲸鱼C.海鸥:天空D.飞机:海洋【解答】此题属于物体与其运动空间的类比推理题,故正确答案为C。
8、芙蕖:荷花A.兔子:嫦娥B.窑洞:官邸C.伽蓝:寺庙D.映山红:蒲公英【解答】因为芙蕖是荷花的书面别称,而伽蓝是寺庙的书面别称,故正确答案为C。
9、绿豆:豌豆A.家具:灯具B.猴子:树木C.鲨鱼:鲸鱼D.香瓜:西瓜【解答】选项C中的鲸鱼其实不是鱼,而是哺乳动物,故正确答案为D。
10、汽车:运输A.捕鱼:鱼网B.编织:鱼网C.鱼网:编织D.鱼网:捕鱼【解答】此题属于工具与作用的类比推理题,故正确答案为D。
11、医生:患者A.工人:机器B.啄木鸟:病树C.警察:罪犯D.法官:律师答案:B12、紫竹:植物学家A.金属:铸工B.铁锤:石头C.动物:植物D.蝴蝶:昆虫学家答案:D13、老师:学生A.教师:职工B.编辑:读者C.师傅:学徒D.演员:经济人答案:C14、书法:艺术A.抢劫:犯罪B.鲁迅:周树人C.历史:世界史D.权力:金钱答案:A15、森林:树木A.头:身体B.花:菊花C.山脉:山D.身体:身躯答案:C16、工人:机器A.赌球:球员B.无产者:资本家C.农民:土地D.商人:商品答案:C17、教师:教室A.士兵:子弹B.士兵:战斗C.战场:战士D.士兵:军营答案:D18、发奋:成功A.点灯:**B.饮料:可乐C.扶贫:账户D.自满:失败答案:D19、中国:国家A.秦国:战国B.人:动物C.昆仑山:武夷山脉D.生物:植物答案:B20、资本家:工人A.地主:佃户B.教师:学生C.店员:客户D.父亲:儿子答案:A21、跳跃:动作A.男人:女人B.湖南省:长沙市C.青年:妇女D.风俗:习惯答案:D22、周瑜:曹操A.南京:北京B.动作:食物C.汽车:吊车D.官员:群众答案:A23、水壶:开水A.桌子:游戏B.邮箱:信件C.黄梅戏:歌曲D.青蛙:池塘答案:B24、导演:电影A.售货员:货物B.作家:小说C.农民:庄稼D.工人:机器答案:B25、逗号:中止A.拂晓:黎明B.节省:吝啬C.回车:换行D.明星:绯闻答案:C26、射击:手枪A.投掷:石头B.月光:流水C.性格:坚强D.拳击手:攻击答案:A27、鸟:蛋A.老虎:虎仔B.步枪:子弹C.师傅:徒弟D.鱼:卵答案:D28、温度计:气温A.高兴:哀愁B.磅秤:重量C.天才:音乐家D.游泳:运动答案:B29、窑:陶瓷A.蛇:山洞B.商人:金钱C.战争:难民D.烤箱:面包答案:D30、美国:旧金山A.地球:恒星B.黄河:中国C.香港:世贸组织D.中国:淮河答案:D31、南京∶江苏A. 石家庄∶河北B. 渤海∶中国C. 泰州∶江苏D. 秦岭∶淮河答:A题干是省会城市与所属省份关系,选项中符合条件的是A。
类比推理考试题目及答案

类比推理考试题目及答案1. 题目:如果“笔”对于“书写”相当于“刀”对于什么?A. 切割B. 烹饪C. 种植D. 驾驶答案:A2. 题目:在“医生”和“病人”的关系中,“教师”和下列哪个词的关系最相似?A. 学生B. 司机C. 厨师D. 农民答案:A3. 题目:如果“图书馆”对于“书籍”相当于“博物馆”对于什么?A. 化石B. 艺术品C. 植物D. 动物答案:B4. 题目:在“太阳”和“光”的关系中,“月亮”和下列哪个词的关系最相似?A. 暗B. 亮C. 热答案:D5. 题目:如果“树木”对于“森林”相当于“水滴”对于什么?A. 海洋B. 河流C. 湖泊D. 池塘答案:A6. 题目:在“建筑师”和“设计”的关系中,“画家”和下列哪个词的关系最相似?A. 画布B. 颜料C. 画廊D. 画笔答案:B7. 题目:如果“花朵”对于“植物”相当于“心脏”对于什么?A. 器官B. 动物C. 肌肉D. 血液答案:B8. 题目:在“音乐家”和“乐器”的关系中,“作家”和下列哪个词的关系最相似?A. 笔B. 纸C. 书D. 故事9. 题目:如果“汽车”对于“交通”相当于“飞机”对于什么?A. 旅行B. 运输C. 邮件D. 货物答案:B10. 题目:在“学生”和“学习”的关系中,“农民”和下列哪个词的关系最相似?A. 种植B. 收获C. 土地D. 工具答案:A。
高三复习测试题数学选修2-22.1.1合情推理---类比推理Word版含答案

§2.1.1 合情推理-----类比推理学习目标:1. 了解类比推理是从“特殊到特殊”的推理;2. 掌握类比推理重点是“方法的模仿借鉴”.一. 选择题:1.在平面几何里,可以得出正确结论:“正三角形的内切圆半径等于这个三角形的高的31”.类比上述结论,可得正四面体的内切球半径等于这个正四面体的高的( )A.31B.41 C.51 D.61 2.设244)(+=x xx f ,类比等差数列求和公式n S 的 推导的方法,可求得+++-+-)0(...)5()6(f f f)7(...)1(f f ++=( )A.5B.6C.7D.83.在等差数列}{n a 中,公差0>d ,则有>⋅64a a73a a ⋅,类比上述性质,在等比数列}{n b 中,若n b0>,公比1>q ,则可得关于8475.,,b b b b 的一个不等式为( )A.7584b b b b +<+B.7584b b b b +>+C.7584b b b b ⋅<⋅D.以上都不对4.若等差数列}{n a 的公差为d ,前n 项和为n S ,则数列}{n S n 为等差数列,公差为2d,类比上述结论有:若各项均为正数的等比数列}{n b 的公比为q ,前n 项积为n T ,则数列}{n n T 为等比数列,公比为( ) A.2qB.2qC.qD.n q5.先阅读下面的文字:“求...111+++的值”,可采用如下的方法:令x =+++...111,则有x x +=1,两边同时平方,得21x x =++,解得(251+=x 负值已舍去),利用类比的方法, 可求...2111211++++=( )A.213+B.213- C.216+ D.216-二.填空题:6.与直线0532=-+y x 平行且过点)2,1(-P 的直线l 可写成0)2(3)1(2:=-++y x l ,运用类比推理,与直线0125=+-y x 垂直且过点)2,4(-的直线可写成:7.由图(1)可得:PB PA PBPA S SPAB B PA ⋅⋅=∆∆////,类比,由图(2)可得:8.平面内直角三角形两条直角边b a ,与斜边上高h 的关系为:222111bah+=,将上述结论类比到空间,可得:已知c b a ,,为两两垂直的三条侧棱的长,h 为底面上的高,则9.已知数列}{n a 是正项等差数列,设 nna a a a b nn ++++++++=...321 (32321)则数列}{n b 也为等差数列.类比上述结论:写出正项等比数列}{n c ,若=n d 则数列}{n d 也为等比数列.三.解答题:10.在ABC Rt ∆中,⋅=∠ 90A ,BC AD ⊥于D ,则222111ACABAD+=.类比上述结论,给出四面体ABCD 的一个结论,并给予证明.11.请阅读下列不等式的证明过程:已知R a a ∈21,,12221=+a a ,求证:≤+21a a 2.证明:构造函数2221)()()(a x a x x f -+-=,则2221212)(22)(a a x a a x x f +++-=1(222a x -=1)2++x a因R x ∈∀,恒有0)(≥x f ,所以-+=∆221)(4a a08≤,所以≤+21a a 2请回答下列问题:(1)若R a a a n ∈,...,,21,1 (2)2221=+++n a a a ,请写出上述结论的推广式; (2)参考上述证法,请证明你的推广式.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学类比推理综合测试题(有答案)选修2-2 2.1.1 第2课时类比推理一、选择题 1.下列说法正确的是()A.由合情推理得出的结论一定是正确的.合情推理必须有前提有结论B .合情推理不能猜想CD.合情推理得出的结论无法判定正误] B[答案[解析] 由合情推理得出的结论不一定正确,A不正确;B正确;合情推理的结论本身就是一个猜想,C不正确;合情推理结论可以通过证明来判定正误,D也不正确,故应选B.2.下面几种推理是合情推理的是()①由圆的性质类比出球的有关性质②由直角三角形、等腰三角形、等边三角形的内角和是180,归纳出所有三角形的内角和都是180③教室内有一把椅子坏了,则该教室内的所有椅子都坏了④三角形内角和是180,四边形内角和是360,五边形内角和是540,由此得出凸多边形的内角和是(n-2)180 A.①②页 1 第B.①③④C.①②④.②④D [答案] C[解析] ①是类比推理;②④都是归纳推理,都是合情推理.3.三角形的面积为S=12(a+b+c)r,a、b、c为三角形的边长,r为三角形内切圆的半径,利用类比推理,可以得到四面体的体积为()13abcV=A.=13ShB.VC.V=13(S1+S2+S3+S4)r,(S1、S2、S3、S4分别为四面体四个面的面积,r为四面体内切球的半径)为四面体的高)+bc+ac)h(h13(abD.V=答案[] C[解析] 边长对应表面积,内切圆半径应对应内切球半径.故应选C. 4.类比平面内正三角形的“三边相等,三内角相等”的性质,可推知正四面体的下列哪些性质,你认为比较恰当的是()①各棱长相等,同一顶点上的任两条棱的夹角都相等②各个面都是全等的正三角形,相邻两个面所成的二面角都页 2 第相等③各个面都是全等的正三角形,同一顶点上的任两条棱的夹角都相等.①A B.①②C.①②③D.③[答案] C[解析] 正四面体的面(或棱)可与正三角形的边类比,正四面体的相邻两面成的二面角(或共顶点的两棱的夹角)可与正三角形相邻两边的夹角类比,故①②③都对.5.类比三角形中的性质:(1)两边之和大于第三边 (2)中位线长等于底边的一半(3)三内角平分线交于一点可得四面体的对应性质:(1)任意三个面的面积之和大于第四个面的面积(2)过四面体的交于同一顶点的三条棱的中点的平面面积等于第四个面面积的14(3)四面体的六个二面角的平分面交于一点其中类比推理方法正确的有()页 3 第A.(1)B.(1)(2)C. (1)(2)(3)D.都不对] C[答案[解析] 以上类比推理方法都正确,需注意的是类比推理得到的结论是否正确与类比推理方法是否正确并不等价,方法正确结论也不一定正确.6.由代数式的乘法法则类比推导向量的数量积的运算法则:①“mn=nm”类比得到“ab=ba”;②“(m+n)t=mt+nt”类比得到“(a+b)c=ac+bc”;③“(mn)t=m(nt)”类比得到“(ab)c=a(bc)”;④“t0,mt=xtm=x”类比得到“p0,ap=xpa=x”;⑤“|mn|=|m||n|”类比得到“|ab|=|a||b|”;⑥“acbc=ab”类比得到“acbc=ab”.以上式子中,类比得到的结论正确的个数是()A.12B. 3.C页 4 第D.4[答案] B[解析] 由向量的有关运算法则知①②正确,③④⑤⑥都不正确,故应选B.7.(2019浙江温州)如图所示,椭圆中心在坐标原点,F为左焦点,当FBAB时,其离心率为5-12,此类椭圆被称为“黄金椭圆”.类比“黄金椭圆”,可推算出“黄金双曲线”的离心率e等于()+12A.5 12B.5- C.5-1 1+D.5 [答案] A[解析] 如图所示,设双曲线方程为x2a2-y2b2=1(a0,b0),则F(-c,0),B(0,b),A(a,0),b)(-a,FB=(c,b)AB=又∵FBAB,FBAB=b2-ac=0c2-a2-ac=0=0-e-1e2e=1+52或e=1-52(舍去),故应选A.页 5 第8.六个面都是平行四边形的四棱柱称为平行六面体.如图甲,在平行四边形ABD中,有AC2+BD2=2(AB2+AD2),那么在图乙中所示的平行六面体ABCD-A1B1C1D1中,AC21+BD21+CA21+DB21等于()+AA21)2(AB2+AD2.A AA21)+AD2+B.3(AB2 +AA21)+C.4(AB2AD2 AD2)D.4(AB2+ [答案] C[解析] AC21+BD21+CA21+DB21+DB21)CA21)(AC21++(BD21= BD2)+2(BB21+AC2)=2(AA21++BD2)2(AC2=4AA21+=4AA21+4AB2+4AD2,故应选C.9.下列说法正确的是()A.类比推理一定是从一般到一般的推理B.类比推理一定是从个别到个别的推理C.类比推理是从个别到个别或一般到一般的推理D.类比推理是从个别到一般的推理] C[答案[解析] 由类比推理的定义可知:类比推理是从个别到个别或一般到一般的推理,故应选C.页 6 第10.下面类比推理中恰当的是()A.若“a3=b3,则a=b”类比推出“若a0=b0,则a=b”B.“(a+b)c=ac+bc”类比推出“(ab)c=acbc”C.“(a+b)c=ac+bc”类比推出“a+bc=ac+bc(c0)”D.“(ab)n=anbn”类比推出“(a+b)n=an+bn”[答案] C[解析] 结合实数的运算知C是正确的.二、填空题11.设f(x)=12x+2,利用课本中推导等差数列前n项和公式的方法,可求得f(-5)+f(-4)+…+f(0)+…+f(5)+f(6)的值为________.32[答案][解析] 本题是“方法类比”.因等比数列前n项和公式的推导方法是倒序相加,亦即首尾相加,那么经类比不难想到f(-5)+f(-4)+…+f(0)+…+f(5)+f(6)=[f(-5)+f(6)]+[f(-4)+f(5)]+…+[f(0)+f(1)],而当x1+x2=1时,有f(x1)+f(x2)==32.=22,故所求答案为622=1212.(2019广州高二检测)若数列{an}是等差数列,对于bn=1n(a1+a2+…+an),则数列{bn}也是等差数列.类比上页 7 第述性质,若数列{cn}是各项都为正数的等比数列,对于dn0,则dn=________时,数列{dn}也是等比数列.[答案] nc1c2…cn13.在以原点为圆心,半径为r的圆上有一点P(x0,y0),则过此点的圆的切线方程为x0x+y0y=r2,而在椭圆x2a2+y2b2=1(a0)中,当离心率e趋近于0时,短半轴b就趋近于长半轴a,此时椭圆就趋近于圆.类比圆的面积公式,在椭圆中,S椭=________.类比过圆上一点P(x0,y0)的圆的切线方程,则过椭圆x2a2+y2b2=1(a0)上一点P(x1,y1)的椭圆的切线方程为________.=1x1a2x+y1b2y;[答案] ab[解析] 当椭圆的离心率e趋近于0时,椭圆趋近于圆,此时a,b都趋近于圆的半径r,故由圆的面积S=r2=rr,猜想椭圆面积S椭=ab,其严格证明可用定积分处理.而由切线方程x0x+y0y=r2变形得x0r2x+y0r2y=1,则过椭圆上一点P(x1,y1)的椭圆的切线方程为x1a2x+y1b2y=1,其严格证明可用导数求切线处理.14.在等差数列{an}中,若a10=0,则有等式a1+a2+…+an=a1+a2+…+a19-n(n19,nN*)成立,类比上述性质,相应地:在等比数列{bn}中,若b9=1,则有等式__________成立.[答案] b1b2…bn=b1b2…b17-n(n<17,nN*)页 8 第[解析] 解法1:从分析所提供的性质入手:由a10=0,可得ak+a20-k=0,因而当n19-n时,有a1+a2+…+a19-n=a1+a2+…+an+an+1+an+2+…+a19-n,而an+1+an+2+…+a19-n=(19-2n)(an+1+a19-n)2=0,等式成立.同理可得n19-n时的情形.由此可知:等差数列{an}之所以有等式成立的性质,关键在于在等差数列中有性质:an+1+a19-n=2a10=0,类似地,在等比数列{bn}中,也有性质:bn+1b17-n=b29=1,因而得到答案:b1b2…bn=b1b2…b17-n(n17,nN*).解法2:因为在等差数列中有“和”的性质a1+a2+…+an =a1+a2+…+a19-n(n<19,nN*)成立,故在等比数列{bn}中,由b9=1,可知应有“积”的性质b1b2…bn=b1b2…b17-n(n<17,nN*)成立. (1)证明如下:当n<8时,等式(1)为b1b2…bn=b1b2…bnbn+1…b17-n即:bn+1bn+2…b17-n=1.(2)1.b29=-bk+1b17k=,∵b9=1 bn+1bn+2…b17-n=b17-2n9=1.(2)式成立,即(1)式成立;当n=8时,(1)式即:b9=1显然成立;页 9 第当8<n<17时,(1)式即:b1b2…b17-nb18-n…bn=b1b2…b17-n1(3)-nb19-n…bn=即:b18 =1b18-kbk=b29∵b9=1,b18-nb19-n…bn=b2n-179=1(3)式成立,即(1)式成立.综上可知,当等比数列{bn}满足b9=1时,有:b1b2…bn=b1b2…b17-n(n<17,nN*)成立.三、解答题15.已知:等差数列{an}的公差为d,前n项和为Sn,有如下的性质:(1)an=am+(n-m)d.(2)若m+n=p+q,其中,m、n、p、qN*,则am+an=ap+aq.(3)若m+n=2p,m,n,pN*,则am+an=2ap.(4)Sn,S2n-Sn,S3n-S2n构成等差数列.{bn}中,类比上述性质,在等比数列写出相类似的性质.[解析] 等比数列{bn}中,公比q,前n项和Sn. (1)通项an=amqn-m.页 10 第(2)若m+n=p+q,其中m,n,p,qN*,=apaq.则aman(3)若m+n=2p,其中,m,n,pN*,则a2p =aman.(4)Sn,S2n-Sn,S3n-S2n构成等比数列..(1),再根据结构类比解答(2)16.先解答(1)已知a,b 为实数,且|a|1,|b|1,求证:ab+1a+b.(2)已知a,b,c均为实数,且|a|1,|b|1,|c|1,求证:abc+2a+b+c.[解析] (1)ab+1-(a+b)=(a-1)(b-1)0.(2)∵|a|1,|b|1,|c|1,据(1)得(ab)c+1ab+c,abc+2=[(ab)c+1]+1(ab+c)+1=(ab+1)+ca+b+c. 你能再用归纳推理方法猜想出更一般地结论吗?[点评] (1)与(2)的条件与结论有着相同的结构,通过分析(1)的推证过程及结论的构成进行类比推广得出:(ab)c+1>ab+c是关键.用归纳推理可推出更一般的结论:ai为实数,|ai|<1,i=1、2、…、n,则有:a1a2…an+(n-1)>a1+a2+…+an.17.点P22,22在圆C:x2+y2=1上,经过点P的圆的切页11 第线方程为22x+22y=1,又点Q(2,1)在圆C外部,容易证明直线2x+y=1与圆相交,点R12,12在圆C的内部.直线12x+12y=1与圆相离.类比上述结论,你能给出关于一点P(a,b)与圆x2+y2=r2的位置关系与相应直线与圆的位置关系的结论吗?[解析] 点P(a,b)在⊙C:x2+y2=r2上时,直线ax+by =r2与⊙C相切;点P在⊙C内时,直线ax+by=r2与⊙C 相离;点P在⊙C外部时,直线ax+by=r2与⊙C相交.容易证明此结论是正确的..我们知道:18 1,12=22=(1+1)2=12+21+1,1,+22+=32(2+1)2=22 +1,=(3+1)232+2342= n2=(n-1)2+2(n-1)+1,左右两边分别相加,得n2=2[1+2+3+…+(n-1)]+n1+2+3+…+n=n(n+1)2.类比上述推理方法写出求12+22+32+…+n2的表达式的过程.[解析] 我们记S1(n)=1+2+3+…+n,S2(n)=12+22+32+…+n2,…Sk(n)=1k+2k+3k+…+页 12 第nk (kN*).已知 13= 1,23=(1+1)3=13+312+31+1,,32+1=23+322+1)333=(2+ 1,332+33+3343=(3+1)3=+ n3=(n-1)3+3(n-1)2+3(n-1)+1.将左右两边分别相加,得S3(n)=[S3(n)-n3]+3[S2(n)-n2]+3[S1(n)-n]+n.由此知S2(n)=n3+3n2+2n-3S1(n)3=2n3+3n2+n6 =n(n+1)(2n+1)6.页 13 第。