九年级上数学25.2用列举法求概率_第1课时导学案直接列举
《25.2用列举法求概率》学历案-初中数学人教版12九年级上册

《用列举法求概率》学历案(第一课时)一、学习主题本学习主题为“用列举法求概率”,是初中数学课程中的一课。
这一课的学习重点在于理解概率的基本概念,掌握列举法求概率的步骤和方法,通过实际问题的解决,提高应用概率知识解决实际问题的能力。
二、学习目标1. 理解概率的基本概念,掌握概率的表示方法。
2. 掌握列举法求概率的基本步骤和技巧。
3. 能够运用列举法求概率解决简单的实际问题。
4. 培养学生的逻辑思维能力和解决实际问题的能力。
三、评价任务1. 评价学生对概率基本概念的掌握情况,通过课堂提问和小组讨论的方式进行。
2. 评价学生运用列举法求概率的步骤和技巧的掌握情况,通过课堂练习和作业进行。
3. 评价学生解决实际问题的能力,通过布置实际问题的作业,检查学生的应用能力。
四、学习过程1. 导入新课:通过生活中的实例引入概率的概念,如抛硬币、抽卡片等,让学生感受概率的存在和实用性。
2. 新课学习:讲解概率的基本概念和表示方法,介绍列举法求概率的步骤和技巧。
3. 课堂练习:通过具体的例子,让学生亲自操作,运用列举法求概率,加深对知识的理解和掌握。
4. 小组讨论:学生分组讨论列举法求概率的步骤和方法,相互交流,共同进步。
5. 总结反馈:教师总结学生的练习情况,对共性问题进行讲解,对个别问题进行辅导。
五、检测与作业1. 课堂检测:通过小测验或课堂练习的方式,检测学生对列举法求概率的掌握情况。
2. 作业布置:布置相关的实际问题作业,让学生运用所学知识解决实际问题,提高学生的应用能力。
六、学后反思1. 学生反思:学生应反思自己在课堂上的学习情况,总结自己的不足之处,明确下一步的学习方向。
2. 教师反思:教师应对课堂教学进行反思,总结教学中的优点和不足,为今后的教学提供参考。
通过以上内容的学习,学生应能够熟练掌握用列举法求概率的方法,并能够运用这种方法解决实际问题。
同时,教师也应对学生的学习情况进行全面的评估,根据学生的掌握情况调整教学计划,使教学更加有效。
《25.2 第1课时 运用直接列举或列表法求概率》教案、导学案、同步练习

25.2 用列举法求概率《第1课时运用直接列举或列表法求概率》教案【教学目标】1.用列举法求较复杂事件的概率.2.理解“包含两步并且每一步的结果为有限多个情形”的意义.3.用列表法求概率.【教学过程】一、情境导入希罗多德在他的巨著《历史》中记录,早在公元前1500年,埃及人为了忘却饥饿,经常聚集在一起掷骰子,游戏发展到后来,到了公元前1200年,有了立方体的骰子.二、合作探究探究点一:用列表法求概率【类型一】摸球问题一只不透明的袋子中装有两个完全相同的小球,上面分别标有1,2两个数字,若随机地从中摸出一个小球,记下号码后放回,再随机地摸出一个小球,则两次摸出小球的号码之积为偶数的概率是( )A.14B.13C.12D.34解析:先列表列举出所有可能的结果,再根据概率计算公式计算.列表分析如下:由列表可知,两次摸出小球的号码之积共有4种等可能的情况,号码之积为偶数共有3种:(1,2),(1,2),(2, 2),∴P=34,故选D.【类型二】学科内综合题从0,1,2这三个数中任取一个数作为点P的横坐标,再从剩下的两个数中任取一个数作为点P的纵坐标,则点P落在抛物线y=-x2+x+2上的概率为________.解析:用列表法列举点P坐标可能出现的所有结果数和点P落在抛物线上的结果数,然后代入概率计算公式计算.用列表法表示如下:共有6种等可能结果,其中点P落在抛物线上的有(2,0),(0,2),(1,2)三种,故点P落在抛物线上的概率是36=12,故答案为12.方法总结:用列表法求概率时,应注意利用列表法不重不漏地表示出所有等可能的结果.【类型三】学科间综合题如图,每个灯泡能否通电发光的概率都是0.5,当合上开关时,至少有一个灯泡发光的概率是( )A.0.25 B.0.5C.0.75 D.0.95解析:先用列表法表示出所有可能的结果,再根据概率计算公式计算.列表表示所有可能的结果如下:根据上表可知共有4种等可能的结果,其中至少有一个灯泡发光的结果有3种,∴P(至少有一个灯泡发光)=34,故选择C.方法总结:求事件A的概率,首先列举出所有可能的结果,并从中找出事件A包含的可能结果,再根据概率公式计算.【类型四】判断游戏是否公平甲、乙两名同学做摸球游戏,他们把三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中.(1)求从袋中随机摸出一球,标号是1的概率;(2)从袋中随机摸出一球然后放回,摇匀后再随机摸出一球,若两次摸出的球的标号之和为偶数时,则甲胜;若两次摸出的球的标号之和为奇数时,则乙胜.试分析这个游戏是否公平?请说明理由.解析:(1)直接利用概率定义求解;(2)先用列表法求出概率,再利用概率判断游戏的公平性.解:(1)P(标号是1)=1 3.(2)这个游戏不公平,理由如下:把游戏可能出现标号的所有可能性(两次标号之和)列表如下:∴P(和为偶数)=59,P(和为奇数)=49,二者不相等,说明游戏不公平.方法总结:用列举法解概率问题中,可以采用列表法.对于一次实验需要分两个步骤完成的,用两种方法都可以,以列表法为主.判断游戏是否公平,只需求出双方获胜的概率.三、板书设计【教学反思】教学过程中,强调在生活、学习中的很多方面均用到概率的知识,学习概率要从身边的现象开始.《第1课时用直接列举法或列表法求概率》导学案【学习目标】:知识与技能掌握用列表法求事件的概率.过程与方法通过对“应用一般的列举法求概率”的探究,体会获得事件发生的概率的方法,培养分析、判断的能力。
人教版九年级上册第25章第二节第一课时《25.2.1用列举法求概率》赛课教案

第二十五章概率初步25.2用列举法求概率第1课时运用直接列举或列表法求概率教学内容:人教版九年级上册第25章第二节第一课时运用直接列举或列表法求概率学习目标:1.2. 学会正确“列表”表示出所有可能出现的结果.3. 知道如何利用“列表法”求随机事件的概率.会用“直接列举法”和“列表法”列举所有可能出现的结果.教学重难点重点:知道如何利用“列表法”求随机事件的概率.难点:会正确“列表”表示出所有可能出现的结果.教学方法教法:创设情景提问法、演示法、启发式教学.学法:小组合作、讨论交流.教学过程:一、情境导入1、12.4 H国家宪法日(PPT出示志愿者图片)(设计意图:通过宪法的导入, 让学生们了解宪法,增强法律意识)2、再由我校也将开展进社区宣传宪法的活动,向每班招募一名志愿者,但是小辛玉和安琪都想去,引出抛硬币活动,正面向上小车玉去,反面向上安琪去,学生判断公平的依据。
学生说概率公式P (A)=-n(设计意图:增强学生对社会的服务意识,复习旧知)3、当小车玉抛出硬币是正面,决定小车玉去参加活动时,安琪提出一人抛一枚硬币更公平。
老师提问:同时抛两枚硬币,怎么制定规则比较公平呢?(设计意图:引出本节课的主题:用列举法求概率)4、确定本节课的学习目标。
二、探索新知(一)用直接列举法求概率问题1:同时掷两枚质地均匀的硬币,求下列事件的概率:(1)两枚硬币全部正面向上;(2)两枚硬币全部反面向上;(3)一枚硬币正面朝上,一枚硬币反面朝上。
学生抛硬币,得出结论:抛掷两枚硬币的所有可能为:正正,正反,反正,反反请学生分别回答上面三个问题。
(学生做出判断,老师评价,及时表扬)(设计意图:由学生自己动手操作,得出结论,吸引学生的兴趣)问题2:如何制定规则,让小车玉和安琪都觉得公平呢?学生回答:落地后一正一反,小车玉赢;如果落地后两面一样,安琪赢.其他学生判断公平性。
(设计意图:使学生理解公平与概率之间的关系)问题3:“同时掷两枚硬币”与“先后两次掷一枚硬币”,这两种试验的所有可能结果一样吗?学生以小组为单位讨论,并由小组汇报讨论结果。
人教版九年级数学上册25.2.1《用列举法求概率(1)》教学设计

人教版九年级数学上册25.2.1《用列举法求概率(1)》教学设计一. 教材分析《用列举法求概率(1)》是人教版九年级数学上册第25章的教学内容。
本节内容是在学生已经掌握了概率的定义、等可能事件的概率以及如何用树状图法求概率的基础上进行的。
通过本节课的学习,使学生掌握列举法求概率的方法,并能运用列举法解决实际问题。
二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和抽象思维能力,对于概率的概念和求法已经有了一定的了解。
但是,对于如何运用列举法求概率,以及如何将实际问题转化为概率问题,仍然是学生的学习难点。
三. 教学目标1.知识与技能目标:使学生掌握列举法求概率的方法,并能运用列举法解决实际问题。
2.过程与方法目标:通过实例分析,培养学生运用列举法解决问题的能力。
3.情感态度与价值观目标:培养学生对数学的兴趣,提高学生解决实际问题的能力。
四. 教学重难点1.重点:列举法求概率的方法。
2.难点:如何将实际问题转化为概率问题,以及如何运用列举法解决实际问题。
五. 教学方法1.情境教学法:通过实例分析,引导学生主动探究,发现规律。
2.引导发现法:教师引导学生发现问题,分析问题,解决问题。
3.实践操作法:学生通过动手操作,加深对概率概念的理解。
六. 教学准备1.教学课件:制作课件,展示相关实例和练习题。
2.教学素材:准备相关实例和练习题,用于课堂练习。
3.教学工具:黑板、粉笔、投影仪等。
七. 教学过程1.导入(5分钟)教师通过一个简单的实例,如抛硬币实验,引导学生回顾概率的定义和求法。
然后提出本节课的学习任务:用列举法求概率。
2.呈现(10分钟)教师展示几个具体的实例,如抽签问题、抽奖问题等,让学生观察和思考如何用列举法求解。
学生分组讨论,分享解题思路。
3.操练(10分钟)教师给出一些练习题,让学生独立完成。
题目难度可以适当调整,以适应不同学生的学习需求。
教师巡回指导,解答学生的问题。
4.巩固(10分钟)教师选取几名学生完成的练习题,进行讲解和分析。
人教版-数学-九年级上册- 25.2.1用列举法求概率(1) 导学案

【学习目标】通过游戏、试验理解P (A )=nm并会运用它解决一些具体问题。
阅读课本【例题】会用列表的方法求出包含两步,并且每一步的结果为有限多个情形,这样的试验出现的所有可能结果,从而求得相应的概率。
【学习重点】 1、理解P(A)=nm并应用它解决一些具体题目 2、会用列表法和树形图法求概率 【学习过程】 一、课前导学1、 什么是概率?事件可分为哪些? 2.、P(A)的取值范围是什么? 3、什么时候采用“列表法”4、如何正确的“列表”表示出所有可能出现的结果5、如何利用“列表法”求随机事件的概率 二、例题探究例1 同时向空中抛掷两枚质地均匀的硬币,求下列事件的概率: (1)两枚硬币全部正面向上; (2)两枚硬币全部反面向上;(3)一枚硬币正面向上、一枚硬币反面向上.方法一:将两枚硬币分别记做 A 、B ,于是可以直接列举得到:(A 正,B 正),(A 正,B 反),(A 反,B 正), (A 反,B 反)四种等可能的结果.故:P (两枚正面向上)=14 P (两枚反面向上)=14P (一枚正面向上,一枚反面向上)=12方法二:将同时掷两枚硬币,想象为先掷一枚,再掷一枚,分步思考:在第一枚为正面的情况下第二枚硬币有正、反两种情况,同理第一枚为反面的情况下第二枚硬币有正、反两种情况.两枚硬币分别记为第 1 枚和第 2 枚,可以用下表列举出所有可能出现的结果. 列表法由此表可以看出,同时抛掷两枚硬币,可能出现的结果有4个,并且它们出现的可能性相等. 例2 同时掷两枚质地均匀的骰子,计算下列事件的概率: (1)两枚骰子的点数相同; (2)两枚骰子点数的和是 9; (3)至少有一枚骰子的点数为 2.解:两枚骰子分别记为第 1 枚和第 2 枚,可以用下表列举出所有可能的结果. 可以看出,同时掷两枚骰子,可能出现的结果有36种,并且它们出现的可能性相等. (1)两枚骰子点数相同(记为事件A )的结果有6种,即(1,1),(2,2),(3,3),(4,4),(5,5),(6,6),所以,P (A )=61366. (2)两枚骰子点数的和是9(记为事件B )的结果有4种,即(3,6),(4,5),(5,4),(6,3),所以P(B)=41= 369.(3)至少有一枚骰子的点数是 2(记为事件C)的结果有11种,所以,P(C)=11 36.【知识梳理】本节课你学到了什么?【课堂反馈】1.一个不透明的口袋里有4张形状完全相同的卡片,分别写有数字1,2,3,4,口袋外有两张卡片,分别写有数字2,3,现随机从口袋里取出一张卡片,则两次摸出的卡片的数字之和等于4的概率()A.34B.12C.14D.1解:列表得:1 2 3 42 3 4 5 63 4 5 6 7所有等可能的情况有8种,其中两次摸出的卡片的数字之和等于4的情况有2种,则P==,故选C2. 从长度分别为2、6、7、9的4条线段中任取3条作三角形的边,能组成三角形的概率为()A.34B.12C.13D.14解:∵从长度分别为2、6、7、9的4条线段中任取3条作三角形的边,等可能的结果有:2、6、7;2、6、9;2、7、9;6、7、9,且能组成三角形的有:2、6、7;6、7、9;∴能组成三角形的概率为:21 =42.故选B.3.浙江卫视六频道《我老爸最棒》栏目中有一项”“大力金刚”的游戏.如图,有6根柱子穿过了一堵木墙,蓝、绿两队的两位老爸分别站在木墙的左、右两侧,需把自己一侧的那段柱子推向对方侧.若每侧每段柱子被选中的机会相等,则两人选到同一根柱子的概率为()A.12B.13C.16D.136解:设6根柱的编号分别为1,2,3,4,5,6,列表得:第一次第二次1 2 3 4 5 61 (1,1)(2,1)(3,1)(4,1)(5,1)(6,1)2 (1,2)(2,2)(3,2)(4,2)(5,2)(6,2)3 (1,3)(2,3)(3,3)(4,3)(5,3)(6,3)4 (1,4)(2,4)(3,4)(4,4)(5,4)(6,4)5 (1,5)(2,5)(3,5)(4,5)(5,5)(6,5)6 (1,6)(2,6)(3,6)(4,6)(5,6)(6,6)由表可知共有36种等可能情况,其中到两人选到同一根柱子的情况数目有6种,所以其概率=61=366.故选C.4.一个布袋内只装有1个黑球和2个白球,这些球除颜色外其余都相同,随机摸出一个球后放回并搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是()A.49B.13C.16D.19解:列表得:黑白白黑(黑,黑)(黑,白)(黑,白)白(黑,白)(白,白)(白,白)白(黑,白)(白,白)(白,白)∵共9种等可能的结果,两次都是黑色的情况有1种,∴两次摸出的球都是黑球的概率为19,故选D.5. 在x2□2xy□y2的空格□中,分别填上“+”或“﹣”,在所得的代数式中,能构成完全平方式的概率是()A.12B.34C.1 D.14解:能够凑成完全平方公式,则2xy前可是“﹣”,也可以是“+”,但y2前面的符号一定是:“+”,此题总共有(﹣,﹣)、(+,+)、(+,﹣)、(﹣,+)四种情况,能构成完全平方公式的有2种,所以概率是12.故选A.6、彩票有100张,分别标有1,2,3,…100的号码,只有摸中的号码是7的倍数的彩券才有奖,小明随机地摸出一张,那么他中奖的概率是多少?解:∵从1到100中7的倍数有7,14,21,28,35,42,49,56,63,70,77,84,91共13个,∴他中奖的概率=13 100.答:他中奖的概率是13 100.7、有两个可以自由转动的均匀转盘,都被分成了3等份,并在每份内均标有数字,如图所示.规则如下:分别转动转盘,两个转盘停止后,将两个指针所指份内的数字相乘,(若指针停止在等分线上,那么重转一次,直到指针指向某份为止).(1)用列表或画树状图法分别求出数字之积为3的倍数和数字之积为5的倍数的概率;(2)小明和小亮想用这两个转盘做游戏,他们规定:数字之积为3的倍数时,小明得2分;数字之积为5的倍数时,小亮得3分.这个游戏对双方公平吗?若认为公平请说明理由;若认为不公平,试修改得分规定,使游戏对双方公平.解:(1)每次游戏可能出现的所有结果列表如下:转盘B的数字转盘A的数字4 5 61 (1,4)(1,5)(1,6)2 (2,4)(2,5)(2,6)3 (3,4)(3,5)(3,6)表格中共有9种等可能的结果,则数字之积为3的倍数的有五种,其概率为59;数字之积为5的倍数的有三种,其概率为31 =93.(2)这个游戏对双方不公平.∵小明平均每次得分为2×59=109(分),小亮平均每次得分为3×13(分),∵109>1,∴游戏对双方不公平.修改得分规定为:若数字之积为3的倍数时,小明得3分;若数字之积为5的倍数时,小亮得5分即可.。
九年级数学上册第二十五章概率初步25.2用列举法求概率1教案新版新人教版

25.2 用列举法求概率第1课时用直接列举法求简单事件的概率※教学目标※【知识与技能】1.初步掌握直接列举法计算一些简单事件的概率的方法.2.理解“包含两步,并且每一步的结果为有限多个情形”的意义.【过程与方法】通过用列举法求简单事件的概率的学习,使学生在具体情境中分析事件.计算其发生的概率,解决实际问题.【情感态度】体会概率在生活实践中的应用,激发学生学习数学的兴趣,提高分析问题的能力.【教学重点】1.熟练掌握直接列举法计算简单事件的概率.2.正确理解个区分一次试验中包含两步或两个因素的试验.【教学难点】能不重不漏而又简洁地列出所有可能的结果.※教学过程※一、情境导入1.复习回顾前面一节课的内容:(1)概率的意义;(2)对于试验结果是有限等可能的事件的概率的求法.2.多媒体展示扫雷游戏,引入新课.二、掌握新知例1 如图所示是计算机中“扫雷”游戏的画面.在一个有99⨯个方格的正方形雷区中,随机埋藏着10颗地雷,每个方格内最多只能埋藏1颗地雷.小王在游戏开始时随机点击一个方格,点击后出现了如图所示的情况.我们把与标号3的方格相邻的方格记为A区域(画线部分),A区域外的部分记为B区域.数字3表示在A区域有3颗地雷.下一步应该点击A区域还是B区域?分析:第二步怎样走取决于踩在哪部分遇到地雷的可能性的大小,因此,问题的关键是分别计算在两个区域的任何一个方格内踩中地雷的概率并比较大小距可以了.解:A区域的方格共有8个,标号3表示在这8个方格中有3个方格各埋藏有1颗地雷.因此,点击A区域的任一方格,遇到地雷的概率为38.B区域方格数为9981=72⨯--.其中有地雷的方格数为103=7-.因此,点击B区域的任一方格,遇到地雷的概率是772.而38>772,即点击A区域遇到地雷的可能性大于点击B区域遇到地雷的可能性,因此第二步应该点击B区域.提问1:若例题中,小王在游戏开始时踩中的第一个格上出现了标号1,则下一步踩在那一区域比较安全?答案:一样.因为每个区域遇雷的概率都是18.提问2:你能重新设计,通过改变雷的总数,使得下一步踩在A区域合适吗?请通过计算说明原因.答案:(这是一个开放性问题,仅举一例供参考)把雷的总数由10颗改为31颗.原因如下:A区域的方格共有8个,标号3表示在这8个方格中有3个方格各埋藏有1颗地雷.因此,点击A区域的任一方格,遇到地雷的概率为38.B区域方格数为9981=72⨯--.其中有地雷的方格数为313=28-.因此,点击B区域的任一方格,遇到地雷的概率是28 72.而38<2872,即点击A区域遇到地雷的可能性小于踩B区域点击B区域遇到地雷的可能性,因此第二步应该点击A区域.例2 同时抛掷两枚质地均匀的硬币,求下列事件的概率:(1)两枚硬币全部正面向上;(2)两枚银币全部反面向上;(3)一枚硬币正面向上、一枚硬币反面向上.解:列举抛掷两枚硬币所能产生的全部结果,它们是:正正,正反,反正,反反.所有可能的结果共有4种,并且这4种结果出现的可能性相等.(1)所有可能的结果中,满足两枚硬币全部正面向上(记为事件A)的结果只有1种,即“正正”,所以P(A)=14.(2)两枚硬币全部反面向上(记为事件B)的结果也只有1种,即“反反”,所以P(B)= 14.(3)一枚硬币正面向上、一枚硬币反面向上(记为事件C)的结果共有2种,即“反正”“正反”,所以P(C)=24=12.提问:“同时掷两枚硬币”与“先后掷一枚硬币”这两种试验有可能一样吗?答案:一样.三、巩固练习1.有A,B两个不透明的口袋,每个口袋里装有两个相同的球,A袋中的两个球上分别写了“细”“致”的字样,B袋中的两个球上分别写了“信”“心”的字样,从每个口袋里各摸出一个球,刚好能组成“细心”字样的概率是()A.13B.14C.23D.342.从1,2,3,4这四个数中,任意抽取两个不同数字组成一个两位数,则这个两位数能被3整除的概率是()A.13B.14C.16D.1123.从-2,-1,2这三个数中任取两个不同的数作为点的坐标,改点在第四象限内的概率4.袋子中装有红、绿两种颜色的小球各一个,除颜色外无其他差别,随机摸出一个小球后放回,再随机摸出一个.求:(1)第一次摸到红球,第二次摸到绿球的概率;(2)两次都摸到相同颜色的小球的概率;(3)两次摸到的球中有一个绿球和一个红球的概率.5.依据“闯关游戏”的规则,请你探究“闯关游戏”的奥秘,求出闯关成功的概率.答案:1.B 2.A 3.134.(1)14(2)12(3)125.14四、归纳小结1.本节课你学到了哪些知识?有哪些收获?2.你能不重不漏地列举出事件发生的所有可能吗?3.你能正确求出P(A)mn吗?※布置作业※从教材习题25.2中选取.※教学反思※1.本节课通过扫雷、掷硬币等游戏为载体,充分激发了学生的学习欲望,将学生摆在了真正的主体位置上,重分发挥了他们的主观能动性,从而让学生在趣味中掌握本节课的知识.生活中有许多有关概率问题,本节课的学习亦能让学生尝试用概率的知识去解决生活中的问题,从而体会到概率知识在生活中的应用价值.2.教师引导学生交流归纳知识点,看学生能否会不重不漏地列举出事件发生的所有可能,能否找出事件A中包含几种可能的结果,并能求P(A),教学时要重点突出方法.。
25.2 第1课时 用直接列举法和列表法求概率

25.2用列举法求概率第1课时用直接列举法和列表法求概率一、基本目标【知识与技能】1.掌握用直接列举法和列表法求简单事件的概率的方法.2.运用概率知识解决计算涉及两个因素的一个事件概率的实际问题.【过程与方法】经历试验操作、观察、记录的过程,探究如何画出适当的表格,列举出事件的所有等可能结果,并总结出用列表法求事件概率的方法.【情感态度与价值观】合作探究如何画出适当的表格列举事件的所有等可能的结果,养成合作意识,形成缜密的思维习惯.二、重难点目标【教学重点】利用直接列举法和列表法求随机事件的概率.【教学难点】画出适当的表格列举事件的所有等可能的结果.环节1自学提纲,生成问题【5 min阅读】阅读教材P136~P138的内容,完成下面练习.【3 min反馈】1.在一次试验中,如果可能出现的结果只有有限个,且各种结果出现的可能性大小__相等__,那么我们可以通过列举试验结果的方法,求出随机事件发生的概率.2.同时抛掷两枚质地均匀的硬币,所有可能出现的结果有__正正__、__正反__、__反正__、__反反__,先后两次抛掷一枚质地均匀的硬币,所有可能出现的结果有__正正__、__正反__、__反正__、__反反__,故这两种试验的所有可能结果__一样__.环节2合作探究,解决问题【活动1】小组讨论(师生互学)【例1】先后两次抛掷一枚质地均匀的硬币.(1)求硬币两次都正面向上的概率;(2)求硬币两次向上的面相反的概率.【互动探索】(引发学生思考)上述问题中一次试验涉及几个因素?你是用什么方法不重复不遗漏地列出了所有可能的结果?【解答】列举先后两次抛掷一枚质地均匀的硬币的全部结果,它们是:正正、正反、反正、反反.所有的结果有4种,并且这4种结果出现的可能性相等.(1)所有可能的结果中,满足硬币两次都正面向上的结果只有1种,即“正正”,所以P (硬币两次都正面向上)=14.(2)硬币两次向上的面相反的结果共有2种,即“正反”“反正”,所以P (硬币两次向上的面相反)=24=12.【互动总结】(学生总结,老师点评)在一次试验中,如果可能出现的结果比较少,且各种结果出现的可能性大小相等,那么我们可以直接列举出试验结果,从而求出随机事件发生的概率.【例2】有5张看上去无差别的卡片,正面分别写着1,2,3,4,5,洗匀后正面向下放在桌子上,从中随机抽取1张,记下数字后放回洗匀,再从中随机抽取1张.(1)求两次抽到的数都是偶数的概率;(2)求第一次抽到的数比第二次抽到的数大的概率; (3)求两次抽到的数相等的概率.【互动探索】(引发学生思考)上述问题中一次试验涉及几个因素?你是用什么方法不重复不遗漏地列出了所有可能的结果?【解答】列表如下:(1)两次抽到的数都是偶数的结果有4种,即(2,2),(2,4),(4,2),(4,4),所以P (两次抽到的数都是偶数)=425.(2)第一次抽到的数比第二次抽到的数大的结果有10种,即(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3),(5,4),所以P (第一次抽到的数比第二次抽到的数大)=1025=25. (3)两次抽到的数相等的结果有5种,即(1,1),(2,2),(3,3),(4,4),(5,5),所以P (两次抽到的数相等)=525=15.【互动总结】(学生总结,老师点评)在一次试验中,如果可能出现的结果比较多,且各种结果出现的可能性大小相等,那么我们可以列表列举出试验结果,从而求出随机事件发生的概率.【活动2】 巩固练习(学生独学)1.小明和小亮在玩“石头、剪子、布”的游戏,两人一起做同样手势的概率是( B ) A.12 B .13C.14D .152.在一个不透明的袋中装有2个黄球和2个红球,它们除颜色外没有其他区别,从袋中任意摸出一个球,然后放回搅匀,再从袋中任意摸出一个球,那么两次都摸到黄球的概率是( C )A.18 B .16C .14D .123.李玲有红色、黄色、白色的三件运动短袖上衣和白色、黄色两条运动短裤.若任意组合穿着,则李玲穿着“衣裤同色”的概率是__13__.4.同时掷两枚质地均匀的六面体骰子,计算下列事件的概率: (1)两枚骰子点数的和是6; (2)两枚骰子点数都大于4; (3)其中一枚骰子的点数是3. 解:列表如下:们出现的可能性相等.(1)两枚骰子点数的和是6的结果有5种,即(1,5),(2,4),(3,3),(4,2),(5,1),所以P (两枚骰子点数的和是6)=536.(2)两枚骰子点数都大于4的结果有4种,即(5,5),(5,6),(6,5),(6,6),所以P (两枚骰子点数都大于4)=436=19.(3)其中一枚骰子的点数是3的结果有11种,即(1,3),(2,3),(3,3),(4,3),(5,3),(6,3),(3,1),(3,2),(3,4),(3,5),(3,6),所以P (其中一枚骰子的点数是3)=1136.【活动3】 拓展延伸(学生对学)【例3】如图所示,小明和小亮用转盘做“配紫色”游戏(红色和蓝色在一起能配成紫色).小明转动的A 盘被等分成4个扇形,小亮转动的B 盘被等分成3个扇形,两人分别转动转盘一次.两人转动转盘得到的两种颜色若能配成紫色则小明获胜,否则小亮获胜,这个游戏对双方公平吗?【互动探索】(引发学生思考)结合概率的相关知识,要使游戏对双方公平,则两人获胜的概率之间有什么关系?【解答】列表如下:性相同.其中能配成紫色的结果有3种,所以P (小明获胜)=312=14,P (小亮获胜)=1-14=34.因为14≠34,所以这个游戏对双方不公平.【互动总结】(学生总结,老师点评)判断一个游戏对双方是否公平,就看双方获胜的概率是否相等.若相等,则公平.否则,不公平.环节3 课堂小结,当堂达标 (学生总结,老师点评) 请完成本课时对应练习!。
新人教版九年级数学上册导学案:25.2用列举法求概率(1)

新人教版九年级数学上册导学案:25.2用列举法求概率(1)【学习目标】1、认识P(A)= nm(在一次试验中有n种可能的结果,其中A包含m种)的意义。
2、会用P(A)=nm解决一些实际问题。
预习导学一知识链接:1、设A是某一随机事件,则P(A)的值是()A、0<P(A)<1;B、0≤P(A)≤1;C、P(A)=1;D、P(A)=02、事件发生的可能性越大,它的概率越接近;反之,事件发生的可能性越小,则它的概率越接近。
思考:一个人随意翻书三次,三次都翻到了偶数页,我们能否说翻到偶数页的可能性就大吗?二、探究新知:1、自主探究:阅读课本P133—P134,先画图探究:自己画一个“扫雷”游戏画面,感知地雷的位置(或上电脑课时,动手玩一下),后完成填空。
(一)、在例1中(1)A区域的方格共有个,标号3表示在这个方格中有个方格各藏颗地雷,因此,踩A区域的任一方格,遇到地雷的概率是。
(2)B区域中共有个小方格,其中有个方格内各藏颗地雷。
因此,踩B区域的任一方格,遇到地雷的概率是。
(3)踩区域遇到地雷的可能性大;踩区域遇到地雷的可能性小。
因而第二步应踩区域。
(二)、在例2中,列表表示掷两枚硬币产生的所有可能结果。
P(A)= , P(B)= , P(C)= .2、探究:列表法有什么优越性?事件 A B C 结果正反正反个数学以致用1、袋子中装有红、黄各一个小球,随机摸出一个,是红球的概率是 。
2、投掷一枚质地均匀的正方体骰子,结果出现数是“3”的概率是( )A 、33.3%;B 、17% ;C 、16.6% ;D 、20%。
3、下列时间概率不是0.5的是( )A 、在1、2、3、4、5、6、7、8、9、10这十个数字中,任取一个数,其值不小于5。
B 、投掷一枚骰子,奇数点朝上;C 、投掷一枚均匀的硬币,正面朝上;D 、袋子中有4个球,其中2个红球、1 个黄球和1 个白球,从中抽出一个是红色的球。
4、从5到9这5 个数中任取一个数,是3的倍数的概率是 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
25.2用列举法求概率第1课时
学习目标:会用列举法求出简单事件的概率。
重、难点:会用列举法求出简单事件的概率。
学习过程:
一、学生预习教师导学
把一副普通扑克牌中的13张黑桃牌洗匀后正面朝下放在桌上,从中任意抽出一张,求下列事件发生的概率:
(1)抽出的牌的点数是6;
(2)抽出的牌带有人像;
(3)抽出的牌的花色是黑桃;
(4)抽出的牌的花色是红桃。
二、学生探究教师引领
例1、如图是计算机中“扫雷”游戏的画面。
在一个9×9个小方格的正方形雷区中,随机埋藏着10颗地雷,每个小方格最多只能藏一颗地雷。
小王在游戏开始时随机踩中一个方格,踩中后出现如图所示的情况。
我们把与标号3的方格相临的方格记为A区域(画线部分),A区域外的部分记为B区域。
数字3表示A区域有3颗地雷,那么第二步应踩在A区域还是B区域?
变式应用:回顾例1,如果小王在游戏开始时踩中的第一个格子上出现了标号1,下一步踩在哪一区域比较安全?
例2、掷两枚硬币,求下列事件的概率:
(1)两枚硬币全部正面朝上;
(2)两枚硬币全部反面朝上;
(3)一枚硬币正面朝上,一枚硬币反面朝上;
“同时掷两枚硬币”与“先后两次掷一枚硬币”,所得到的结果有变化吗?
例3,从长度分别为2、3、4、5的4条线段中任取3条,求构成三角形的概率。
四、学生达标教师测评
1、袋子中装有红、绿各一个小球,除颜色外无其它差别,随机摸出1个小球后放回,再随机摸出一个,求下列事件的概率:
(1)第一次摸到红球,第二次摸到绿球;
(2)两次都摸到相同颜色的小球;
(3)两次摸到的球中有一个绿球和一个红球。
2.甲、乙、丙3名医生志愿报名参加新冠肺炎救治工作.
(1)随机抽取1名,则恰是甲的概率是;
(2)随机抽取2名,求甲在其中的概率。
3、将分别标有数字1、2、3的三张卡片洗匀后,背面朝上放在桌面上。
(1)随机抽取一张,求P(奇数);
(2)随机抽取一张作为十位上的数字,记下数字后放回,再抽取一张作为个位上的数字,能组成哪些两位数,这个两位数能被3整除的概率是多少?
(2)随机抽取一张作为十位上的数字(不放回去),再抽取一张作为个位上的数字,能组哪些两位数?这个两位数能被3整除的概率是多少?
4、一个家庭有三个孩子,若一个孩子是男孩还是女孩的可能性相同。
(1)求这个家庭的3个孩子都是男孩的概率;
(2)求这个家庭有2个男孩和1个女孩的概率;
(3)求这个家庭至少有一个男孩的概率。