2020中考数学复习 第17课时 二次函数的综合应用(无答案)

合集下载

(中考数学复习)第17讲 二次函数的图象与性质(二) 课件 解析

(中考数学复习)第17讲 二次函数的图象与性质(二) 课件 解析

课堂回顾 · 巩固提升
浙派名师中考
4.(2013·苏州)已知二次函数y=x2-3x+m的图象与x轴的一个
交点为(1,0),则关于x的一元二次方程x2-3x+m=0的两
实数根是
( B )
A.x1=1,x2=-1 B.x1=1,x2=2 C.x1=1,x2=0 D.x1=1,x2=3
基础知识 · 自主学习 题组分类 · 深度剖 课堂回顾 · 巩固提升
第17课 二次函数的图象与性质 (二)
浙派名师中考
1.二次函数y=a(x-h)2+k的图象和y=ax2图象的关系.
2.当满足___b_2-__4_a_c_>_0___时,抛物线y=ax2+bx+c(a≠0)与x轴 有两个交点;当满足__b_2_-__4_a_c_=__0___时,抛物线y=ax2+bx +c(a≠0)与x轴只有一个交点;当满足___b_2-__4_a_c_<_0__时,抛 物线y=ax2+bx+c(a≠0)与x轴没有交点.
基础知识 · 自主学习 题组分类 · 深度剖 课堂回顾 · 巩固提升
浙派名师中考
1.(2013·宁波)如图17-1所示,二次函数y=ax2+bx+c的图象
开口向上,对称轴为直线x=1,图象经过(3,0),下列结论
中,正确的一项是
( D )
C.a-b+c<0
D.4ac-b2<0
浙派名师中考
基础知识 · 自主学习 题组分类 · 深度剖 课堂回顾 · 巩固提升
浙派名师中考
(3)设点M在y轴上,∠OMB+∠OAB=∠ACB,求AM的长. 解:由A(0,-4)、C(4,0)得:OA=OC= 4,且△OAC是等腰直角三角形. 如图17-10所示,在OA上取ON=OB=2, 则∠ONB=∠ACB=45°; ∴∠ONB=∠NBA+∠OAB=∠ACB= ∠OMB+∠OAB,即∠NBA=∠OMB. 在△ABN、△AM1B中,∠BAN=∠M1AB, 图17-10 ∠ABN=∠AM1B,

2020年中考数学压轴题必考题型二次函数的综合性问题考点专练pdf含解析

2020年中考数学压轴题必考题型二次函数的综合性问题考点专练pdf含解析

(t
29)2
15000

当 t 29 时,增加利润的最大值为 15000 元.
综上所述,当 t 29 时,提前上市 20 天,增加利润的最大值为 15000 元.
【点睛】 本题考查了一次函数与二次函数的应用,用到的知识点有二次函数图上点的坐标特征,待定系 数法求一次函数解析式,二次函数的图像与性质,利用二次函数求最值及分类讨论的数学思想. 熟练掌握二次函数图上点的坐标特征是解(1)的关键,分类讨论是解(2)与(3)的关键. 【变式 1-2】(2019·辽宁中考真题)网络销售是一种重要的销售方式.某乡镇农贸公司新开 设了一家网店,销售当地农产品.其中一种当地特产在网上试销售,其成本为每千克 10 元.公 司在试销售期间,调查发现,每天销售量 y(kg)与销售单价 x(元)满足如图所示的函数关 系(其中 0 x 30 ).
最大利润是多少?(利润计算时,其它费用忽略不计.)
【答案】(1)这种水果今年每千克的平均批发价是 24 元;(2)每千克的平均销售价为 35 元
时,该水果店一天的利润最大,最大利润是 7260 元.
【解析】
【分析】
(1)由去年这种水果批发销售总额为 10 万元,可得今年的批发销售总额为101 20% 12 万
(1)已知去年这种水果批发销售总额为 10 万元,求这种水果今年每千克的平均批发价是多
少元?
(2)某水果店从果农处直接批发,专营这种水果.调查发现,若每千克的平均销售价为 41
元,则每天可售出 300 千克;若每千克的平均销售价每降低 3 元,每天可多卖出 180 千克,
设水果店一天的利润为 w 元,当每千克的平均销售价为多少元时,该水果店一天的利润最大,
元,设这种水果今年每千克的平均批发价是 x 元,则去年的批发价为 x 1 元,可列出方程:

贵州中考数学总复习17——二次函数的实际应用

贵州中考数学总复习17——二次函数的实际应用

考向二 每每问题——售价变化引起销量变化 1. 注意自变量x代表销售单价还是代表上涨(下降)的量; 2. 根据题意找函数关系“总利润=(售价-成本)×销售量”,列出函数关系式; 3. 通过配方将函数关系式化为顶点式,再根据函数增减性求得最大值; 4. 若自变量x代表上涨(下降)的量,则根据顶点式可求得x的最大值,最后在确定 销售单价时注意找准基础量.
解:(1)设日销售量y(袋)与销售价x(元)的函数关系式为y=kx+b,

,解得
.
∴日销售量y(袋)与销售价x(元)的函数关系式为y=-x+40;(6分)
(2) 设所获利润为W元,
则W=(x-10)(40-x)=-x2+50x-400=-(x-25)2+225,当x=25时,W取
得最大值,最大值是225元.
∴y2= (x-6)2+1,(6分) 设每千克的收益为W,则:
W=y1-y2=( x+7)-[ (x-6)2+1]=- (x-5)2+ , ∴当x=5时,W最大值= . 即5月出售这种蔬菜,每千克W=- (4-5)2+ =2, 当x=5时,W=- (5-5)2+ = ,(10分) 设4月份销售了m万千克,则5月份销售了(m+2)万千克, 由题意列方程为2m+ (m+2)=22,(12分) 解得m=4,∴m+2=6. 答:4、5两个月的销售量分别是4万千克和6万千克.(14分)
第17课时 二次函数的实际应用
目 录
1 典例“串”考法 2 贵州5年真题“明”考法
典例“串”考法
例 春季的周末风和日丽,小天的妈妈准备带小天去海湾公园游玩. 问题1 小天到达公园后发现,公园到处都有小商贩在卖风筝,经过与其中一名 小商贩交谈后得知,蝴蝶型风筝进价为每个10元,当售价为每个12元时,销售 量为180个,若售价每提高1元,销售量就会减少10个,在小天看来,小商贩想 获得最大利润,售价应定为多少,最大利润为多少? 解:设蝴蝶型风筝售价为x元时,小商贩获得的利润为W元, 依题意得,W=(x-10)[180-10(x-12)]=-10x2+400x-3000=-10(x-20)2+1000, ∵a=-10<0,∴当x=20时,W取最大值,最大值为1000. 答:当售价定为20元时,小商贩获得利润最大,最大利润是1000元.

2020-2021中考数学二次函数的综合复习含详细答案

2020-2021中考数学二次函数的综合复习含详细答案

2020-2021中考数学二次函数的综合复习含详细答案一、二次函数1.如图:在平面直角坐标系中,直线l :y=13x ﹣43与x 轴交于点A ,经过点A 的抛物线y=ax 2﹣3x+c 的对称轴是x=32. (1)求抛物线的解析式;(2)平移直线l 经过原点O ,得到直线m ,点P 是直线m 上任意一点,PB ⊥x 轴于点B ,PC ⊥y 轴于点C ,若点E 在线段OB 上,点F 在线段OC 的延长线上,连接PE ,PF ,且PE=3PF .求证:PE ⊥PF ;(3)若(2)中的点P 坐标为(6,2),点E 是x 轴上的点,点F 是y 轴上的点,当PE ⊥PF 时,抛物线上是否存在点Q ,使四边形PEQF 是矩形?如果存在,请求出点Q 的坐标,如果不存在,请说明理由.【答案】(1)抛物线的解析式为y=x 2﹣3x ﹣4;(2)证明见解析;(3)点Q 的坐标为(﹣2,6)或(2,﹣6). 【解析】 【分析】(1)先求得点A 的坐标,然后依据抛物线过点A ,对称轴是x=32列出关于a 、c 的方程组求解即可;(2)设P (3a ,a ),则PC=3a ,PB=a ,然后再证明∠FPC=∠EPB ,最后通过等量代换进行证明即可;(3)设E (a ,0),然后用含a 的式子表示BE 的长,从而可得到CF 的长,于是可得到点F 的坐标,然后依据中点坐标公式可得到22x x x x Q P F E ++=,22y y y yQ P F E ++=,从而可求得点Q 的坐标(用含a 的式子表示),最后,将点Q 的坐标代入抛物线的解析式求得a 的值即可. 【详解】(1)当y=0时,140 33x-=,解得x=4,即A(4,0),抛物线过点A,对称轴是x=32,得161203322a ca-+=⎧⎪-⎨-=⎪⎩,解得14ac=⎧⎨=-⎩,抛物线的解析式为y=x2﹣3x﹣4;(2)∵平移直线l经过原点O,得到直线m,∴直线m的解析式为y=13x.∵点P是直线1上任意一点,∴设P(3a,a),则PC=3a,PB=a.又∵PE=3PF,∴PC PBPF PE=.∴∠FPC=∠EPB.∵∠CPE+∠EPB=90°,∴∠FPC+∠CPE=90°,∴FP⊥PE.(3)如图所示,点E在点B的左侧时,设E(a,0),则BE=6﹣a.∵CF=3BE=18﹣3a,∴OF=20﹣3a.∴F(0,20﹣3a).∵PEQF为矩形,∴22x x x xQ P F E++=,22y y y yQ P F E++=,∴Q x+6=0+a,Q y+2=20﹣3a+0,∴Q x=a﹣6,Q y=18﹣3a.将点Q的坐标代入抛物线的解析式得:18﹣3a=(a﹣6)2﹣3(a﹣6)﹣4,解得:a=4或a=8(舍去).∴Q(﹣2,6).如下图所示:当点E 在点B 的右侧时,设E (a ,0),则BE=a ﹣6.∵CF=3BE=3a ﹣18, ∴OF=3a ﹣20. ∴F (0,20﹣3a ). ∵PEQF 为矩形,∴22x x x x Q P F E ++=,22y y y yQ P F E ++=, ∴Q x +6=0+a ,Q y +2=20﹣3a+0, ∴Q x =a ﹣6,Q y =18﹣3a .将点Q 的坐标代入抛物线的解析式得:18﹣3a=(a ﹣6)2﹣3(a ﹣6)﹣4,解得:a=8或a=4(舍去). ∴Q (2,﹣6).综上所述,点Q 的坐标为(﹣2,6)或(2,﹣6). 【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了矩形的性质、待定系数法求二次函数的解析式、中点坐标公式,用含a 的式子表示点Q 的坐标是解题的关键.2.已知,点M 为二次函数y =﹣(x ﹣b )2+4b +1图象的顶点,直线y =mx +5分别交x 轴正半轴,y 轴于点A ,B .(1)判断顶点M 是否在直线y =4x +1上,并说明理由.(2)如图1,若二次函数图象也经过点A ,B ,且mx +5>﹣(x ﹣b )2+4b +1,根据图象,写出x 的取值范围.(3)如图2,点A 坐标为(5,0),点M 在△AOB 内,若点C (14,y 1),D (34,y 2)都在二次函数图象上,试比较y 1与y 2的大小.【答案】(1)点M在直线y=4x+1上;理由见解析;(2)x的取值范围是x<0或x>5;(3)①当0<b<12时,y1>y2,②当b=12时,y1=y2,③当12<b<45时,y1<y2.【解析】【分析】(1)根据顶点式解析式,可得顶点坐标,根据点的坐标代入函数解析式检验,可得答案;(2)根据待定系数法,可得二次函数的解析式,根据函数图象与不等式的关系:图象在下方的函数值小,可得答案;(3)根据解方程组,可得顶点M的纵坐标的范围,根据二次函数的性质,可得答案.【详解】(1)点M为二次函数y=﹣(x﹣b)2+4b+1图象的顶点,∴M的坐标是(b,4b+1),把x=b代入y=4x+1,得y=4b+1,∴点M在直线y=4x+1上;(2)如图1,直线y=mx+5交y轴于点B,∴B点坐标为(0,5)又B在抛物线上,∴5=﹣(0﹣b)2+4b+1=5,解得b=2,二次函数的解析是为y=﹣(x﹣2)2+9,当y=0时,﹣(x﹣2)2+9=0,解得x1=5,x2=﹣1,∴A(5,0).由图象,得当mx+5>﹣(x﹣b)2+4b+1时,x的取值范围是x<0或x>5;(3)如图2,∵直线y=4x+1与直线AB交于点E,与y轴交于F,A(5,0),B(0,5)得直线AB的解析式为y=﹣x+5,联立EF,AB得方程组415 y xy x=+⎧⎨=-+⎩,解得45215 xy⎧=⎪⎪⎨⎪=⎪⎩,∴点E(45,215),F(0,1).点M在△AOB内,1<4b+1<215,∴0<b<45.当点C,D关于抛物线的对称轴对称时,b﹣14=34﹣b,∴b=12,且二次函数图象开口向下,顶点M在直线y=4x+1上,综上:①当0<b<12时,y1>y2,②当b=12时,y1=y2,③当12<b<45时,y1<y2.【点睛】本题考查了二次函数综合题,解(1)的关键是把点的坐标代入函数解析式检验;解(2)的关键是利用函数图不等式的关系:图象在上方的函数值大;解(3)的关键是解方程组得出顶点M的纵坐标的范围,又利用了二次函数的性质:a<0时,点与对称轴的距离越小函数值越大.3.已知,抛物线y=﹣x2+bx+c经过点A(﹣1,0)和C(0,3).(1)求抛物线的解析式;(2)在抛物线的对称轴上,是否存在点P,使PA+PC的值最小?如果存在,请求出点P的坐标,如果不存在,请说明理由;(3)设点M在抛物线的对称轴上,当△MAC是直角三角形时,求点M的坐标.【答案】(1)223y x x =-++;(2)当PA PC +的值最小时,点P 的坐标为()1,2;(3)点M 的坐标为()1,1、()1,2、81,3⎛⎫ ⎪⎝⎭或21,3⎛⎫- ⎪⎝⎭. 【解析】 【分析】()1由点A 、C 的坐标,利用待定系数法即可求出抛物线的解析式;()2连接BC 交抛物线对称轴于点P ,此时PA PC +取最小值,利用二次函数图象上点的坐标特征可求出点B 的坐标,由点B 、C 的坐标利用待定系数法即可求出直线BC 的解析式,利用配方法可求出抛物线的对称轴,再利用一次函数图象上点的坐标特征即可求出点P 的坐标;()3设点M 的坐标为()1,m ,则22CM (10)(m 3)=-+-,()22AC [01](30)10=--+-=,()22AM [11](m 0)=--+-,分AMC 90∠=o 、ACM 90∠=o 和CAM 90∠=o 三种情况,利用勾股定理可得出关于m 的一元二次方程或一元一次方程,解之可得出m 的值,进而即可得出点M 的坐标. 【详解】解:()1将()1,0A -、()0,3C 代入2y x bx c =-++中,得:{103b c c --+==,解得:{23b c ==,∴抛物线的解析式为223y x x =-++.()2连接BC 交抛物线对称轴于点P ,此时PA PC +取最小值,如图1所示.当0y =时,有2230x x -++=, 解得:11x =-,23x =,∴点B 的坐标为()3,0.Q 抛物线的解析式为2223(1)4y x x x =-++=--+,∴抛物线的对称轴为直线1x =.设直线BC 的解析式为()0y kx d k =+≠, 将()3,0B 、()0,3C 代入y kx d =+中, 得:{303k d d +==,解得:{13k d =-=,∴直线BC 的解析式为3y x =-+. Q 当1x =时,32y x =-+=,∴当PA PC +的值最小时,点P 的坐标为()1,2.()3设点M 的坐标为()1,m ,则22(10)(3)CM m =-+-,()22[01](30)10AC =--+-=,()22[11](0)AM m =--+-.分三种情况考虑:①当90AMC ∠=o 时,有222AC AM CM =+,即22101(3)4m m =+-++,解得:11m =,22m =,∴点M 的坐标为()1,1或()1,2;②当90ACM ∠=o 时,有222AM AC CM =+,即224101(3)m m +=++-,解得:83m =, ∴点M 的坐标为81,3⎛⎫⎪⎝⎭;③当90CAM ∠=o 时,有222CM AM AC =+,即221(3)410m m +-=++,解得:23m =-, ∴点M 的坐标为21,.3⎛⎫- ⎪⎝⎭综上所述:当MAC V 是直角三角形时,点M 的坐标为()1,1、()1,2、81,3⎛⎫ ⎪⎝⎭或21,.3⎛⎫- ⎪⎝⎭【点睛】本题考查待定系数法求二次(一次)函数解析式、二次(一次)函数图象的点的坐标特征、轴对称中的最短路径问题以及勾股定理,解题的关键是:()1由点的坐标,利用待定系数法求出抛物线解析式;()2由两点之间线段最短结合抛物线的对称性找出点P 的位置;()3分AMC 90∠=o 、ACM 90∠=o 和CAM 90∠=o 三种情况,列出关于m 的方程.4.如图1,在平面直角坐标系中,直线AB :y =kx +b (k <0,b >0),与x 轴交于点A 、与y 轴交于点B ,直线CD 与x 轴交于点C 、与y 轴交于点D .若直线CD 的解析式为y =﹣1k(x +b ),则称直线CD 为直线AB 的”姊线”,经过点A 、B 、C 的抛物线称为直线AB 的“母线”.(1)若直线AB 的解析式为:y =﹣3x +6,求AB 的”姊线”CD 的解析式为: (直接填空);(2)若直线AB 的”母线”解析式为:2142y x x =-+,求AB 的”姊线”CD 的解析式; (3)如图2,在(2)的条件下,点P 为第二象限”母线”上的动点,连接OP ,交”姊线”CD 于点Q ,设点P 的横坐标为m ,PQ 与OQ 的比值为y ,求y 与m 的函数关系式,并求y 的最大值;(4)如图3,若AB 的解析式为:y =mx +3(m <0),AB 的“姊线”为CD ,点G 为AB 的中点,点H 为CD 的中点,连接OH ,若GH =5,请直接写出AB 的”母线”的函数解析式.【答案】(1)1(6)3y x =+;(2)(2,0)、(0,4)、(﹣4,0);(3)当m =﹣32,y 最大值为338;(4)y =x 2﹣2x ﹣3. 【解析】 【分析】(1)由k ,b 的值以及”姊线”的定义即可求解;(2)令x =0,得y 值,令y =0,得x 值,即可求得点A 、B 、C 的坐标,从而求得直线CD的表达式;(3)设点P 的横坐标为m ,则点P (m ,n ),n =﹣12m 2﹣m+4, 从而求得直线OP 的表达式,将直线OP 和CD 表达式联立并解得点Q 坐标,由此求得P Q y y ,从而求得y =﹣12m 2﹣32m+3,故当m =﹣32,y 最大值为338;(4)由直线AB 的解析式可得AB 的“姊线”CD 的表达式y =﹣1m(x+3),令x =0,得 y 值,令y =0,得x 值,可得点C 、D 的坐标,由此可得点H 坐标,同理可得点G 坐标, 由勾股定理得:m 值,即可求得点A 、B 、C 的坐标,从而得到 “母线”函数的表达式. 【详解】(1)由题意得:k =﹣3,b =6,则答案为:y =13(x+6); (2)令x =0,则y =4,令y =0,则x =2或﹣4,点A 、B 、C 的坐标分别为(2,0)、(0,4)、(﹣4,0), 则直线CD 的表达式为:y =12(x+4)=12x+2; (3)设点P 的横坐标为m ,则点P (m ,n ),n =﹣12m 2﹣m+4, 则直线OP 的表达式为:y =n mx , 将直线OP 和CD 表达式联立得122ny x my x ⎧=⎪⎪⎨⎪=+⎪⎩, 解得:点Q (2438m m m --+,222838m m m m +-+-)则P Q y y =﹣12m 2﹣32m+4, y =1P Q P Q Q y y y PQ OQ y y -==-=﹣12m 2﹣32m+3, 当m =﹣32,y 最大值为338; (4)直线CD 的表达式为:y =﹣1m(x+3), 令x =0,则y =﹣3m,令y =0,则x =﹣3,故点C 、D 的坐标为(﹣3,0)、(0,﹣3m ),则点H (﹣32,﹣32m), 同理可得:点G (﹣32m ,32),则GH 2=(32+32m )2+(32﹣32m)22, 解得:m =﹣3(正值已舍去),则点A 、B 、C 的坐标分别为(1,0)、(0,3)、(﹣3,0), 则“母线”函数的表达式为:y =a (x ﹣1)(x+3)=a (x 2﹣2x ﹣3), 即:﹣3a =﹣3,解得:a =1,故:“母线”函数的表达式为:y =x 2﹣2x ﹣3. 【点睛】此题是二次函数综合题目,考查了“姊线”的定义,待定系数法求二次函数解析式,二次函数的最值问题,掌握二次函数的有关性质是解答此题的关键.5.已知抛物线2y ax bx c =++上有两点M (m +1,a )、N (m ,b ). (1)当a =-1,m =1时,求抛物线2y ax bx c =++的解析式; (2)用含a 、m 的代数式表示b 和c ;(3)当a <0时,抛物线2y ax bx c =++满足24b ac a -=,2b c a +≥,34m ≤-, 求a 的取值范围.【答案】(1)11b c =⎧⎨=⎩;(2)b=-am ,c=-am ;(3)161393a -≤≤- 【解析】 【分析】(1)根据题意得到M (2,-1)、N (1,b ),代入抛物线解析式即可求出b 、c ;(2)将点M (m +1,a )、N (m ,b )代入抛物线2y ax bx c =++,可得22(1)(1)a m b m c a am bm c b⎧++++=⎨++=⎩,化简即可得出;(3)把b am =-,c am =-代入24b ac a -=可得214a m m=+,把b am =-,c am =-代入2b c a +≥可得1m ≥-,然后根据m 的取值范围可得a 的取值范围.【详解】解:(1)∵a =-1,m =1,∴M (2,-1)、N (1,b )由题意,得4211b c b c b -++=-⎧⎨-++=⎩,解,得11b c =⎧⎨=⎩(2) ∵点M (m +1,a )、N (m ,b )在抛物线2y ax bx c =++上22(1)(1)a m b m c a am bm c b ⎧++++=⎨++=⎩①②①-②得,2am b b +=-,∴b am =-把b am =-代入②,得c am =- (3)把b am =-,c am =-代入24b ac a -=得2224a m a m a +=0a <Q ,22141,4am am a m m∴+=∴=+ 把b am =-,c am =-代入2b c a +≥得22am a -≥,1m ∴≥-34m Q ≤-,314m ∴-≤≤- 224(2)4m m m +=+-Q ,当2m >-时,24m m +随m 的增大而增大2393416m m ∴-≤+≤-216113943m m ∴-≤≤-+ 即161393a -≤≤- 【点睛】本题考查待定系数法求函数解析式以及二次函数的图像和性质,由函数图像上点的坐标特征求出b am =-,c am =-是解题关键.6.二次函数y=x 2-2mx+3(m >)的图象与x 轴交于点A (a ,0)和点B (a+n ,0)(n >0且n 为整数),与y 轴交于C 点.(1)若a=1,①求二次函数关系式;②求△ABC 的面积;(2)求证:a=m-;(3)线段AB (包括A 、B )上有且只有三个点的横坐标是整数,求a 的值.【答案】(1)y=x 2-4x+3;3;(2)证明见解析;(3)a=1或a=−.【解析】试题分析:(1)①首先根据a=1求得A 的坐标,然后代入二次函数的解析式,求得m 的值即可确定二次函数的解析式;②根据解析式确定抛物线与坐标轴的交点坐标,从而确定三角形的面积;(2)将原二次函数配方后即可确定其对称轴为x=m ,然后根据A 、B 两点关于x=m 对称得到a+n-m=m-a ,从而确定a 、m 、n 之间的关系;(3)根据a=m-得到A (m-,0)代入y=(x-m )2-m 2+3得0=(m--m )2-m 2+3,求得m 的值即可确定a 的值.试题解析:(1)①∵a=1,∴A(1,0),代入y=x2-2mx+3得1-2m+3=0,解得m=2,∴y=x2-4x+3;②在y=x2-4x+3中,当y=0时,有x2-4x+3=0可得x=1或x=3,∴A(1,0)、B(3,0),∴AB=2再根据解析式求出C点坐标为(0,3),∴OC=3,△ABC的面积=×2×3=3;(2)∵y=x2-2mx+3=(x-m)2-m2+3,∴对称轴为直线x=m,∵二次函数y=x2-2mx+3的图象与x轴交于点A和点B∴点A和点B关于直线x=m对称,∴a+n-m=m-a,∴a=m-;(3)y=x2-2mx+3(m>)化为顶点式为y=(x-m)2-m2+3(m>)①当a为整数,因为n>0且n为整数所以a+n是整数,∵线段AB(包括A、B)上有且只有三个点的横坐标是整数,∴n=2,∴a=m-1,∴A(m-1,0)代入y=(x-m)2-m2+3得(x-m)2-m2+3=0,∴m2-4=0,∴m=2,m=-2(舍去),∴a=2-1=1,②当a不是整数,因为n>0且n为整数所以a+n不是整数,∵线段AB(包括A、B)上有且只有三个点的横坐标是整数,∴n=3,∴a=m-∴A(m-,0)代入y=(x-m)2-m2+3得0=(m--m)2-m2+3,∴m2=,∴m=,m=-(舍去),∴a=−,综上所述:a=1或a=−.考点:二次函数综合题.7.如图甲,直线y=﹣x+3与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线y=x2+bx+c与x轴的另一个交点为A,顶点为P.(1)求该抛物线的解析式;(2)在该抛物线的对称轴上是否存在点M,使以C,P,M为顶点的三角形为等腰三角形?若存在,请直接写出所符合条件的点M的坐标;若不存在,请说明理由;(3)当0<x<3时,在抛物线上求一点E,使△CBE的面积有最大值(图乙、丙供画图探究).【答案】(1)y=x2﹣4x+3;(2)(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)E点坐标为(,)时,△CBE的面积最大.【解析】试题分析:(1)由直线解析式可求得B、C坐标,利用待定系数法可求得抛物线解析式;(2)由抛物线解析式可求得P点坐标及对称轴,可设出M点坐标,表示出MC、MP和PC 的长,分MC=MP、MC=PC和MP=PC三种情况,可分别得到关于M点坐标的方程,可求得M点的坐标;(3)过E作EF⊥x轴,交直线BC于点F,交x轴于点D,可设出E点坐标,表示出F点的坐标,表示出EF的长,进一步可表示出△CBE的面积,利用二次函数的性质可求得其取得最大值时E点的坐标.试题解析:(1)∵直线y=﹣x+3与x轴、y轴分别交于点B、点C,∴B(3,0),C(0,3),把B、C坐标代入抛物线解析式可得,解得,∴抛物线解析式为y=x2﹣4x+3;(2)∵y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线对称轴为x=2,P(2,﹣1),设M(2,t),且C(0,3),∴MC=,MP=|t+1|,PC=,∵△CPM为等腰三角形,∴有MC=MP、MC=PC和MP=PC三种情况,①当MC=MP时,则有=|t+1|,解得t=,此时M(2,);②当MC=PC时,则有=2,解得t=﹣1(与P点重合,舍去)或t=7,此时M(2,7);③当MP=PC时,则有|t+1|=2,解得t=﹣1+2或t=﹣1﹣2,此时M(2,﹣1+2)或(2,﹣1﹣2);综上可知存在满足条件的点M,其坐标为(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)如图,过E作EF⊥x轴,交BC于点F,交x轴于点D,设E(x,x2﹣4x+3),则F(x,﹣x+3),∵0<x<3,∴EF=﹣x+3﹣(x2﹣4x+3)=﹣x2+3x,∴S△CBE=S△EFC+S△EFB=EF•OD+EF•BD=EF•OB=×3(﹣x2+3x)=﹣(x﹣)2+,∴当x=时,△CBE的面积最大,此时E点坐标为(,),即当E点坐标为(,)时,△CBE的面积最大.考点:二次函数综合题.8.抛物线L:y=﹣x2+bx+c经过点A(0,1),与它的对称轴直线x=1交于点B.(1)直接写出抛物线L的解析式;(2)如图1,过定点的直线y=kx﹣k+4(k<0)与抛物线L交于点M、N.若△BMN的面积等于1,求k的值;(3)如图2,将抛物线L向上平移m(m>0)个单位长度得到抛物线L1,抛物线L1与y 轴交于点C,过点C作y轴的垂线交抛物线L1于另一点D.F为抛物线L1的对称轴与x轴的交点,P为线段OC上一点.若△PCD与△POF相似,并且符合条件的点P恰有2个,求m的值及相应点P的坐标.【答案】(1)y=﹣x2+2x+1;(2)-3;(3)当m=22﹣1时,点P的坐标为(0,2)和(0,223);当m=2时,点P的坐标为(0,1)和(0,2).【解析】【分析】(1)根据对称轴为直线x=1且抛物线过点A(0,1)利用待定系数法进行求解可即得;(2)根据直线y=kx﹣k+4=k(x﹣1)+4知直线所过定点G坐标为(1,4),从而得出BG=2,由S△BMN=S△BNG﹣S△BMG=12BG•x N﹣12BG•x M=1得出x N﹣x M=1,联立直线和抛物线解析式求得x=2282k k-±-,根据x N﹣x M=1列出关于k的方程,解之可得;(3)设抛物线L1的解析式为y=﹣x2+2x+1+m,知C(0,1+m)、D(2,1+m)、F(1,0),再设P(0,t),分△PCD∽△POF和△PCD∽△POF两种情况,由对应边成比例得出关于t与m的方程,利用符合条件的点P恰有2个,结合方程的解的情况求解可得.【详解】(1)由题意知()1211bc⎧-=⎪⨯-⎨⎪=⎩,解得:21bc=⎧⎨=⎩,∴抛物线L的解析式为y=﹣x2+2x+1;(2)如图1,设M点的横坐标为x M,N点的横坐标为x N,∵y=kx﹣k+4=k(x﹣1)+4,∴当x=1时,y=4,即该直线所过定点G 坐标为(1,4),∵y=﹣x 2+2x+1=﹣(x ﹣1)2+2,∴点B (1,2),则BG=2,∵S △BMN =1,即S △BNG ﹣S △BMG =12BG•(x N ﹣1)-12BG•(x M -1)=1, ∴x N ﹣x M =1,由2421y kx k y x x =-+⎧⎨=--+⎩得:x 2+(k ﹣2)x ﹣k+3=0, 解得:x=()()22243k k k -±---=228k k -±-, 则x N =228k k -+-、x M =228k k ---, 由x N ﹣x M =1得28k -=1,∴k=±3,∵k <0,∴k=﹣3;(3)如图2,设抛物线L 1的解析式为y=﹣x 2+2x+1+m ,∴C (0,1+m )、D (2,1+m )、F (1,0),设P (0,t ),(a )当△PCD ∽△FOP 时,PC FO CD OP =, ∴112m t t+-=, ∴t 2﹣(1+m )t+2=0①; (b)当△PCD ∽△POF 时,PC PO CD OF =, ∴121m t t +-=,∴t=13(m+1)②; (Ⅰ)当方程①有两个相等实数根时,△=(1+m )2﹣8=0,解得:m=22﹣1(负值舍去),此时方程①有两个相等实数根t 1=t 2=2,方程②有一个实数根t=223, ∴m=22﹣1,此时点P 的坐标为(0,2)和(0,22); (Ⅱ)当方程①有两个不相等的实数根时,把②代入①,得:19(m+1)2﹣13(m+1)+2=0, 解得:m=2(负值舍去),此时,方程①有两个不相等的实数根t 1=1、t 2=2,方程②有一个实数根t=1,∴m=2,此时点P 的坐标为(0,1)和(0,2); 综上,当m=22﹣1时,点P 的坐标为(0,2)和(0,223); 当m=2时,点P 的坐标为(0,1)和(0,2).【点睛】本题主要考查二次函数的应用,涉及到待定系数法求函数解析式、割补法求三角形的面积、相似三角形的判定与性质等,(2)小题中根据三角形BMN 的面积求得点N 与点M 的横坐标之差是解题的关键;(3)小题中运用分类讨论思想进行求解是关键.9.如图,抛物线2y ax bx c =++的图象过点(10)(30)(03)A B C ﹣,、,、,.(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在一点P ,使得△PAC 的周长最小,若存在,请求出点P 的坐标及△PAC 的周长;若不存在,请说明理由;(3)在(2)的条件下,在x 轴上方的抛物线上是否存在点M (不与C 点重合),使得PAM PAC S S ∆∆=?若存在,请求出点M 的坐标;若不存在,请说明理由.【答案】(1)223y x x =++-;(2)存在,点(12)P ,;(3)存在,点M 坐标为(14), 【解析】【分析】(1)由于条件给出抛物线与x 轴的交点1030A B (﹣,)、(,),故可设交点式13y a x x +=()(﹣),把点C 代入即求得a 的值,减小计算量.(2)由于点A 、B 关于对称轴:直线1x =对称,故有PA PB =,则PAC C AC PC PA AC PC PB ∆++++==,所以当C 、P 、B 在同一直线上时,PAC C AC CB ∆+=最小.利用点A 、B 、C 的坐标求AC 、CB 的长,求直线BC 解析式,把1x =代入即求得点P 纵坐标.(3)由PAM PAC S S ∆∆=可得,当两三角形以PA 为底时,高相等,即点C 和点M 到直线PA 距离相等.又因为M 在x 轴上方,故有//CM PA .由点A 、P 坐标求直线AP 解析式,即得到直线CM 解析式.把直线CM 解析式与抛物线解析式联立方程组即求得点M 坐标.【详解】解:(1)∵抛物线与x 轴交于点1030A B (﹣,)、(,)∴可设交点式13y a x x +=()(﹣) 把点03C (,)代入得:33a ﹣=1a ∴=﹣21323y x x x x ∴+++=-()(﹣)=﹣∴抛物线解析式为223y x x ++=-(2)在抛物线的对称轴上存在一点P ,使得PAC ∆的周长最小.如图1,连接PB 、BC∵点P 在抛物线对称轴直线1x =上,点A 、B 关于对称轴对称PA PB ∴=PAC C AC PC PA AC PC PB ∆∴++++==∵当C 、P 、B 在同一直线上时,PC PB CB +=最小103003A B C Q (﹣,)、(,)、(,)AC BC ∴===PAC C AC CB ∆∴+=设直线BC 解析式为3y kx +=把点B 代入得:330k +=,解得:1k =﹣∴直线BC :3y x +=﹣132P y ∴+=﹣=∴点12P (,)使PAC ∆的周长最小,最小值为1032+. (3)存在满足条件的点M ,使得PAM PAC S S ∆∆=.∵PAM PAC S S ∆∆=S △PAM =S △PAC∴当以PA 为底时,两三角形等高∴点C 和点M 到直线PA 距离相等∵M 在x 轴上方//CM PA ∴1012A P Q (﹣,),(,),设直线AP 解析式为y px d += 02p d p d -+=⎧∴⎨+=⎩ 解得:p 1d 1=⎧⎨=⎩∴直线1AP y x +:=∴直线CM 解析式为:3y x +=2323y x y x x =+⎧⎨=-++⎩Q 解得:1103x y =⎧⎨=⎩(即点C ),2214x y =⎧⎨=⎩ ∴点M 坐标为14(,)【点睛】考查了待定系数法求二次函数解析式、一次函数解析式,轴对称的最短路径问题,勾股定理,平行线间距离处处相等,一元二次方程的解法.其中第(3)题条件给出点M 在x 轴上方,无需分类讨论,解法较常规而简单.10.如图,已知抛物线2y ax bx c =++的顶点为()4,3A ,与y 轴相交于点()0,5B -,对称轴为直线l ,点M 是线段AB 的中点.(1)求抛物线的表达式;(2)写出点M 的坐标并求直线AB 的表达式;(3)设动点P ,Q 分别在抛物线和对称轴l 上,当以A ,P ,Q ,M 为顶点的四边形是平行四边形时,求P ,Q 两点的坐标.【答案】(1)21452=-+-y x x ;(2)()2,1-M ,25y x =-;(3)点P 、Q 的坐标分别为()6,1或()2,1、()4,3-或()4,1.【解析】【分析】(1)函数表达式为:()243y a x ==+,将点B 坐标代入上式,即可求解;(2)()4,3A 、()0,5B -,则点()2,1-M ,设直线AB 的表达式为:5y kx =-,将点A 坐标代入上式,即可求解;(3)分当AM 是平行四边形的一条边、AM 是平行四边形的对角线两种情况,分别求解即可.【详解】解:(1)函数表达式为:()243y a x ==+,将点B 坐标代入上式并解得:12a =-, 故抛物线的表达式为:21452=-+-y x x ; (2)()4,3A 、()0,5B -,则点()2,1-M ,设直线AB 的表达式为:5y kx =-,将点A 坐标代入上式得:345k =-,解得:2k =,故直线AB 的表达式为:25y x =-;(3)设点()4,Q s 、点21,452P m m m ⎛⎫-+- ⎪⎝⎭, ①当AM 是平行四边形的一条边时,点A 向左平移2个单位、向下平移4个单位得到M , 同样点21,452P m m m ⎛⎫-+- ⎪⎝⎭向左平移2个单位、向下平移4个单位得到()4,Q s ,即:24m -=,214542m m s -+--=, 解得:6m =,3s =-,故点P 、Q 的坐标分别为()6,1、()4,3-; ②当AM 是平行四边形的对角线时, 由中点定理得:424m +=+,2131452m m s -=-+-+, 解得:2m =,1s =,故点P 、Q 的坐标分别为()2,1、()4,1;故点P 、Q 的坐标分别为()6,1,()4,3-或()2,1、()4,3-,()2,1或()4,1. 【点睛】本题考查的是二次函数综合运用,涉及到一次函数、平行四边形性质、图象的面积计算等,其中(3),要主要分类求解,避免遗漏.11.如图1,抛物线经过平行四边形的顶点、、,抛物线与轴的另一交点为.经过点的直线将平行四边形分割为面积相等的两部分,与抛物线交于另一点.点为直线上方抛物线上一动点,设点的横坐标为.(1)求抛物线的解析式; (2)当何值时,的面积最大?并求最大值的立方根;(3)是否存在点使为直角三角形?若存在,求出的值;若不存在,说明理由.【答案】(1)抛物线解析式为y=﹣x 2+2x+3;(2)当t=时,△PEF 的面积最大,其最大值为×,最大值的立方根为=;(3)存在满足条件的点P ,t 的值为1或【解析】试题分析:(1)由A 、B 、C 三点的坐标,利用待定系数法可求得抛物线解析式; (2)由A 、C 坐标可求得平行四边形的中心的坐标,由抛物线的对称性可求得E 点坐标,从而可求得直线EF 的解析式,作PH ⊥x 轴,交直线l 于点M ,作FN ⊥PH ,则可用t 表示出PM的长,从而可表示出△PEF的面积,再利用二次函数的性质可求得其最大值,再求其最大值的立方根即可;(3)由题意可知有∠PAE=90°或∠APE=90°两种情况,当∠PAE=90°时,作PG⊥y轴,利用等腰直角三角形的性质可得到关于t的方程,可求得t的值;当∠APE=90°时,作PK⊥x 轴,AQ⊥PK,则可证得△PKE∽△AQP,利用相似三角形的性质可得到关于t的方程,可求得t的值.试题解析:(1)由题意可得,解得,∴抛物线解析式为y=﹣x2+2x+3;(2)∵A(0,3),D(2,3),∴BC=AD=2,∵B(﹣1,0),∴C(1,0),∴线段AC的中点为(,),∵直线l将平行四边形ABCD分割为面积相等两部分,∴直线l过平行四边形的对称中心,∵A、D关于对称轴对称,∴抛物线对称轴为x=1,∴E(3,0),设直线l的解析式为y=kx+m,把E点和对称中心坐标代入可得,解得,∴直线l的解析式为y=﹣x+,联立直线l和抛物线解析式可得,解得或,∴F(﹣,),如图1,作PH⊥x轴,交l于点M,作FN⊥PH,∵P点横坐标为t,∴P(t,﹣t2+2t+3),M(t,﹣t+),∴PM=﹣t2+2t+3﹣(﹣t+)=﹣t2+t+,∴S△PEF=S△PFM+S△PEM=PM•FN+PM•EH=PM•(FN+EH)=(﹣t2+t+)(3+)=﹣(t﹣)+×,∴当t=时,△PEF的面积最大,其最大值为×,∴最大值的立方根为=;(3)由图可知∠PEA≠90°,∴只能有∠PAE=90°或∠APE=90°,①当∠PAE=90°时,如图2,作PG⊥y轴,∵OA=OE,∴∠OAE=∠OEA=45°,∴∠PAG=∠APG=45°,∴PG=AG,∴t=﹣t2+2t+3﹣3,即﹣t2+t=0,解得t=1或t=0(舍去),②当∠APE=90°时,如图3,作PK⊥x轴,AQ⊥PK,则PK=﹣t2+2t+3,AQ=t,KE=3﹣t,PQ=﹣t2+2t+3﹣3=﹣t2+2t,∵∠APQ+∠KPE=∠APQ+∠PAQ=90°,∴∠PAQ=∠KPE,且∠PKE=∠PQA,∴△PKE∽△AQP,∴,即,即t2﹣t﹣1=0,解得t=或t=<﹣(舍去),综上可知存在满足条件的点P,t的值为1或.考点:二次函数综合题12.抛物线与x轴交于A,B两点(OA<OB),与y轴交于点C.(1)求点A,B,C的坐标;(2)点P从点O出发,以每秒2个单位长度的速度向点B运动,同时点E也从点O出发,以每秒1个单位长度的速度向点C运动,设点P的运动时间为t秒(0<t<2).①过点E作x轴的平行线,与BC相交于点D(如图所示),当t为何值时,的值最小,求出这个最小值并写出此时点E,P的坐标;②在满足①的条件下,抛物线的对称轴上是否存在点F,使△EFP为直角三角形?若存在,请直接写出点F的坐标;若不存在,请说明理由.【答案】(1)A(2,0),B(4,0),C(0,2);(2)①t=1时,有最小值1,此时OP=2,OE=1,∴E(0,1),P(2,0);②F(3,2),(3,7).【解析】试题分析:(1)在抛物线的解析式中,令y=0,令x=0,解方程即可得到结果;(2)①由题意得:OP=2t,OE=t,通过△CDE∽△CBO得到,即,求得有最小值1,即可求得结果;②存在,求得抛物线的对称方程为x=3,设F(3,m),当△EFP为直角三角形时,①当∠EPF=90°时,②当∠EFP=90°时,③当∠PEF=90°时,根据勾股定理列方程即可求得结果.试题解析:(1)在抛物线的解析式中,令y=0,即,解得:,,∵OA<OB,∴A(2,0),B(4,0),在抛物线的解析式中,令x=0,得y=2,∴C(0,2);(2)①由题意得:OP=2t,OE=t,∵DE∥OB,∴△CDE∽△CBO,∴,即,∴DE=4﹣2t,∴===,∵0<t<2,始终为正数,且t=1时,有最大值1,∴t=1时,有最小值1,即t=1时,有最小值1,此时OP=2,OE=1,∴E(0,1),P(2,0);②存在,∵抛物线的对称轴方程为x=3,设F(3,m),∴,=,=,当△EFP为直角三角形时,①当∠EPF=90°时,,即,解得:m=2,②当∠EFP=90°时,,即,解得;m=0或m=1,不合题意舍去,∴当∠EFP=90°时,这种情况不存在,③当∠PEF=90°时,,即,解得:m=7,综上所述,F(3,2),(3,7).考点:1.二次函数综合题;2.动点型;3.最值问题;4.二次函数的最值;5.分类讨论;6.压轴题.13.(14分)如图,在平面直角坐标系中,抛物线y=mx2﹣8mx+4m+2(m>2)与y轴的交点为A,与x轴的交点分别为B(x1,0),C(x2,0),且x2﹣x1=4,直线AD∥x轴,在x轴上有一动点E(t,0)过点E作平行于y轴的直线l与抛物线、直线AD的交点分别为P、Q.(1)求抛物线的解析式;(2)当0<t≤8时,求△APC面积的最大值;(3)当t>2时,是否存在点P,使以A、P、Q为顶点的三角形与△AOB相似?若存在,求出此时t的值;若不存在,请说明理由.【答案】(1);(2)12;(3)t=或t=或t=14.【解析】试题分析:(1)首先利用根与系数的关系得出:,结合条件求出的值,然后把点B,C的坐标代入解析式计算即可;(2)(2)分0<t<6时和6≤t≤8时两种情况进行讨论,据此即可求出三角形的最大值;(3)(3)分2<t≤6时和t>6时两种情况进行讨论,再根据三角形相似的条件,即可得解.试题解析:解:(1)由题意知x1、x2是方程mx2﹣8mx+4m+2=0的两根,∴x1+x2=8,由.解得:.∴B(2,0)、C(6,0)则4m﹣16m+4m+2=0,解得:m=,∴该抛物线解析式为:y=;.(2)可求得A(0,3)设直线AC的解析式为:y=kx+b,∵∴∴直线AC的解析式为:y=﹣x+3,要构成△APC,显然t≠6,分两种情况讨论:当0<t<6时,设直线l与AC交点为F,则:F(t,﹣),∵P(t,),∴PF=,∴S△APC=S△APF+S△CPF===,此时最大值为:,②当6≤t≤8时,设直线l与AC交点为M,则:M(t,﹣),∵P(t,),∴PM=,∴S△APC=S△APF﹣S△CPF===,当t=8时,取最大值,最大值为:12,综上可知,当0<t≤8时,△APC面积的最大值为12;(3)如图,连接AB,则△AOB中,∠AOB=90°,AO=3,BO=2,Q(t,3),P(t,),①当2<t≤6时,AQ=t,PQ=,若:△AOB∽△AQP,则:,即:,∴t=0(舍),或t=,若△AOB∽△PQA,则:,即:,∴t=0(舍)或t=2(舍),②当t>6时,AQ′=t,PQ′=,若:△AOB∽△AQP,则:,即:,∴t=0(舍),或t=,若△AOB∽△PQA,则:,即:,∴t=0(舍)或t=14,∴t=或t=或t=14.考点:二次函数综合题.14.如图,抛物线与x轴交于点A(,0)、点B(2,0),与y轴交于点C(0,1),连接BC.(1)求抛物线的函数关系式;(2)点N为抛物线上的一个动点,过点N作NP⊥x轴于点P,设点N的横坐标为t (),求△ABN的面积S与t的函数关系式;(3)若且时△OPN∽△COB,求点N的坐标.【答案】(1);(2);(3)(,)或(1,2).【解析】试题分析:(1)可设抛物线的解析式为,用待定系数法就可得到结论;(2)当时,点N在x轴的上方,则NP等于点N的纵坐标,只需求出AB,就可得到S与t的函数关系式;(3)由相似三角形的性质可得PN=2PO.而PO=,需分和0<t<2两种情况讨论,由PN=2PO得到关于t的方程,解这个方程,就可得到答案.试题解析:(1)设抛物线的解析式为,把C(0,1)代入可得:,∴,∴抛物线的函数关系式为:,即;(2)当时,>0,∴NP===,∴S=AB•PN==;(3)∵△OPN∽△COB,∴,∴,∴PN=2PO.①当时,PN===,PO==,∴,整理得:,解得:=,=,∵>0,<<0,∴t=,此时点N 的坐标为(,);②当0<t <2时,PN===,PO==t ,∴,整理得:,解得:=,=1.∵<0,0<1<2,∴t=1,此时点N 的坐标为(1,2).综上所述:点N 的坐标为(,)或(1,2).考点:1.二次函数综合题;2.待定系数法求二次函数解析式;3.相似三角形的性质.15.某大学生利用暑假40天社会实践参与了一家网店经营,了解到一种成本为20元/件的新型商品在第x 天销售的相关信息如下表所示. 销售量p (件)P=50—x销售单价q (元/件)当1≤x≤20时,1q 30x 2=+当21≤x≤40时,525q 20x=+(1)请计算第几天该商品的销售单价为35元/件? (2)求该网店第x 天获得的利润y 关于x 的函数关系式. (3)这40天中该网店第几天获得的利润最大?最大利润是多少? 【答案】(1)第10天或第35天该商品的销售单价为35元/件(2)()()21x 15x 5001x 202y {2625052521x 40x-++≤≤=-≤≤(3)这40天中该网店第21天获得的利润最大?最大利润是725元 【解析】 【分析】(1)分别将q=35代入销售单价关于x 的函数关系式,求出x 即可.(2)应用利润=销售收入-销售成本列式即可.(3)应用二次函数和反比例函数的性质,分别求出最大值比较即得所求.【详解】解:(1)当1≤x≤20时,令1q 30x 352=+=,解得;x 10=; 当21≤x≤40时,令525q 2035x=+=,解得;x 35=. ∴第10天或第35天该商品的销售单价为35元/件.(2)当1≤x≤20时,()211y 30x 2050x x 15x 50022⎛⎫=+--=-++ ⎪⎝⎭; 当21≤x≤40时,()52526250y 202050x 525x x ⎛⎫=+--=- ⎪⎝⎭. ∴y 关于x 的函数关系式为()()21x 15x 5001x 202y {2625052521x 40x-++≤≤=-≤≤. (3)当1≤x≤20时,()2211y x 15x 500x 15612.522=-++=--+, ∵102-<,∴当x=15时,y 有最大值y 1,且y 1=612.5. 当21≤x≤40时,∵26250>0,∴26250x 随着x 的增大而减小, ∴当x=21时,26250y 525x =-有最大值y 2,且226250y 52572521=-=. ∵y 1<y 2, ∴这40天中该网店第21天获得的利润最大?最大利润是725元.。

2020年中考数学一轮复习题型10二次函数的综合应用题(原卷版)

2020年中考数学一轮复习题型10二次函数的综合应用题(原卷版)

题型10 二次函数的综合应用题一、解答题1.如图,抛物线2y x bx c =-++与x 轴交于A 、B 两点(A 在B 的左侧),与y 轴交于点N ,过A 点的直线l :y kx n =+与y 轴交于点C ,与抛物线2y x bx c =-++的另一个交点为D ,已知(1,0)(5,6)A D --,,P 点为抛物线2y x bx c =++﹣上一动点(不与A 、D 重合).(1)求抛物线和直线l 的解析式;(2)当点P 在直线l 上方的抛物线上时,过P 点作PE ∥x 轴交直线l 于点E ,作//PF y 轴交直线l 于点F ,求PE PF +的最大值;(3)设M 为直线l 上的点,探究是否存在点M ,使得以点N 、C ,M 、P 为顶点的四边形为平行四边形?若存在,求出点M 的坐标;若不存在,请说明理由.2.已知二次函数2(0)y ax a =≠的图象过点(2,1)-,点P (P 与0不重合)是图象上的一点,直线l 过点(0,1)且平行于x 轴.PM l ⊥于点M ,点(0,1)F -. (1)求二次函数的解析式;(2)求证:点P 在线段MF 的中垂线上;(3)设直线PF 交二次函数的图象于另一点Q ,QN l ⊥于点N ,线段MF 的中垂线交l 于点R ,求MRRN的值;(4)试判断点R 与以线段PQ 为直径的圆的位置关系.3.如图,抛物线2y ax bx c =++与x 轴交于点A (-1,0),点B (-3,0),且OB =OC , (1)求抛物线的解析式;(2)点P 在抛物线上,且∠POB =∠ACB ,求点P 的坐标;(3)抛物线上两点M ,N ,点M 的横坐标为m ,点N 的横坐标为m +4.点D 是抛物线上M ,N 之间的动点,过点D 作y 轴的平行线交MN 于点E , ①求DE 的最大值.②点D 关于点E 的对称点为F .当m 为何值时,四边形MDNF 为矩形?4.如图,已知直线AB 与抛物线C :2y ax 2x c =++ 相交于()1,0A -和点()B 2,3两点.⑴求抛物线C 的函数表达式;⑵若点M 是位于直线AB 上方抛物线上的一动点,以MA MB 、为相邻两边作平行四边形MANB ,当平行四边形MANB 的面积最大时,求此时四边形MANB 的面积S 及点M 的坐标;⑶在抛物线C 的对称轴上是否存在定点F ,使抛物线C 上任意一点P 到点F 的距离等于到直线17y 4=的距离,若存在,求出定点F 的坐标;若不存在,请说明理由.5.如图,抛物线y=ax2+bx(a>0)过点E(8,0),矩形ABCD的边AB在线段OE上(点A在点B的左侧),点C、D在抛物线上,∠BAD的平分线AM交BC于点M,点N是CD的中点,已知OA=2,且OA:AD=1:3.(1)求抛物线的解析式;(2)F、G分别为x轴,y轴上的动点,顺次连接M、N、G、F构成四边形MNGF,求四边形MNGF周长的最小值;?若存在,求出点P的坐(3)在x轴下方且在抛物线上是否存在点P,使△ODP中OD边上的高为5标;若不存在,请说明理由;(4)矩形ABCD不动,将抛物线向右平移,当平移后的抛物线与矩形的边有两个交点K、L,且直线KL平分矩形的面积时,求抛物线平移的距离.6.如图,在直角坐标系中,直线132y x=-+与x轴,y轴分别交于点B,点C,对称轴为1x=的抛物线过,B C两点,且交x轴于另一点A,连接AC.(1)直接写出点A,点B,点C的坐标和抛物线的解析式;(2)已知点P为第一象限内抛物线上一点,当点P到直线BC的距离最大时,求点P的坐标;(3)抛物线上是否存在一点Q(点C除外),使以点Q,A,B为顶点的三角形与ABC∆相似?若存在,求出点Q的坐标;若不存在,请说明理由.7.如图,在平面在角坐标系中,抛物线y =x 2-2x -3与x 轴交与点A ,B (点A 在点B 的左侧)交y 轴于点C ,点D 为抛物线的顶点,对称轴与x 轴交于点E .(1)连结BD ,点M 是线段BD 上一动点(点M 不与端点B ,D 重合),过点M 作MN ⊥BD 交抛物线于点N (点N 在对称轴的右侧),过点N 作NH ⊥x 轴,垂足为H ,交BD 于点F ,点P 是线段OC 上一动点,当MN 取得最大值时,求HF +FP +13PC 的最小值;(2)在(1)中,当MN 取得最大值HF +FP +1/3PC 取得小值时,把点P 向上平移个2单位得到点Q ,连结AQ ,把△AOQ 绕点O 瓶时针旋转一定的角度α(0°<α<360°),得到△AOQ ,其中边AQ 交坐标轴于点C 在旋转过程中,是否存在一点G 使得''Q Q OG ∠=∠?若存在,请直接写出所有满足条件的点Q 的坐标;若不存在,请说明理由.8.已知抛物线2y x bx c =-++的对称轴为直线1x =,其图像与x 轴相交于A 、B 两点,与y 轴交于点(0,3)C(1)求b ,c 的值; (2)直线l 与x 轴交于点P .①如图1,若l ∥y 轴,且与线段AC 及抛物线分别相交于点E 、F ,点C 关于直线1x =的对称点为D ,求四边形CEDF 面积的最大值;②如图2,若直线l 与线段BC 相交于点Q ,当PCQ ∆∽CAP ∆时,求直线l 的表达式.9.如图,已知抛物线(2)(6)y a x x =+-与x 轴相交于A 、B 两点,与y 轴交于C 点,且tan 32CAB ∠=.设抛物线的顶点为M ,对称轴交x 轴于点N . (1)求抛物线的解析式;(2)P 为抛物线的对称轴上一点,(,0)Q n 为x 轴上一点,且PQ PC ⊥. ①当点P 在线段MN (含端点)上运动时,求n 的变化范围; ②当n 取最大值时,求点P 到线段CQ 的距离;③当n 取最大值时,将线段..CQ 向上平移t 个单位长度,使得线段..CQ 与抛物线有两个交点,求t 的取值范围.10.如图1,已知抛物线2y x bx c ++=﹣过点1030A B (,),(﹣,).(1)求抛物线的解析式及其顶点C 的坐标;(2)设点D 是x 轴上一点,当()4tan CAO CDO ∠+∠=时,求点D 的坐标;(3)如图2.抛物线与y 轴交于点E ,点P 是该抛物线上位于第二象限的点,线段P A 交BE 于点M ,交y轴于点N ,BMP ∆和EMN ∆的面积分别为mn 、,求m n ﹣的最大值.11.如图,已知二次函数图象的顶点坐标为(1,4)A ,与坐标轴交于B 、C 、D 三点,且B 点的坐标为(1,0)-. (1)求二次函数的解析式;(2)在二次函数图象位于x 轴上方部分有两个动点M 、N ,且点N 在点M 的左侧,过M 、N 作x 轴的垂线交x 轴于点G 、H 两点,当四边形MNHG 为矩形时,求该矩形周长的最大值;(3)当矩形MNHG 的周长最大时,能否在二次函数图象上找到一点P ,使PNC ∆的面积是矩形MNHG 面积的916?若存在,求出该点的横坐标;若不存在,请说明理由.12.如图1,在平面直角坐标系中,抛物线2848y x x =+-与x轴交于点A 、B (点A 在点B 右侧),点D 为抛物线的顶点.点C 在y 轴的正半轴上,CD 交x 轴于点F ,CAD ∆绕点C 顺时针旋转得到CFE ∆,点A 恰好旋转到点F ,连接BE .(1)求点A 、B 、D 的坐标;(2)求证:四边形BFCE 是平行四边形;(3)如图2,过顶点D 作1DD x ⊥轴于点1D ,点P 是抛物线上一动点,过点P 作PM x ⊥轴,点M 为垂足,使得PAM ∆与1DD A ∆相似(不含全等). ①求出一个满足以上条件的点P 的横坐标; ②直接回答....这样的点P 共有几个?13.如图1,△AOB 的三个顶点A 、O 、B 分别落在抛物线F 1:21733y x x =+的图象上,点A 的横坐标为﹣4,点B 的纵坐标为﹣2.(点A 在点B 的左侧) (1)求点A 、B 的坐标;(2)将△AOB 绕点O 逆时针旋转90°得到△A 'OB ',抛物线F 2:24y ax bx =++经过A '、B '两点,已知点M 为抛物线F 2的对称轴上一定点,且点A '恰好在以OM 为直径的圆上,连接OM 、A 'M ,求△OA 'M 的面积; (3)如图2,延长OB '交抛物线F 2于点C ,连接A 'C ,在坐标轴上是否存在点D ,使得以A 、O 、D 为顶点的三角形与△OA 'C 相似.若存在,请求出点D 的坐标;若不存在,请说明理由.14.在平面直角坐标系xOy 中,顶点为A 的抛物线与x 轴交于B 、C 两点,与y 轴交于点D ,已知A (1,4),B (3,0).(1)求抛物线对应的二次函数表达式;(2)探究:如图1,连接OA ,作DE ∥OA 交BA 的延长线于点E ,连接OE 交AD 于点F ,M 是BE 的中点,则OM 是否将四边形OBAD 分成面积相等的两部分?请说明理由;(3)应用:如图2,P (m ,n )是抛物线在第四象限的图象上的点,且m +n =﹣1,连接P A 、PC ,在线段PC 上确定一点M ,使AN 平分四边形ADCP 的面积,求点N 的坐标.提示:若点A 、B 的坐标分别为(x 1,y 1)、(x 2,y 2),则线段AB 的中点坐标为(122x x +,122y y +).15.如图①,在平面直角坐标系xOy 中,已知()2,2A -,()()()2,0,0,2,2,0B C D -四点,动点M 以每B C D →→运动(M 不与点B 、点D 重合),设运动时间为t (秒). (1)求经过A 、C 、D 三点的抛物线的解析式; (2)点P 在(1)中的抛物线上,当223x 27y-M 为BC 的中点时,若PAM PBM ∆≅∆,求点P 的坐标; (3)当M 在CD 上运动时,如图②.过点M 作MF x ⊥轴,垂足为F ,ME AB ⊥,垂足为E .设矩形MEBF 与BCD ∆重叠部分的面积为S ,求S 与t 的函数关系式,并求出S 的最大值;(4)点Q 为x 轴上一点,直线AQ 与直线BC 交于点H ,与y 轴交于点K .是否存在点Q ,使得HOK ∆为等腰三角形?若存在,直接写出符合条件的所有Q 点的坐标;若不存在,请说明理由.CD y⊥轴交抛物线于另一点D,作DE x⊥轴,垂足为点E.双曲线6(0)y xx=>经过点D,连接MD,BD.(1)求抛物线的表达式;(2)点N,F分别是x轴,y轴上的两点,当以M,D,N,F为顶点的四边形周长最小时,求出点N,F的坐标;(1)求这条抛物线对应的函数表达式;(2)问在y 轴上是否存在一点P ,使得PAM ∆为直角三角形?若存在,求出点P 的坐标;若不存在,说明理由.(3)若在第一象限的抛物线下方有一动点D ,满足DA OA =,过D 作DG x ⊥轴于点G ,设ADG ∆的内心为I ,试求CI 的最小值.18.如图,在平面直角坐标系xOy 中,抛物线L 1:2y x bx c =++过点C (0,﹣3),与抛物线L 2:213222y x x =--+的一个交点为A ,且点A 的横坐标为2,点P 、Q 分别是抛物线L 1、抛物线L 2上的动点.(1)求抛物线L 1对应的函数表达式;(2)若以点A 、C 、P 、Q 为顶点的四边形恰为平行四边形,求出点P 的坐标;(3)设点R 为抛物线L 1上另一个动点,且CA 平分∠PCR ,若OQ ∥PR ,求出点Q 的坐标.19.如图,抛物线2y x bx c =++交x 轴于A 、B 两点,其中点A 坐标为()1,0,与y 轴交于点()0,3C -.(1)求抛物线的函数表达式;(2)如图①,连接AC ,点P 在抛物线上,且满足2PAB ACO ∠=∠.求点P 的坐标;(3)如图②,点Q 为x 轴下方抛物线上任意一点,点D 是抛物线对称轴与x 轴的交点,直线AQ 、BQ 分别交抛物线的对称轴于点M 、N .请问DM DN +是否为定值?如果是,请求出这个定值;如果不是,请说明理由.20.如图,抛物线2y x bx c =++的对称轴为直线x =2,抛物线与x 轴交于点A 和点B ,与y 轴交于点C ,且点A 的坐标为(-1,0). (1)求抛物线的函数表达式;(2)将抛物线2y x bx c =++图象x 轴下方部分沿x 轴向上翻折,保留抛物线在x 轴上的点和x 轴上方图象,得到的新图象与直线y =t 恒有四个交点,从左到右四个交点依次记为D ,E ,F ,G .当以EF 为直径的圆过点Q (2,1)时,求t 的值;(3)在抛物线2y x bx c =++上,当m ≤x ≤n 时,y 的取值范围是m ≤y ≤7,请直接写出x 的取值范围.21.如图①,抛物线211482y x x =-++与y 轴交于点A ,与x 轴交于点,B C ,将直线AB 绕点A 逆时针旋转90°,所得直线与x 轴交于点D . (1)求直线AD 的函数解析式;(2)如图②,若点P 是直线AD 上方抛物线上的一个动点 ①当点P 到直线AD 的距离最大时,求点P 的坐标和最大距离;②当点P 到直线AD 的距离为4时,求sin PAD ∠的值.22.如图①,抛物线2(1)y x a x a =-++-与x 轴交于A 、B 两点(点A 位于点B 的左侧),与y 轴交于点C ,已知ABC ∆的面积为6. (1)求a 的值;(2)求ABC ∆外接圆圆心的坐标;(3)如图②,P 是抛物线上一点,点Q 为射线CA 上一点,且P 、Q 两点均在第三象限内,Q 、A 是位于直线BP 同侧的不同两点,若点P 到x 轴的距离为d ,QPB ∆的面积为2d ,且PAQ AQB ∠=∠,求点Q 的坐标.23.如图,抛物线2y ax bx c =++与x 轴交于点(1,0)A -,点(3,0)B ,与y 轴交于点C ,且过点(2,3)D -.点P 、Q 是抛物线2y ax bx c =++上的动点. (1)求抛物线的解析式;(2)当点P 在直线OD 下方时,求POD ∆面积的最大值.(3)直线OQ 与线段BC 相交于点E ,当OBE ∆与ABC ∆相似时,求点Q 的坐标.24.如图,抛物线21 2y ax x c=++交x轴于A,B两点,交y轴于点C.直线122y x=--经过点A,C.(1)求抛物线的解析式;(2)点P是抛物线上一动点,过点P作x轴的垂线,交直线AC于点M,设点P的横坐标为m.①当PCM∆是直角三角形时,求点P的坐标;②作点B关于点C的对称点B',则平面内存在直线l,使点M,B,B'到该直线的距离都相等.当点P在y轴右侧的抛物线上,且与点B不重合时,请直接写出直线 : =+l y kx b的解析式.(k,b可用含m的式子表示)25.如图,抛物线24y ax bx =++交x 轴于3,0,()(,0)4A B -两点,与y 轴交于点C ,连接,AC BC .点P 是第一象限内抛物线上的一个动点,点P 的横坐标为m . (1)求此抛物线的表达式;(2)过点P 作PM x ⊥轴,垂足为点M ,PM 交BC 于点Q .试探究点P 在运动过程中,是否存在这样的点Q ,使得以,,A C Q 为顶点的三角形是等腰三角形.若存在,请求出此时点Q 的坐标,若不存在,请说明理由;(3)过点P 作PN BC ⊥,垂足为点N .请用含m 的代数式表示线段PN 的长,并求出当m 为何值时PN 有最大值,最大值是多少?26.如图,在平面直角坐标系中,Rt ABC ∆的边BC 在x 轴上,90ABC ∠=o ,以A 为顶点的抛物线2y x bx c =-++经过点(3,0)C ,交y 轴于点(0,3)E ,动点P 在对称轴上.(1)求抛物线解析式;(2)若点P 从A 点出发,沿A B →方向以1个单位/秒的速度匀速运动到点B 停止,设运动时间为t 秒,过点P 作PD AB ⊥交AC 于点D ,过点D 平行于y 轴的直线l 交抛物线于点Q ,连接,AQ CQ ,当t 为何值时,ACQ ∆的面积最大?最大值是多少?(3)若点M 是平面内的任意一点,在x 轴上方是否存在点P ,使得以点,,,P M E C 为顶点的四边形是菱形,若存在,请直接写出符合条件的M 点坐标;若不存在,请说明理由.27.如图1,在平面直角坐标系xOy 中,已知抛物线228y ax ax a =--与x 轴相交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点(0,4)C -.(1)点A 的坐标为__________,点B 的坐标为__________,线段AC 的长为__________,抛物线的解析式为__________.(2)点P 是线段BC 下方抛物线上的一个动点.①如果在x 轴上存在点Q ,使得以点B 、C 、P 、Q 为顶点的四边形是平行四边形.求点Q 的坐标. ②如图2,过点P 作PE CA P 交线段BC 于点E ,过点P 作直线x t =交BC 于点F ,交x 轴于点G ,记PE f =,求f 关于t 的函数解析式;当t 取m 和14(02)2m m -<<时,试比较f 的对应函数值1f 和2f 的大小.28.已知抛物线()22y a x c =-+经过点()2,0A 和 90,4C ⎛⎫⎪⎝⎭,与x 轴交于另一点B ,顶点为D . (1)求抛物线的解析式,并写出D 点的坐标;(2)如图,点,E F 分别在线段,AB BD 上(E 点不与,A B 重合),且DEF A ∠=∠,则DEF ∆能否为等腰三角形?若能,求出BE 的长;若不能,请说明理由;(3)若点P 在抛物线上,且PBDCBDS m S ∆∆=,试确定满足条件的点P 的个数.29.如图,抛物线26y ax ax =+(a 为常数,a >0)与x 轴交于O ,A 两点,点B 为抛物线的顶点,点D 的坐标为(t ,0)(﹣3<t <0),连接BD 并延长与过O ,A ,B 三点的⊙P 相交于点C . (1)求点A 的坐标;(2)过点C 作⊙P 的切线CE 交x 轴于点E .①如图1,求证:CE =DE ;②如图2,连接AC ,BE ,BO ,当3a =∠CAE =∠OBE 时,求11OD OE -的值30.如图,直线3y x =-交x 轴于点A ,交y 轴于点C ,点B 的坐标为(1,0),抛物线2(0)y ax bx c a =++≠经过,,A B C 三点,抛物线的顶点为点D ,对称轴与x 轴的交点为点E ,点E 关于原点的对称点为F ,连接CE ,以点F 为圆心,12CE 的长为半径作圆,点P 为直线3y x =-上的一个动点.(1)求抛物线的解析式; (2)求BDP ∆周长的最小值;(3)若动点P 与点C 不重合,点Q 为⊙F 上的任意一点,当PQ 的最大值等于32CE 时,过,P Q 两点的直线与抛物线交于,M N 两点(点M 在点N 的左侧),求四边形ABMN 的面积.。

2020年中考数学二次函数专题复习(含解析)

2020年中考数学二次函数专题复习(含解析)

2020年中考数学二次函数专题复习(真题试卷+详细解析答案,值得下载)考点回顾一、二次函数的概念和图像1、二次函数的概念一般地,如果)0,,(2≠++=a c b a c bx ax y 是常数,,那么y 叫做x 的二次函数。

)0,,(2≠++=a c b a c bx ax y 是常数,叫做二次函数的一般式。

2、二次函数的图像 二次函数的图像是一条关于ab x 2-=对称的曲线,这条曲线叫抛物线。

3、二次函数图像的画法五点法:(1)先根据函数解析式,求出顶点坐标,在平面直角坐标系中描出顶点M ,并用虚线画出对称轴(2)求抛物线c bx ax y ++=2与坐标轴的交点:当抛物线与x 轴有两个交点时,描出这两个交点A,B 及抛物线与y 轴的交点C ,再找到点C 的对称点D 。

将这五个点按从左到右的顺序连接起来,并向上或向下延伸,就得到二次函数的图像。

二、二次函数的解析式二次函数的解析式有三种形式:(1)一般式:)0,,(2≠++=a c b a c bx ax y 是常数,(2)顶点式:)0,,()(2≠+-=a k h a k h x a y 是常数,(3)当抛物线c bx ax y ++=2与x 轴有交点时,即对应二次好方程02=++c bx ax 有实根1x 和2x 存在时,根据二次三项式的分解因式))((212x x x x a c bx ax --=++,二次函数c bx ax y ++=2可转化为两根式))((21x x x x a y --=。

如果没有交点,则不能这样表示。

三、二次函数的最值如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即当ab x 2-=时,a b ac y 442-=最值。

如果自变量的取值范围是21x x x ≤≤,那么,首先要看ab 2-是否在自变量取值范围21x x x ≤≤内,若在此范围内,则当x=ab 2-时,a b ac y 442-=最值;若不在此范围内,则需要考虑函数在21x x x ≤≤范围内的增减性,如果在此范围内,y 随x 的增大而增大,则当2x x =时,c bx ax y ++=222最大,当1x x =时,c bx ax y ++=121最小;如果在此范围内,y 随x 的增大而减小,则当1x x =时,c bx ax y ++=121最大,当2x x =时,c bx ax y ++=222最小。

2020中考总复习-二次函数的实际应用

2020中考总复习-二次函数的实际应用

2020中考总复习-二次函数的实际应用1.铁岭市某商贸公司以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量y(千克)与每千克降价x(元)(0<x<20)之间满足一次函数关系,其图象如图所示:(1)求y与x之间的函数关系式;(2)商贸公司要想获利2090元,则这种干果每千克应降价多少元?(3)该干果每千克降价多少元时,商贸公司获利最大?最大利润是多少元?2.某水产基地种植某种食用海藻,从三月一日起的30周内,它的市场价格与上市时间的关系用图①线段表示;它的平均亩产量与时间的关系用图①线段表示;它的每亩平均成本与上市时间的关系用图①抛物线表示.(1)写出图①、图①所表示的函数关系式;(2)若市场价×亩产量-亩平均成本= 每亩总利润,问哪一周上市的海藻利润最大?最大利润是多少?3.在高尔夫球训练中,运动员在距球洞10m 处击球,其飞行路线满足抛物线2155b y x x =-+,其图象如图所示,其中球飞行高度为()ym ,球飞行的水平距离为()x m ,球落地时距球洞的水平距离为2m .(1)求b 的值;(2)若运动员再一次从此处击球,要想让球飞行的最大高度不变且球刚好进洞,则球的飞行路线应满足怎样的抛物线,求抛物线的解析式;(3)若球洞4m 处有一横放的1.2m 高的球网,球的飞行路线仍满足抛物线2155b y x x =-+,要使球越过球网,又不越过球洞(刚好进洞),求b 的取值范围.4.扬州某风景区门票价格如图所示,有甲、乙两个旅行团队,计划在端午节期间到该景点游玩,两团队游客人数之和为100人,若乙团队人数不超过40人,甲团队人数不超过80人,设甲团队人数为x 人,如果甲、乙两团队分别购买门票,两团队门票款之和为y 元.(1)直接写出y 关于x 的函数关系式,并写出自变量x 的取值范围;(2)计算甲、乙两团队联合购票比分别购票最多可节约多少钱?(3)该景区每年11月、12月为淡季,景区决定在这两个月实行门票打五折的优惠(打折期间不售团体票),以吸引大量游客,提高景区收入;景区经过调研发现,随着接待游客数的增加,景区的运营成本也随之增加,景区运营成本Q (万元)与两个月游客总人数t (万人)之间满足函数关系式:218004Q t =+;两个月游客总人数t (万人)满足:150200t ≤≤,且淡季每天游客数基本相同;为了获得最大利润,景区决定通过网络预约购票的方式控制淡季每天游客数,请问景区的决定是否正确?并说明理由.(利润=门票收入-景区运营成本)5.我市某乡镇在“精准扶贫”活动中销售农产品,经分析发现月销售量y (万件与月份x (月)的关系为:()()816,20712,x x x y x x x ⎧+≤≤⎪=⎨-+≤≤⎪⎩为整数为整数每件产品的利润z (元)与月份x (月)的关系如下表:()1请你根据表格直接写出每件产品利润z (元) 与月份x (月)的函数关系式;()2若月利润w (万元) =当月销售量y (万件)x 当月每件产品的利润z(元),求月利润w (万元)与月份x (月)的关系式; ()3当x 为何值时,月利润w 有最大值,最大值为多少?6.某商场销售一种进价为每件10元的日用商品,经调查发现,该商品每天的销售量y (件)与销售单价x (元)满足10400y x =-+,设销售这种商品每天的利润为W (元).(1)求W 与x 之间的函数关系式;(2)在保证销售量尽可能大的前提下,该商场每天还想获得2000元的利润,应将销售单价定为多少元?(3)当每天销售量不少于50件,且销售单价至少为32元时,该商场每天获得的最大利润是多少?7.某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边周长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边长为x 米.(1)若苗圃园的面积为72平方米,求x;(2)若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由;8.把一根长为120cm的铁丝剪成两段,并把每一段铁丝围成一个正方形.若设围成的一个正方形的边长为xcm.650cm,则剪出的两段铁丝长分别是多少?(1)要使这两个正方形的面积的和等于2(2)剪出的两段铁丝长分别是多少cm时,这两个正方形的面积和最小?最小值是多少?9.中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边用长为30米的篱笆围成,已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x米.(1)若苗圃园的面积为72平方米,求x;(2)若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由;(3)当这个苗圃园的面积不小于100平方米时,直接写出x的取值范围.10.为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.李明按照相关政策投资销售本市生产的一种新型节能灯.已知这种节能灯的成本价为每件8元,出厂价为每件10元,每月销售量y(件)与销售单价x(元)之间的关系近似满足一次函数:y=-10x+500.(1)李明在开始创业的第一个月将销售单价定为20元,那么政府这个月为他承担的总差价为多少元?(2)设李明获得的利润为w(元),当销售单价定为多少元时,每月可获得最大利润?(3)物价部门规定,这种节能灯的销售单价不得高于25元.如果李明想要每月获得的利润不低于3410元,那么政府为他承担的总差价最少为多少元?11.小明将小球沿与地面成一定角度的方向击出,在不考虑空气阻力的条件下,小球的飞行高度y(m)与它的飞行时间x(s)满足二次函数关系,y与x的几组对应值如下表所示:(①)求y关于x的函数解析式(不要求写x的取值范围);(①)问:小球的飞行高度能否达到22m?请说明理由.12.某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1m宽的门,已知计划中的材料可建墙体(不包括门)总长为27m,则能建成的饲养室面积最大为多少?13.如图:梯形ABCD中,AD①BC,①ABC=90°,AD=9,BC=12,AB=6,在线段BC上任取一点P,连接DP,作射线PE①DP,PE与直线AB交于点E.(1)试确定当CP=3时,点E的位置;(2)若设CP=x ,BE=y ,试写出y 关于自变量x 的函数关系式.14.小明投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y (件)与销售单价x (元)之间的关系可近似的看作一次函数:y =﹣10x+500,在销售过程中销售单价不低于成本价,而每件的利润不高于成本价的60%.(1)设小明每月获得利润为w (元),求每月获得利润w (元)与销售单价x (元)之间的函数关系式,并确定自变量x 的取值范围.(2)当销售单价定为多少元时,每月可获得最大利润?每月的最大利润是多少?(3)如果小明想要每月获得的利润不低于2000元,那么小明每月的成本最少需要多少元?(成本=进价×销售量)15.如图①,在等边ABC ∆中,6AB =,动点P 从点A 出发,沿AB 边以每秒1个单位的速度向终点B 运动,同时动点Q 从点B 出发,以每秒2个单位的速度沿着B C A →→方向运动.连结PQ ,设点P 运动的时间t 秒.(1)用含t 的代数式表示线段QC 的长.(2)当PQ AC ⊥时,求t 的值.(3)若BPQ ∆的面积为S ,求S 与t 之间的函数关系式.(4)如图①,当点Q 在C 、A 之间时,连结PC ,ABC ∆被分割成APQ ∆、PCQ ∆、PBC ∆,当其中的某两个三角形面积相等时,直接写出t 的值.16.如图,在平面直角坐标系中,四边形OABC 为菱形,点C 的坐标为(8,0),①AOC =60°,垂直于x 轴的直线l 从y 轴出发,沿x 轴正方向以每秒1个单位长度的速度运动,设直线l 与菱形OABC 的两边分别交于点M 、N (点M 在点N 的上方).(1)求A 、B 两点的坐标;(2)设①OMN 的面积为S ,直线l 运动时间为t 秒(0≤t ≤12),求S 与t 的函数表达式;(3)在(2)的条件下,t为何值时,S最大?并求出S的最大值.17.某市精准扶贫工作已经进入攻坚阶段,贫困的张大爷在某单位的帮扶下,把一片坡地改造后种植了大樱桃.今年正式上市销售,在销售30天中,第一天卖出20千克,为了扩大销量,在一段时间内采取降价措施,每天比前一天多卖出4千克.当售价不变时,销售量也不发生变化.已知种植销售大樱桃的成本为18元/千克,设第x天的销售价y元/千克,y与x函数关系如下表:表一表二(1)求y与x函数解析式;(2)求销售大樱桃第几天时,当天的利润最大?最大利润是多少?(3)销售大樱桃的30天中,当天利润不低于950元的共有多少天?18.已知Rt①OAB,①OAB=90o,①ABO=30o,斜边OB=4,将Rt①OAB绕点O顺时针旋转60o,如图1,连接BC.(1)ΔOBC的形状是;(2)如图1,连接AC,作OP①AC,垂足为P,求OP的长度;(3)如图2,点M、N同时从点O出发,在①OCB边上运动,M沿O→C→B路径匀速运动,N沿O→B→C 路径匀速运动,当两点相遇时运动停止.已知点M的运动速度为1.5单位/秒,点N的运动速度为1单位/秒.设运动时间为x秒,①OMN的面积为y,求当x为何值时y取得最大值?最大值为多少?(结果可保留根号) .19.如图所示,已知边长为4的正方形钢板有一个角锈蚀,其中AF=2,BF=1,为了合理利用这块钢板.将在五边形EABCD内截取一个矩形块MDNP,使点P在AB上,且要求面积最大,求钢板的最大利用率.参考答案1.(1)y =10x+100;(2)这种干果每千克应降价9元;(3)该干果每千克降价5元时,商贸公司获利最大,最大利润是2250元.2.(1)11315y x =-+;220903y x =+;(2)第563周上市的海藻利润最大,最大利润是29119元. 3.(1)8b =;(2)20.128(5) 3.2y x =--+;(3)710b ≤≤4.(1)当6080x ≤≤时,()1301501002015000y x x x =+-=-+;(2)1800元;(3)利润随人数的增大而减小,故景区的决定是正确的5.(1)()()20,18,10,912,x x x z x x ⎧-+≤≤⎪=⎨≤≤⎪⎩为整数为整数;(2)()()()221216016,4040078,10200912,x x x x w x x x x x x x ⎧-++≤≤⎪=-+≤≤⎨⎪-+≤≤⎩为整数为整数为整数;(3)6x =时,w 有最大值为1966.(1)W =2105004000x x -+-;(2)当20x =时,既能保证销售量大,又可以每天获得2000元的利润;(3)当3235x ≤≤时,该商场每天获得的最大利润是1760元7.(1)12(2)当x=11时,y 最小=88平方米8.(1)这根铁丝剪成两段后的长度分别是20cm ,100cm ;(2)剪成两段均为60cm 的长度时面积之和最小,最小面积和为2450cm9.(1) x=12;(2)苗圃园的面积最大为112.5平方米,最小为88平方米;(3) 6≤x≤10.10.(1)600元;(2)单价定为29元,每月获得最大利润4410元;(3)500元11.(①) y =﹣5x 2+20x ;(①)小球的飞行高度不能达到22m ,理由见解析.12.饲养室的最大面积为75平方米13.(1)点E 与点B 重合;(2)当点P 在BF 上:21(1536)6y x x =--+;当点P 在CF 上:21(1536)6y x x =-+ 14.(1)21070010000w x x =-+-(20≤x≤32);(2)当销售单价定为32元时,每月可获得最大利润,最大利润是2160元;(3)3600.15.(1)当0≤t≤3时,62QC t =-,当3<t≤6时,26QC t =-;(2)245t =;(3)2S =+,26)S t =-;(4)92t =或16.(1)A (4,),B (12,;(2)①0≤t ≤4时,S t 2;①当4<t ≤8时,S =;①当8<t ≤12时,S t 2;(3)当t =8时,S 最大= 17.(1)1382y x =-+(120x ≤≤,x 为正整数),28y =(2130x ≤≤,x 为正整数);(2)销售大樱桃第18天时,当天的利润最大,最大利润为968元;(3)共有16天的利润不低于950元.18.(1)等边三角形;(2) ;(3) 83x = 时,y 有最大值,y =最大 19.80%。

中考数学考点17二次函数综合题总复习(解析版)

中考数学考点17二次函数综合题总复习(解析版)

二次函数综合题【命题趋势】在中考中.二次函数综合题每年必考点.特别是跟几何结合.经常在压轴题中出现。

【中考考查重点】一、线段问题二、面积问题三、等腰、直角三角形问题四、特殊四边形问题五、相似三角形问题六、与角度有关问题考点一:线段问题1.(2021秋•龙沙区期末)如图.抛物线y=ax2+bx+c与x轴交于A(﹣1.0).B(3.0)两点.与y轴交于点C(0.3).抛物线的顶点为D.连接BC.P为线段BC上的一个动点(P不与B、C重合).过点P作PF∥y轴.交抛物线于点F.交x轴于点G.(1)求抛物线的解析式;(2)当PG=2PF时.求点P的坐标;【答案】(1)y=﹣x2+2x+3 (2)P(.)【解答】解:(1)将A(﹣1.0).B(3.0).C(0.3)代入y=ax2+bx+c.∴.∴.∴y=﹣x2+2x+3;(2)设直线BC的解析式为y=kx+b'.∴.∴.∴y=﹣x+3.设P(t.﹣t+3).则F(t.﹣t2+2t+3).G(t.0).∴PG=﹣t+3.PF=﹣t2+2t+3+t﹣3=﹣t2+3t.∵PG=2PF.∴﹣t+3=﹣2t2+6t.∴t=或t=3(舍).∴P(.);考点二:面积问题2.(2021秋•梅里斯区期末节选)如图.在平面直角坐标系中.已知直线y=x﹣2与x轴交于点A.与y轴交于点B.过A、B两点的抛物线y=ax2+bx+c与x轴交于另一点C(﹣1.0).(1)求抛物线的解析式和顶点坐标;(2)探究:在抛物线上直线AB下方是否存在一点P.使△ABP面积最大?若存在.请求出点P的坐标.若不存在.请说明理由;【答案】(1)y=x2﹣x﹣2 .(.﹣)(2)P(2.﹣3)【解答】解:(1)直线y=x﹣2与x轴交于点A.与y轴交于点B.∴A(4.0)、B(0.﹣2).将A、B、C点坐标分别代入二次函数解析式y=ax2+bx+c.∴.∴.∴二次函数解析式为:y=x2﹣x﹣2.化成顶点式为:y=(x﹣)2﹣.∴抛物线的顶点坐标为(.﹣);(2)存在.理由如下:设P点坐标为(x.x2﹣x﹣2)(0<x<4).过点P作PD⊥AC于点D.交AB于点E.则E的坐标表示为(x.x﹣2).∴S△ABP==×4×(x﹣2﹣x2+x+2)=﹣x2+4x=﹣(x﹣2)2+4.∵a=﹣1<0.∴当x=2时S△ABP有最大值.求得P(2.﹣3);考点三:等腰、直角三角形问题3.(2021秋•龙凤区校级期末)如图.已知抛物线y=ax2+bx﹣8的图象与x轴交于A(2.0)和B(﹣8.0).与y轴交于点C.(1)求该抛物线的解析式;(2)点F是直线BC下方抛物线上的一点.当△BCF的面积最大时.在抛物线的对称轴上找一点P.使得△BFP的周长最小.请求出点F的坐标和点P的坐标;(3)在(2)的条件下.是否存在这样的点Q(0.m).使得△BFQ为等腰三角形?如果有.请直接写出点Q的坐标;如果没有.请说明理由.【答案】(1)(2)F(﹣4.﹣12).P(﹣3.﹣10)(3)Q1(0.﹣4)或或或Q4(0.0).【解答】解:(1)将A(2.0)、B(﹣8.0)代入解析式.得.解得:.∴.(2)当x=0时.y=﹣8.∴C(0.﹣8).设直线BC的解析式为y=kx+b.则.解得:.∴直线BC的解析式为y=﹣x﹣8.设.如图1.作FG垂直于x轴交BC于G.则G(n.﹣n﹣8).∴.∵=4FG.∴当FG取得最大值时.S△BCF取得最大值.∴当时.FG取得最大值8.S△BCF取得最大值32.∴F(﹣4.﹣12).作F关于对称轴对称的点F'.∴F'(﹣2.﹣12).当F'、B、P共线时.PB+PF有最小值.此时C△BFP有最小值.设y BF'=ax+b.则.解得:.∴y BF'=﹣2x﹣16.又∵x p=﹣3.∴P(﹣3.﹣10).综上所述.F(﹣4.﹣12).P(﹣3.﹣10).(3)存在.理由如下.①如图2.以BF为底边时.点Q1在BF的中垂线上.∴BF的中垂线与y轴交点即为所求.连接BQ1.FQ1.作FN垂直于y轴.∵Q1B=Q1F.设OQ1=t.则Q1N=12﹣t.∵FN=4.BO=8..∴42+(12﹣t)2=82+t2.解得:t=4.∴Q1(0.﹣4);②以BF为腰时..(i)当BF=BQ2时.设OQ2=s.则.∴160=82+s2.解得:.当时..当时.;(ii)当BF=FQ4时:∵B(﹣8.0).F(﹣4.﹣12).O(0.0).∴F在线段BO的中垂线上.∴FB=FO.∴Q4(0.0);由Q4关于N点对称得Q5(0.﹣24).∵FN⊥y轴.∴FO=BF=FQ5.但此时B、F、Q5三点共线.不合题意;综上所述.点Q的坐标为Q1(0.﹣4)或或或Q4(0.0).4.(2021秋•黄埔区期末)如图.抛物线y=mx2﹣4mx﹣5m(m>0)与x轴交于A、B两点.与y轴交于C点.(1)求抛物线顶点M的坐标(用含m的代数式表示).A.B两点的坐标;(2)是否存在使△BCM为直角三角形的抛物线?若存在.请求出;若不存在.请说明理由.【答案】(1)A.B两点的坐标为(﹣1.0)、(5.0)(2)和【解答】解:(1)∵y=m(x﹣2)2﹣9m.∴抛物线顶点M的坐标为(2.﹣9m).∵抛物线与x轴交于A、B两点.∴当y=0时.mx2﹣4mx﹣5m=0.∵m>0.∴x2﹣4x﹣5=0.解得x1=﹣1.x2=5.∴A.B两点的坐标为(﹣1.0)、(5.0).(2)存在使△BCM为直角三角形的抛物线.过点C作CN⊥DM于点N.则△CMN为直角三角形.CN=OD=2.DN=OC=5m.∴MN=DM﹣DN=4m.∴CM2=CN2+MN2=4+16m2.在Rt△OBC中.BC2=OB2+OC2=25+25m2.在Rt△BDM中.BM2=BD2+DM2=9+81m2.①如果△BCM是直角三角形.且∠BMC=90°时.CM2+BM2=BC2.即4+16m2+9+81m2=25+25m2.解得.∵m>0.∴.∴存在抛物线使得△BCM是直角三角形;②如果△BCM是直角三角形.且∠BCM=90°时.BC2+CM2=BM2.即25+25m2+4+16m2=9+81m2.解得.∵m>0.∴.∴存在抛物线使得△BCM是Rt△;③∵25+25m2>4+16m2.9+81m2>4+16m2.∴以∠CBM为直角的直角三角形不存在.综上.存在抛物线和使△BCM是直角三角形.特考点四:特殊四边形问题5.(2021秋•龙江县期末节选)已知抛物线y=ax2+bx+3的图象与x轴相交于点A和点B(1.0).与y轴交于点C.连接AC.有一动点D在线段AC上运动.过点D作x轴的垂线.交抛物线于点E.交x轴于点F.AB=4.设点D的横坐标为m.(1)求抛物线的解析式;(2)当m=﹣2时.在平面内是否存在点Q.使以B.C.E.Q为顶点的四边形为平行四边形?若存在.请直接写出点Q的坐标;若不存在.请说明理由.【答案】(1)y=﹣x2﹣2x+3 (2)Q点为(3.0)或(﹣1.0)或(﹣3.6)【解答】解:(1)∵点B(1.0).AB=4.∴A(﹣3.0).将B(1.0).A(﹣3.0)代入y=ax2+bx+3.∴.∴.∴y=﹣x2﹣2x+3;(2)存在.理由如下:∵m=﹣2.∴E(﹣2.3).设Q(n.t).①当BC为平行四边形的对角线时..解得.∴Q(3.0);②当BE为平行四边形的对角线时..解得.∴Q(﹣1.0);③当BQ为平行四边形的对角线时..解得.∴Q(﹣3.6);综上所述:当Q点为(3.0)或(﹣1.0)或(﹣3.6)时.以B.C.E.Q为顶点的四边形为平行四边形.6.(2021秋•江西月考)如图.抛物线y=﹣x2+3x+m与x轴的一个交点为A(4.0).另一交点为B.且与y轴交于点C.连接AC.(1)求m的值及该抛物线的对称轴;(2)若点P在直线AC上.点Q是平面内一点.是否存在点Q.使以点A、点B、点P、点Q为顶点的四边形为正方形?若存在.请直接写出Q点的坐标;若不存在.请说明理由.【答案】(1)m=4 y=﹣(x﹣)2+(2)(4.5)或(.﹣).【解答】解:(1)把A(4.0)代入二次函数y=﹣x2+3x+m得:∴﹣16+12+m=0.解得:m=4.∴二次函数的解析式为:y=﹣x2+3x+4=﹣(x﹣)2+.∴二次函数对称轴为直线x=;(2)存在.理由:①当AB是正方形的边时.此时.对应的正方形为ABP′Q′.∵A(4.0).AB=5.∴点Q′的坐标为(4.5);②当AB是正方形的对角线时.此时.对应的矩形为APBQ.∵AB、PQ是正方形对角线.∴线段AB和线段PQ互相垂直平分.∴点Q在抛物线对称轴上.且到x轴的距离为.∴点Q的坐标为(.﹣).故点Q的坐标为(4.5)或(.﹣).考点五:相似三角形问题7.(2021秋•建华区期末节选)抛物线y=x2+bx+c经过A、B(1.0)、C(0.﹣3)三点.点D 为抛物线的顶点.连接AD、AC、BC、DC.(1)求抛物线的解析式;(2)在线段AC上找一点M.使△AOM∽△ABC.请你直接写出点M的坐标;【答案】(1)y=x2+2x﹣3 (2)(.)【解答】解(1)∵抛物线y=x2+bx+c经过B(1.0)、C(0.﹣3).∴.解得.∴抛物线的解析式为:y=x2+2x﹣3.(2)∵△AOM∽△ABC.∴∠AOM=∠ABC.∴OM∥BC.设直线BC的解析式为y=mx+n.直线OM的解析式为y=mx.∴.解得.∴直线BC的解析式为y=3x﹣3.直线OM的解析式为y=3x.联立.解得.∴点M的坐标为(.);考点六:与角度有关的问题8.(2021秋•郧西县期末)如图.抛物线y=ax2+bx﹣3与x轴交于点A(1.0)、B(3.0).与y 轴交于点C.连接AC.BC.(1)求抛物线的函数解析式;(2)Q为抛物线上一点.若∠ACQ=45°.求点Q的坐标.【答案】(1)y=﹣x2+4x﹣3 (2)Q(.)【解答】(1)把A(1.0)、B(3.0)代入y=ax2+bx﹣3.得.解得.∴抛物线的解析式是y=﹣x2+4x﹣3.(2)如图2.点Q在抛物线上.且∠ACQ=45°.过点A作AD⊥CQ于点D.过点D作DF⊥x轴于点F.过点C作CE⊥DF于点E.∵∠ADC=90°.∴∠DAC=∠DCA=45°.∴CD=AD.∵∠E=∠AFD=90°.∴∠ADF=90°﹣∠CDE=∠DCE.∴△CDE≌△DAF(AAS).∴DE=AF.CE=DF.∵∠E=∠OFE=∠COF=90°.∴四边形OCEF是矩形.∴OF=CE.EF=OC=3.设DE=AF=n.∵OA=1.∴CE=DF=OF=n+1.∵DF=3﹣n.∴n+1=3﹣n.解得n=1.∴DE=AF=1.∴CE=DF=OF=2.∴D(2.﹣2).设直线CQ的函数解析式为y=px﹣3.则2p﹣3=﹣2.解得p=.∴直线CD的函数解析式为y=x﹣3.由.得.(不符合题意.舍去).∴点Q的坐标为(.)3.(2021•郴州)将抛物线y=ax2(a≠0)向左平移1个单位.再向上平移4个单位后.得到抛物线H:y=a(x﹣h)2+k.抛物线H与x轴交于点A.B.与y轴交于点C.已知A(﹣3.0).点P是抛物线H上的一个动点.(1)求抛物线H的表达式;(2)如图1.点P在线段AC上方的抛物线H上运动(不与A.C重合).过点P作PD⊥AB.垂足为D.PD交AC于点E.作PF⊥AC.垂足为F.求△PEF的面积的最大值;(3)如图2.点Q是抛物线H的对称轴l上的一个动点.在抛物线H上.是否存在点P.使得以点A.P.C.Q为顶点的四边形是平行四边形?若存在.求出所有符合条件的点P的坐标;若不存在.说明理由.【答案】(1)y=﹣(x+1)2+4 (2)m=﹣时.S△PEF最大值=×()2=(3)P的坐标为(2.﹣5)或(﹣4.﹣5)或(﹣2.3)【解答】解:(1)由题意得抛物线的顶点坐标为(﹣1.4).∴抛物线H:y=a(x+1)2+4.将A(﹣3.0)代入.得:a(﹣3+1)2+4=0.解得:a=﹣1.∴抛物线H的表达式为y=﹣(x+1)2+4;(2)如图1.由(1)知:y=﹣x2﹣2x+3.令x=0.得y=3.∴C(0.3).设直线AC的解析式为y=mx+n.∵A(﹣3.0).C(0.3).∴.解得:.∴直线AC的解析式为y=x+3.设P(m.﹣m2﹣2m+3).则E(m.m+3).∴PE=﹣m2﹣2m+3﹣(m+3)=﹣m2﹣3m=﹣(m+)2+.∵﹣1<0.∴当m=﹣时.PE有最大值.∵OA=OC=3.∠AOC=90°.∴△AOC是等腰直角三角形.∴∠ACO=45°.∵PD⊥AB.∴∠ADP=90°.∴∠ADP=∠AOC.∴PD∥OC.∴∠PEF=∠ACO=45°.∵PF⊥AC.∴△PEF是等腰直角三角形.∴PF=EF=PE.∴S△PEF=PF•EF=PE2.∴当m=﹣时.S△PEF最大值=×()2=;(3)①当AC为平行四边形的边时.则有PQ∥AC.且PQ=AC.如图2.过点P作对称轴的垂线.垂足为G.设AC交对称轴于点H.则∠AHG=∠ACO=∠PQG.在△PQG和△ACO中..∴△PQG≌△ACO(AAS).∴PG=AO=3.∴点P到对称轴的距离为3.又∵y=﹣(x+1)2+4.∴抛物线对称轴为直线x=﹣1.设点P(x.y).则|x+1|=3.解得:x=2或x=﹣4.当x=2时.y=﹣5.当x=﹣4时.y=﹣5.∴点P坐标为(2.﹣5)或(﹣4.﹣5);②当AC为平行四边形的对角线时.如图3.设AC的中点为M.∵A(﹣3.0).C(0.3).∴M(﹣.).∵点Q在对称轴上.∴点Q的横坐标为﹣1.设点P的横坐标为x.根据中点公式得:x+(﹣1)=2×(﹣)=﹣3.∴x=﹣2.此时y=3.∴P(﹣2.3);综上所述.点P的坐标为(2.﹣5)或(﹣4.﹣5)或(﹣2.3).1.(2021秋•长兴县月考)如图.在平面直角坐标系xOy中.抛物线y=﹣x2+bx+c与x轴交于A(1.0)和B(3.0).点D为线段BC上一点.过点D作y轴的平行线交抛物线于点E.连结BE.(1)求抛物线的解析式;(2)当△BDE为直角三角形时.求线段DE的长度;(3)在抛物线上是否存在这样的点P.使得∠ACP=45°.若存在.求出点P的坐标;若不存在.请说明理由.【答案】(1)y=﹣x2+4x﹣3 (2)DE的长度为2 (3)P(.﹣)【解答】解:(1)∵抛物线y=﹣x2+bx+c与x轴交于A(1.0)和B(3.0).∴.解得:.∴抛物线的解析式为y=﹣x2+4x﹣3.(2)令x=0.则y=﹣3.∴C(0.﹣3).设直线BC的解析式为y=kx+n.∴.解得:.∴直线BC的解析式为y=x﹣3.∵点D为线段BC上一点.∴设D(m.m﹣3).则点E(m.﹣m2+4m﹣3).∴DE=(﹣m2+4m﹣3)﹣(m﹣3)=﹣m2+3m.∵B(3.0).C(0.﹣3).∴OB=OC=3.∴∠OBC=∠OCB=45°.∵DE∥y轴.∴∠EDB=∠OCB=45°.∴点D不可能是直角的顶点.①当点B为直角的顶点时.设DE交x轴于点F.∵∠BDE=45°.∠EBD=90°.∴∠DEB=45°.∴△BED为等腰直角三角形.∴EF=FD=DE.∵DF=3﹣m.∴3﹣m=(﹣m2+3m).解得:m=2或3(m=3不合题意.舍去).∴m=2.∴DE=﹣22+3×2=﹣4+6=2.②当点E为直角顶点时.此时边EB在x轴上.点E与点A重合.∴m=1.∴DE=﹣12+3×1=﹣1+3=2.综上.当△BDE为直角三角形时.线段DE的长度为2.(3)在抛物线上存在点P.使得∠ACP=45°.理由:∵A(1.0).∴OA=1.∴ABOB﹣OA=2.∴AC==.延长CP交x轴于点F.如图.由(2)知:∠OBC=∠OCB=45°.∴∠AFC+∠FCB=45°.∵∠ACP=45°.∴∠ACB+∠FCB=∠ACP=45°.∴∠AFC=∠ACB.∵∠F AC=∠CAB.∴△AFC∽△ACB.∴.∴.∴AF=5.∴OF=OA+AF=6.∴F(6.0).设直线CF的解析式为y=dx+e.∴.解得:.∴直线FC的解析式为y=x﹣3.∴.解得:..∴点P的坐标为(.﹣).2.(2021秋•新荣区月考)如图1.在平面直角坐标系中.二次函数y=ax2+bx+c的图象与x轴交于点A(﹣1.0).B(4.0).与y轴交于C(0.4).(1)求该二次函数的解析式.(2)二次函数位于x轴上方的图象上是否存在点P.使得S△BOP=6S△AOC?如果存在.请求出点P的坐标;若不存在.请说明理由.(3)如图2.D为线段BC上的一个动点.过点D作DE∥y轴.交二次函数的图象于点E.求线段DE长度的最大值.【答案】(1)y=﹣x2+3x+4 (2)P(1.6)或P(2.6)(3)当m=2时.ED有最大值4【解答】解:(1)将点A(﹣1.0).B(4.0).C(0.4)代入y=ax2+bx+c.得.解得.∴y=﹣x2+3x+4;(2)存在.理由如下:∵A(﹣1.0).B(4.0).C(0.4).∴OB=4.AO=1.CO=4.∴S△ACO=×1×4=2.∵S△BOP=6S△AOC.∴S△BOP=12.设P(t.﹣t2+3t+4).∴S△BOP=12=×4×(﹣t2+3t+4).解得t=1或t=2.∴P(1.6)或P(2.6);(3)设直线BC的解析式为y=kx+b.∴.解得.∴y=﹣x+4.设D(m.﹣m+4).则E(m.﹣m2+3m+4).∴ED=﹣m2+3m+4+m﹣4=﹣m2+4m=﹣(m﹣2)2+4.∵D为线段BC上的一个动点.∴0≤m≤4.∴当m=2时.ED有最大值41.(2021•内江)如图.抛物线y=ax2+bx+c与x轴交于A(﹣2.0)、B(6.0)两点.与y轴交于点C.直线l与抛物线交于A、D两点.与y轴交于点E.点D的坐标为(4.3).(1)求抛物线的解析式与直线l的解析式;(2)若点P是抛物线上的点且在直线l上方.连接P A、PD.求当△P AD面积最大时点P 的坐标及该面积的最大值;(3)若点Q是y轴上的点.且∠ADQ=45°.求点Q的坐标.【答案】(1)y=﹣x2+x+3,y=x+1 (2)△P AD的面积的最大值为.P(1.)(3)Q的坐标为(0.)或(0.﹣9)【解答】解:(1)∵抛物线y=ax2+bx+c与x轴交于A(﹣2.0)、B(6.0)两点.∴设抛物线的解析式为y=a(x+2)(x﹣6).∵D(4.3)在抛物线上.∴3=a(4+2)×(4﹣6).解得a=﹣.∴抛物线的解析式为y=﹣(x+2)(x﹣6)=﹣x2+x+3.∵直线l经过A(﹣2.0)、D(4.3).设直线l的解析式为y=kx+m(k≠0).则.解得..∴直线l的解析式为y=x+1;(2)如图1中.过点P作PK∥y轴交AD于点K.设P(m.﹣m2+m+3).则K(m.m+1).∵S△P AD=•(x D﹣x A)•PK=3PK.∴PK的值最大值时.△P AD的面积最大.∵PK=﹣m2+m+3﹣m﹣1=﹣m2+m+2=﹣(m﹣1)2+.∵﹣<0.∴m=1时.PK的值最大.最大值为.此时△P AD的面积的最大值为.P(1.).(3)如图2中.将线段AD绕点A逆时针旋转90°得到AT.则T(﹣5.6).设DT交y轴于点Q.则∠ADQ=45°.∵D(4.3).∴直线DT的解析式为y=﹣x+.∴Q(0.).作点T关于AD的对称点T′(1.﹣6).则直线DT′的解析式为y=3x﹣9.设DQ′交y轴于点Q′.则∠ADQ′=45°.∴Q′(0.﹣9).综上所述.满足条件的点Q的坐标为(0.)或(0.﹣9).2.(2021•西藏)在平面直角坐标系中.抛物线y=﹣x2+bx+c与x轴交于A.B两点.与y轴交于点C.且点A的坐标为(﹣1.0).点C的坐标为(0.5).(1)求该抛物线的解析式;(2)如图(甲).若点P是第一象限内抛物线上的一动点.当点P到直线BC的距离最大时.求点P的坐标;(3)图(乙)中.若点M是抛物线上一点.点N是抛物线对称轴上一点.是否存在点M使得以B.C.M.N为顶点的四边形是平行四边形?若存在.请求出点M的坐标;若不存在.请说明理由.【答案】(1)y=﹣x2+4x+5 (2)P(.)(3)M的坐标为:(3.8)或(﹣3.﹣16)或(7.﹣16)【解答】解:(1)将A的坐标(﹣1.0).点C的坐(0.5)代入y=﹣x2+bx+c得:.解得.∴抛物线的解析式为y=﹣x2+4x+5;(2)过P作PD⊥x轴于D.交BC于Q.过P作PH⊥BC于H.如图:在y=﹣x2+4x+5中.令y=0得﹣x2+4x+5=0.解得x=5或x=﹣1.∴B(5.0).∴OB=OC.△BOC是等腰直角三角形.∴∠CBO=45°.∵PD⊥x轴.∴∠BQD=45°=∠PQH.∴△PHQ是等腰直角三角形.∴PH=.∴当PQ最大时.PH最大.设直线BC解析式为y=kx+5.将B(5.0)代入得0=5k+5.∴k=﹣1.∴直线BC解析式为y=﹣x+5.设P(m.﹣m2+4m+5).(0<m<5).则Q(m.﹣m+5).∴PQ=(﹣m2+4m+5)﹣(﹣m+5)=﹣m2+5m=﹣(m﹣)2+.∵a=﹣1<0.∴当m=时.PQ最大为.∴m=时.PH最大.即点P到直线BC的距离最大.此时P(.);(3)存在.理由如下:抛物线y=﹣x2+4x+5对称轴为直线x=2.设M(s.﹣s2+4s+5).N(2.t).而B(5.0).C(0.5).①以MN、BC为对角线.则MN、BC的中点重合.如图:∴.解得.∴M(3.8).②以MB、NC为对角线.则MB、NC的中点重合.如图:∴.解得.∴M(﹣3.﹣16).③以MC、NB为对角线.则MC、NB中点重合.如图:.解得.综上所述.M的坐标为:(3.8)或(﹣3.﹣16)或(7.﹣16).3.(2021•湘潭)如图.一次函数y=x﹣图象与坐标轴交于点A、B.二次函数y=x2+bx+c图象过A、B两点.(1)求二次函数解析式;(2)点B关于抛物线对称轴的对称点为点C.点P是对称轴上一动点.在抛物线上是否存在点Q.使得以B、C、P、Q为顶点的四边形是菱形?若存在.求出Q点坐标;若不存在.请说明理由.【答案】(1)y=x2﹣x﹣(2)Q的坐标为:(1.﹣)或(﹣1.0)或(3.0)【解答】解:(1)在y=x﹣中.令x=0得y=﹣.令y=0得x=3.∴A(3.0).B(0.﹣).∵二次函数y=x2+bx+c图象过A、B两点.∴.解得.∴二次函数解析式为y=x2﹣x﹣;(2)存在.理由如下:由二次函数y=x2﹣x﹣可得其对称轴为直线x==1.设P(1.m).Q(n.n2﹣n﹣).而B(0.﹣).∵C与B关于直线x=1对称.①当BC、PQ为对角线时.如图:此时BC的中点即是PQ的中点.即.解得.∴当P(1.﹣).Q(1.﹣)时.四边形BQCP是平行四边形.由P(1.﹣).B(0.﹣).C(2.﹣)可得PB2==PC2.∴PB=PC.∴四边形BQCP是菱形.∴此时Q(1.﹣);②BP、CQ为对角线时.如图:同理BP、CQ中点重合.可得.解得.∴当P(1.0).Q(﹣1.0)时.四边形BCPQ是平行四边形.由P(1.0).B(0.﹣).C(2.﹣)可得BC2=4=PC2.∴四边形BCPQ是菱形.∴此时Q(﹣1.0);③以BQ、CP为对角线.如图:BQ、CP中点重合.可得.解得.∴P(1.0).Q(3.0)时.四边形BCQP是平行四边形.由P(1.0).B(0.﹣).C(2.﹣)可得BC2=4=PC2.∴四边形BCQP是菱形.∴此时Q(3.0);综上所述.Q的坐标为:(1.﹣)或(﹣1.0)或(3.0).4.(2021•济南)抛物线y=ax2+bx+3过点A(﹣1.0).点B(3.0).顶点为C.(1)求抛物线的表达式及点C的坐标;(2)如图1.点P在抛物线上.连接CP并延长交x轴于点D.连接AC.若△DAC是以AC为底的等腰三角形.求点P的坐标;(3)如图2.在(2)的条件下.点E是线段AC上(与点A.C不重合)的动点.连接PE.作∠PEF=∠CAB.边EF交x轴于点F.设点F的横坐标为m.求m的取值范围.【答案】(1)y= ﹣(x﹣1)2+4 ,C(1.4)(2)P()(3)﹣1<m≤【解答】解:(1)将点A(﹣1.0).点B(3.0)代入y=ax2+bx+3得:.解得:.∴抛物线的表达式为y=﹣x2+2x+3.∵y=﹣x2+2x+3=﹣(x﹣1)2+4.∴顶点C(1.4).(2)设AC交y轴于点F.连接DF.过点C作CE⊥x轴于点E.如图.∵A(﹣1.0).C(1.4).∴OA=1.OE=1.CE=4.∴OA=OE.AC==2.∵FO⊥AB.CE⊥AB.∴FO∥CE.∴OF=CE=2.F为AC的中点.∵△DAC是以AC为底的等腰三角形.∴DF⊥AC.∵FO⊥AD.∴△AFO∽△FDO.∴.∴.∴OD=4.∴D(4.0).设直线CD的解析式为y=kx+m.∴.解得:.∴直线CD的解析式为y=﹣.∴.解得:..∴P().(3)过点P作PH⊥AB于点H.如下图.则OH=.PH=.∵OD=4.∴HD=OD﹣OH=.∴PD==.∴PC=CD﹣PD=5﹣=.由(2)知:AC=2.设AF=x.AE=y.则CE=2﹣y.∵DA=DC.∴∠DAC=∠C.∵∠CAB+∠AEF+∠AFE=180°.∠AEF+∠PEF+∠CEP=180°.又∵∠PEF=∠CAB.∴∠CEP=∠AFE.∴△CEP∽△AFE.∴.∴.∴x=﹣+y=﹣+.∴当y=时.x即AF有最大值.∵OA=1.∴OF的最大值为﹣1=.∵点F在线段AD上.∴点F的横坐标m的取值范围为﹣1<m≤.1.(2021•宝鸡模拟)如图.已知抛物线y=﹣x2+bx+c与x轴交于点A(﹣1.0)和B.与y轴交于点C(0.3).(1)求此抛物线的解析式及点B的坐标;(2)设抛物线的顶点为D.连接CD、DB、CB、AC.①求证:△AOC∽△DCB;②在坐标轴上是否存在与原点O不重合的点P.使以P、A、C为顶点的三角形与△DCB 相似?若存在.请直接写出点P的坐标;若不存在.请说明理由.【答案】(1)B(3.0)(2)①略.②点P的坐标为(9.0)或(0.﹣).【解答】解:(1)把A(﹣1.0)、C(0.3)代入y=﹣x2+bx+c.得.解得.∴此抛物线的解析式为y=﹣x2+2x+3.当y=0时.则﹣x2+2x+3=0.解得x1=﹣1.x2=3.∴B(3.0).(2)①如图1.∵y=﹣x2+2x+3=﹣(x﹣1)2+4.∴抛物线的顶点D的坐标为(1.4).∵B(3.0).C(0.3).∴CD2=12+(4﹣3)2=2.CB2=32+32=18.BD2=(3﹣1)2+42=20.∴CD2+CB2=BD2=20.∴△DCB是直角三角形.且∠DCB=90°.∴∠AOC=∠DCB=90°.∵CD=.CB==3.OA=1.OC=3.∴==.==.∴=.∴△AOC∽△DCB.②存在.如图2.点P在x轴上.△COP∽△DCB.且∠COP=∠DCB=90°.∠OPC=∠CBD.∴=.∴OP===9.∴P(9.0);如图3.点P在y轴上.△P AC∽△DCB.且∠P AC=∠DCB=90°.∠ACP=∠CBD.∴.∵AC===.BD==.∴CP===.∴OP=﹣3=.∴P(0.﹣).综上所述.点P的坐标为(9.0)或(0.﹣).2.(2021•中山市模拟)如图.抛物线y=﹣x﹣3与x轴交于A.B两点(点A在点B的左侧).与y轴交于点C.直线l与抛物线交于A.D两点.与y轴交于点E.点D的坐标为(4.﹣3).(1)请直接写出A.B两点的坐标及直线l的函数表达式;(2)若点P是抛物线上的点.点P的横坐标为m(m≥0).过点P作PM⊥x轴.垂足为M.PM 与直线l交于点N.当点N是线段PM的三等分点时.求点P的坐标;(3)若点Q是y轴上的点.且∠ADQ=45°.求点Q的坐标.【答案】(1)y=﹣x﹣1 (2)P的坐标为(3.﹣)或(0.﹣3)(3)点Q的坐标为(0.9)或(0.﹣)【解答】解:(1)令y=0.得y=x2﹣x﹣3=0.解得.x=﹣2.或x=6.∴A(﹣2.0).B(6.0).设直线l的解析式为y=kx+b(k≠0).则.解得..∴直线l的解析式为y=﹣x﹣1;(2)如图1.根据题意可知.点P与点N的坐标分别为P(m.m2﹣m﹣3).N(m.﹣m ﹣1).∴PM=﹣m2+m+3.MN=m+1.NP=﹣m2+m+2.分两种情况:①当PM=3MN时.得﹣m2+m+3=3(m+1).解得.m=0.或m=﹣2(舍).∴P(0.﹣3);②当PM=3NP时.得﹣m2+m+3=3(﹣m2+m+2).解得.m=3.或m=﹣2(舍).∴P(3.﹣);∴综上所述:P的坐标为(3.﹣)或(0.﹣3);(3)∵直线l:y=﹣x﹣1与y轴交于点E.∴点E的坐标为(0.﹣1).分两种情况:①如图2.当点Q在y轴的正半轴上时.记为点Q1.过Q1作Q1H⊥AD于点H.则∠Q1HE=∠AOE=90°.∵∠Q1EH=∠AEO.∴△Q1EH∽△AEO.∴.即.∴Q1H=2HE.∵∠Q1DH=45°.∠Q1HD=90°.∴Q1H=DH.∴DH=2EH.∴HE=ED.连接CD.∵C(0.﹣3).D(4.﹣3).∴CD⊥y轴.∴ED===2.∴HE=ED=2.Q1H=2EG=4.∴Q1E==10.∴Q1O=Q1E﹣OE=9.∴Q1(0.9);②如图3.当点Q在y轴的负半轴上时.记为点Q2.过Q2作Q2G⊥AD于G.则∠Q2GE=∠AOE=90°.∵∠Q2EG=∠AEO.∴△Q2GE∽△AOE.∴.即.∴Q2G=2EG.∵∠Q2DG=45°.∠Q2GD=90°.∴∠DQ2G=∠Q2DG=45°.∴DG=Q2G=2EG.∴ED=EG+DG=3EG.由①可知.ED=2.∴3EG=2.∴EG=.∴Q2G=.∴EQ2==.∴OQ2=OE+EQ2=.∴Q2(0.﹣).综上.点Q的坐标为(0.9)或(0.﹣).3.(2020•长春模拟)如图.抛物线y=﹣x2+bx+c与x轴交于点A(1.0)、B(3.0)(点A在点B的左边).与y轴交于点C.过点C作CD∥x轴.交抛物线于点D.过点D作DE∥y轴.交直线BC于点E.点P在抛物线上.过点P作PQ∥y轴交直线CE于点Q.连接PB.设点P 的横坐标为m.PQ的长为d.(1)求抛物线对应的函数表达式;(2)求直线BC的函数表达式;(3)当0<m<4时.求d关于m的函数关系式;(4)当△PQB是等腰三角形时.直接写出m的值.【答案】(1)y=﹣x2+4x﹣3 (2)y=x﹣3(3)当0<m<3时.PQ=﹣m2+3m.当3≤m<4时.PQ=m2﹣3m;(4)m=1或2或±【解答】解:(1)∵抛物线y=﹣x2+bx+c与x轴交于点A(1.0)、B(3.0).∴解得:∴抛物线解析式为:y=﹣x2+4x﹣3;(2)∵抛物线y=﹣x2+4x﹣3与y轴交于点C.∴点C(0.﹣3)设直线BC解析式为:y=kx﹣3.∴0=3k﹣3∴k=1.∴直线BC解析式为:y=x﹣3;(3)∵设点P的横坐标为m.PQ∥y轴.∴点P(m.﹣m2+4m﹣3).点Q(m.m﹣3).当0<m<3时.PQ=d=﹣m2+4m﹣3﹣(m﹣3)=﹣m2+3m.当3≤m<4时.PQ=d=(m﹣3)﹣(﹣m2+4m﹣3)=m2﹣3m;(4)B(3.0).点C(0.﹣3).∴OB=OC=3.∴∠OCB=∠OBC=45°.∵PQ∥OC.∴∠PQB=45°.若BP=PQ.∴∠PQB=∠PBQ=45°.∴∠BPQ=90°.即点P与点A重合.∴m=1.若BP=QB.∴∠BQP=∠BPQ=45°.∴∠QBP=90°.∴BP解析式为:y=﹣x+3.∴解得:.∴m=2;若PQ=QB.∴(3﹣m)2+(m﹣3﹣0)2=(﹣m2+3m)2.或(3﹣m)2+(m﹣3﹣0)2=(m2﹣3m)2.∴m=±.综上所述:m=1或2或±4.(2021•黄冈二模)如图.抛物线y=ax2+bx+2(a<0)与x轴交于点A(﹣1.0)和点B(2.0).与y轴交于点C.(1)求该抛物线的函数解析式;(2)如图1.连接BC.点D是直线BC上方抛物线上的点.连接OD、CD.OD交BC于点F.当S△COF:S△CDF=2:1时.求点D的坐标;(3)如图2.点E的坐标为(0.﹣1).在抛物线上是否存在点P.使∠OBP=2∠OBE?若存在.请直接写出符合条件的点P的坐标;若不存在.请说明理由.【答案】(1)y=﹣x2+x+2 (2)D(1.2)(3)点P的坐标为()或(﹣)【解答】解:(1)∵A(﹣1.0).B(2.0).∴把A(﹣1.0).B(2.0)代入y=ax2+bx+2得..解得..∴该抛物线的函数解析式为y=﹣x2+x+2;(2)如图1.过点D作DH∥y轴交BC于点H.交x轴于点G.∵抛物线y=﹣x2+x+2与y轴交于点C.设直线BC解析式为y=kx+b.则.解得.∴直线BC解析式为y=﹣x+2.∵S△COF:S△CDF=2:1.∴OF:DF=2:1.∵DH∥OC.∴△OFC∽△DFH.∴=2.∴OC=2DH.设D(a.﹣a2+a+2).则H(a.﹣a+2).∴DH=﹣a2+a+2﹣(﹣a+2)=﹣a2+2a.∴2=2(﹣a2+2a).解得a=1.∴D(1.2).(3)①当点P在x轴上方时.在y轴上取点G(0.1).连接BG.则∠OBG=∠OBE.过点B作直线PB交抛物线于点P.交y轴于点M.使∠GBM=∠GBO.则∠OBP=2∠OBE.过点G作GH⊥BM.∵E(0.﹣1).∴OE=OG=GH=1.设MH=x.则MG=.在Rt△OBM中.OB2+OM2=MB2.∴(+1)2+4=(x+2)2.解得:x=.故MG===.∴OM=OG+MG=1+=.∴点M(0.).将点B(2.0)、M(0.)的坐标代入一次函数表达式y=mx+n..解得:.∴直线BM的表达式为:y=﹣x+.∴.解得:x=或x=2(舍去).∴点P(.);②当点P在x轴下方时.作点M(0.)关于x轴的对称点N(0.﹣).求得直线BN的解析式为y=x﹣.∴.解得.x=﹣或x=2(舍去).∴点P(﹣.﹣);综合以上可得.点P的坐标为()或(﹣).5.(2021•阳东区模拟)如图.已知抛物线y=﹣x2+bx+c与x轴相交于点A(﹣1.0).与y轴相交于点N(0.3).抛物线的顶点为D.经过点A的直线y=kx+1与抛物线y=﹣x2+bx+c 相交于点C.(1)求抛物线的解析式;(2)若P是抛物线上位于直线AC上方的一个动点.设点P的横坐标为t.过点P作y轴的平行线交AC于M.当t为何值时.线段PM的长最大.并求其最大值;(3)若抛物线的对称轴与直线AC相交于点B.E为直线AC上的任意一点.过点E作EF ∥BD交抛物线于点F.以B.D.E.F为顶点的四边形能否为平行四边形?若能.请直接写出点E的坐标;若不能.请说明理由.【答案】(1)y=﹣x2+2x+3 (2)t=时.线段PM的长最大.PM最大值=(3)E的坐标为(0.1)或(.)或(.).【解答】解:(1)∵抛物线y=﹣x2+bx+c与直线相交于A(﹣1.0).N(0.3)两点.∴.解得.∴抛物线的解析式为y=﹣x2+2x+3;(2)如图1.将A(﹣1.0)代入直线AC的解析式为y=kx+1.得﹣k+1=0.解得k=1.∴直线AC:y=x+1.∵点P的横坐标为t.且PM∥y轴.∴P(t.﹣t2+2t+3).M(t.t+1).∵点P在直线AC上方的抛物线上.∴﹣1<t<3.∴PM=﹣t2+2t+3﹣(t+1)=﹣t2+t+2=﹣(t﹣)2+.∵﹣1<0.且﹣1<<3.∴当t=时.线段PM的长最大.PM最大值=;(3)能.设点E的横坐标为t.则点F的横坐标为t.当﹣1<t<3.如图2.由(2)得.EF=﹣t2+t+2;∵y=﹣x2+2x+3=﹣(x﹣1)2+4.∴该抛物线的对称轴为直线x=1.顶点D的坐标为(1.4).直线AC:y=x+1.当x=1时.y=2.∴B(1.2).∴BD=4﹣2=2.∵EF∥BD.∴当EF=BD=2时.四边形BDNG是平行四边形.∴﹣t2+t+2=2.解得t1=0.t2=1(不符合题意.舍去).对于直线y=x+1.当x=0时.y=1.∴E(0.1);当x<﹣1或x>3时.如图3.EF∥BD或E′F′∥BD.则EF=(t+1)﹣(﹣t2+2t+3)=t2﹣t﹣2.∴t2﹣t﹣2=2.解得t1=.t2=.直线y=x+1.当x=时.y=;当x=时.y=.∴E(.).E′(.).综上所述.点E的坐标为(0.1)或(.)或(.).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A
C
B
D E O
x
y
2
第17课时 二次函数的综合应用
【课前展练】
1(孝感2009).对于每个非零自然数n ,抛物线()()
2
211
11n y x x n n n n +=-
+++与x 轴交于n A 、n B 两点,以n n
A B 表示这两点间的距离,则1122A B A B ++…20092009A B +的值是( )
A .2009
2008 B .
C .
D .
2.(孝感2011)已知二次函数y=ax 2
+bx+c 的图象如图所示,它与x 轴的两个交点分别为(﹣1,0),(3,0).对于下列命题:①b﹣2a=0;②abc<0;③a﹣2b+4c <0;④8a+c>0.其中正确的有【 】
A .3个
B .2个
C .1个
D .0个
3. 二次函数y =ax 2
+bx +c(a≠0)的图象的对称轴是直线x =1,其图象的一部分如
图所示.下列说法正确的是 ▲ (填正确结论的序号).
①abc<0;②a-b +c <0;③3a+c <0;④当-1<x <3时,y >0. 4. 对于二次函数y=x2-2mx-3,有下列说法: ①它的图象与x 轴有两个公共点;
②如果当x ≤1时y 随x 的增大而减小,则m=1; ③如果将它的图象向左平移3个单位后过原点,则m=-1;
④如果当x=4时的函数值与x=2008时的函数值相等,则当x=2012时的函数值为-3. 其中正确的说法是 ___ .(把你认为正确说法的序号都填上) 【典型例题】
【例1】(孝感2010,12分)如图,已知二次函数的图象顶点坐标为(2,0),
直线y =x +1与二次函数的图象交于A 、B 两点,其中点A 在y 轴上.
(1)二次函数的解析式为y = .
(2)证明点(―m ,2m ―1)不在(1)中所求的二次函数的图象上. (3)C 为线段AB 的中点,过点C 作CE ⊥x 轴于点E ,CE 与二次函数的图象交于
点D .
①y 轴上存在点K ,使以K 、A 、D 、C 为顶点的四边形是平行四边形,则点K 的坐标是 ; ②二次函数的图象上是否存在点P ,使得S △POE =2S △ABD ?若存在,求出点P 的坐标;若不存在,请说明理由.
E
F
D C
B
A
O y
x
M
x
y
O
A
B C D E
【例2】
如图(1),矩形ABCD 的一边BC 在直角坐标系中x 轴上,折叠边AD ,使点D 落在x 轴上点F 处,折痕为AE ,已知AB=8,AD=10,并设点B 坐标为(m ,0),其中m >0。

(1)求点E 、F 的坐标(用含m 的式子表示); (2)连接OA ,若△OAF 是等腰三角形,求m 的值;
(3)如图(2),设抛物线y=a (x-m-6)2+h 经过A 、E 两点,其顶点为M ,连接AM ,若∠OAM=90°,求a 、h 、m 的值。

(5分)
图(1)
图(2)
【例3】如图,抛物线y=ax2+bx+c(a,b,c是常数,a≠0)与x轴交于A,B两点,与y轴交于点C,三个交点的坐标分别为A(﹣1,0),B(3,0),C(0,3)
(1)求抛物线的解析式及顶点D的坐标;
(2)若P为线段BD上的一个动点,过点P作PM⊥x轴于点M,求四边形PMAC面积的最大值和此时P点的坐标;(3)若P为抛物线在第一象限上的一个动点,过点P作PQ∥AC交x轴于点Q 当点P的坐标为_________ 时,四边形PQAC是平行四边形;当点P的坐标为_________ 时,四边形PQAC是等腰梯形(直接写出结果,不写求解过程)。

相关文档
最新文档