高考专题复习-弹簧类问题分析

合集下载

高考弹簧问题专题详解

高考弹簧问题专题详解

高考弹簧问题专题详解高考动向弹簧问题可以较好的培养学生的分析解决问题的才能和开发学生的智力,借助于弹簧问题,还能将整个力学知识和方法有机地结合起来系统起来,因此弹簧问题是高考命题的热点,历年全国以及各地的高考命题中以弹簧为情景的选择题、计算题等经常出现,很好的考察了学生对静力学问题、动力学问题、动量守恒和能量守恒问题、振动问题、功能关系问题等知识点的理解,考察了对于一些重要方法和思想的运用。

知识升华一、弹簧的弹力1、弹簧弹力的大小弹簧弹力的大小由胡克定律给出,胡克定律的内容是:在弹性限度内,弹力的大小与弹簧的形变量成正比。

数学表达形式是:F=kx 其中k是一个比例系数,叫弹簧的劲度系数。

说明:①弹力是一个变力,其大小随着弹性形变的大小而变化,还与弹簧的劲度系数有关;②弹簧具有测量功能,利用在弹性限度内,弹簧的伸长〔或压缩〕跟外力成正比这一性质可制成弹簧秤。

2、弹簧劲度系数弹簧的力学性质用劲度系数描写,劲度系数的定义因弹簧形式的不同而不同,以下主要讨论螺旋式弹簧的劲度系数。

〔1〕定义:在弹性限度内,弹簧产生的弹力F〔也可认为大小等于弹簧受到的外力〕和弹簧的形变量〔伸长量或者压缩量〕x的比值,也就是胡克定律中的比例系数k。

〔2〕劲度系数的决定因素:劲度系数的大小由弹簧的尺寸和绕制弹簧的材料决定。

弹簧的直径越大、弹簧越长越密、绕制弹簧的金属丝越软越细时,劲度系数就越小,反之那么越大。

如两根完全一样的弹簧串联起来,其劲度系数只是一根弹簧劲度系数的一半,这是因为弹簧的长度变大的缘故;假设两根完全一样的弹簧并联起来,其劲度系数是一根弹簧劲度系数的两倍,这是相当于弹簧丝变粗所导致;二、轻质弹簧的一些特性轻质弹簧:所谓轻质弹簧就是不考虑弹簧本身的质量和重力的弹簧,是一个理想化的模型。

由于它不需要考虑自身的质量和重力对于运动的影响,因此运用这个模型能为分析解决问题提供很大的方便。

性质1、轻弹簧在力的作用下无论是平衡状态还是加速运动状态,各个局部受到的力大小是一样的。

高考物理弹簧专题,包含弹簧问题所有类型的经典例题

高考物理弹簧专题,包含弹簧问题所有类型的经典例题

A Bv 0 AB 1如下图所示,四个完全相同的弹簧都处于水平位置,它们的右端受到大小皆为F 的拉力作用,而左端的情况各不相同:①弹簧的左端固定在左墙上;②弹簧的左端受大小也为F 的拉力作用;③弹簧的左端拴一小物块,物块在光滑的桌面上滑动;④弹簧左端拴一小物块,物块在有摩擦的桌面上滑动.若认为弹簧的质量都为零,以l 1、l 2、l 3、l 4依次表示四个弹簧的伸长量,则有( )A .l 2 > l 1B .l 4 > l 3C .l 1 > l 3D .l 2 = l 42如图天花板上用细绳吊起两个用轻弹簧相连的两个质量相同的小球。

两小球均保持静止,突然剪断细绳时,上面小球A 与下面小球B 的加速度为A .a1=g a2=gB .a1=2g a2=gC .a1=2g a2=0D .a1=0 a2=g3两木块的质量分别为m1和m2,两轻质弹簧的劲度系数分别为k1和k 2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态。

现缓慢向上提上面的木块,直到它刚离开上面弹簧,在这过程中下面木块移动的距离为()A 、m 1g/k 1B 、m 2g/k 1C 、m 1g/k 2D 、m 2g/k 24.两块质量分别为m 1和m 2的木块,用一根劲度系数为k 的轻弹簧连在一起,现在m 1上施加压力F ,.为了使撤去F 后m 1跳起时能带起m 2, 则所加压力F 应多大?g m m F )(21+>5一根劲度系数为k,质量不计的轻弹簧,上端固定,下端系一质量为m 的物体,有一水平板将物体托住,并使弹簧处于自然长度。

如图所示。

现让木板由静止开始以加速度a(a <g =匀加速向下移动。

求经过多长时间木板开始与物体分离。

解:设物体与平板一起向下运动的距离为x 时,物体受重力mg ,弹簧的弹力F=kx 和平板的支持力N 作用。

当N=0时,物体与平板分离6在足够大的光滑水平面上放有两物块A 和B ,已知m A >m B ,A 物块连接一个轻弹簧并处于静止状态,B 物体以初速度v 0向着A 物块运动。

弹簧问题专项复习及练习题(含详细解答)

弹簧问题专项复习及练习题(含详细解答)

高三物理第二轮专题复习(一)弹簧类问题轻弹簧是一理想模型,涉及它的知识点有①形变和弹力,胡克定律②弹性势能弹簧振子等。

问题类型:1、弹簧的瞬时问题弹簧的两端若有其他物体或力的约束,使其发生形变时,弹力不能由某一值突变为零或由零突变为某一值。

弹簧的弹力不能突变是由弹簧形变的改变要逐渐进行决定的。

2、弹簧的平衡问题这类题常以单一的问题出现,通常用胡克定律F=Kx和平衡条件来求解,列方程时注意研究对象的选取,注意整体法和隔离法的运用。

3、弹簧的非平衡问题这类题主要指弹簧在相对位置发生变化时,所引起的合外力加速度速度动能和其它物理量发生变化的情况。

弹簧的弹力与形变量成正比例变化,而它引起的物体的加速度速度动量动能等变化不是简单的单调关系,往往有临界值或极值。

有些问题要结合简谐运动的特点求解。

4、弹力做功与动量能量的综合问题弹力是变力,求弹力的冲量和弹力做的功时,不能直接用冲量和功的定义式,一般要用动量定理和动能定理计算。

如果弹簧被作为系统内的一个物体时,弹簧的弹力对系统内物体做不做功都不影响系统的机械能。

在弹力做功的过程中弹力是个变力,并与动量能量联系,一般以综合题出现。

它有机地将动量守恒机械能守恒功能关系和能量转化结合在一起,以考察综合应用能力。

分析解决这类问题时,要细致分析弹簧的动态过程,利用动能定理动量定理和功能关系等知识解题。

规律:在弹簧-物体系统中,当弹簧处于自然长度时,系统具有最大动能;系统运动中弹簧从自然长度开始到再次恢复自然长度的过程相当于弹性碰撞过程。

当弹簧具有最大形变量时,两端物体具有相同的速度,系统具有最大的弹性势能。

系统运动中,从任意状态到弹簧形变量最大的状态的过程相当于完全非弹性碰撞的过程。

(实际上应为机械能守恒)典型试题1、如图所示,轻弹簧下端固定在水平地面上,弹簧位于竖直方向,另一端静止于B点。

在B点正上方A点处,有一质量为m的物块,物块从静止开始自由下落。

物块落在弹簧上,压缩弹簧,到达C点时,物块的速度为零。

专题受力分析之弹簧问题

专题受力分析之弹簧问题

弹簧类问题的几种模型及其处理方法学生对弹簧类问题感到头疼的主要原因有以下几个方面:首先,由于弹簧不断发生形变,导致物体的受力随之不断变化,加速度不断变化,从而使物体的运动状态和运动过程较复杂;其次,这些复杂的运动过程中间所包含的隐含条件很难挖掘;还有,学生们很难找到这些复杂的物理过程所对应的物理模型以及处理方法;根据近几年高考的命题特点和知识的考查,就弹簧类问题分为以下几种类型进行分析;一、弹簧类命题突破要点1.弹簧的弹力是一种由形变而决定大小和方向的力;当题目中出现弹簧时,首先要注意弹力的大小与方向时刻要与当时的形变相对应,在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置、现长位置、平衡位置等,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,结合物体受其他力的情况来分析物体运动状态;2.因软质弹簧的形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变,因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变;3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解;同时要注意弹力做功的特点:弹力做功等于弹性势能增量的负值;弹性势能的公式,高考不作定量要求,可作定性讨论,因此在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解;二、弹簧类问题的几种模型1.平衡类问题例1.如图1所示,劲度系数为k1的轻质弹簧两端分别与质量为m1、m2的物块拴接,劲度系数为k2的轻质弹簧上端与物块m2拴接,下端压在桌面上不拴接,整个系统处于平衡状态;现施力将m1缓慢竖直上提,直到下面那个弹簧的下端刚脱离桌面;在此过程中,m2的重力势能增加了______,m1的重力势能增加了________;例2.如上图2所示,A物体重2N,B物体重4N,中间用弹簧连接,弹力大小为2N,此时吊A物体的绳的拉力为T,B对地的压力为F,则T、F的数值可能是A.7N,0 B.4N,2N C.1N,6N D.0,6N平衡类问题总结:这类问题一般把受力分析、胡克定律、弹簧形变的特点综合起来,考查学生对弹簧模型基本知识的掌握情况;只要学生静力学基础知识扎实,学习习惯较好,这类问题一般都会迎刃而解,此类问题相对较简单;2.突变类问题例3.如图3所示,一质量为m的小球系于长度分别为l1、l2的两根细线上,l1的一端悬挂在天花板上,与竖直方向夹角为θ,l2水平拉直,小球处于平衡状态;现将l2线剪断,求剪断瞬时小球的加速度;若将图3中的细线l1改为长度相同、质量不计的轻弹簧,如图4所示,其他条件不变,求剪断细线l2瞬时小球的加速度;突变类问题总结:不可伸长的细线的弹力变化时间可以忽略不计,因此可以称为“突变弹力”,轻质弹簧的弹力变化需要一定时间,弹力逐渐减小,称为“渐变弹力”;所以,对于细线、弹簧类问题,当外界情况发生变化时如撤力、变力、剪断,要重新对物体的受力和运动情况进行分析,细线上的弹力可以突变,轻弹簧弹力不能突变,这是处理此类问题的关键;3.碰撞型弹簧问题此类弹簧问题属于弹簧类问题中相对比较简单的一类,而其主要特点是与碰撞问题类似,但是,它与碰撞类问题的一个明显差别就是它的作用过程相对较长,而碰撞类问题的作用时间极短; 例4.如图6所示,物体B静止在光滑的水平面上,B的左边固定有轻质的弹簧,与B质量相等的物体A以速度v向B运动并与弹簧发生碰撞,A、B始终沿统一直线,则A,B组成的系统动能损失最大的时刻是A.A开始运动时 B.A的速度等于v时C.B的速度等于零时 D.A和B的速度相等时4:机械能守恒型弹簧问题对于弹性势能,高中阶段并不需要定量计算,但是需要定性的了解,即知道弹性势能的大小与弹簧的形变之间存在直接的关系,对于相同的弹簧,形变量一样的时候,弹性势能就是一样的,不管是压缩状态还是拉伸状态;例5.一劲度系数k=800N/m的轻质弹簧两端分别连接着质量均为m=12kg的物体A、B,它们竖直静止在水平面上,如图7所示;现将一竖直向上的变力F作用在A上,使A开始向上做匀加速运动,经物体B刚要离开地面;求:⑴此过程中所加外力F的最大值和最小值;⑵此过程中力F所做的功;设整个过程弹簧都在弹性限度内,取g=10m/s2例6.如图8所示,物体B和物体C用劲度系数为k的弹簧连接并竖直地静置在水平面上;将一个物体A从物体B的正上方距离B的高度为H0处由静止释放,下落后与物体B碰撞,碰撞后A和B粘合在一起并立刻向下运动,在以后的运动中A、B不再分离;已知物体A、B、C的质量均为M,重力加速度为g,忽略物体自身的高度及空气阻力;求:1A与B碰撞后瞬间的速度大小;2A和B一起运动达到最大速度时,物体C对水平地面压力为多大3开始时,物体A从距B多大的高度自由落下时,在以后的运动中才能使物体C恰好离开地面5.简谐运动型弹簧问题弹簧振子是简谐运动的经典模型,有一些弹簧问题,如果从简谐运动的角度思考,利用简谐运动的周期性和对称性来处理,问题的难度将大大下降;例7.如图9所示,一根轻弹簧竖直直立在水平面上,下端固定;在弹簧正上方有一个物块从高处自由下落到弹簧上端O,将弹簧压缩;当弹簧被压缩了x0时,物块的速度减小到零;从物块和弹簧接触开始到物块速度减小到零过程中,物块的加速度大小a随下降位移大小x变化的图像,可能是下图中的例8.如图10所示,一质量为m的小球从弹簧的正上方H高处自由下落,接触弹簧后将弹簧压缩,在压缩的全过程中忽略空气阻力且在弹性限度内,以下说法正确的是A.小球所受弹力的最大值一定大于2mgB.小球的加速度的最大值一定大于2gC.小球刚接触弹簧上端时动能最大D.小球的加速度为零时重力势能与弹性势能之和最大6.综合类弹簧问题例9.如图12所示,质量为m1的物体A经一轻质弹簧与下方地面上的质量为m2的物体B相连,弹簧的劲度系数为k,A、B都处于静止状态;一条不可伸长的轻绳绕过轻滑轮,一端连物体A,另一端连一轻挂钩;开始时各段绳都处于伸直状态,A上方的一段绳沿竖直方向;现在挂钩上升一质量为m3的物体C并从静止状态释放,已知它恰好能使B离开地面但不继续上升;若将C换成另一个质量为的物体D,仍从上述初始位置由静止状态释放,则这次B刚离地时D的速度的大小是多少已知重力加速度为g;综合类弹簧问题总结:综合类弹簧问题一般物理情景复杂,涉及的物理量较多,思维过程较长,题目难度较大;处理这类问题最好的办法是前面所述的“肢解法”,即把一个复杂的问题“肢解”成若干个熟悉的简单的物理情景,逐一攻破;这就要求学生具有扎实的基础知识,平时善于积累常见的物理模型及其处理办法,并具有把一个物理问题还原成物理模型的能力;。

高中物理专题复习之弹簧模型中的极值问题

高中物理专题复习之弹簧模型中的极值问题

在高考复习中,常常遇到有关“弹簧类”问题,由于弹簧总是与其他物体直接或间接地联系在一起,弹簧与其“关联物”之间总存在着力、运动状态、动量、能量方面的联系,因此学生普遍感到困难,本文就此类问题作一归类分析。

一、最大、最小拉力例1. 一个劲度系数为k =600N/m 的轻弹簧,两端分别连接着质量均为m =15kg 的物体A 、B ,将它们竖直静止地放在水平地面上,如图1所示,现加一竖直向上的外力F 在物体A 上,使物体A 开始向上做匀加速运动,经0.5s ,B 物体刚离开地面(设整个加速过程弹簧都处于弹性限度内,且g =10m/s 2)。

求此过程中所加外力的最大和最小值。

图1解析:开始时弹簧弹力恰等于A 的重力,弹簧压缩量∆l mg km ==025.,0.5s 末B 物体刚要离开地面,此时弹簧弹力恰等于B 的重力,∆∆l l m '.==025,故对A 物体有2122∆l at =,代入数据得a m s =42/。

刚开始时F 为最小且F ma N N min ===15460×,B 物体刚要离开地面时,F 为最大且有F mg mg ma max --=,解得F mg ma N max =+=2360。

二、最大高度例2. 如图2所示,质量为m 的钢板与直立弹簧的上端连接,弹簧下端固定在地面上,平衡时弹簧的压缩量为x 0。

一物体从钢板正上方距离为30x 的A 处自由下落打在钢板上,并立即与钢板一起向下运动,但不粘连,它们到达最低点后又向上运动,已知物块质量也为m 时,它们恰能回到O 点,若物体质量为2m 仍从A 处自由下落,则物块与钢板回到O 点时还有向上的速度,求物块向上运动到达的最高点与O 点的距离。

图2解析:物块碰撞钢板前作自由落体运动,设v 0表示物块与钢板碰撞时的速度,则:v gx 006= ①物块与钢板碰撞后一起以v 1速度向下运动,因碰撞时间极短,碰撞时遵循动量守恒,即:mv mv 012= ②刚碰完时弹簧的弹性势能为E p ,当它们一起回到O 点时,弹簧无形变,弹性势能为0,根据机械能守恒有:E m v mgx p +=1222120() ③ 设v 2表示质量为2m 的物块与钢板碰撞后开始向下运动的速度,由动量守恒有:2302mv mv = ④碰撞后,当它们回到O 点时具有一定速度v ,由机械能守恒定律得:E m v mgx m v p +=+12331232202()() ⑤ 当质量为2m 的物块与钢板一起回到O 点时两者分离,分离后,物块以v 竖直上升,其上升的最大高度:h v g=22 ⑥ 解①~⑥式可得h x =02。

高考二轮物理复习专题 弹簧问题(附答案)

高考二轮物理复习专题 弹簧问题(附答案)

专题3 弹簧类问题高考动向弹簧问题能够较好的培养学生的分析解决问题的能力和开发学生的智力,借助于弹簧问题,还能将整个力学知识和方法有机地结合起来系统起来,因此弹簧问题是高考命题的热点,历年全国以及各地的高考命题中以弹簧为情景的选择题、计算题等经常出现,很好的考察了学生对静力学问题、动力学问题、能量守恒问题、功能关系问题等知识点的理解,考察了对于一些重要方法和思想的运用。

弹簧弹力的特点:弹簧弹力的大小可根据胡克定律计算(在弹性限度内),即F=kx,其中x是弹簧的形变量(与原长相比的伸长量或缩短量,不是弹簧的实际长度)。

高中研究的弹簧都是轻弹簧(不计弹簧自身的质量,也不会有动能和加速度)。

不论弹簧处于何种运动状态(静止、匀速或变速),轻弹簧两端所受的弹力一定等大反向。

弹簧的弹力属于接触力,弹簧两端必须都与其它物体接触才可能有弹力。

如果弹簧的一端和其它物体脱离接触,或处于拉伸状态的弹簧突然被剪断,那么弹簧两端的弹力都将立即变为零。

在弹簧两端都保持与其它物体接触的条件下,弹簧弹力的大小F=kx与形变量x成正比。

由于形变量的改变需要一定时间,因此这种情况下,弹力的大小不会突然改变,即弹簧弹力大小的改变需要一定的时间。

(这一点与绳不同,高中物理研究中,是不考虑绳的形变的,因此绳两端所受弹力的改变可以是瞬时的。

)一、与物体平衡相关的弹簧例.如图示,两木块的质量分别为m1和m2,两轻质弹簧的劲度系数分别为k1和k2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面弹簧.在这过程中下面木块移动的距离为( )A.m1g/k1B.m2g/k2C.m1g/k2D.m2g/k2此题是共点力的平衡条件与胡克定律的综合题.题中空间距离的变化,要通过弹簧形变量的计算求出.注意缓慢上提,说明整个系统处于一动态平衡过程,直至m1离开上面的弹簧.开始时,下面的弹簧被压缩,比原长短(m1 + m2)g/k2,而m l刚离开上面的弹簧,下面的弹簧仍被压缩,比原长短m2g/k2,因而m2移动△x=(m1 + m2)·g/k2 -m2g/k2=m l g/k2.参考答案:C此题若求m l移动的距离又当如何求解?二、与分离问题相关的弹簧两个相互接触的物体被弹簧弹出,这两个物体在什么位置恰好分开?这属于临界问题。

高考热点专题——有关弹簧问题的分析与计算

高考热点专题——有关弹簧问题的分析与计算

高考热点专题——有关弹簧问题的分析与计算弹簧类问题在高中物理中占有相当重要的地位,且涉及到的物理问题多是一些综合性较强、物理过程又比较复杂的问题,从受力的角度看,弹簧上的弹力是变力;从能量的角度看,弹簧是个储能元件;因此,关于弹簧的问题,能很好的考察学生的分析综合能力,备受高考命题专家的青睐。

解决这些问题除了一般要用动量守恒定律和能量守恒定律这些基本规律之外,搞清物体的运动情景,特别是弹簧所具有的一些特点,也是正确解决这类问题的重要方法。

在有关弹簧类问题中,要特别注意使用如下特点和规律:1.弹簧的弹力是一种由形变而决定大小和方向的力。

当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应。

在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置、现长位置,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化。

2. 弹簧的弹力不能突变,它的变化要经历一个过程,这是由弹簧形变的改变要逐渐进行决定的。

在瞬间内形变量可以认为不变,因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变。

3、弹簧上的弹力是变力,弹力的大小随弹簧的形变量发生变化,求弹力的冲量和弹力做功时,不能直接用冲量和功的定义式,一般要用动量定理和动能定理计算。

弹簧的弹力与形变量成正比例变化,故它引起的物体的加速度、速度、动量、动能等变化不是简单的单调关系,往往有临界值。

如果弹簧被作为系统内的一个物体时,弹簧的弹力对系统内物体做不做功都不影响系统的机械能。

4、对于只有一端有关联物体,另一端固定的弹簧,其运动过程可结合弹簧振子的运动规律去认识,突出过程的周期性、对称性及特殊点的应用。

如当弹簧伸长到最长或压缩到最短时,物体的速度最小(为零),弹簧的弹性势能最大,此时,也是关联物的速度方向发生改变的时刻。

若关联物与接触面间光滑,当弹簧恢复原长时,物体速度最大,弹性势能为零。

2025高考物理总复习含弹簧的机械能守恒问题

2025高考物理总复习含弹簧的机械能守恒问题

t2时刻弹力最大,小球处在最低点,动能最小,B错误; t3时刻小球往上运动恰好要离开弹簧; t2~t3这段时间内,小球先加速后减速, 动能先增大后减小,弹簧的弹性势能 转化为小球的动能和重力势能,C正 确,D错误。
例2 如图所示,质量为M的小球套在固定倾斜的光滑杆上,原长为l0的轻质弹簧一 端固定于O点,另一端与小球相连,弹簧与杆在同一竖直平面内。图中AO水平,BO 间连线长度恰好与弹簧原长相等,且与杆垂直,O′在O的正下方,C是AO′段的中 点,θ=30°。现让小球从A处由静止释放,重力加速度为g,下列说法正确的有 A.下滑过程中小球的机械能守恒
动能Ek;
答案
mgR 2
C点与D点的高度差h=0.5R 圆环从C运动到D,在C点和D点两弹簧弹性势能的 和相等,根据机械能守恒 mgh=Ek 解得 Ek=m2gR
(3)由C点静止释放圆环,求圆环运动到D点时 对轨道的作用力FN。 答案 1.7mg,方向竖直向下
由 Ek=12mv2 得,圆环运动到 D 点时的速度 v= gR
(1)斜面的倾角α; 答案 30°
由题意可知,当A沿斜面下滑至速度最大时,C恰好离开地面,A的加 速度此时为零。 由牛顿第二定律得4mgsin α-2mg=0 则 sin α=12,α=30°。
(2)A球获得的最大速度vm的大小。
答案 2g
m 5k
初始时系统静止且细线无拉力,弹簧处于压缩状态,设弹簧压缩量为 Δx,对B:kΔx=mg 因B、C的质量均为m,则C球恰好离开地面时,弹簧伸长量也为Δx, 故弹簧弹性势能变化量为零, A、B、C三小球和弹簧组成的系统机械能守恒, 有 4mg·2Δx·sin α-mg·2Δx=12(5m)vm2 联立解得 vm=2g 5mk。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B m2
解: 开始时,A、B静止,设弹簧压缩量为x1,有 kx1=m1g ① 挂C并释放后,C向下运动,A向上运动,设B刚要离 地时弹簧伸长量为x2,有 kx2=m2g ② B不再上升,表示此时A和C的速度为零,C已降到其 最低点。由机械能守恒,与初始状态 相比,弹簧性势能的增加量为
△E=m3g(x1+x2)-m1g(x1+x2) ③
解: (1)A、B系统由水平位置滑到轨道最低点时 速度为v0,根据机械守恒定律 1 2 2mgR 2mv 0 ① 2 设轨道对小球的弹力为F,根据牛顿第二定律 2 v0 F 2mg 2m ② R 得 F=6mg ③ (2) 解除锁定后弹簧将弹性势能全部转化为A、B的 机械能,则弹性势能为 EP=mgH ④ 解除锁定后A、B的速度分别为vA、 vB,解除锁定 过程中动量守恒 2mv0 =mvA+mvB ⑤
B A l2
l1
P
解: 设A、B质量均为m, A刚接触B时速度为v1(碰前), 1 1 2 2 由功能关系, 1 mv 0 mv 1 mgl1 2 2 碰撞过程中动量守恒,令碰后A、B共同运动的速度为v2 m v1 =2m v2 ( 2) 碰后A、B先一起向左运动,接着A、B一起被弹回,在弹 簧恢复到原长时,设A、B的共同速度为v3, 在这过程中, 弹簧势能始末两态都为零,由功能关系,有 1 1 2 2 3 ( 2m )v 2 ( 2m )v 3 ( 2m ) g( 2l 2 ) 2 2 后A、B开始分离,A单独向右滑到P点停下, 1 2 4 mv 3 mgl1 由功能关系有 2 B A 由以上各式,解得
联立①④⑤⑥,得 WF=9.64×10-2J

题目
例5、2005年全国卷Ⅰ/24. 24.(19分) 如图,质量为m1的物体A经一轻质弹簧 与下方地面上的质量为m2的物体B相连,弹簧的劲 度系数为k,A、B都处于静止状态。一条不可伸长 的轻绳绕过轻滑轮,一端连物体A,另一端连一轻 挂钩。开始时各段绳都处于伸直状态,A上方的一 段绳沿竖直方向。现在挂钩上挂一质量为m3的物体 C并从静止状态释放,已知它恰好能使B离开地面但 不继续上升。若将C换成另一个质 量为(m1+m2)的物体D,仍从上述 初始位置由静止状态释放,则这次 A m1 B刚离地时D的速度的大小是多少? 已知重力加速度为g. k
由①②⑤式得

A m1 k
D (m1+m2)
v
2 m1 ( m1 m 2 ) g ( 2m1 m 3 )k
2

B
m2
题目
例6、2004年广西卷17、 图中,轻弹簧的一端固
定,另一端与滑块B相连,B静止在水平导轨 上,弹簧处在原长状态。另一质量与B相同的 滑块A,从导轨上的P点以某一初速度向B滑行, 当A滑过距离l1时,与B相碰,碰撞时间极短, 碰后A 、 B紧贴在一起运动,但互不粘连。已 知最后A恰好返回出发点P并停止。滑块A和B 与导轨的滑动摩擦因数都为μ,运动过程中弹 簧最大形变量为l2 ,重力加速度为g,求A从P 出发时的初速度v0。
3、弹簧的非平衡问题
这类题主要指弹簧在相对位置发生变化时,所引起 的力、加速度、速度、功能和合外力等其它物理量发 生变化的情况。 4、 弹力做功与动量、能量的综合问题 在弹力做功的过程中弹力是个变力,并与动量、能 量联系,一般以综合题出现。有机地将动量守恒、机 械能守恒、功能关系和能量转化结合在一起。分析解 决这类问题时,要细致分析弹簧的动态过程,利用动 能定理和功能关系等知识解题。
A
m1 k
C
m3
B
m2
C换成D后,当B刚离地时弹簧势能的增量与前一次 相同,由能量关系得 1 1 2 ( m3 m1 )v m1v 2 2 2 ( m3 m1 ) g( x1 x2 ) m1 g( x1 x2 ) E ④ 由③④式得
1 ( 2m1 m3 )v 2 m1 g( x1 x2 ) 2
(2)若将图A中的细线 l1改为长度相同、质量不计的 轻弹簧,如图(B)所示,其他条件不变,求解的步骤 与(1)完全相同,即a=gtanθ,你认为这个结果正确 吗?请说明理由. (2)答: 结果正确。 因为l2被剪断的瞬间、弹簧l1的 长度不能发生突变、T1的大小 和方向都不变.
l1
l2 图B
θ
例2、2005年全国理综III卷 如图所示,在倾角为θ的光滑斜面上有两个用轻质弹簧 相连接的物块A、B,它们的质量分别为 mA、mB,弹 簧的劲度系数为k,C为一固定挡板。系统处一静止状态, 现开始用一恒力F沿斜面方向拉物块A使之向上运动, 求物块B刚要离开C时物块A的加速度a和从开始到此时 物块A的位移d,重力加速度为g。 A 解: 令x1表示未加F时弹簧的压缩量, C 由胡克定律和牛顿定律可知 B θ mgsinθ=kx1 ① 令x2表示B刚要离开C时弹簧的伸长量,a表示此时A的 加速度,由胡克定律和牛顿定律可知: kx2=mBgsinθ ② F ( m A m B ) g sin 得 a F-mAgsinθ-kx2=mAa ③ mA 由题意 d=x1+x2 ⑤ ( m m ) g sin A B d 由①②⑤式可得
3. 在求弹簧的弹力做功时,因该变力为线性变化, 可 以先求平均力,再用功的定义进行计算,也可根据 动能定理和功能关系及能量转化和守恒定律求解.同 时要注意弹力做功的特点: Wk = -(1/2 kx22 - 1/2 kx12), 弹力的功等于弹性势能增量的负值. 弹性势能的公式Ep= 1/2 kx2,高考不作定量要求, 可作定性讨论.因此,在求弹力的功或弹性势能的改 变时,一般以能量的转化与守恒的角度来求解.
复习精要
轻弹簧是一种理想化的物理模型,以轻质弹簧为载体, 设置复杂的物理情景,考查力的概念,物体的平衡, 牛顿定律的应用及能的转化与守恒,是高考命题的重 点,此类命题几乎每年高考卷面均有所见,,在高考复 习中应引起足够重视. (一)弹簧类问题的分类 1、弹簧的瞬时问题 弹簧的两端都有其他物体或力的约束时, 使其发生形 变时,弹力不能由某一值突变为零或由零突变为某一值. 2、弹簧的平衡问题 这类题常以单一的问题出现,涉及到的知识是胡克 定律,一般用 f=kx 或 △f=k△x 来求解。
(1)使木块A竖直做匀加速运动的过程中,力F的最大值
(2)若木块由静止开始做匀加速运动, 直到A、B分离的过程中,弹簧的弹性 势能减少了0.248 J,求这一过程F 对 木块做的功. A B
解:
(1)当F=0(即不加竖直向上F力时),设A、B 叠放在弹簧上处于平衡时弹簧的压缩量为x,有 x=(mA+mB)g/k
2BLeabharlann x1 AF30°
t=0时,F最小,对AB整体 Fmin = (m1 + m2) a = 60N
t=0.2s 时,F最大,对A物块: Fmax - m1g sinα = m1a
Fmax = m1g sinα + m1a = 100N
F B A
30°
例4、 A、B两木块叠放在竖直轻弹簧上,如图所示, 已知木块A、B质量分别为0.42 kg和0.40 kg,弹簧的劲 度系数k=100 N/m ,若在木块A上作用一个竖直向上的 力F,使A由静止开始以0.5 m/s2的加速度竖直向上做匀 加速运动(g=10 m/s2).
系统机械能守恒 1 1 1 2 2 2 2mv 0 E P mv A mv B 2 2 2 联立上述各式得 v A 2 gR gH 正号舍去

⑦ ⑧
v A 2 gR gH
设球A上升的高度为h,球A上升过程机械能守恒
整理后得
1 2 mg ( h R ) mv A 2 H h 2 RH 2
k
例3、 如图示, 倾角30°的光滑斜面上,并排放着质量 分别是mA=10kg和mB=2kg的A、B两物块,一个劲度系 数k=400N/m的轻弹簧一端与物块B相连,另一端与固定 挡板相连,整个系统处于静止状态,现对A施加一沿斜 面向上的力F,使物块A沿斜面向上作匀加速运动,已 知力 F在前0.2s内为变力,0.2s后为恒力,g取10m/s2 , 求F的最大值和最小值。 F 解: 开始静止时弹簧压缩 x1 A B x1=(m1 +m2)g sinα/ k = 0.15m x 0.2s 末A、B即将分离, A、B间 无作用力,对B物块: kx2-m2g sinα = m2a ⑴ x1-x2=1/2at2 ⑵ 解得 x2=0.05m a=5 m/s2
(二)弹簧问题的处理办法 1.弹簧的弹力是一种由形变而决定大小和方向的力.当 题目中出现弹簧时,要注意弹力的大小与方向时刻要 与当时的形变相对应.在题目中一般应从弹簧的形变分 析入手,先确定弹簧原长位置,现长位置,找出形变 量x与物体空间位置变化的几何关系,分析形变所对 应的弹力大小、方向,以此来分析计算物体运动状态 的可能变化. 2.因弹簧(尤其是软质弹簧)其形变发生改变过程需 要一段时间,在瞬间内形变量可以认为不变. 因此, 在分析瞬时变化时,可以认为弹力大小不变, 即弹簧 的弹力不能突变.
A B
(2) 当N=0时,A、B开始分离,
由③式知此时,弹簧压缩量 kx' =mB(a+g), x' =mB(a+g)/ k AB共同速度 v2=2a ( x' - x) ④ ⑤
由题知,此过程弹性势能减少了 EP=0.248 J ′ 设F力功WF,对这一过程应用动能定理或功能原理
WF+EP-(mA+mB)g (x' -x) =1/2(mA+mB) v2
N A
kx=(mA+mB)g ,

F
B N m Bg kx′
对A施加F力,分析A、B受力如图 对A F+N-mAg=mAa 对B k x' -N-mBg=mBa' ② ③
相关文档
最新文档