弹簧类问题的几种模型及其处理方法
弹簧类问题的几种模型及其处理方法之欧阳治创编

弹簧类问题的几种模型及其处理方法学生对弹簧类问题感到头疼的主要原因有以下几个方面:首先,由于弹簧不断发生形变,导致物体的受力随之不断变化,加速度不断变化,从而使物体的运动状态和运动过程较复杂。
其次,这些复杂的运动过程中间所包含的隐含条件很难挖掘。
还有,学生们很难找到这些复杂的物理过程所对应的物理模型以及处理方法。
根据近几年高考的命题特点和知识的考查,笔者就弹簧类问题分为以下几种类型进行分析,供读者参考。
一、弹簧类命题突破要点1.弹簧的弹力是一种由形变而决定大小和方向的力。
当题目中出现弹簧时,首先要注意弹力的大小与方向时刻要与当时的形变相对应,在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置、现长位置、平衡位置等,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,结合物体受其他力的情况来分析物体运动状态。
2.因软质弹簧的形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变,因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变。
3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解。
同时要注意弹力做功的特点:弹力做功等于弹性势能增量的负值。
弹性势能的公式,高考不作定量要求,可作定性讨论,因此在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解。
二、弹簧类问题的几种模型1.平衡类问题例1.如图1所示,劲度系数为k 1的轻质弹簧两端分别与质量为m 1、m 2的物块拴接,劲度系数为k 2的轻质弹簧上端与物块m 2拴接,下端压在桌面上(不拴接),整个系统处于平衡状态。
现施力将m 1缓慢竖直上提,直到下面那个弹簧的下端刚脱离桌面。
在此过程中,m 2的重力势能增加了______,m 1的重力势能增加了________。
分析:上提m 1之前,两物块处于静止的平衡状态,所以有:,,其中,、分别是弹簧k 1、k 2的压缩量。
弹簧类型题

弹簧类型题弹簧类问题是高中物理中非常典型的变力作用模型,因这类问题过程复杂,涉及的力学规律多,综合性强,能全面考查学生的科学思维、实验探究等物理核心素养,是历年高考命题的热点,但大部分学生解决弹簧类问题感觉比较困难,思路不清,甚至无从下手.本文通过典型实例分析牛顿运动定律中的弹簧类问题、功能关系中的弹簧类问题、动量守恒定律中的弹簧类问题和实验中的弹簧问题,旨在帮助学生深刻剖析力学中弹簧类问题,抓住解题要点,提高备考效率.一、弹簧类问题命题突破要点1.弹簧的弹力是一种由弹性形变决定大小和方向的力,在弹性限度内,根据胡克定律可知F弹=kx,当题目中出现弹簧时,要注意弹力的大小和方向时刻要当时的形变相对应.一般从分析弹簧的形变入手,先确定弹簧原长位置、形变后位置、形变量x 与物体空间位置变化的关系后,分析形变所对应的弹力大小和方向,进而分析物体运动状态及变化情况.2.弹簧的形变发生改变需要时间,瞬间可认为无形变量,弹力不变,弹性势能不变.F弹=kx 中x 表示形变量,弹力和弹性势能为某特定值时,可能对应两种状态(即弹簧伸长或压缩),高考经常在此设置题目.3.求弹簧的弹力做功时,因F弹随位移呈线性变化,可先求平均力,再用功的定义式W=Fx 进行计算,也可根据功能关系ΔEp=-W (弹性势能的变化等于物体克服弹力做的功)计算,弹性势能表达式Ep=1/2kx2在目前高考中不做定量计算要求.4.弹簧连接物体组成的系统,因弹力为系统的内力,当系统外力合力为零时,系统动量守恒,应用动量守恒定律可快速求解物体的速度,此类问题涉及物体多,过程复杂,常以选择题或计算题的形式出现,注意抓住临界状态及条件,结合能量守恒定律便可求解.二、四种弹簧类问题题型一牛顿运动定律中的弹簧类问题1.弹簧弹力的特点:(1)瞬时性.弹力随形变的变化而变化,弹簧可伸长可压缩,两端同时受力,大小相等方向相反;(2)连续性.弹簧形变量不能突变,约束弹簧的弹力不能突变;(3)对称性.弹力以原长为对称,大小相等的弹力对应压缩和伸长两种状态.2.此类问题经常伴随临界问题.当题目中出现“刚好”“恰好”“正好”,表明过程中存在临界点;若出现取值范围、多大距离等词时表示过程存在“起止点”,这往往对应临界状态;若题目要求“最终加速度”“稳定速度”,即求收尾加速度和收尾速度.【例1】如图1所示,光滑水平地面上,可视为质点的两滑块A、B 在水平外力的作用下紧靠在一起压缩弹簧,弹簧左端固定在墙壁上,此时弹簧的压缩量为x0,以两滑块此时的位置为坐标原点建立如图1所示的一维坐标系,现将外力突然反向并使B 向右做匀加速运动,下列关于外力F、两滑块间弹力FN 与滑块B 的位移x 变化的关系图像可能正确的是( )【小结】准确理解胡克定律F=kx中各物理量的含义,注意x 为形变量(伸长量或缩短量),分析弹力一般从形变量入手,抓住弹力与物体位置或位置变化的对应关系,对物体进行受力分析,结合牛顿运动定律确定物体的运动状态或各物理量随位置坐标的变化情况.题型二功能关系中的弹簧类问题1.题型特点:由轻弹簧连接的物体系统,一般有重力和弹簧弹力做功,这时系统的动能、重力势能和弹簧的弹性势能相互转化机械能守恒,注意应用功能关系或机械能守恒定律进行求解.2.注意三点:(1)对同一弹簧,弹性势能的大小由弹簧的形变量决定,与弹簧伸长或压缩无关;(2)物体运动的位移与弹簧的形变量或形变量的变化量有关;(3)如果系统中两个物体除弹簧弹力外所受合外力为零,则弹簧形变量最大时两物体速度相同.【例2】如图3所示,B、C 两小球由绕过光滑定滑轮的细线相连,C 球放在固定的光滑斜面上,A、B 两小球在竖直方向上通过劲度系数为k 的轻质弹簧相连,A 球放在水平地面上.现用手控制住C 球,并使细线刚刚拉直但无拉力作用,并保证滑轮左侧细线竖直、右侧细线与斜面平行.已知C 球的质量为4m,A、B 两小球的质量均为m ,重力加速度为g,细线与滑轮之间的摩擦不计.开始时整个系统处于静止状态;释放C 球后,B 球的速度最大时,A 球恰好离开地面,求:来计算),或者采用功能关系法(利用动能定理、机械能守恒定律或能量守恒定律求解).特别注意弹簧有相同形变量时,弹性势能相同.题型三动量守恒定律中的弹簧类问题1.题型特点:两个(或两个以上)物体与弹簧组成的系统在相互作用过程中,若系统不受外力或所受合外力为零,则系统的动量守恒;同时,除弹簧弹力以外的力不做功,则系统的机械能守恒.2.注意三点:(1)此类问题一般涉及多个过程,注意把相互作用过程划分为多个依次进行的子过程,分析确定哪些子过程动量或机械能守恒,哪些子过程动量或机械能不守恒;(2)对某个子过程列动量守恒和能量守恒方程时,初末状态的动量和能量表达式要对应;(3)一个常见的临界状态,即当弹簧最长或最短时,弹性势能最大,弹簧两端物体速度相等.题型四实验中的弹簧类问题实验中的弹簧类问题涉及的实验是“探究弹簧弹力与弹簧伸长量的关系”,即胡克定律F=kx.力F的测量要注意弹簧竖直且处于平衡状态,x的测量要注意不能超过弹性限度,用测量总长减去弹簧原长,不能直接测量形变量,否则会增大误差.胡克定律还可表述ΔF=kΔx,根据此式即使不测量弹簧的原长也可求劲度系数,通常以弹力F 为纵坐标,弹簧长度或伸长量x 为横坐标,通过图像斜率求劲度系数.【小结】本题用固定在弹簧上的7个指针探究弹簧的劲度系数与弹簧长度的关系,将探究劲度系数k与弹簧圈数n的关系转化为探究1/k与n之间的关系,体现了化曲为直的思想,通过实验探究让学生感受弹力与形量之间的对应关系.三、结语弹簧因它的弹力、弹性势能与形变量之间有独特的关系,牛顿运动定律、机械能守恒定律及动量守恒定律等力学核心内容均可以以弹簧为载体进行考查,试题综合性强,难度大,能全面考查学生逻辑思维能力和运用数学知识解决物理问题的能力,备受命题专家的青睐,所以,备考当中应引起足够的重视.。
弹簧类系列问题 Microsoft Word 文档

弹簧类系列问题轻弹簧是一种理想化的物理模型,以轻质弹簧为载体,设置复杂的物理情景,考查力的概念,物体的平衡,牛顿定律的应用及能的转化与守恒,是高考命题的重点,此类命题几乎每年高考卷面均有所见,,引起足够重视.(一)弹簧类问题的分类1、弹簧的瞬时问题:弹簧的两端都有其他物体或力的约束时,使其发生形变时,弹力不能由某一值突变为零或由零突变为某一值。
2、弹簧的平衡问题:这类题常以单一的问题出现,涉及到的知识是胡克定律,一般用f=kx或△f=k•△x来求解。
3、弹簧的非平衡问题:这类题主要指弹簧在相对位置发生变化时,所引起的力、加速度、速度、功能和合外力等其它物理量发生变化的情况。
4、弹力做功与动量、能量的综合问题:在弹力做功的过程中弹力是个变力,并与动量、能量联系,一般以综合题出现。
有机地将动量守恒、机械能守恒、功能关系和能量转化结合在一起。
分析解决这类问题时,要细致分析弹簧的动态过程,利用动能定理和功能关系等知识解题。
(二)弹簧问题的处理办法1.弹簧的弹力是一种由形变而决定大小和方向的力.当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应.在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化.2.因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变.因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变.3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解.同时要注意弹力做功的特点:Wk =-(½kx22-½kx12),弹力的功等于弹性势能增量的负值.弹性势能的公式E p=½kx2,高考不作定量要求,可作定性讨论.因此,在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解.例1、如图所示,两木块的质量分别为m1和m2,两轻质弹簧的劲度系数分别为k1和k2,上面木块压在上面的弹簧上(但不拴紧),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面弹簧.在这过程中下面木块移动的距离为()例2如图3-5-2所示,倾角为30°的光滑杆上套有一个小球和两根轻质弹簧a 、b ,两弹簧的一端各与小球相连,另一端分别用销钉M 、N 固定于杆上,小球处于静止状态,设拔去销钉M 瞬间,小球的加速度大小为6m/s 2,若不拔去销钉M ,而拔去销钉N 瞬间,小球的加速度是(g 取10m/s 2)( ) A .11m/s 2,沿杆向上 B .11m/s 2,沿杆向下 C .1m/s 2, 沿杆向上 D .1m/s 2, 沿杆向下例3、如图示,倾角30°的光滑斜面上,并排放着质量分别是m A =10kg 和m B =2kg 的A 、B 两物块,一个劲度系数k=400N/m 的轻弹簧一端与物块B 相连,另一端与固定挡板相连,整个系统处于静止状态,现对A 施加一沿斜面向上的力F ,使物块A 沿斜面向上作匀加速运动,已知力 F 在前0.2s 内为变力,0.2s 后为恒力,g 取10m/s 2 , 求F 的最大值和最小值。
弹簧类问题的几种模型及其处理办法

精心整理弹簧类问题的几种模型及其处理方法学生对弹簧类问题感到头疼的主要原因有以下几个方面:首先,由于弹簧不断发生形变,导致物体的受力随之不断变化,加速度不断变化,从而使物体的运动状态和运动过程较复杂。
其次,这些复杂的运动过程中间所包含的隐含条件很难挖掘。
还有,学生们很难找到这些复杂的物理过程所对应的物理模型以及处理方法。
根据近几年高考的命题特点和知识的考查,笔者就弹簧类问题分为以下几种类型进行分析,供读者参考。
一、弹簧类命题突破要点1.弹簧的弹力是一种由形变而决定大小和方向的力。
当题目中出现弹簧时,首先要注意弹力的大小与方向时刻要与当时的形23,高考不1例1.m2此过程中,m分析:,分别是弹簧k1、k2当用力缓慢上提m1,使k2下端刚脱离桌面时,,弹簧k2最终恢复原长,其中,为此时弹簧k1的伸长量。
答案:m2上升的高度为,增加的重力势能为,m1上升的高度为,增加的重力势能为。
点评:此题是共点力的平衡条件与胡克定律的综合题,题中空间距离的变化,要通过弹簧形变量的计算求出。
注意缓慢上提,说明整个系统处于动态平衡过程。
例2.如上图2所示,A物体重2N,B物体重4N,中间用弹簧连接,弹力大小为2N,此时吊A物体的绳的拉力为T,B对地的压力为F,则T、F的数值可能是A.7N,0??????B.4N,2N?????C.1N,6N???????D.0,6N分析:对于轻质弹簧来说,既可处于拉伸状态,也可处于压缩状态。
所以,此问题要分两种情况进行分析。
(1)若弹簧处于压缩状态,则通过对A、B受力分析可得:,(2,答案:点评:2例3.分析:(2弹力和剪断,方向水平向右。
点评:此题属于细线和弹簧弹力变化特点的静力学问题,学生不仅要对细线和弹簧弹力变化特点熟悉,还要对受力分析、力的平衡等相关知识熟练应用,此类问题才能得以解决。
突变类问题总结:不可伸长的细线的弹力变化时间可以忽略不计,因此可以称为“突变弹力”,轻质弹簧的弹力变化需要一定时间,弹力逐渐减小,称为“渐变弹力”。
弹簧类问题的几种模型及其处理方法之欧阳引擎创编

弹簧类问题的几种模型及其处理方法欧阳引擎(2021.01.01)学生对弹簧类问题感到头疼的主要原因有以下几个方面:首先,由于弹簧不断发生形变,导致物体的受力随之不断变化,加速度不断变化,从而使物体的运动状态和运动过程较复杂。
其次,这些复杂的运动过程中间所包含的隐含条件很难挖掘。
还有,学生们很难找到这些复杂的物理过程所对应的物理模型以及处理方法。
根据近几年高考的命题特点和知识的考查,笔者就弹簧类问题分为以下几种类型进行分析,供读者参考。
一、弹簧类命题突破要点1.弹簧的弹力是一种由形变而决定大小和方向的力。
当题目中出现弹簧时,首先要注意弹力的大小与方向时刻要与当时的形变相对应,在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置、现长位置、平衡位置等,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,结合物体受其他力的情况来分析物体运动状态。
2.因软质弹簧的形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变,因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变。
3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解。
同时要注意弹力做功的特点:弹力做功等于弹性势能增量的负值。
弹性势能的公式,高考不作定量要求,可作定性讨论,因此在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解。
二、弹簧类问题的几种模型1.平衡类问题例1.如图1所示,劲度系数为k1的轻质弹簧两端分别与质量为m1、m2的物块拴接,劲度系数为k2的轻质弹簧上端与物块m2拴接,下端压在桌面上(不拴接),整个系统处于平衡状态。
现施力将m1缓慢竖直上提,直到下面那个弹簧的下端刚脱离桌面。
在此过程中,m2的重力势能增加了______,m1的重力势能增加了________。
分析:上提m1之前,两物块处于静止的平衡状态,所以有:,,其中,、分别是弹簧k 1、k2的压缩量。
旋转弹簧类问题的分析技巧

旋转弹簧类问题的分析技巧一、问题分析解决旋转弹簧类问题首先需要对问题进行全面的分析。
具体包括考虑以下几个方面:1.系统模型:明确问题中涉及到的旋转弹簧和其他物体的模型。
对于旋转弹簧,需要确定其结构、形状、刚度等参数。
2.受力分析:确定外力和作用力。
分析问题中作用在旋转弹簧上的各种力,如拉力、压力、重力等。
3.约束条件:分析系统内各个物体之间的约束关系。
考虑旋转弹簧与其他物体之间的接触、分离等约束关系。
4.运动方式:分析问题中的运动方式,包括回转、摆动、振动等。
确定旋转弹簧的运动状态和变化规律。
二、弹簧的刚度及力学特性分析在解决旋转弹簧类问题时,需要了解弹簧的刚度及其力学特性。
具体分析如下:1.弹簧刚度:弹簧的刚度决定了它对力的变形程度。
刚度越大,弹簧变形越小,反之亦然。
通常用弹性系数(弹簧常数)来表示。
2.弹簧力学特性:弹簧具有负载变形的特性,即当外力作用在弹簧上时,弹簧会发生变形,并产生一个恢复力,该恢复力与变形程度成正比。
3.力-位移关系:分析弹簧的力-位移关系,即外力与弹簧变形之间的关系。
一般情况下,采用胡克定律来描述弹簧的力学特性,即F=K∆x,其中F为弹簧的恢复力,K为弹簧刚度,∆x为弹簧变形量。
三、平衡和受力分析在解决旋转弹簧类问题时,需要进行平衡和受力分析,以确定系统的平衡状态及受力情况。
具体分析如下:1.平衡状态:分析问题中的平衡状态,即物体所处的平衡位置和角度。
根据问题的具体条件,确定旋转弹簧的平衡位置和角度范围。
2.受力分析:分析旋转弹簧所受力的大小、方向和作用点。
考虑外力、弹簧的力和其他物体对旋转弹簧的作用力等。
3.平衡条件:根据平衡问题的具体条件,利用受力分析得出的力平衡方程或力矩平衡方程,解方程得到平衡条件。
四、运动分析在解决旋转弹簧类问题时,需要对旋转弹簧的运动进行分析。
具体分析如下:1.运动方程:根据问题的具体条件,建立旋转弹簧的运动方程。
根据问题所涉及的物体、约束条件和受力情况,建立力学模型,并利用牛顿定律等基本原理,得到旋转弹簧的运动方程。
高中物理关于弹簧的8种模型

高中物理关于弹簧的8种模型
以下是关于弹簧的8种模型
1. 弹性线性模型(Hooke定律模型):弹簧的拉伸或压缩与弹力成正比。
2. 欧拉-伯努利悬链模型:将一条悬挂在两端支持点上的弹簧视为一个由无数小段组成的悬链,使该整体发生弹性形变。
3. 线圈弹簧模型:将弹簧看作一系列具有弹性的杆件相互连接而成的线圈。
4. 非线性弹簧模型(实验模型):弹簧长度非常短,增加弹簧的弹性,以进一步研究其弹性质量。
5. 结构弹簧模型:弹簧长度较长,由此建立的结构弹簧可以帮助研究建筑物和桥梁的耐力。
6. 重力弹簧模型:弹簧被用来模拟重力的作用。
7. 超弹性弹簧模型:这种弹簧的弹性大于普通弹簧,它被广泛应用于高精度测量、机器人学和其他高科技领域。
8. 线性簧模型:弹簧的材质、线径等是固定的,根据弹簧的特性建立模型,计算其应力、应变等力学参数。
力学中弹簧类问题的处理方法

一
v
■
黼
麓
整
1 . 在弹力作 用下物 体处于平 衡态— — f②作 f①考 示意图 虑压缩和 伸长两 种可能 性
l③受力平衡列方程
团 固 豆
( 1 )使木块 A竖直做 匀加速运动 的
t 辩馕 一 一 F
鳃辫 麓纯
过程 中,力 F的最大值 ; 二、典型 例题 分析 ( 1) 静力学中的弹簧问题。①胡克定律: F=k x , △ F=k ・ △ x . ②对弹簧秤 的两端施加 ( 沿 轴线方 向 ) 大 小不 同的拉 力 ,弹簧秤 的示数一 定等 于挂钩上 的拉 力.例 一、如 图所示 ,劲度 系数为 k 1 的轻质弹簧两端分别与质量为 m 。 、m : 的物块 1 、2拴接 ,劲 度系数 为 k 2的轻质 弹簧 上端与物块 2 拴接 , 下端压在桌面上 ( 不拴接 ), 整个 系统处于平衡状 态。现施力将物块 1缓慢 地竖 直上提 ,直到下面那个 弹簧 的下端刚脱离 桌面 。在此过程中,物块 势能增加了 — — 。 2的重力势能增加 了一
( 2 ) 若木块由静止开始做匀加速运动 , 直到 A 、B 分离的过程中 , 弹簧的弹性势能减少 了 0 . 2 4 8 J ,求这一过程 F 对木块做 的功 . 解 :当 F - O( 即不加竖直向上 F 力时 ), 设A 、B叠放在弹簧上处
于平衡时弹簧的压缩量为x , 有k x =( m a + m B ) g :f ±
一 _ - ] _ } ● . ’ h 苦
F +N —m g =m a ②
①
k
对 A施加 F力 ,分析 A、B受力如图所示,对 A
对 B:
,物块 1 ห้องสมุดไป่ตู้重力
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
弹簧类问题的几种模型及其处理方法Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】弹簧类问题的几种模型及其处理方法学生对弹簧类问题感到头疼的主要原因有以下几个方面:首先,由于弹簧不断发生形变,导致物体的受力随之不断变化,加速度不断变化,从而使物体的运动状态和运动过程较复杂。
其次,这些复杂的运动过程中间所包含的隐含条件很难挖掘。
还有,学生们很难找到这些复杂的物理过程所对应的物理模型以及处理方法。
根据近几年高考的命题特点和知识的考查,笔者就弹簧类问题分为以下几种类型进行分析,供读者参考。
一、弹簧类命题突破要点1.弹簧的弹力是一种由形变而决定大小和方向的力。
当题目中出现弹簧时,首先要注意弹力的大小与方向时刻要与当时的形变相对应,在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置、现长位置、平衡位置等,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,结合物体受其他力的情况来分析物体运动状态。
2.因软质弹簧的形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变,因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变。
3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解。
同时要注意弹力做功的特点:弹力做功等于弹性势能增量的负值。
弹性势能的公式,高考不作定量要求,可作定性讨论,因此在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解。
二、弹簧类问题的几种模型1.平衡类问题例1.如图1所示,劲度系数为k1的轻质弹簧两端分别与质量为m1、m2的物块拴接,劲度系数为k2的轻质弹簧上端与物块m2拴接,下端压在桌面上(不拴接),整个系统处于平衡状态。
现施力将m1缓慢竖直上提,直到下面那个弹簧的下端刚脱离桌面。
在此过程中,m2的重力势能增加了______,m1的重力势能增加了________。
分析:上提m1之前,两物块处于静止的平衡状态,所以有:,,其中,、分别是弹簧k1、k2的压缩量。
当用力缓慢上提m1,使k2下端刚脱离桌面时,,弹簧k2最终恢复原长,其中,为此时弹簧k1的伸长量。
答案:m2上升的高度为,增加的重力势能为,m1上升的高度为,增加的重力势能为。
点评:此题是共点力的平衡条件与胡克定律的综合题,题中空间距离的变化,要通过弹簧形变量的计算求出。
注意缓慢上提,说明整个系统处于动态平衡过程。
例2.如上图2所示,A物体重2N,B物体重4N,中间用弹簧连接,弹力大小为2N,此时吊A物体的绳的拉力为T,B对地的压力为F,则T、F的数值可能是A.7N,0 B.4N,2N C.1N,6N D.0,6N分析:对于轻质弹簧来说,既可处于拉伸状态,也可处于压缩状态。
所以,此问题要分两种情况进行分析。
(1)若弹簧处于压缩状态,则通过对A、B受力分析可得:,(2)若弹簧处于拉伸状态,则通过对A、B受力分析可得:,答案:B、D。
点评:此题主要针对弹簧既可以压缩又可以拉伸的这一特点,考查学生对问题进行全面分析的能力。
有时,表面上两种情况都有可能,但必须经过判断,若某一种情况物体受力情况和物体所处状态不符,必须排除。
所以,对这类问题必须经过受力分析结合物体运动状态之后作出判断。
平衡类问题总结:这类问题一般把受力分析、胡克定律、弹簧形变的特点综合起来,考查学生对弹簧模型基本知识的掌握情况。
只要学生静力学基础知识扎实,学习习惯较好,这类问题一般都会迎刃而解,此类问题相对较简单。
2.突变类问题例3.(2001年上海)如图3所示,一质量为m的小球系于长度分别为l1、l2的两根细线上,l1的一端悬挂在天花板上,与竖直方向夹角为θ,l2水平拉直,小球处于平衡状态。
现将l2线剪断,求剪断瞬时小球的加速度。
若将图3中的细线l1改为长度相同、质量不计的轻弹簧,如图4所示,其他条件不变,求剪断细线l2瞬时小球的加速度。
分析:(1)当剪断细线l2瞬间,不仅l2对小球拉力瞬间消失,l1的拉力也同时消失,此时,小球只受重力作用,所以此时小球的加速度为重力加速度g。
(2)当把细线l1改为长度相同、质量不计的轻弹簧时,在当剪断细线l2瞬间,只有l2对小球拉力瞬间消失,弹簧对小球的弹力和剪断l2之前没变化,因为弹簧恢复形变需要一个过程。
如图5所示,剪断l2瞬间,小球受重力G和弹簧弹力,所以有:,方向水平向右。
点评:此题属于细线和弹簧弹力变化特点的静力学问题,学生不仅要对细线和弹簧弹力变化特点熟悉,还要对受力分析、力的平衡等相关知识熟练应用,此类问题才能得以解决。
突变类问题总结:不可伸长的细线的弹力变化时间可以忽略不计,因此可以称为“突变弹力”,轻质弹簧的弹力变化需要一定时间,弹力逐渐减小,称为“渐变弹力”。
所以,对于细线、弹簧类问题,当外界情况发生变化时(如撤力、变力、剪断),要重新对物体的受力和运动情况进行分析,细线上的弹力可以突变,轻弹簧弹力不能突变,这是处理此类问题的关键。
3.碰撞型弹簧问题此类弹簧问题属于弹簧类问题中相对比较简单的一类,而其主要特点是与碰撞问题类似,但是,它与碰撞类问题的一个明显差别就是它的作用过程相对较长,而碰撞类问题的作用时间极短。
例4.如图6所示,物体B静止在光滑的水平面上,B的左边固定有轻质的弹簧,与B质量相等的物体A以速度v向B运动并与弹簧发生碰撞,A、B始终沿统一直线,则A,B组成的系统动能损失最大的时刻是A.A开始运动时 B.A的速度等于v时C.B的速度等于零时 D.A和B的速度相等时分析:解决这样的问题,最好的方法就是能够将两个物体作用的过程细化,明确两个物体在相互作用的过程中,其详细的运动特点。
具体分析如下:(1)弹簧的压缩过程:A物体向B运动,使得弹簧处于压缩状态,压缩的弹簧分别对A、B物体产生如右中图的作用力,使A向右减速运动,使B向右加速运动。
由于在开始的时候,A的速度比B的大,故两者之间的距离在减小,弹簧不断压缩,弹簧产生的弹力越来越大,直到某个瞬间两个物体的速度相等,弹簧压缩到最短。
(2)弹簧压缩形变恢复过程:过了两物体速度相等这个瞬间,由于弹簧仍然处于压缩状态,A继续减速,B继续加速,这就会使得B的速度变的比A的速度大,于是A、B物体之间的距离开始变大,弹簧逐渐恢复形变直至原长。
(3)弹簧的拉伸过程:由于B的速度比A的速度大,弹簧由原长变为拉伸状态。
此时,弹簧对两物体的弹力方向向内,使A向右加速运动,B向右减速运动,直到A、B速度相等时弹簧拉伸到最长状态。
(4)弹簧拉伸形变恢复过程:过了两物体速度相等这个瞬间,由于弹簧仍然处于拉伸状态,A继续加速,B继续减速,这就会使得A的速度变的比B的速度大,于是A、B物体之间的距离开始变小,弹簧逐渐恢复形变直至原长。
就这样,弹簧不断地压缩、拉伸、恢复形变。
当外界用力压弹簧时,弹簧会被压缩,从而获得弹性势能,当弹簧开始恢复形变之后,它又会将所蓄积的弹性势能释放出去,这个蓄积和释放的过程,弹簧自身并不会耗费能量。
能量在两个物体和弹簧之间进行传递。
点评:在由两个物体和弹簧组成的系统的运动中,具有下面的特点:(1)两个物体速度相等时,弹簧处于形变量(压缩或拉伸)最大的状态,弹簧的弹性势能达到最大。
(2)两个物体不停地进行着加速和减速运动,但加速度时刻在变化,所以有关两个物体运动的问题不能采用运动学公式来解决。
但此模型属于弹性碰撞模型,所以满足包括弹簧在内的系统动量守恒和系统机械能守恒。
4:机械能守恒型弹簧问题对于弹性势能,高中阶段并不需要定量计算,但是需要定性的了解,即知道弹性势能的大小与弹簧的形变之间存在直接的关系,对于相同的弹簧,形变量一样的时候,弹性势能就是一样的,不管是压缩状态还是拉伸状态。
例5.一劲度系数k=800N/m的轻质弹簧两端分别连接着质量均为m=12kg的物体A、B,它们竖直静止在水平面上,如图7所示。
现将一竖直向上的变力F作用在A上,使A开始向上做匀加速运动,经物体B刚要离开地面。
求:⑴此过程中所加外力F的最大值和最小值。
⑵此过程中力F所做的功。
(设整个过程弹簧都在弹性限度内,取g=10m/s2)分析:此题考查学生对A物体上升过程中详细运动过程的理解。
在力F刚刚作用在A上时,A物体受到重力mg,弹簧向上的弹力T,竖直向上的拉力F。
随着弹簧压缩量逐渐减小,弹簧对A的向上的弹力逐渐减小,则F必须变大,以满足F+T-mg=ma。
当弹簧恢复原长时,弹簧弹力消失,只有F-mg=ma;随着A 物体继续向上运动,弹簧开始处于拉伸状态,则物体A的受到重力mg,弹簧向下的弹力T,竖直向上的拉力F,满足F-T-mg=ma。
随着弹簧弹力的增大,拉力F也逐渐增大,以保持加速度不变。
等到弹簧拉伸到足够长,使得B物体恰好离开地面时,弹簧弹力大小等于B物体的重力。
答案:(1)开始时,对于A物体:,得弹簧压缩量是Δx=B刚要离开地面时,对于B物体仍有:,得弹簧伸长量Δx=因此A向上运动的位移是,由公式:求得:加速度是s2。
所以:开始时刻F=ma=45N为拉力最小值;B刚要离开地面时F'-mg-kΔx=ma,得F'=285N为拉力最大值。
(2)拉力做的功等于系统增加的机械能,始末状态弹性势能相同。
所以由和,可得此过程中拉力做的功等于。
点评:此类题的关键是要分析出最大值和最小值时刻的特点,必须通过受力分析得出物体运动的详细过程特征,只要把物体做每一种运动形式的力学原因搞清楚了,这类问题就会迎刃而解。
所以,学生在平时的训练中,必须养成良好的思维习惯,对于较复杂的物理过程,必须先分段研究,化一个复杂问题为若干个简单模型,针对若干个简单的物理情景,逐一分析出现这一物理情景的力学原因,当把每一个物理情景都分析清楚了,整个问题的答案就会水到渠成。
例6.如图8所示,物体B和物体C用劲度系数为k的弹簧连接并竖直地静置在水平面上。
将一个物体A从物体B的正上方距离B的高度为H0处由静止释放,下落后与物体B碰撞,碰撞后A和B粘合在一起并立刻向下运动,在以后的运动中A、B不再分离。
已知物体A、B、C的质量均为M,重力加速度为g,忽略物体自身的高度及空气阻力。
求:(1)A与B碰撞后瞬间的速度大小。
(2)A和B一起运动达到最大速度时,物体C对水平地面压力为多大(3)开始时,物体A从距B多大的高度自由落下时,在以后的运动中才能使物体C恰好离开地面分析:过程分析法:第一阶段:A自由落体;第二阶段:A、B发生碰撞,作用时间极短,时间忽略;第三阶段:AB成为一体的瞬间,弹簧形变来不及发生改变,弹簧的弹力仍为mg,小于AB整体重力2mg,所以物体AB所受合力仍然为向下,物体仍然向下加速,做加速度减小的加速运动。