弧长与扇形面积公式课件
合集下载
《弧长和扇形面积》课件

面积为______
3
解:∵△ABC中,∠A=60°,
∴∠ABC+∠ACB=180°-60°=120°,
∵△OBD,△OCE是等腰三角形,
∴∠BDO+∠CEO=∠ABC+∠ACB=120°,
∴∠BOD+∠COE=360°-(∠BDO+∠CEO)-(∠ABC+∠ACB)
=360°-120°-120°=12DB= × 3 × 3
2
60×32
3−
360
=
9 3
3
− .
2
2
记作:扇形OCED
新知探究 知识点1
S =πR2
分别计算下图中各扇形的面积
R
180° O
2
180
R
R 2
360
2
R 90°
O
2
90
R
R 2
360
4
45°
R
O
2
45
R
R 2
360
8
n°R
O
2
n
n
R
R 2
360
360
扇形面积公式:
半径为R 的圆中,圆心角为n°的扇形的面积是
解得
135×4²
R=4,∴此扇形的面积为
=6π(cm2).
360
随堂练习
1.如图,实线部分是由两条等弧组成的游泳池,且这两条弧所在
的圆的半径均为15 m.若每条弧所在的圆都经过另一个圆的圆心,
则游泳池的周长是 40π m.
解:如图,连接O1O2,CO1,CO2,DO1,DO2,
∵O1O2= CO1 = CO2 =15m,
3
解:∵△ABC中,∠A=60°,
∴∠ABC+∠ACB=180°-60°=120°,
∵△OBD,△OCE是等腰三角形,
∴∠BDO+∠CEO=∠ABC+∠ACB=120°,
∴∠BOD+∠COE=360°-(∠BDO+∠CEO)-(∠ABC+∠ACB)
=360°-120°-120°=12DB= × 3 × 3
2
60×32
3−
360
=
9 3
3
− .
2
2
记作:扇形OCED
新知探究 知识点1
S =πR2
分别计算下图中各扇形的面积
R
180° O
2
180
R
R 2
360
2
R 90°
O
2
90
R
R 2
360
4
45°
R
O
2
45
R
R 2
360
8
n°R
O
2
n
n
R
R 2
360
360
扇形面积公式:
半径为R 的圆中,圆心角为n°的扇形的面积是
解得
135×4²
R=4,∴此扇形的面积为
=6π(cm2).
360
随堂练习
1.如图,实线部分是由两条等弧组成的游泳池,且这两条弧所在
的圆的半径均为15 m.若每条弧所在的圆都经过另一个圆的圆心,
则游泳池的周长是 40π m.
解:如图,连接O1O2,CO1,CO2,DO1,DO2,
∵O1O2= CO1 = CO2 =15m,
弧长及扇形的面积ppt课件

如图所示,扇形OAB的圆心角为60°,半径为1,将它向右 滚动到扇形O′A′B′的位置,点O到O′所经过的路线长
A.π B .4/3π C.5/3π D.2π
B' A
B
C' D
A
C
扇形的定义 如图,一条弧和经过这条弧的端点的两条半径所组成 的图形叫做扇形.
弧
A B
O
探究二
1.如图,圆的半径为R,圆心角为90°, 怎样计算扇形的面积呢?
∠BAC=60°.设⊙O的半径为2,求 B⌒C 的
长.
例2、 如图:在△AOC中,∠AOC=90°, ∠C=15°,以O为圆心,AO为半径的圆交AC于B 点,若OA=6, 求弧AB的长。
C
B
O
A
试一试:
如图:AB与⊙O相切于点B,AO的延长线交⊙O 于点C,连接BC,若∠ABC=120°,OC=3,求 弧BC的长.
B●
B
B2
B1
F'
U
A
BCD的边AB=8,AD=6,现将矩形ABCD 放在直线l上且沿着l向右作无滑动地翻滚,当它 翻滚至类似开始的位置时(如图所示),则顶点 A所经过的路线长是_________.
如图,半径为5的半圆的初始状态是直径平行于桌 面上的直线b,然后把半圆沿直线b进行无滑动滚动 ,使半圆的直径与直线b重合为止,则圆心O运动路 径的长度等于______.
1 4
π×(652-152)=1000π(cm2)
例题解析
例2 如图,正三角形ABC的边长为2,分别以A、B、C为 圆心,1为半径的圆两两相切于点O1、O2、O3,求弧O1O2、 弧O2O3、弧O3O1围成的图形的面积S(图中阴影部分).
弧长和扇形面积公式ppt课件

形的面积为___4____.
3
2、已知扇形的圆心角为300,面积为 3 cm2,则这 个扇形的半径R=_6_c__m.
3、已知扇形的圆心角为1500,弧长为 20 cm,则扇形
的面积为___2_4__0____c.m2
小结: 扇形面积公式涉及三个量 扇形面积 ,圆心角的度数 ,弧所在
的半径,知道其中两个量,就可以求第三个量。
360
2
=
0.24
1 2
0.6
3 0.3
≈0.91 m2
12
• 通过这两道题你有什么收获?
1.学会几何建模,既把实际问题转化为几何问题 2.转化思想
3.S弓=S扇—S△
0
0
S弓=S扇+S△ A
B
13
议一议:
1、本节课你学到了那些知识? 2、本节课你学到了那些数学思想和方法?
14
15
360 180
n (4)n°圆心角所对弧长是多少? ×π R 180
若设⊙O半径为R, n°的圆心角所对的弧长
l为 ,则
l nR
180
A
B
n°
O
3
1.已知弧所对的圆心角为900,半径是4,则弧
2 长为______
2. 已知一条弧的半径为9,弧长为8π ,那么
这条弧所对的圆心角为16_0_°__。
3. 钟表的轴心到分针针端的长为5cm,那么经过
40分钟,分针针端转过的弧长是( B )
A.
10 cm B.
3
20 cm C.
3
小结: 弧长公式涉及三个量
弧253长cm,D圆.心角5的03度c数m ,
弧所在的半径,知道其中两个量,就可以求第
3
2、已知扇形的圆心角为300,面积为 3 cm2,则这 个扇形的半径R=_6_c__m.
3、已知扇形的圆心角为1500,弧长为 20 cm,则扇形
的面积为___2_4__0____c.m2
小结: 扇形面积公式涉及三个量 扇形面积 ,圆心角的度数 ,弧所在
的半径,知道其中两个量,就可以求第三个量。
360
2
=
0.24
1 2
0.6
3 0.3
≈0.91 m2
12
• 通过这两道题你有什么收获?
1.学会几何建模,既把实际问题转化为几何问题 2.转化思想
3.S弓=S扇—S△
0
0
S弓=S扇+S△ A
B
13
议一议:
1、本节课你学到了那些知识? 2、本节课你学到了那些数学思想和方法?
14
15
360 180
n (4)n°圆心角所对弧长是多少? ×π R 180
若设⊙O半径为R, n°的圆心角所对的弧长
l为 ,则
l nR
180
A
B
n°
O
3
1.已知弧所对的圆心角为900,半径是4,则弧
2 长为______
2. 已知一条弧的半径为9,弧长为8π ,那么
这条弧所对的圆心角为16_0_°__。
3. 钟表的轴心到分针针端的长为5cm,那么经过
40分钟,分针针端转过的弧长是( B )
A.
10 cm B.
3
20 cm C.
3
小结: 弧长公式涉及三个量
弧253长cm,D圆.心角5的03度c数m ,
弧所在的半径,知道其中两个量,就可以求第
弧长及扇形面积的计算ppt课件

3.6 弧长及扇形面积的计算
1.半径为r的圆的周长是多少?面积是
多少?
C 2r S r2
2.什么叫做弧?什么叫做1°的弧?
圆上任意两点间的部分叫做弧.
整个圆的 1 叫做1°的弧. 弧是圆的一部分 360
3.什么叫做扇形?
一条弧和经过这条弧两端的两条半径 所围成的图形叫做扇形.
扇形是圆面的一部分
n 2r nr
360
180
知识点一 弧长公式
在半径为r的圆中,n°弧的长度为:
弧的度数或圆心角的度数
n°弧
弧长
l
nr
180
半径 A
r O
B
注意:“n°弧的长度”也可以说成
“n°的圆心角所对的弧的长度”.
例1. 如图所示为一段弯形管道,其中心线是一段圆弧 AB 已知 AB的圆心为O,半径OA=60 cm,∠AOB = 108°, 求这段弯管的长度.
作业布置
A:学案 B:《练习册》91-92页
(去掉1.3.4.8.14.15.17.19)
如图 ,已知⊙O的半径为r .思考下面的问题:
O
1°弧
O
60°弧
O
n°弧
(1)圆周上1°弧的长度是整个圆周长的多少? 1
怎样用圆的半径r表示 1°弧的长度呢? 360
1 2 r r
360
180
(2)怎样用圆的半径r表示 60°弧的长度呢?
60 2r r
360
3
(3)怎样用圆的半径r表示 n°弧的长度 l 呢?
分BD的长为20cm,求扇子的一面上贴纸部分的面
积。
分析:
转化思想
.
S S扇形BAC S扇形DAE
解:由题意得:n=120 °,
1.半径为r的圆的周长是多少?面积是
多少?
C 2r S r2
2.什么叫做弧?什么叫做1°的弧?
圆上任意两点间的部分叫做弧.
整个圆的 1 叫做1°的弧. 弧是圆的一部分 360
3.什么叫做扇形?
一条弧和经过这条弧两端的两条半径 所围成的图形叫做扇形.
扇形是圆面的一部分
n 2r nr
360
180
知识点一 弧长公式
在半径为r的圆中,n°弧的长度为:
弧的度数或圆心角的度数
n°弧
弧长
l
nr
180
半径 A
r O
B
注意:“n°弧的长度”也可以说成
“n°的圆心角所对的弧的长度”.
例1. 如图所示为一段弯形管道,其中心线是一段圆弧 AB 已知 AB的圆心为O,半径OA=60 cm,∠AOB = 108°, 求这段弯管的长度.
作业布置
A:学案 B:《练习册》91-92页
(去掉1.3.4.8.14.15.17.19)
如图 ,已知⊙O的半径为r .思考下面的问题:
O
1°弧
O
60°弧
O
n°弧
(1)圆周上1°弧的长度是整个圆周长的多少? 1
怎样用圆的半径r表示 1°弧的长度呢? 360
1 2 r r
360
180
(2)怎样用圆的半径r表示 60°弧的长度呢?
60 2r r
360
3
(3)怎样用圆的半径r表示 n°弧的长度 l 呢?
分BD的长为20cm,求扇子的一面上贴纸部分的面
积。
分析:
转化思想
.
S S扇形BAC S扇形DAE
解:由题意得:n=120 °,
28.5 弧长和扇形面积的计算课件(共27张PPT)

课堂小结
弧长和扇形面积
弧长公式
扇形面积公式
圆锥的侧面积为 πrl 圆锥表面积为 πrl+πr2 = πr(r+l)
同学们再见!
授课老师:
时间:2024年9月15日
解:设该圆锥的底面的半径为r,母线长为a.
可得r=10.
解得a=30.因此,该圆锥底面半径为10,母线长为30.
拓展提升
1.圆锥的底面半径为3cm,母线长为6cm,则这个圆锥侧面展开图扇形的圆心角是_______.
180°
2.草坪上的自动喷水装置能旋转220°,如果它的喷射半径是20m,求它能喷灌的草坪的面积.解:因此,它能喷灌的草坪的面积为 πm2.
(1)半径为r的圆,周长是多少?(2)圆的周长可以看作是多少度的圆心角所对的弧?(3)1°圆心角所对弧长是多少?
思考
你能总结出弧长公式吗?
C=2πr
360°
知识点2 弧长公式
弧长公式
圆的半径.
弧所对的圆心角的度数.
解读
1.公式中,n表示1°的n倍,180表示1°的180倍,n,180 不带单位.2.在弧长公式中,已知l,n,R中任意两个量,都可求出第三个量.
4π
B
4.如图,已知扇形OAB 的半径为2,圆心角为90°,连接AB,则图中阴影部分的面积是( )A.π-2 B.2π-4 C. 4π-2 D.4π-4
A
5.一个圆锥的侧面展开图是一个圆心角为120°、弧长为20 的扇形,试求该圆锥底面的半径及它的母线的长.
3.如图,水平放置的圆柱形排水管道的截面半径是0.6m,其中水面高0.3m,求截面上有水部分的面积(结果保留小数点后两位).
解:如图,连接OA,OB,作弦AB的垂直平分线,垂足为D,交弧AB于点C,连接AC.∵OC=0.6m,DC=0.3m,∴OD=OC-DC=0.3m.∴OD=DC.又AD⊥DC,∴AD是线段OC的垂直平分线.∴AC=AO=OC.从而∠AOD=60°,∠AOB=120°.有水部分的面积S=S扇形-S△OAB=
弧长和扇形面积
弧长公式
扇形面积公式
圆锥的侧面积为 πrl 圆锥表面积为 πrl+πr2 = πr(r+l)
同学们再见!
授课老师:
时间:2024年9月15日
解:设该圆锥的底面的半径为r,母线长为a.
可得r=10.
解得a=30.因此,该圆锥底面半径为10,母线长为30.
拓展提升
1.圆锥的底面半径为3cm,母线长为6cm,则这个圆锥侧面展开图扇形的圆心角是_______.
180°
2.草坪上的自动喷水装置能旋转220°,如果它的喷射半径是20m,求它能喷灌的草坪的面积.解:因此,它能喷灌的草坪的面积为 πm2.
(1)半径为r的圆,周长是多少?(2)圆的周长可以看作是多少度的圆心角所对的弧?(3)1°圆心角所对弧长是多少?
思考
你能总结出弧长公式吗?
C=2πr
360°
知识点2 弧长公式
弧长公式
圆的半径.
弧所对的圆心角的度数.
解读
1.公式中,n表示1°的n倍,180表示1°的180倍,n,180 不带单位.2.在弧长公式中,已知l,n,R中任意两个量,都可求出第三个量.
4π
B
4.如图,已知扇形OAB 的半径为2,圆心角为90°,连接AB,则图中阴影部分的面积是( )A.π-2 B.2π-4 C. 4π-2 D.4π-4
A
5.一个圆锥的侧面展开图是一个圆心角为120°、弧长为20 的扇形,试求该圆锥底面的半径及它的母线的长.
3.如图,水平放置的圆柱形排水管道的截面半径是0.6m,其中水面高0.3m,求截面上有水部分的面积(结果保留小数点后两位).
解:如图,连接OA,OB,作弦AB的垂直平分线,垂足为D,交弧AB于点C,连接AC.∵OC=0.6m,DC=0.3m,∴OD=OC-DC=0.3m.∴OD=DC.又AD⊥DC,∴AD是线段OC的垂直平分线.∴AC=AO=OC.从而∠AOD=60°,∠AOB=120°.有水部分的面积S=S扇形-S△OAB=
弧长和扇形面积的计算ppt课件

式 S扇形=
lr,与三角形的面积公式有些类似,可以把扇形
看作一个曲边三角形,把弧长看作底,r 看作高;(4)注
意区分扇形面积公式和弧长公式,其存在两方面不同:一是
分母不同,二是半径的指数不同.
28.5 弧长和扇形面积的计算
对点典例剖析
考
点
典例2 某摆盘的形状是扇形的一部分,如图所示是其几
清
单 何示意图(阴影部分为摆盘),通过测量得到 AC=BD=12 cm
∠BAB′=n°,根据题意,得 2π×2=
××
,解得
,∴∠BAB′=120°,∵ 点 C′为 BB′ 的中点,
n=120
28.5 弧长和扇形面积的计算
重
∴∠BAC′= ∠BAB′=60°,∴△BAC′为等边三角形
难
题 ,∵ 点 D 为 AC 的中点,∴ 点 D′为 AC′的中点,
型
[解析]如解析图,连接 OD,∵AC=4,AB=2,∴AC=2AB
重
难
题 ,∵∠ABC=90°,∴∠C=30°,∴∠DOB=2∠C=60°,∵BC
型
突 = − =2 ,∴OC=OD=OB= BC= ,过点 O 作
破
OM⊥CD 于点 M,在 Rt△OCM 中,∠C=30°,∴OM= OC=
π+ π
2
3
突
破
28.5 弧长和扇形面积的计算
重 ■题型二 求阴影部分的面积
难
例 2 如图,在△ABC 中,∠ABC=90°,AB=2,AC=4,
题
型 点 O为 BC 的中点,以点 O 为圆心,OB 长为半径作半圆
突
lr,与三角形的面积公式有些类似,可以把扇形
看作一个曲边三角形,把弧长看作底,r 看作高;(4)注
意区分扇形面积公式和弧长公式,其存在两方面不同:一是
分母不同,二是半径的指数不同.
28.5 弧长和扇形面积的计算
对点典例剖析
考
点
典例2 某摆盘的形状是扇形的一部分,如图所示是其几
清
单 何示意图(阴影部分为摆盘),通过测量得到 AC=BD=12 cm
∠BAB′=n°,根据题意,得 2π×2=
××
,解得
,∴∠BAB′=120°,∵ 点 C′为 BB′ 的中点,
n=120
28.5 弧长和扇形面积的计算
重
∴∠BAC′= ∠BAB′=60°,∴△BAC′为等边三角形
难
题 ,∵ 点 D 为 AC 的中点,∴ 点 D′为 AC′的中点,
型
[解析]如解析图,连接 OD,∵AC=4,AB=2,∴AC=2AB
重
难
题 ,∵∠ABC=90°,∴∠C=30°,∴∠DOB=2∠C=60°,∵BC
型
突 = − =2 ,∴OC=OD=OB= BC= ,过点 O 作
破
OM⊥CD 于点 M,在 Rt△OCM 中,∠C=30°,∴OM= OC=
π+ π
2
3
突
破
28.5 弧长和扇形面积的计算
重 ■题型二 求阴影部分的面积
难
例 2 如图,在△ABC 中,∠ABC=90°,AB=2,AC=4,
题
型 点 O为 BC 的中点,以点 O 为圆心,OB 长为半径作半圆
突
《弧长和扇形面积》PPT课件 人教版九年级数学

B
B
弧
O
圆心角
扇形
A
O
A
探究新知
判一判
下列图形是扇形吗?
×
×
×
√
√
探究新知
2
问题1 半径为r的圆,面积是多少? S = r
问题2 ①360°的圆心角所对扇形的面积是多少?
②1°的圆心角所对扇形的面积是多少?
③n°的圆心角所对扇形的面积是多少?
r
O
问题3 下页图中各扇形面积分别是圆面积的几分之几,
∴=360°×
l
=288°
α
∴S=
πl2=2000π(cm2)
360°
解法二:
1
1
S= ×2πr·l= ×2π×40×50=2000π(cm2).
2
2
解法三:
S=πr·
l= π×40×50=2000π (cm2).
已知一个圆锥的底面半径为12cm,母线长为
20cm,则这个圆锥的侧面积为
2
384
n r 2
S扇形 =
360
注意
①公式中n的意义.n表示1°圆心角的倍数,它
是不带单位的;②公式要理解记忆(即按照上面推导过
程记忆).
探究新知
问题 扇形的面积与哪些因素有关?
A
E
B
C
A
C
O
D
●
F
B
O●
D
圆心角大小不变时,对应
圆的 半径 不变时,扇形面
的扇形面积与 半径 有关,
积与 圆心角 有关,圆心角越
圆锥有无数条母线,它们都相等.
圆锥的高
S
பைடு நூலகம்
B
弧
O
圆心角
扇形
A
O
A
探究新知
判一判
下列图形是扇形吗?
×
×
×
√
√
探究新知
2
问题1 半径为r的圆,面积是多少? S = r
问题2 ①360°的圆心角所对扇形的面积是多少?
②1°的圆心角所对扇形的面积是多少?
③n°的圆心角所对扇形的面积是多少?
r
O
问题3 下页图中各扇形面积分别是圆面积的几分之几,
∴=360°×
l
=288°
α
∴S=
πl2=2000π(cm2)
360°
解法二:
1
1
S= ×2πr·l= ×2π×40×50=2000π(cm2).
2
2
解法三:
S=πr·
l= π×40×50=2000π (cm2).
已知一个圆锥的底面半径为12cm,母线长为
20cm,则这个圆锥的侧面积为
2
384
n r 2
S扇形 =
360
注意
①公式中n的意义.n表示1°圆心角的倍数,它
是不带单位的;②公式要理解记忆(即按照上面推导过
程记忆).
探究新知
问题 扇形的面积与哪些因素有关?
A
E
B
C
A
C
O
D
●
F
B
O●
D
圆心角大小不变时,对应
圆的 半径 不变时,扇形面
的扇形面积与 半径 有关,
积与 圆心角 有关,圆心角越
圆锥有无数条母线,它们都相等.
圆锥的高
S
பைடு நூலகம்
《弧长和扇形面积的计算》PPT课件下载(第1课时)

n
180l BC
180 25
143.
πr 3.1410
所以∠BOC约为143° .
总结
扇形的面积公式有两个,若已知圆心角的度数和 半径,则用S扇形=n3π6r02 ;若已知扇形的弧长和半径, 则用S扇形=12 lR(l是扇形的弧长).
1 若扇形的面积为3π,圆心角为60°,则该扇形的半径为( D )
= 120π 0.62 - 1 AB OD
360
2
=0.12π- 1 0.6 3 0.3 2
0.22(m2).
1. 弧长公式为 l n • πr nπr .
180 180
2.
扇形的面积计算公式为
S扇形
nπr 2 360
.
3. 弧长和扇形面积都和圆心角n°,半径r有关系,
因此l和S之间也有一定的关系,列式表示为:
O
垂足为D,交AB于点C,连接AC .
∵OC=0.6 m,DC=0.3 m,
O
∴OD=OC-DC=0.3(m). ∴OD=DC .
A
D
B
图1
又AD⊥DC, ∴AD是线段OC的垂直平分线 .
C
∴AC=AO=OC . 从而∠AOD=60°,∠AOB=120°. 图2
有水部分的面积 S =S扇形OAB -S OAB
A.π
B.2π
C.4π
D.6π
3 如图,AB为⊙O的直径,点C在⊙O上,若∠OCA=50°,AB=
4,则 BC 的长为( B )
A. 10 π
3
C. 5 π
9
B. 10 π
9
D. 5 π
18
知识点 2 扇形面积公式
半径为r的⊙O,面积为πr2,圆心角为360°. 按下表的圆心角,计算所
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
nR nR S 扇形 l 360 180
S 扇形 1 lR 2
2
例题示范
例2:如图、水平放置的圆柱形排水管 道的截面半径是60cm,其中水面高 30 cm, 求截面上有水部分的面积。 90
有水部分的面积 = S 扇- S△
A
0
D
B
C
例题示范
例2:如图、水平放置的圆柱形排水管 道的截面半径是60cm,其中水面高30cm, 求截面上有水部分的面积。 90
(B)只与圆心角大小有关; (C)与圆心角的大小、半径的长短都有关;
(D)与圆心角的大小、半径的长短都无关.
中考链接
3.已知圆弧的半径为60厘米,圆心角为 120°,求此圆弧的长度是 40 厘米. 4.钟表的轴心到分针针端的长为5cm,那 么经过20分钟,分针针端转过的弧长 ( A ) 10 50 20 25 A. cm B. cm cm C. cm D.
1.理解扇形的定义; 2.掌握弧长和扇形面积的计 算公式,并能应用公式进 行计算.
交 流 展 示
l
弧长公式
若设⊙O半径 为R,n°的圆 心角所对的弧 长为 ,则:
A n° B
l nR
180
O
注意: l 和R有单位, n和180没有单位
1.已知弧所对的圆心角为900,半径是4, 则弧长为 2 . 2.已知一条弧的半径为9,弧长为 8
3
3
3
3
中考链接
5.如果一个扇形面积是它所 1 在圆的面积的 ,则此扇 8 形的圆心角是( C )
0 (A)30
0 (C)45
0 (B)36
0 (D)60
6.已知半径为2cm的扇形,其弧为 4 则这个扇形的面积是 。
3
,
A
7.如图,这是中央电视台“曲苑杂谈” 中的一副图案,它是一扇形图形,其中 ∠AOB为1200,OC长为8cm,CA长为12cm, 则贴纸部分的面积为( ) 2 B. 2 A . 64πcm 112πcm 曲苑杂坛
Hale Waihona Puke BBC2 2 D. C. 144πcm 152πcm
O
8. 已知等边三角形ABC的边长为a,分别以
a A 、 B 、 C 为圆心,以 2
为半径的圆相切于
点D、 E、F,求图中阴影 部分的面积S.
通过本节课的学习 你有哪些收获?
作业:
1.课后作业:教材124--125页,习题 24.4第3、7题。 预习作业:见预习《 圆锥侧面积 》 学案
0 160 那么这条弧所对的圆心角为
,
.
实
制造弯形管道时,要先按中心 际 线计算“展直长度”,再下料, 应 试计算图所示管道的展直长度L.
用
(
500 +1400 )mm
思 什么是扇形? 考 B 并 扇形 n° o 回 O 答:
A
由组成圆心角的两条半径和圆心角 所对的弧所围成的图形叫扇形.
交 流 展 示
A
n°
O
B
2 若设⊙O半径为R, nR n°的圆心角所对的 S 扇形 360 扇形面积为S,则
1.已知扇形的圆心角为120°, 半径为2,则这个扇形的面积 4 S扇形= 3 .
2.已知扇形面积为 ,圆心 角为60°,则这个扇形的半 径R=____ 2.
1 3
比较扇形面积与弧长公式,用弧长表示扇形面积: 交 B A 流 A B 解 O O 惑
有水部分的面积 = S 扇- S△
D
0 A
A
E
D
B
C
B
有水部分的面积 = S扇+ S△
0
C
1.如图,⊙A、⊙B、⊙C、⊙D相互外离,它们的半径
都是1,顺次连接四个圆心得到四边形ABCD,则图形
中四个扇形(空白部分)的面积之和是___________.
B A
D
C
2. 扇形面积的大小(
C
)
(A)只与半径长短有关;
再 见
交流解惑
nR l 180
在弧长公式中,哪些量是 变量?哪些量有单位?哪些量 没有单位?
变量是:l
, n , R 。