超声波测距仪(液晶屏加报警) - 副本
超声波测距报告(带报警)

目录一、超声波测距原理二、超声波测距模块介绍1.主控模块2.电源模块3.显示模块4.超声波模块5.扬声器模块三、超声波测距功能介绍四、超声波测距前景展望五、心得附:程序超声波测距(可报警)一、超声波测距原理超声波发射器定期发送超声波,遇到被测物体时发生反射,反射波经超声波接收器接收并转化为电信号,只要测出发送和接收的时间差t,即可测出超声测距装置到被测物体之间的距离S:S=c*t/2(式中c为超声波在空气中的传播速度,c=331.45*√(1+T/273.16)) 由此可见声速与温度的密切的关系。
在应用中,如果温度变化不大或者对测量要求不太高(例如汽车泊车定位系统),则可认为声速是不变的,否则,必须进行温度补偿。
超声波传感器是超声测距核心部件,传感器按其工作介质可分气相、液相和固相传感器;按其发射波束宽度可分为宽波束和窄波束传感器;按其工作频率又可分为40kHz, 5OkHz等不同等级。
超声波在空气传播过程中,由于空气吸收衰减和扩散损失,声强随着传播距离的增大而衰减,而超声波的衰减随频率增大而成指数增加。
本设计选用气相、窄波束、40kHz的超声波传感器。
二、超声波测距模块介绍该产品共有五个模块,其中主控模块、电源模块、显示模块、扬声器模块集成在开发板上,超声波模块是外接的。
1.主控模块主要部分是51单片机。
51单片机是对目前所有兼容Intel 8031指令系统的单片机的统称。
该系列单片机的始祖是Intel的8031单片机,后来随着Flash rom技术的发展,8031单片机取得了长足的进展,成为目前应用最广泛的8位单片机之一,其代表型号是ATLEM公司的AT89系列,它广泛应用于工业测控系统之中。
目前很多公司都有51系列的兼容机型推出,在目前乃至今后很长的一段时间内将占有大量市场。
51单片机是基础入门的一个单片机,还是应用最广泛的一种。
需要注意的是52系列的单片机一般不具备自编程能力。
主要功能:·8位CPU·4kbytes 程序存储器(ROM) (52为8K)·256bytes的数据存储器(RAM) (52有384bytes的RAM)·32条I/O口线·111条指令,大部分为单字节指令·21个专用寄存器·2个可编程定时/计数器·5个中断源,2个优先级(52有6个)·一个全双工串行通信口·外部数据存储器寻址空间为64kB·外部程序存储器寻址空间为64kB·逻辑操作位寻址功能·双列直插40PinDIP封装·单一+5V电源供电CPU:由运算和控制逻辑组成,同时还包括中断系统和部分外部特殊功能寄存器;RAM:用以存放可以读写的数据,如运算的中间结果、最终结果以及欲显示的数据;ROM:用以存放程序、一些原始数据和表格;I/O口:四个8位并行I/O口,既可用作输入,也可用作输出;T/C:两个定时/记数器,既可以工作在定时模式,也可以工作在记数模式;五个中断源的中断控制系统;一个全双工UART(通用异步接收发送器)的串行I/O口,用于实现单片机之间或单片机与微机之间的串行通信;片内振荡器和时钟产生电路,石英晶体和微调电容需要外接。
超声波测距仪使用方法说明书

超声波测距仪使用方法说明书1. 概述超声波测距仪是一种常用的测量仪器,通过发射超声波脉冲并接收其回波来测量距离。
本说明书将详细介绍超声波测距仪的使用方法,以便用户能够正确、高效地操作该仪器。
2. 准备工作在开始测量之前,确保以下准备工作已经完成:2.1 确认超声波测距仪的电源已经连接,并处于正常工作状态。
2.2 确认被测物体与测距仪之间没有遮挡物,以保证测量的准确性。
2.3 选择合适的工作模式和单位,根据实际需要进行相应的设置。
3. 测量步骤3.1 启动仪器按下电源开关,待超声波测距仪正常启动后,屏幕上将显示相关的操作提示。
3.2 定位测量目标将测距仪对准待测物体,使其成为屏幕上的测量目标。
可以通过调整测距仪的方向和角度来精确定位。
3.3 发射超声波脉冲按下“发射”按钮,超声波测距仪将发射一组超声波脉冲,并记录下发送时刻。
3.4 接收回波当超声波脉冲遇到物体并被反射回来时,测距仪将接收到回波,并记录下接收时刻。
3.5 计算距离根据发送和接收时刻之差,超声波测距仪可以计算出测量目标与仪器之间的距离。
4. 测量注意事项4.1 避免测量目标表面有较强的光照或强烈的声音,以免影响超声波的传播和接收。
4.2 在测量长距离时,要保持仪器与测量目标之间的直线视线,以减小测量误差。
4.3 对于不规则形状的物体,建议进行多次测量并取平均值,以提高测量结果的准确性。
4.4 定期检查超声波测距仪的探头是否清洁,避免灰尘或其他杂质的影响。
5. 故障排除在使用超声波测距仪过程中,可能会遇到一些常见的故障情况,以下是一些常见问题的排除方法:5.1 无法启动或显示异常:检查电源连接是否正常,试试更换电池或充电。
5.2 测距不准确:确认测量目标与测距仪之间没有遮挡物,并确保仪器正确定位。
5.3 回波信号弱:检查探头是否干净,并调整适当的增益和灵敏度。
5.4 其他问题:如有其他问题,请参考产品说明书或联系售后服务。
6. 常见应用场景超声波测距仪在多个领域具有广泛的应用,包括建筑工程、机械制造、物流仓储等。
超声波测距论文(含原理图、程序)

1 绪论之阿布丰王创作以后社会经济的不竭发展和工业科学技术的不竭提高,汽车已逐渐进入很多苍生家.汽车使用数量的不竭增加,从而由此招致的倒车交通平安问题也非常严重,路途交通压力增加,交通平安问题也是面临严峻挑战.在面临如此严峻的交通平安问题,许多涉及平安问题的汽车辅助系统也纷纷现世.而本设计就是利用单片机知识、传感器知识等,进行的汽车防撞装置的设计,在汽车倒车时,这种装置可以在驾驶员对车尾与障碍物体的距离远近无法目测和判断时进行报警.1.1 课题布景及意义我国社会经济的不竭发展,人们对汽车这种交通工具的依赖性也越来越年夜,招致了车辆的日益增加在给城市交通不竭施加压力的同时,也引发了非常多行车的平安问题.一些由驾驶员反应不够迅速而招致的汽碰擦,还有很多时候是由于驾驶员对离障碍物的距离判断禁绝确而造成的,如果驾驶员能提前知道障碍物的存在而且知道障碍物的距离,那么驾驶员就能及时地采用办法,从而能防止事故的发生.因此,许多平安系统也应运而生,诸如为了防止交通事故发生的主动平安系统和在发生事故时的防护平安的主动平安系统,而主动平安系统对汽车交通事故的发生能起到防止的作用,所以,主动平安系统的研究更为重要.随着汽车数量的增加,停车场的数量也急剧增加,停车车辆密集,停车人多,所以汽车碰撞亦逐渐增多.而本设计的汽车防撞装置就是主动平安系统,通过对汽车与障碍物之间距离的提示报警防止汽车与障碍物之间的擦碰.本设计要求设计的汽车防撞装置能减少驾驶员的驾驶压力和判断毛病,使驾驶员停车倒车更加平安方便,本设计将对提高交通平安起到重要作用.本设计基于单片机实现汽车防撞,将超声波测距和传感器联系在一起,利用单片机的实时控制和数据处置功能丈量并显示汽车与障碍物之间的距离,并在分歧距离利用蜂鸣器分歧频率发出分歧声音及时报警.这样驾驶员就能通过测距的显示甚至分歧的声音来直接判断汽车玉障碍物之间的距离.本设计的设计简易,虽然精度不高,还不能丈量过远的距离,但规模小,外围电路简单,调试也方便,本钱也不高,器件更换容易,灵活性高,而且能完全满足驾驶员停车时的需要,可以完全解除驾驶员在倒车过程中的顾虑和困扰,提高停车的平安.汽车防撞装置这种汽车平安辅助装置能年夜年夜减少汽车驾驶员在倒车的时候顾虑和对距离判断的失误,从而能够防止倒车的平安问题的发生,故此装置对提高交通平安将起到重要的作用.所以,本课题所要求设计的基于单片机的汽车防撞装置将具有极年夜的现实意义和市场.1.2 国内外研究现状本汽车防撞装置包括有单片机控制电路、超声波测距传感器、蜂鸣器报警电路及数码管显示部件等,装置将各部件有机地结合起来,实现超声波测距及蜂鸣器报警提示的功能.倒车雷达系统的开始是以蜂鸣器报警为标识表记标帜的.汽车离障碍物距离越近,蜂鸣器报警声越急,蜂鸣器报警虽然使驾驶员知道有障碍物的存在,但却不能确定汽车车尾离障碍物有多远,所以,蜂鸣器报警对驾驶员帮手不是很年夜;之后一个质的飞跃就是液晶屏显示的呈现,特别是液晶显示开始呈现静态显示系统,驾驶员就是只要发动车辆,而且不用挂倒挡,液晶显示器上就会呈现汽车图案以及汽车与周围的障碍物的距离,液晶显示是静态显示,液晶显示器的外表美观,显示的色彩也很清晰,而且可以直接粘贴在仪表盘上,装置也很方便[1].不外由于液晶显示的灵敏度比力高,而且它的抗干扰能力也不是很强,所以误报的情况也较多.现在市面上的魔幻镜倒车雷达应该算是比力先进的倒车雷达了,它结合了前几代产物的优点,并采纳了最新仿生超声雷达技术,并用高速电脑控制,可全天准确地进行探测2m以内的障碍物,并以分歧的声音提示和直观的距离显示来提醒驾驶员;魔幻镜倒车雷达把后视镜、倒车雷达、免提德律风、温度显示和车内空气温度显示等多项功能整合在一起[1],并设计了语音功能,因为其外形就是一块倒车镜,所以可以不占用车内空间,可以直接装置在车内倒视镜的位置,而且它样式种类繁多,可以依照个人需求和车内装饰选配,固然它的价格也是比力贵的[1].最新的一代倒车雷达是整合影音系统,除具备前几代倒车雷达的功能外还兼有影音系统[1].随着科学技术水平的迅速发展,相关电子技术也是飞跃前进,固然,汽车电子财富也获得飞速发展,电子财富的飞速发展使得车载电子平顺产物有很年夜的发展前景.倒车雷达固然是每辆车必备的电子平顺产物,如今市面上的主流的汽车倒车雷达基本都是以单片机芯片为控制核心的智能测距报警系统.这些的倒车雷达能够连续测距并显示汽车与障碍物之间的距离,而且采纳蜂鸣器的分歧频率的鸣叫声进行报警提示和距离显示提示,从而能够尽量不占用驾驶员的视觉空间[1].另外,汽车电子系统的网络化的发展还要求作为汽车行驶平安辅助系统的倒车雷达要具有通信功能,并能够把数据发送到汽车总线上去[2].就目前市面上的产物来讲,目前的汽车倒车雷达主要是具备数码管或者液晶屏的距离显示而且带有蜂鸣器的语音报警为主的汽车平安系统.这些系统主要采纳的是以单片机为控制核心的智能超声波测距传感器和蜂鸣器报警系统,这种汽车平安辅助系统廉价耐用,而且达到了汽车电子系统网络化的发展需求.1.3 课题研究内容及章节安插本文所介绍的超声波测距报警系统在测距的时候采纳的是两个超声波探头分别进行超声波发射和接收来进行距离的丈量的.本设计的汽车防撞系统能丈量出倒车方向的障碍物与汽车之间的距离, 并通过数码管显示单位模块显示两者之间的距离,然后通过蜂鸣器发出分歧频率的声响, 从而起到提示和报警的作用.本系统利用一片89S51单片机对超声波信号循环不竭地进行收集.系统包括超声波测距单位(超声波集成模块)、89S51单片机控制、蜂鸣器报警模块和数码管显示模块.这个设计的汽车倒车雷达要能够连续测距,数据经过单片机的处置后,用4位数码管显示所丈量获得的距离,并利用分歧频率使蜂鸣器发出分歧的鸣叫声进行语音报警.论文构成主要由以下部份组成:第1章主要介绍了本课题的布景意义和相关技术在国内外的研究现状.第2章介绍的是汽车防装系统的总体方案设计.首先介绍汽车防撞系统的设计要求,然后分别对测距传感器的选择和显示报警系统的方案设计做了介绍,最后提出本系统的总体的设计方案,为硬件系统的设计打下了基础.第3章对硬件系统的设计进行了介绍.首先对超声波传感器的工作原理进行了分析,然后具体讨论了超声波测距模块中的超声波发射电路和超声波接收电路的硬件设计,最后介绍了显示模块电路和蜂鸣器报警电路的设计.第4章主要是对系统的软件设计进行了介绍.在软件设计中采纳分歧模块分歧编程进行设计的,本设计分别对系统的主法式模块、中断子法式模块、超声波测距模块、蜂鸣器报警模块和数码管的显示模块的各个法式进行了设计.第5章是硬件的组装及其性能进行分析.首先对实物进行硬件排版组装和焊接,然后讨论了系统的性能发生的误差.第6章是对本设计的总结和展望.最后一章对全文进行了总结,并指明了系统设计的缺乏之处,最后也对本系统的倒车雷达报警系统的发展前景进行了展望.2 总体方案论证本章从系统方案等一些方面来进行论证.本设计主要是进行距离的丈量和报警,设计中涉及到的内容较多,主要是将单片机控制模块、超声波测距模块、蜂鸣器报警模块、4位数码管显示模块这几个模块结合起来.而本设计的核心是超声波测距模块,其他相关模块都是在测距的基础上拓展起来的,测距模块是利用超声波传感器,之后选择合适单片机芯片,以下就是从相关方面来论述的. 2.1 设计方案论证2.1.1 测距传感器(1)激光测距传感器激光传感器利用激光的方向性强和传光性好的特点,它工作时先由激光传感器瞄准障碍物发射激光脉冲,经障碍物反射后向各个方向散射,部份散射光返回到接受传感器,能接受其微弱的光信号,从而记录并处置光脉冲发射到返回所经历的时间即可测定距离,即用往返时间的一半乘以光速就能获得距离.其优点是丈量的距离远、速度快、丈量精确度高、量程范围年夜,缺点是对人体存在平安问题,而且制作的难度年夜本钱也比力高[3].(2)红外线测距传感器红外线测距传感器利用的就是红外线信号在遇到障碍物其距离的分歧则其反射的强度也分歧,根据这个特点从而对障碍物的距离的远近进行丈量的.其优点是本钱昂贵,使用平安,制作简单,缺点就是丈量精度低,方向性也差,丈量距离近[3].(3)超声波传感器超声波是一种超越人类听觉极限的声波即其振动频率高于20kHz的机械波.超声波传感器在工作的时候就是将电压和超声波之间的互相转换,当超声波传感器发射超声波时,发射超声波的探头将电压转化的超声波发射出去,当接收超声波时,超声波接收探头将超声波转化的电压回送到单片机控制芯片.超声波具有振动频率高、波长短、绕射现象小而且方向性好还能够为反射线定向传布等优点,而且超声波传感器的能量消耗缓慢有利于测距[4].在中、长距离丈量时,超声波传感器的精度和方向性都要年夜年夜优于红外线传感器,但价格也稍贵.从平安性,本钱、方向性等方面综合考虑,超声波传感器更适合设计要求.根据对以上三种传感器性能的比力,虽然能明显看出来激光传感器是比力理想的选择,可是它的价格却比力高,而且平安度不够高.而且汽车在行驶的过程中超声波传感器测距时应具有较强的抗干扰能力和较短的响应时间,因此选用超声波传感器作为此设计方案的传感器探头.2.2 系统方案此方案选择51单片机作为控制核心,所测得的距离数值由4位共阳极数码管显示,与障碍物之间的分歧距离利用蜂鸣器频率的分歧报警声提示,超声波发射信号由51单片机的P0.1口送出到超声波发射电路,将超声波发送出去,超声波接收电路由CX20106A芯片和超声波接收探头组成的电路构成,报警系统由蜂鸣器电路构成.本设计中将收发超声波的探头分离这样不会使收发信号混叠,从而能防止干扰,可以很好的提高系统的可靠性.本设计的汽车防撞装置的系统框图如图2.1所示.图2.1 汽车防撞装置的系统框图本设计由Keil编程软件对51单片机进行编程,51单片机在执行法式后由P0.1端口发生40kHz的脉冲信号通过74LS04电路进行放年夜并送到到超声波发射探头,发生超声波.在超声波发射电路启动的同时单片机启动中断按时器,利用其计数的功能记录超声波发射超声波到接收到超声波回波的时间.当接收回射的超声波时,接收电路的输出端发生负跳变输出到单片机发生中断申请,执行外部中断子法式计算距离.结合各方面的因素考虑,依据设计的要求,查阅相关数据资料,选择了超声波测距传感器TR40-16Q(其中T暗示超声波发射探头,R暗示超声波接收探头),综合考虑设计的要求出于简便角度,选用了HC-SR04超声波集成模块.此超声波模块的最年夜探测距离为 5 m,精度可以达到0.3cm,盲区为2cm,而且发射扩散角不年夜于15°,更有利于测距的准确性.而且,此模块的工作频率范围为39 kHz~41 kHz左右,完全能在40 kHz工作频率工作.由于超声波的发射和接收是分开发送和接收的,所以发射探头和接收探头必需在同一条水平行直线上,这样才华准确地接收反射的回波.而由于丈量的距离分歧和发射扩散角所引起的误差以及超声波信号在空气中传布的过程中的超声波衰减问题,发射探头和接收探头距离不成以太远,而且还要防止发射探头对接收探头在接收信号时发生的干扰,所以二者又不能靠得太近.根据对相关资料查阅,将两探头之间的距离定在5cm~8cm最为合适.本设计所用的HC-SR04模块的超声波探头之间的距离年夜约在6 cm左右.3 硬件电路设计本设计的汽车防撞装置由51单片机、超声波发射探头、超声波接收探头、4位共阳极数码管、蜂鸣器组成.汽车防撞系统的测距是利用超声波测距的原理,在单片机内部法式的控制下,由超声波发射探头发射超声波,在超声波遇到障碍物时反射到超声波接收探头,由此回应到单片机,由单片机进行中断处置和数据的处置,计算出距离,由数码管显示距离,并由蜂鸣器报警提示.本设计的硬件电路分为五部份:单片机最小系统、超声波发射和接收电路、蜂鸣器报警电路和数码管显示电路.3.1 单片机系统设计3.1.1 单片机的选择一般在系统的设计傍边,能否完成设计任务最重要的就在于系统的核心器件是否选择合适,而单片机更是是系统控制的核心,所以对单片机的选择更是异常重要.如果选择了一个合适的单片机不单可以最年夜地简化系统的把持,而且其功能可能是最好的,可靠性也比力高,对整个系统来说更方便.目前,市面上的单片机的种类繁多,而且他们在功能方面也是各自有各自的特点.在一般的情况下来讲,在选择单片机时要需要考虑的几个方面有[5]:(1)单片机最基赋性能参数指标.例如:执行一条指令的速度、法式存储器的容量,I/O口的引脚数量等.(2)单片机的某些增强的功能.(3)单片机的存储介质.例如:对法式存储器来说,最好选用的是Flash的存储器.(4)单片机的封装形式.封装的形式多种多样,例如:双列直插封装、PLCC封装及概况贴附等.(5)单片机对工作的温度范围的要求.例如:在进行设计户外的产物时,就必需要选用工业级的芯片,以达到温度范围的要求.(6)单片机的功耗.例如,如果信号线取电只能提供几mA的电流,所以为了能满足低功耗的要求这个时候选用STC的单片机是最合适的.(7)单片机在市面上的销售渠道是否疏通、其价格是否廉价.(8)单片机技术的支持网站如何,卖家提供的芯片资料是否足够完善,是否包括了用户手册,设计方案举例,相关范例法式等.(9)单片机的保密性是否很好,单片机的抗干扰的性能如何等.51系列单片机它在指令系统、硬件结构和片内资源等方面与标准的52系列的单片机可以完全的兼容.51系列的单片机执行速率快(最高时钟频率为90MHz),功耗低,在系统、在应用可编程,不占用用户的资源[5].根据本系统设计的实际要求,选择AT89S51单片机做为本设计的单片机使用,它是由ATMEL公司生产的高性能、低功耗的CMOS 8位单片机.89S51单片机具有以下几个性能特点:4 k字节的闪存片内法式存储器,128字节的数据存储器,32个外部输入和输出口,2个全双工串行通信口,看门狗电路,5个中断源,2个16位可编程按时计数器,片内震荡和时钟电路且全静态工作并由低功耗的闲置和失落电模式[5].单片机的引脚功能图如图3.1所示.图3.151单片机的引脚功能图3.1.2 单片机引脚功能(1)电源引脚Vcc(40脚):正电源的引脚,工作电压是5V.GND(20脚):接地端.(2)时钟电路的引脚XTAL1和XTAL2为了发生时钟信号,在89S51单片机的芯片内部已经设置了一个反相放年夜器,其中XTAL1端口就是片内反相放年夜器的输入端,XTAL2端则是片内振荡器反相放年夜器的输出端 [5].单片机使用的工作方式是自激振荡的方式,XTAL1和XTAL2外接的是12MHz 的石英晶振,使内部振荡器依照石英晶振的频率频率进行振荡,从而就可以发生时钟信号.时钟信号电路如图3.2所示.图3.2 时钟信号电路(3)复位RST(9脚)当振荡器运行时,只要有有两个机器周期即24个振荡周期以上的高电平在这个引脚呈现时,那么就将会使单片机复位,如果将这个引脚坚持高电平,那么51单片机芯片就会循环不竭地进行复位[5].复位后的P0口至P3口均置于高电平,这时法式计数器和特殊功能寄存器将全部清零[5].本课题设计的单片机复位电路如图3.3所示.图3.3 单片机复位电路图(4)输入输出口(I/O口)引脚P0口是一个三态的双向口,既可以作为数据和地址的分时复用口,又可以作为通用输入输出口[5].P0口在有外部扩展存储器时将会被作为地址/数据总线口,此时P0口就是一个真正的双向口;而在没有外部扩展存储器时,P0口也可以作为通用的I/O接口使用,但此时只是一个准双向口;另外,P0口的输出级具有驱动8个LSTTL负载的能力即输出电流不小于800uA[5].P1口是一个带内部上拉电阻的8位双向I/O口,而P1口只有通用I/O接口一种功能,而且P1口能驱动4个LSTTL负载;在使用时通常不需要外接上拉电阻就能够直接驱动发光二极管;在端口置1时,其内部上拉电阻将端口拉到高电平,作输入端口用[5].对输出功能,在单片机工作的时候,可以通过用法式指令控制单片机引脚输出高电平或低电平[5].例如:指令CLR是清零的意思,CLR P1.0的意思就是让单片机的P1.0端口输出低电平;而指令SETB是置1的意思,SETB P1.0的意思就是让单片机P1.0端口输出高电平[5].P2口是一个带内部上拉电阻的8位双向I/O口,而且P2口具有驱动4个LSTTL负载的能力[5].P2端口置1时,内部上拉电阻将端口的电位拉到高电平,作为输入口使用;在对内部的Flash法式存储器编程时,P2口接收高8位地址和控制信息,而在访问外部法式和16位外部数据存储器时,P2口就送出高8位地址[5].在访问8位地址的外部数据存储器时,P2引脚上的内容在此期间不会改变[5].P3口也是一个带内部上拉电阻的8位双向I/O口,P3口能驱动4个LSTTL负载,这8个引脚还用于专门的第二功能[5].P3口作为通用I/O口接口时,第二功能输出线为高电平.P3口置1时,内部上拉电阻将端口电位拉到高电平,作输入口使用;在对内部Flash法式存储器编程时,此端接控制信息[5].P3口的第二功能,如表3.1所示[5].表3.1 P3口第二功能表(5)其它控制或复用引脚(a)ALE/PROG(30脚):地址锁存有效信号输出端.在访问片外存储器时,ALE(地址锁存允许)以每机器周期两次进行信号输出,其下降沿用于控制锁存P0口输出的低8位地址;在不访问片外存储器的时候,ALE端仍以不变的频率输出脉冲信号(此频率是振荡器频率的1/6),而在访问片外数据存储器时,ALE脉冲会跳空一个,此时是不成以做为时钟输出[5].对片内含有EPROM的机型在编程时,这个引脚用于输入编程脉冲/PROG的输入端[5].(b)/PSEN(29脚):片外法式存储器读选通信号输出端,低电平时有效.当89S51从外部法式存储器取指令或常数时,每个机器周期内输出2个脉冲即两次有效,以通过数据总线P0口读回指令或常数.但在访问片外数据存储器时,/PSEN将不会有脉冲输出[5].(c)/EA/Vpp(31脚):/EA为片外法式存储器访选用端.当该引脚访问片外法式存储器时,应该输入的是低电平,要使89S51只访问片外法式存储器,这时该引脚必需坚持低电平;而在对Flash存储器编程时,用于施加Vpp编程电压[5].3.1.3单片机最小系统单片机最小系统是其他拓展系统的最基本的基础,单片机最小系统是指一个真正可用的单片机最小配置系统即单片机能工作的系统.对80S51单片机,由于片内已经自带有了法式存储器,所以只要单片机外接时钟电路和复位电路就可以组成了单片机的最小系统了.单片机的最小系统如图3.4所示.图3.4 单片机最小系统原理图3.2 超声波发射和接收电路设计超声波是一种振动频率超越20 kHz的机械波,它可以沿直线方向传布,而且传布的方向性好,传布的距离也较远,在介质中传布时遇到障碍物在入射到它的反射面上就会发生反射波[6].由于超声波的以上几个特点,所以超声波被广泛地应用于物体距离的丈量、厚度等方面[6].而且,超声波的丈量是一种比力理想的的非接触式的测距方法[6].当进行距离的丈量时,由装置在同一水平线上的超声波发射器和接收器完成超声波的发射与接收,而且同时启动按时器进行计数[7].首先由超声波发射探头向倒车的方向发射超声波并同时启动按时器计时,超声波在空气中传布的途中一旦遇到障碍物后就会被反射回来,当接收探头收到反射波后就会给负脉冲到单片机使其立刻停止计时[6.7].这样,按时器就能够准确的记录下了超声波发射点至障碍物之间往返传布所用的时间t(s)[7].由于在常温下超声波在空气中的传布速度年夜约为340m/s[7],所以障碍物到发射探头之间的距离为:S=340×t/2=170×t因为单片机内部按时器的计时实际上就是对机器周期T的计数,而本设计中时钟频率fosc取12MHz,设计数值N,则:T=12/f osc=1μst=N×T=N×0.000001(s)S=170×N×T=170×N/1000000(m)在法式中按式S=170×N×T=170×N/1000000计算距离.3.2.1 超声波发射电路设计超声波发射电路是由超声波探头和超声波放年夜器组成.超声波探头将电信号转换为机械波发射出去,而单片机所发生的40 kHz的方波脉冲需要进行放年夜才华将超声波探头驱动将超声波发射出去,所以发射驱动实际上就是一个信号的放年夜电路,本设计选用74LS04芯片进行信号放年夜,超声波发射电路如图3.5所示.图3.5 超声波发射电路。
超声波测距仪操作指南说明书

超声波测距仪操作指南说明书一、产品概述超声波测距仪是一种使用超声波技术进行测距的仪器。
该仪器可以广泛应用于建筑、工程、仓储、物流等领域,用于测量物体与测距仪之间的距离。
二、产品特点1. 高精度测量:超声波测距仪采用先进的超声波技术,能够精确测量物体与测距仪之间的距离,并具备高精确度。
2. 快速响应:该测距仪具有快速响应的能力,可以及时给出测量结果。
3. 多功能设计:超声波测距仪尤其适用于需要进行反复测量的环境,它不仅可以测量距离,还可以提供体积、面积等其他相关数据。
4. 易于操作:该测距仪采用简单的操作界面,用户可以轻松进行操作,并能够快速上手。
三、产品使用步骤1. 打开超声波测距仪:按下开关按钮,开启测距仪。
2. 进行初步设置:进入设置菜单,根据实际需求选择测量单位(如厘米、米)以及其他设置选项。
3. 对准测量目标:将测距仪对准待测量的目标物体,确保无遮挡物干扰,距离尽量垂直测量。
4. 进行测量:按下“测量”按钮,测距仪将向目标物体发出超声波信号,并通过测量回波时间计算出距离。
5. 查看测量结果:测距仪会在显示屏上显示测得的距离数值,并可在菜单中设置是否显示其他相关数据,如体积、面积。
6. 关闭超声波测距仪:在使用完毕后,按下开关按钮,关闭测距仪。
四、使用注意事项1. 避免使用在极端环境下:超声波测距仪对于极端高温、低温、潮湿等环境不适用,应避免在此类环境中使用。
2. 避免测量透明物体:超声波无法准确测量透明物体的距离,应避免对透明物体进行测量。
3. 避免测量不规则形状物体:对于形状不规则的物体,测量结果可能存在误差,应注意。
4. 避免测量过程中晃动:在测量过程中,避免手部晃动或移动,以确保测量结果的准确性。
5. 定期校准:为了确保测量结果的准确性,定期进行校准是必要的。
五、常见问题解答1. 为什么测量结果不准确?可能是测距仪与目标物之间存在遮挡物,或者测量时手部晃动等原因导致测量结果不准确。
超声波测距仪的使用技巧与数据处理方法

超声波测距仪的使用技巧与数据处理方法超声波测距仪是一种常见的测量设备,它利用声波的特性来测量距离。
在物流、建筑、机械等领域,超声波测距仪都发挥着重要的作用。
本文将介绍超声波测距仪的使用技巧以及数据处理方法。
首先,我们来了解一下超声波测距仪的原理。
超声波测距仪通过发射一束超声波,并测量它返回的时间来计算出物体与测距仪的距离。
设备内部有一个超声波发射器和接收器,发射器将超声波发送出去并记录发送的时间,接收器接收到返回的超声波并记录接收的时间,通过计算发送和接收的时间差,就可以得到距离。
在使用超声波测距仪时,首先要选择合适的工作模式。
通常有单次测量和连续测量两种模式。
单次测量模式适用于只需要单次测量的场景,比如测量固定物体的距离。
而连续测量模式则适用于需要实时监测某个物体的距离变化的场景。
其次,要注意测距仪的放置位置。
为了获得准确的测量结果,应尽量避开干扰源和反射面。
在物体背后有积水、玻璃等反射性较强的表面时,会对测距结果产生影响。
此外,还要注意避开强光照射和强电磁场等干扰源,以免影响测量的准确性。
在实际操作中,还可以采取一些技巧来提高测量的精度和稳定性。
例如,测量前可以先对超声波测距仪进行校准,以确保测量结果的准确性。
另外,还可以通过设置测量范围、灵敏度和滤波器等参数,来适应不同环境下的测量需求。
接下来,我们来讨论一下超声波测距仪数据的处理方法。
在使用过程中,可能会遇到一些异常数据或者误差。
为了得到准确的测量结果,我们需要对数据进行处理。
首先,要注意排除异常值。
异常值可能是由于环境因素或者设备故障导致的,需要通过观察数据的分布特点和变化趋势来判断。
如果发现某个数据明显偏离其他数据,可以将其排除在外,以提高测量结果的准确性。
其次,可以采用平均值滤波的方法来处理数据。
平均值滤波是一种常用的数据处理方法,通过计算一组数据的平均值来减小数据的波动。
将连续多次测量的结果取平均值,可以有效减少小范围内的误差,提高测量结果的稳定性。
希玛超声波测距仪说明书

希玛超声波测距仪说明书一、介绍希玛超声波测距仪是一种利用超声波技术进行测量的仪器。
它可以精确测量物体与测距仪之间的距离,并将结果显示在仪器的屏幕上。
希玛超声波测距仪具有测量范围广、精度高、反应迅速等特点,广泛应用于工业、建筑、交通等领域。
二、工作原理希玛超声波测距仪采用超声波脉冲回波测距原理。
当测距仪发出超声波脉冲时,脉冲经过空气传播到目标物体表面,然后被目标物体反射回来。
测距仪接收到反射回来的脉冲后,通过计算时间差来确定物体与测距仪之间的距离。
三、使用方法1. 打开测距仪电源开关,确保仪器正常启动。
2. 将测距仪对准目标物体,使其与目标物体保持一定距离。
3. 按下测量按钮,测距仪发出超声波脉冲,并开始计时。
4. 等待测距仪接收到反射回来的脉冲,停止计时。
5. 仪器屏幕上显示的数值即为目标物体与测距仪之间的距离。
四、注意事项1. 使用测距仪时,需要保持测距仪与目标物体之间的直线传播路径。
避免有障碍物阻挡。
2. 测距仪的测量范围和精度会受到环境条件的影响。
在复杂环境中使用时,需要根据实际情况进行调整和修正。
3. 长时间不使用测距仪时,建议关闭电源开关,以节省电量并延长仪器寿命。
4. 使用测距仪时,应避免将其暴露在潮湿、高温或强磁场等恶劣环境中,以免损坏仪器。
五、常见问题解答1. 问:测距仪显示的距离有误差,怎么办?答:可能是因为使用环境不理想或操作不当导致的。
可以尝试重新调整测距仪位置,或者进行校准操作。
2. 问:测距仪是否可以测量非常小的距离?答:希玛超声波测距仪的测量范围通常为几厘米到几十米,对于非常小的距离可能不太适用。
3. 问:测距仪可以在暗处使用吗?答:测距仪的工作原理是利用超声波进行测量,与光线无关,因此可以在暗处正常使用。
六、总结希玛超声波测距仪是一种精确、方便的测量工具,广泛应用于各个领域。
使用希玛超声波测距仪时,需要注意使用环境和操作方法,以确保测量结果的准确性。
希玛超声波测距仪的优点在于测量范围广,精度高,反应迅速,可以满足不同场景下的测量需求。
基于单片机的超声波测距仪任务书
XXXX学院XX系
专业方向课程设计任务书
题目基于单片机的超声波测距仪汽车倒车雷达设计_________________ 指导教师______________ 一、小组成员信息及分工:
、设计的主要内容:
采用HC-SR04超声波传感器进行测距,超声波测到的距离实时显示到数码管上。
当测出的实际距离小于设定值时,LED灯亮起、蜂鸣器响起发出报警信号。
三、设计的主要技术指标:
①可测量的范围:0.05m--5.5m
②可设置报警距离:通过按键加减操作修改报警距离
四、设计的基本要求及应完成的成果:
①单片机主控模块:采用51系列单片机作为主控芯片。
②用HC-SR04超声波模块测距。
③数码管显示单元:实时显示测出的距离。
④报警单元:采用蜂鸣器报警。
⑤按键单元:通过按键设置安全距离。
五、设计的进度安排:
2017410-2017415 :搜集资料、杳阅资料,复习专业课程知识,形成初步设计思路。
六、设计应收集的资料及主要参考文献:。
超声波测距报警器实验报告
超声波测距报警器实验报告一、实验目的本实验旨在设计并实现一个基于超声波的测距报警器,通过测量物体与传感器之间的距离,当距离小于设定的阈值时,触发报警装置,以实现对特定区域的距离监测和预警功能。
二、实验原理超声波测距是通过测量超声波在空气中的传播时间来计算距离的。
超声波发射器向某一方向发射超声波,在发射时刻的同时开始计时,超声波在空气中传播,碰到障碍物后反射回来,接收器收到反射波就立即停止计时。
已知超声波在空气中的传播速度为 340 米/秒,根据计时器记录的时间 t,就可以计算出发射点距障碍物的距离 s,计算公式为:s = 340t/2 。
三、实验设备与材料1、超声波传感器模块(包括发射器和接收器)2、微控制器(如 Arduino 开发板)3、蜂鸣器4、显示屏(用于显示测量距离)5、杜邦线若干6、电源(如电池盒或 USB 电源)四、实验步骤1、硬件连接将超声波传感器的 VCC 引脚连接到电源的正极端,GND 引脚连接到电源的负极端。
将超声波传感器的 Trig 引脚连接到微控制器的数字输出引脚,Echo 引脚连接到微控制器的数字输入引脚。
将蜂鸣器的正极连接到微控制器的数字输出引脚,负极连接到电源的负极端。
将显示屏连接到微控制器的相应引脚。
2、软件编程使用 Arduino 开发环境编写控制程序。
首先,设置微控制器的引脚模式,包括输入和输出引脚。
然后,在主循环中,通过向 Trig 引脚发送一个短脉冲来触发超声波传感器发送超声波。
等待 Echo 引脚变为高电平,开始计时;当 Echo 引脚变为低电平时,停止计时,并根据时间计算距离。
将计算得到的距离与设定的阈值进行比较,如果小于阈值,驱动蜂鸣器报警,并在显示屏上显示距离和报警信息。
3、调试与测试编译并上传程序到微控制器。
进行实物测试,逐步调整传感器的位置和方向,以及阈值的大小,观察报警效果和距离测量的准确性。
五、实验结果与分析1、距离测量结果在不同距离下进行多次测量,记录测量值。
51单片机实现超声波测距报警系统
51单片机实现超声波测距报警系统超声波测距报警系统是一种基于51单片机的硬件电路和软件程序开发的测距设备。
本文将从设备原理和设计、电路连接和程序开发等方面进行详细介绍。
一、设备原理和设计超声波测距报警系统的原理是利用超声波传感器测量并计算被测物体与传感器的距离,并通过单片机采集和处理超声波信号,根据测量结果触发报警和显示等功能。
1.超声波传感器:超声波传感器是用来发射和接收超声波信号的装置,一般由发射器和接收器组成。
发射器发射超声波信号,接收器接收被测物体反射的超声波信号。
2.单片机:本系统采用51单片机作为控制核心,负责采集和处理超声波信号,控制报警和显示等功能。
3.报警器:当距离小于设定阈值时,触发报警器发出声音或闪光等警告信号。
4.显示屏:用来显示测量结果,一般为数码管或液晶显示屏。
5.电源和电路:提供系统所需的电源和信号连接电路。
二、电路连接超声波测距报警系统的电路连接主要包括超声波传感器、单片机、报警器、显示屏以及电源等模块。
1.超声波传感器连接:将超声波传感器的发射端和接收端分别连接到单片机的引脚上,发射端连接到P1口,接收端连接到P2口。
2.报警器连接:将报警器连接到单片机的一个IO口,通过控制该IO 口的高低电平来触发报警。
3.显示屏连接:将显示屏连接到单片机的相应IO口,通过向显示屏发送数据来显示测量结果。
4.电源连接:将电源连接到单片机以及其他模块的供电端,确保系统正常工作。
三、程序开发1.初始化设置:包括引脚和端口的初始化设置,包括超声波传感器引脚和单片机的IO口设置。
2.测量距离:通过单片机控制超声波传感器发射超声波信号,并通过接收器接收反射的超声波信号,计算出被测物体与传感器的距离。
3.报警触发:根据设定的阈值,当测量到的距离小于阈值时,通过控制报警器发出声音或闪光等警告信号。
4.显示结果:通过控制显示屏将测量结果显示出来。
5.循环检测:通过循环检测的方式,不断进行测量并处理数据,实时更新测量结果和触发报警。
超声波测距(高度定位控制和测量系统)3图俱全
目录摘要 (2)第一章系统总体设计方案 (4)1.1 超声波测距原理 (4)1.2 超声波测距系统 (4)第二章系统的硬件设计 (5)2.1 超声波发生电路 (5)2.2 超声波接收电路 (6)2.3 温度的补偿 (8)2.4 LED动态显示电路 (8)第三章系统软件设计 (9)3.1 主程序结构 (10)3.2 中断程序结构 (11)3.3回波接收程序 (11)第四章误差分析 (12)4.1.时间误差 (12)4.2.超声波传播速度误差 (12)第五章调试 (12)第六章整机原件清单 (13)第七章总结 (13)7.1设计任务完成情况 (13)7.2 心得体会 (14)参考文献 (15)附录一 (16)附录二 (17)附录三 (18)摘要高度定位控制和测量系统也就是我们常说的超声波测距。
由于超声波指向性强,能量消耗缓慢,在介质中传播的距离较远,因而超声波经常用于距离的测量,如测距仪和物位测量仪等都可以通过超声波来实现。
而电子技术及压电陶瓷材料的发展,使高度定位控制和测量系统得到了迅速的发展。
超声测距是一种非接触式的检测技术。
与其它方法相比,它不受光线、被测物处于黑暗、有灰尘、烟雾、电磁干扰、有毒等恶劣的环境下有一定的适应能力。
因此在液位测量、机械手控制、车辆自动导航、物体识别等有广泛应用。
特别是应用于空气测距,由于空气中波速较慢,其回波信号中包含的沿传播方向上的结构信息很容易检测出来,具有很高的分辨率,因而其准确度也较其它方法为高;而且超声波传感器具有结构简单、体积小、信号处理可靠等特点。
关键字:传感器、测距、测量系统、设计、高度定位PICKHighly positioning control and measurement system is also we often say the ultrasonic ranging. Due to the strong, the energy consumption of ultrasonic directivity slowly in the medium of communication, distance, and is often used to measure the distance of ultrasonic, such as rangefinder and material level measurement instrument etc can all through the ultrasonic. And electronic technology and the development of piezoelectric ceramic materials, high positioning control and measuring systems have been developed rapidly.Ultrasonic ranging is a non-contact detection technologies. Compared with other methods, it is light and darkness, the analyte in dust, smoke, electromagnetic interference, toxic etc harsh environments have certain ability to adapt. Therefore, in robot control level measurement, vehicle navigation, automatic object recognition is widely used. Especially the application in the air, the air velocity range due to low, the echo signal along the direction of propagation of contains information on the structure, very easily with high resolution, and its accuracy is higher than other methods for, And the ultrasonic sensor has simple structure, small volume, the characteristic such as being reliable signal processing.Key words: sensor, and measurement system, the design, the high position第一章系统总体设计方案1.1 超声波测距原理超声波测距的原理是利用超声波在空气中的传播速度为已知,测量声波在发射后遇到障碍物反射回来的时间,根据发射和接收的时间差计算出发射点到障碍物的实际距离。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
超声波测距仪设计报告
一、 设计要求
1、提供2cm —400cm 的非接触式距离测量功能,测距精度达到3mm 。
2、测量结果通过液晶屏实时显示。
3、当测量距离小于20cm 时,进行声音报警。
二、 超声波测距原理
测量距离的方法有很多种,短距离的可以用米尺,远距离的有激光测距等,超声波测距适用于高精度的中长距离测量。
因为超声波在标准空气中的传播速度为331.45米/秒,由单片机负责计时,系统的测量精度理论上可以达到毫米级。
超声波测距的原理一般采用渡越时间法TOF (time of flight ),也可以称为回波探测法,如图1所示。
超声波发射器向某一方向发射超声波,在发射时刻的同时开始计时,超声波在介质中传播,途中碰到障碍物就立即返回来,超声波接收器收到反射波就立即停止计时。
根据传声介质的不同,可分为液介式、气介式和固介式三种。
根据所用探头的工作方式,又可分为自发自收单探头方式和一发一收双探头方式。
而倒车雷达一般是装在车尾,超声波在空气中传播,超声波在空气中(20℃)的传播速度为340m/s(实际速度为344m/s 这里取整数),根据计时器记录的时间就可以计算出发射点距障碍物的距离,公式340*/2S t 。
图1 超声波测距原理
由于超声波也是一种声波,其声速c与温度有关,表1列出了几种不同温度下的声速。
在使用时,如果温度变化不大,则可认为声速是基本不变的。
如果测距精度要求很高,则应通过温度补偿的方法加以校正。
表1 声速与温度的关系
三、硬件系统设计
1
2、US-100超声波收发模块
该超声波收发模块可自己产生40kHz的方波,并经放大电路驱动超声波发射探头发射超声波,发射出去的超声波经障碍物反射后由超声波接收探头接收。
经接收电路的检波放大,积分整形,在ECHO引脚上产生方波脉冲,该脉冲宽度与被测距离成线性关系。
具体过程如图3所示。
图3 US-100超声波收发模块工作时序图
上图表明:只需要在Trig/TX管脚输入一个10us以上的高电平,系统便可发出8个40KHZ的超声波脉冲,然后检测回波信号,当检测到回波信号后,模块还要进行温度值的测量,然后根据当前温度对测距结果进行校正,将校正后的结果通过Echo/RX管脚输出。
在此模式下,模块将距离值转化为340m/s时的时间值的2倍,通过Echo 端输出一个高电平,可根据此高电平的持续时间来计算距离值。
即距离值为:(高电平时间*340m/s)/2
注:因为距离值已经经过温度校正,此时无需再根据环境温度对超声波声速进行校正,也就是不管温度多少,声速选择340m/s即可。
使用US-100超声波收发模块进行距离测量测量时,单片机只需要输出触发信号,并监视回响引脚,通过定时器计算回响信号宽度,并换算成距离即可。
该模块简化了发送和接收的模拟电路,工作稳定可靠,其参数指标如表2所示。
表2 US-100模块电气参数
应注意测量周期必须在60毫秒以上,防止发射信号对回响信号的影响。
图4 US-100超声波模块外形图
模块共有两个接口,即模式选择跳线和5pin接口。
模式选择跳线接口设置为当安装上短路帽时为UART(串口)模式,拔掉时为电平触发模式。
3、单片机电路
本设计选用宏晶公司高性能单片机STC89C52,其管脚如图5所示。
图5 STC89C52单片机管脚图
该芯片为52内核8位单片机,兼容Intel等52内核单片机,支持ISP下载,适用于常用检测控制电路。
由STC89C52组成的单片机系统原理图如图6所示。
图中TRIG引脚为单片机发送触发信号的引脚,ECHO引脚为US-100模块送回回响信号的引脚,接至单片机外部中断P3.2脚上,可以利用外部中断测量回响信号宽度。
当测量距离小于阈值20cm时,单片机通过管脚P3.6发出灯光报警信号,触发LED报警灯亮,同时通过管脚P3.7发出声音报警信号beep,该信号用以触发
蜂鸣器鸣响报警。
图6 单片机系统及超声波模块接口原理图
4、蜂鸣器报警电路
图7所示为蜂鸣器报警电路。
由于单片机管脚的灌电流比拉电流容量大,因此电路设计为低电平输出时蜂鸣器响,高电平关闭。
当P3.7脚输出低电平时,
PNP型三极管8550导通,有集电极电流通过,蜂鸣器鸣响。
当P3.7脚输出高电平时,三极管截止,蜂鸣器关闭。
图7 蜂鸣器报警电路
5、显示电路
显示部分采用SMC 1602液晶屏进行数据显示,其主要技术参数为:
表3 液晶屏技术指标
接口信号说明如表4所示。
表4 液晶屏接口信号说明
与单片机接口电路如图8所示。
图8 LCD与单片机接口电路。