数学物理方程讲义姜礼尚答案
数学物理方程第一章、第二章习题全解

18
数学物理方程与特殊函数导教·导学·导考
2δρ ut ( x , 0 ) = k ( c - δ≤ x ≤ c + δ) 在这个小段外,初速度仍为零, 我们想得到的是 x = c 处受到冲 击的初速度 , 所 以 最后 还 要 令 δ→ 0。此 外 , 弦是 没 有 初 位 移的 , 即 u( x, 0) = 0 , 于是初始条件为
3. 有一均匀杆 , 只要杆中任一小段有纵向位移或速度 , 必导致 邻段的压缩或伸长, 这种伸缩传开去, 就有纵波沿着杆传播, 试推导 杆的纵振动方程。
解 如图 1 9 所示, 取杆
长方向为 x 轴正向, 垂直于杆长
方向的 各截 面 均 用 它 的 平 衡 位 置 x 标记 , 在时刻 t, 此截面相对
u( x, 0) = 0 0,
ut ( x , 0 ) = δkρ,
| x - c| >δ | x - c | ≤ δ (δ→ 0)
所以定解问题为
utt - a2 uxx = 0
u(0 , t) = u( l, t) = 0 u( x, 0) = 0 , ut ( x , 0 ) =
0, | x - c| > δ δkρ, | x - c | ≤ δ (δ→ 0 )
16
数学物理方程与特殊函数导教·导学·导考
第一章 课后习题全解
1 .4 习题全解
1. 长为 l 的均匀杆 , 侧面绝缘 , 一端温度为零 , 另一端有恒定热
流 q进入 ( 即单位时间内通过单位截面积流入的热量为 q) , 杆的初始
温度分布是 x( l 2
x) ,试写出相应的定解问题。
解 见图 1 8, 该问题是一维热传导方程, 初始条件题中已给
u x
普通物理学程守洙江永久03守恒定律习题详细解答

目录 结束
3-4 一根特殊弹簧,在伸长x m时,沿它 伸长的反方向的作用力为(52.8x +38.4x2)N。 (1)试求把弹簧从x=0.50拉长到 x =1.00 时,外力克服弹簧力所作的功。 (2)将弹簧的一端固定,在另一端栓一质 量为 2.17 kg 的物体 ,然 后 把 弹 簧 拉到 x =1.00,开始无初速地释放物体,试求弹簧 缩回到x=0.5。时物体的速率。
目录 结束
已知: l = 3.6m m = 50kg M = 100kg 解:由动量守恒 M V m v = 0 v mv V V dt = m v dt V= M M t m t v dt s = 0V d t = l M 0 t m s + s´= l s´= 0 v d t s = s´ M m s s s m = = = s´ M M + m s ´+ s l m 50 × 3.6 = 1.2m s= l = M +m 100 + 50 目录 结束
设弹簧最大伸长为 x m
1 mv 2 + 1k x 2 mg x0 = 0 0 2 2 mg 将 x0= 代入,得: k mg 1 1k ( m g ) 2 2 mg = mv 0 + 2 k k 2 mg 2 v = k
2 0
m v 0 =g k
目录 结束
3-9 一小船质量为100kg,船头到船尾共 长3.6m。现有一质量为50kg的人从船尾走 到船头时,船头将移动多少距离?假定水的 阻力不计。
b
2
1 mbω 2 Ay = 0 m y dy = ω 2 两分力的功和路径无关,是一恒量。 所以有心力为保守力。
目录 结束
3-3 一根原长 l0 的弹簧,当下端悬挂质 量为m的重物时,弹簧长l = 2l0 。现将弹簧 一端悬挂在竖直放置的圆环上端A点。设环 的半径R=l0把弹簧另一端所挂重物放在光滑 圆环的B点,如图所示。已知AB长为1.6R。 当重物在B无初速地沿圆环滑动时,试求: A (1)重物在B点的加 速度和对圆环的正压力; (2)重物滑到最低点 R C 时的加速度和对圆环 B 的正压力。
数理方程习题解答

+
α
2 2
=
α32
+
α
2 4
,取单位特征方向,
α12
+
α
2 2
+ α32
+
α
2 4
= 1。所以,α12
+
α
2 2
= α32
+
α
2 4
=
1 2
。记
α1
=
1 2
cosθ ,
α2
=
1 2
sinθ ,α3
=
1 2
cosϑ,
α4
=
1 2
sinϑ
,则
α
=
⎛ ⎜⎝
1 2
cosθ ,
1 sinθ , 2
1 2
cosϑ,
则杆上各点 在时刻 的位移是
。
在杆上任取一段,其两端点静止时的坐标为
,此小杆段在时刻 的相对伸长
为: 律知张力为
,令
得 点在时刻 的相对伸长为ux (x, t) ,由 Hooke 定
,再此小杆段上用 Newton 第二定律得
两边同除 并令
得:
若杨氏模量为 为常数则得:
。
1 牛顿(Newton)第二定律与动量守恒定律等价,也可以用动量守恒定律来见方程,见《数学物理方程 讲义》 (姜礼尚、陈亚浙)P1
=
1 2
sinθ ,α3
=
±
1 sinθ ,则 2
α
=
⎛ ⎜⎝
cosθ
,
1 sinθ , ± 2
1 2
sin
θ
⎞ ⎟⎠
。
( ) 2 对波动方程utt − a2 uxx + uyy = 0 过直线l : t = 0, y = 2x 的特征平面。
数学物理方程学习指导与习题解答

数学物理方程学习指导与习题解答物理学家说:“学会做习题,是学习数学的最重要环节。
”对于高三学生来说,认真做好数学物理方程的习题,不仅可以使他们了解物理、数学、化学三门课程之间的关系和区别,而且能培养他们独立思考问题和解决问题的能力。
同时,由于物理学科本身就具有严密的逻辑性,解题训练也可以增强学生的逻辑思维能力。
数学物理方程学习指导与习题解答:第一章、概念: 1。
(1)理解能量、机械能守恒定律、机械功、功率、焦耳定律等概念,知道它们之间的关系。
(2)掌握麦克斯韦速率分布律、拉格朗日乘数定律。
(3)掌握动能定理、动量定理、动量守恒定律。
(4)掌握机械能守恒定律和能量守恒定律的内容及适用条件。
(5)理解热力学第一定律的表述及其内容和适用条件。
(6)了解能量转化和守恒定律的主要应用。
(7)了解热力学第二定律的表述及其内容和适用条件。
(8)掌握热力学第二定律的几种情况,能够利用热力学第二定律解决实际问题。
2。
理解气体的摩尔定压、摩尔定容、理想气体常数等概念。
(1)会求下列气体的定容、定压比热容;(2)会计算理想气体混合物的物质的量;2.能够用微分法求解电路中的功率,会用麦克斯韦速率分布律判断和计算物体的温度;(3)能够根据物理量的测量结果,确定物体的位置,并绘制简单的示意图;(4)能够根据物理规律绘制能量流、热量流和质量流示意图;(5)能够根据公式计算、简化或推导出实际应用中常见的物理量;(6)能够根据能量守恒原理计算物体的功;6.(实验类)在盛有一定量水的烧杯中放入一定量食盐,用火加热直至食盐完全溶解。
写出下面有关各量的变化规律:(1)当食盐放入水中时,溶液的温度保持不变; (2)当食盐全部溶解后,过一段时间,液面将不断地上升;(3)当达到饱和时,液面又将不断地下降;(4)当食盐溶解完毕时,烧杯里的食盐溶液质量不变,食盐的总质量不变,其物质的量随着温度的变化而改变;(5)当烧杯中水和食盐全部熔化成蒸汽,食盐溶液逐渐冷却,食盐逐渐凝固成固体,此过程中固体物质的质量不变。
数学物理方程第二版习题解答 第三章教学文稿

x = r sinθ cosϕ , y = r sinθ sinϕ , z = r cosθ
(1)
∆u = ∂ 2u + ∂ 2u + ∂ 2u ∂x 2 ∂y 2 ∂z 2
为作变量的置换,首先令 ρ = ρ sinθ ,则变换(1)可分作两步进行
x = ρ cosϕ , y = ρ sin ϕ
(2)
∂ϕ ρ
= sinϕ ∂ ( ∂u sinϕ + ∂u ⋅ cosϕ ) +
∂ρ ∂ρ
∂ϕ ρ
+ cosϕ ∂ ( ∂u sinϕ + ∂u ⋅ cosϕ )
ρ ∂ϕ ∂ρ
∂ϕ ρ
= sin 2 ∂ 2u + 2sin ϕ cosϕ ∂ 2u + cos2 ϕ ⋅ ∂ 2u −
∂ρ 2
ρ
∂ρ∂ϕ ρ 2 ∂ϕ 2
⋅
∂2u ∂ϕ 2
=
0
3. 证明拉普拉斯算子在柱坐标 (r,θ , z) 下可以写成
∆u
=
1 r
⋅
∂ ∂r
(r
∂u ) ∂r
+
1 r2
⋅
∂2u ∂θ 2
+
∂2u ∂z 2
证:柱坐标 (r,θ , z) 与直角坐标 (x, y, z) 的关系
x = r cosθ , y = r sinθ , z = z
第三章 调 和 方 程
§1 建 立 方 程 定 解 条 件
1. 设 u(x1, x2 ,, xn ) = f (r) (r = x12 + + xn2 ) 是 n 维调和函数(即满足方程
∂ 2u + + ∂ 2u = 0 ),试证明
第一章----波动方程

总之:
无外力作用的一维弦振动方程:
2u t 2
a2
2u x2
0
外力作用下的弦振动方程:
(1.4)
2u t 2
a2
2u x2
f (x,t)
(1.5)
其中 a2 T , f F , f 称为非齐次项(自由项)。
注:弦振动方程也叫波动方程,因为它描述的是一种 振动或波动现象,后面将给出解释。
1973年布莱克(Black)和休尔斯(Scholes)建立了倒向 微分方程决定欧式期权的无套利价格:
f t
rS
f S
1 2S2
2
2 f S 2
rf
这里,对买入期权有 f (S,t) |tT max{ST X ,0} ;对卖出期权有
f (S,t) |tT max{X ST ,0} 。其中 r 为无风险利率, S 为股票价格,
一般步骤(从宇宙探星谈起): 1、将物理问题归结为数学上的定解问题; 2、求解定解问题; 3、对求得的解给出物理解释。
四、偏微分方程的研究内容-适定性的概念
1、存在性 2、唯一性 3、稳定性
如果一个定解问题的解是存在的、 唯一的,而且是稳定的,则称该定 解问题是适定的。
五、微分方程的重要作用
可以说有了微积分,就有了微分方程 (微积分是17世纪为了解决物理、力学、 天体问题而产生的,而这些问题多为数学 物理方程)。
1 (tan )2 dx 1 2 dx dx
(2)弦上各点的张力是常数
由于弦做横振动,弦沿 x 轴无运动,所以合力为零
T1 cos1 T2 cos2 T1 T2 T
数学物理方程课后参考答案第三章

解:令
又 故取 则 满足调和方程
即
代入原定解问题,得 满足
用分离变量法零解 ,得
.
所以
再由另一对边值得
所以 .
得
最后得
8.举例与说明在二维调和方程的狄利克莱外问题,如对解 不加在无穷远处为有界的限制,那末定解问题的解以不是唯一的。
是区域 中的调和函数(无穷远点除外).
如果区域 为球面K以外的无界区域,则函数u 在 中除去原点O外是调和的,函数 称为函数 的凯尔文(Kelvin)变换。
证明:只需证明 满足 。
=
=
代入 的表达式,有
=
=
若u在包含原点O的有界区域内处处式调和的即 ,则除无穷远点(O的反演点)外, 即除 点外v是调和的。若u在无界域 上是调和的,则除去O点外,v也是调和的。证毕。
且矩阵( )是正定的,即
由于矩阵( )是非正定的,故 可以写成 的线性齐次式的平方和,即
=
所以
于是
因此在 点
与 在 点满足方程是矛盾的,故 不能在 内部达到正的最大值。
7.证明第6题中讨论的椭圆形方程第一边值问题的唯一性与稳定性。
证:唯一性。只须证明方程在齐次边值条件只的零解。
设 在 内满足方程,在 边界 上 。因 在 上连续,故 是有界的,
第三章调和方程
§1建立方程定解条件
1.设 是n维调和函数(即满足方程
),试证明
其中 为常数。
证: ,
即方程 化为
所以
若 ,积分得
即 ,则
若 ,则 故
即 ,则
2.证明拉普拉斯算子在球面坐标 下,可以写成
数学物理方程答案(全)

SY (ux (x dx,t) ux (x,t)) Sdxutt
utt
Y P
uxx
杆的一端固定,有 u(0,t) 0 ,另一端为自由端有 ux (x,l) 0
由于弦在出事时刻处于静止状态,即初速度为零,故 ut (0,t) 0
在 t 0 时刻,整个杆被纵向拉长 d ,则单位杆长的伸长量为 d ,故 x 点处的伸长 l
(3)特征方程为
4( dy )2 8( dy ) 3 0
dx
dx
解得
dy 3 和 dy 1 dx 2 dx 2
习题 2.2
1.一根半径为 r,密度为 ,比热为 c,热传导系数为 k 的匀质圆杆,如同截面
上的温度相同,其侧面与温度为 1 的介质发生热交换,且热交换的系数为 k1 。
试导出杆上温度 u 满足的方程。 解:
0
x
x+dx
取微元在 (x, x dx) 之间,在时间 t 内
x
从左右两截面流入的热量,有热传导方程可得
dT g dx 对上式进行积分,并且利用在 x 0 处的张力为T x0 gl 可求得 T (x) g(l x)
对于(2)式 sin2 tan2 ux (x dx,t) sin 1 tan 1 ux (x,t)
将上述结果代入(2)式得出
T (x dx,t)ux (x dx,t) T (x)ux (x,t) uttdx
2 x ux)
Y P
x
(x2
u x
)
1 x2
4.一根长为 L、截面面积为 1 的均匀细杆,其 x=0 端固定,以槌水平击其 x=L
端,使之获得冲量 I。试写出定解问题。
解:由 Newton 定律: SYux (x dx,t) YSux (x,t) Sdxutt ,其中,Y 为杨
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学物理方程讲义姜礼尚答案11许绍浦《数学分析教程》南京大学出版社这些书应该够了,其他书不一一列举。
从中选择一本当作课本就可以了。
外国数学分析教材:11《微积分学教程》菲赫金格尔茨著数学分析第一名著,不要被它的大部头吓到。
我大四上半年开始看,发现写的非常清楚,看起来很快的。
强烈推荐大家看一下,哪怕买了收藏。
买书不建议看价格,而要看书好不好。
一本好的教科书能打下坚实的基础,影响今后的学习。
12《数学分析原理》菲赫金格尔茨著上本书的简写,不提倡看,要看就看上本。
13《数学分析》卓立奇观点很新,最近几年很流行,不过似乎没有必要。
14《数学分析简明教程》辛钦课后没有习题,但是推荐了《吉米多维奇数学分析习题集》里的相应习题。
但是随着习题集的更新,题已经对不上号了,不过辛钦的文笔还是不错的。
15《数学分析讲义》阿黑波夫等著莫斯科大学的讲义,不过是一本讲义,看着极为吃力,不过用来过知识点不错。
16《数学分析八讲》辛钦大师就是大师,强烈推荐。
17《数学分析原理》rudin中国的数学是从前苏联学来的,和俄罗斯教材比较像,看俄罗斯的书不会很吃力。
不过这本美国的书还是值得一看的。
写的简单明了,可以自己试着把上面的定理推导一遍。
18《微积分与分析引论》库朗又一本美国的经典数学分析书。
有人认为观点已经不流行了,但是数学分析是一门基础课目的是打下一个好的基础。
19《流形上的微积分》斯皮瓦克分析的进一步。
中国的数学分析一般不讲流形上的微积分,不过流形上的微积分是一种潮流,还是看一看的好。
20《在南开大学的演讲》陈省身从中会有一些领悟,不过可惜好像网络上流传的版本少了一些内容。
21华罗庚《高等数学引论》科学出版社数学分析习题集不做题就如同没有学过一样。
希望将课本后的习题一道道自己做完,不要看答案。
买习题集也要买习题集,不买习题集的答案。
1《吉米多维奇数学分析习题集》最近几年人们人云亦云的说这本书多么不好,批评计算题数目过多,不适合数学系等等。
但这本习题集不再被广泛使用的原因是那本习题解答的出现,学生对答案的抄袭使这部书失去了价值。
如果你不看答案的话它依然是数学分析第一习题集。
不要没有做过就盲目的批评。
有没有做过自己心里知道,并会影响自己今后的学习。
2《数学分析习题课教材》第一版或《数学分析解题指南》第二版,林源渠,方企勤等两本书一样的,再版换了名字。
第一版网上有电子版,第二版可以买纸版。
和3成一套。
3《数学分析习题集》林源渠,方企勤等由于《吉米多维奇数学分析习题集》答案的出现使这本书得到的评价变高了,原因是这本书没有答案。
只能自己做。
4《数学分析习题精解》科学出版社版,还有裴礼文或者钱吉林的书过考试不错,要学数学分析不提倡。
5各种教材的答案书一堆垃圾。
毁人不倦。
解析几何:解析几何有被代数吃掉的趋势,不过就数学系的学生而言,还是应该好好学一下,我大一没有好好学,后来学别的课时总感觉哪里有些不太对劲,后来才发现是自己的数学功底尤其是几何得功底没有打好。
1吴光磊《解析几何简明教程》高等教育出版社写的简单明了,我基础没有打好,快速翻了一下这本书收获还是不少的。
不过打基础的时候还是从下面三本选一本看,把这本当参考书。
2《解析几何》丘维声,北京大学出版社我大一时的课本3《解析几何》吕根林,许子道4《解析几何》尤承业2,3,4写的大同小异习题集有巴赫瓦洛夫的《解析几何习题集》不过不是那么容易找的到了代数前面说过代数有吃掉几何的倾向,所以有许多与时俱进的《代数与几何》。
不过还是建议分开学,一门一门的打好基础。
许多所谓的简明教程,还有将代数与解析几何合在一起的课本目前都还不是非常成熟。
不建议使用。
1《高等代数》北京大学数学系代数与几何教研室代数小组目前国内各大学尤其是综合大学数学系广泛采用的代数教材,有着悠久的传统。
目前通常使用的是第三版。
也是各大学的考研指定用书。
这本书更多以教师为主,给了教师以很大的发挥空间,受到教师的普遍欢迎。
不过对基础不好的学生在某些地方有一定的难度。
讲到了所有应该讲的内容。
2《高等代数》张禾瑞,郝鈵新被各个师范大学的数学系广泛使用,和1同分天下。
张禾瑞已经去世,但书已经出到第五版。
3《线性代数》李烔生,中国科学技术大学出版社中科大的书一向比较难。
4《线性空间引论》叶明训,武汉大学出版社5《高等代数学》张贤科,清华大学出版社6《线性代数与矩阵论》许以超,高等教育出版社以上三本是一份书单上写的,拿了过来,不过我知道5还是不错的7《代数学引论》柯斯特利金一本和菲赫金戈尔茨的《微积分学教程》齐名的伟大数学著作。
一本传世经典,没有什么可多说的。
最近刚刚有新译本出版,共分了三册,但都不是很厚,也不贵。
8《线性代数习题集》普罗斯库列柯夫9《高等代数习题集》法捷耶夫,索明斯基8,9是前苏联的经典代数习题集分别有两千道和一千道题,做完会打下非常好的基本功。
10《高等代数》丘维声著书写的不错,不过是北京大学数学系用书,北京大学的教学内容和重点一贯与国内其他大学的不太一样,而且邱维声采用了与其他教材完全不同的编排方式,所以用这本书研也许有一些不适应。
建议用来作参考书而不是教材。
11《高等代数习题集》杨子胥著相对8,9很容易买到,很多人用来做考研的参考书,而且符合所谓的教学或考研大纲。
12《线性代数》蒋尔雄,高锟敏,吴景琨著名为线性代数,实际上是一本高等代数教材。
是一本非常老的为当时计算数学专业编写的书。
市面上根本找不到,但各大学的藏书中肯定会有。
近世代数:不光是数学系最重要的几门课,而且在计算机方面有很多应用,通常的离散数学第二部分就是近世代数内容,也叫抽象代数。
1《近世代数引论》冯克勤2《近世代数》熊全淹3《代数学》莫宗坚4《代数学引论》聂灵沼5《近世代数》盛德成分析的后继课程有常微分方程,偏微分方程,实变函数,复变函数,泛函分析。
下面一一介绍:常微分方程:1《常微分方程教程》丁同仁、李承治,高等教育出版社公认的国内写的最好的教材。
2《常微分方程》王高雄等使用相当广泛的教材。
初学建议从1,2中选3《常微分方程》v.i.arnold常微分不可不读的书。
4《常微分方程》庞特里亚金前苏联教材,作者是数学奇才,因为化学实验的一次事故导致双目失明,不得已转而学数学,成为一代数学大师。
5常微分方程习题集》菲利波夫很简单,打通这本书。
不是题目简单,是对你的要求简单。
复变函数:1《简明复分析》龚昇写的非常有特色的一本书。
2《complex analysis 》l.v.ahlfors学数学还是提倡多看大师的著作3《复变函数》余家荣4《复变函数》钟玉泉上面两本是国内数学系用的最多的书,不过通常会剩下一到两章讲不完。
5《解析函数论初步》h.嘉当6《应用复分析》任尧福7《复变函数论习题集》沃尔科维斯实变函数:1《实变函数与泛函分析概要》郑维行很好的入门书。
2《实变函数论》周民强普遍认为是一本非常好的书,不过个人认为对基础不是很好的人来说比较难懂。
写法和其他几本不太一样。
3《实变函数》江泽坚,吴志泉我初学时用的书,和2相比我更愿意用这本和44《实变函数与泛函分析》夏道行,伍卓人,严绍宗,舒五昌上世纪八十年代中国大学数学系的标准课本,2009年3月会出新版。
强烈推荐这本和上一本。
虽然厚,但是相当详细。
5《实变函数论的定理与习题》鄂强6《实变函数论习题集》捷利亚科夫斯基和分析一样要多做题。
泛函分析:1《泛函分析讲义》张恭庆个人感觉写的比较混乱,不过各个大学数学系都在用。
2《实变函数与泛函分析》夏道行上面说过,再推荐一次,虽然有点厚。
3《实变函数与泛函分析概要》郑维行4《泛函分析习题集》安托涅维奇5《函数论与泛函分析初步》柯尔莫哥洛夫好好看完会有收获。
大师的经典名著,包括了实变函数,泛函分析,变分等各方面的内容6《泛函分析理论习题解答》克里洛夫偏微分方程:1《偏微分方程》陈祖墀2《广义函数与数学物理方程》齐民友3《数学物理方程讲义》姜礼尚4《数学物理方程》谷超豪,李大潜等5《偏微分方程教程》华中师范大学6《数学物理方程习题集》弗拉基米洛夫谷超豪,李大潜的书是用的时间相当长的一本老教材,5添加了一些新内容,将一阶方程的解法也加了进来。
7《数学物理方法》梁昆淼。
数学物理方法是非数学专业的课相当于数学系的偏微分方程和复变函数8《数学物理方程》柯朗学物理的人趁着年轻还是好好打一打基础。
9《特殊函数概论》王竹溪中国人写的书里面足以自豪的一本,王老先生是杨振宁的老师。
概率论分三部分内容:概率论,数理统计和随机过程概率论:1《概率论基础》李贤平2《概率论引论》汪仁官3《概率论与数理统计》(上、下),中山大学数学力学系编概率论学起来很容易,但是题做起来就不是那么一回事了。
数理统计:1《数理统计学教程》陈希孺2《数理统计学讲义》陈家鼎3《数理统计基础》陆璇4《数理统计习题集》中国科学技术大学统计与金融系5《数理统计》赵选民随机过程:【篇二:反问题参考书目】ass=txt>1. r. kress, linear integral equations, springer-verlag, new york,1992.2. a. n. tikhonov, v. y. arsenin, on the solution of ill-posed problems, johnwiley and sons, new york, 1977.3. h. w. engl, e. hanke and a. neubauer, regularization of inverse problem,kluwer, dordrecht, 1996.4. c. w. groetsch, the theory of tikhonov regularization for fredholmequations of the first kind, pitman, boston, 1984.5. c. w. groetsch, inverse problem in the mathematical sciences, vieweg,braunschweig, 1993.6. v. a. morozov, regularization methods for ill-posed problems, crcpress,1993.7. a. n. tikhonov, a. s. leonov and a. g. yagola, nonlinearill-posedproblems, london , new york: chapman hall, 1998.8. o. m. alifanov, inverse heat transfer problems, springer verlag, 1994.9. a. kirsch, an introduction to the mathematical theory of inverse problem,springer, 1996.10. c. susanne, l. brenner, s. ridgway, the mathematical theory of finiteelement methods, springer-verlag, new york, 1994.11. 苏超伟,《偏微分方程逆问题的数值方法及其应用》,12. m. a. golberg, c. s. chen, discrete projection methods for integralequations, computational mechanics publications, southampton, 199713. v. isakov, inverse problems for partial differential equations,springer-verlag, new york, 1998.14. j. r. cannon, the one-dimensional heat equation,addison-wesley publishingcompany, 1984.15. r. a. adams, sobolev spaces, pure and applied mathematics, vol. 65.academic press, new york-london, 1975.16. d. v. widder, the heat equation, academic press, 1975.17. j. v. beck, k. d. cole, a. haji-sheikh, b. litouhi, heat conduction usinggreen’s functions, hemisphere publishing co rporation, 1992. 18. d. colton, inverse acoustic and electromagnetic scattering theory,springer-verlag, 1992.19. d. l. colton, solution of boundary value problems by the methods of integraloperators, pitman publishing, 1976.20. v. isakov, inverse source problem, ams providence, r. i., 1990.21. a. l. bukhgeim, introduction to the theory of inverse problem, vsp, 2000.22. g. wahba, spline models for observational data, society for industrial andapplied mathematics, 1990.23. c. s. chen, y. c. hon and r. a. schaback, scientific computing with radialbasis functions, preprint.24. j.w. thomas, numerical partical differential equations (finite differencemethods), springer,1995.25. c. w. groetsh, inverse problem activities for undergraduates, 翻译版,程晋,谭永基,刘继军。