价层电子对互斥理论(VSEPR)

合集下载

价层电子对互斥理论

价层电子对互斥理论

三角 BF3、 SO3 形 SnBr2、 V形 PbCl2
价层 电子 对数 目
价层电 σ 键 孤电 电子对 分子的 子对的 电子 子对 的排列 空间构 实例 空间构 方式 型 对数 数 型
4 4 四面体 形 3 2
0 1 2
四面体 CH4、 CCl4 形
三角锥 NH3、 PCl3 形 V形 H2O
4+2=6 6-1=5
3 3
2 1
1、对阳离子来说,a为中心原子的价电子数减去离子的电荷 数,其它不变。 2、对阴离子来说,a为中心原子的价电子数加上离子的电荷 数,其它不变。
四、分子空间构型的确定
价层电子对有成键电子对和孤电子对之分,在得到价层 电子对数之后可得到VSEPR模型,然后我们略去VSEPR模型 中中心原子上的孤对电子,便可得到分子的立体构型。
NH3
CH4
a
孤对电子对数
x b 中心原子 上的孤电 子对数
分子 中心 或离 原子 子 H2O CO2
O
C N C
6
4 5 4
2
2 3 4
1
2 1 1
2
0 1 0
NH3
CH4
CO32-
H30+ 的孤对电子对数求法?
分子或 中心 离子 原子 CO32H30+ C O
a
x
b
中心原子 上的孤电 子对数 0 1
这样已知价层电子对的数目,就可以确定VSEPR模型。
三、价层电子对的确定方法
注:1、σ键电子对数可由分子式确定,例如:H2O 为2 NH3 为3 2、中心原子的孤对电子 =1/2(a-xb) a为中心原子的价电子数 x为与中心原子结合的原子数 b为与中心原子结合的原子最多能接受的电子数

733价层电子对互斥理论VSEPR

733价层电子对互斥理论VSEPR

7.3.3 价层电子对互斥理论(VSEPR)1940年由西奇维克(N.V.Sidgwick)提出的价层电子对互斥理论,可以相当成功地简便地判断许多共价型分子的几何构型。

1.分子几何学分子的形状或分子内某个部位的形状(几何构型),对于化学反应致关重要,也与其物理性质密切相关。

知道分子的几何构型,就可以确定其对称类型,这对简化近似求解体系的波函数也很重要。

研究分子构型的学科叫分子几何学。

(1)几何构型与分子设计。

人接触路易氏毒气后,皮肤严重烧伤,肺和支气管迅速遭到损害,最终导致死亡。

原因是毒剂破坏了人体内含硫酶的生物活性。

英国人在可能遭到路易氏毒气袭击前就研制了一种具有特定结构和电子密度分布的解毒剂,它可以和砷形成稳定的配合物。

另外,失能剂的设计、催化剂的设计,以及在超分子中分子间的识别、自组装等都有分子几何构型匹配的问题。

(2)分子几何构型与气味。

有人将气味分成七种类型,即樟脑型、醚型、花香型、麝香型、薄荷型、辛辣型及腐臭型。

其它气味则是两种或几种气味的混合。

每种气味都与人的嗅觉系统中适当形状的神经末梢的感受器相适应。

例如六氯乙烷和环辛烷组成不同,但分子形状相似,都能与一个半球形感受器相匹配,因而都有樟脑型气味。

(3)分子几何构型与对称性。

甲烷是气体,易燃;而四氯化碳是液态,阻燃。

但是由于它们具有相同的四面体构型(相同的对称性),因此它们都是非极性分子,都没有旋光性等。

互为镜像的对应异构体往往也具有不同的性质。

如四嘧唑(驱虫灵)只有左旋的有药物作用,而右旋的没有。

农药、抗癌药物也有同样情况。

通过考察分子的成键过程后,不难发现分子的几何形状是与分子的电子结构相对应。

因此,尽管分子的几何形状千差万别,但都能从其内部的电子结构和分子中原子间相互作用找到根据。

价层电子对互斥理论就是讨论如何预测和研究分子的静态构型。

2.价层电子对互斥理论(1)价层电子对互斥理论的基本要点:价层电子对互斥理论认为,在一个多原子共价分子中,中心原子周围配置的原子或原子团(一般称之为配位体)的相对位置,主要决定于在中心电子的价电子层中电子对的互相排斥,它们(在保持与核一距离的情况下)趋向于尽可能的远离,使斥力最小,分子最稳定。

价层电子对互斥模型(VSEPR)

价层电子对互斥模型(VSEPR)

价层电子对互斥模型(VSEPR)VSEPR(Valence Shell Electron Pair Repulsion Model,键轨电子对互斥模型)是一种用于确定分子空间结构的理论模型,可以用来解释分子形状的变化上。

这个理论建立在假设上:由于电子互斥,任何共价键同类原子的极性的键轨上的电子对表现出一种“疏密”状态,使得它们尽可能远地排列在一起以最小化吸引力;而相邻的电子对宁愿排列在不同的基础上,并且它们尽可能多地屏蔽它们相互间的电荷吸引力。

VSEPR模型中,最外层的电子对(valence shell electron pair,即VSEPR)会有所不同,因此分子的形状也会有所不同。

VSEPR模型假定分子围绕中心原子分布,以便形成拗拗结构,从而得出分子的形状。

这种拗拗结构就像一只秤砣,它可以安置一定的负荷,使之得以保持一种拗拗状态,而不会被电荷的影响。

VSEPR模型根据不同的电子对排布数字,以及包含的官能团的形成分子形状的不同,分为四个基本的形状,它们是:平面形,三角锥形,正四面体形和正方体形。

VSEPR模型不仅可以用来确定分子的形状,还可以用来计算分子基态(Ground Electronic State)能量最低的构型。

VSEPR模型广泛应用于许多分析领域,如有机化学、分子物理学和生物化学等。

VSEPR模型还可以帮助计算化学反应的反应能等,这些变量是判断一个反应能否成功的重要依据。

VSEPR模型是一种理论模型,它简化了分子结构的研究,以简化许多大分子结构计算,包括和非值键以及多原子束结合键的结构。

VSEPR模型可以帮助科学家准确地计算出大型分子结构的起因以及判断反应成功率,是一个很重要的分析工具。

价层电子对互斥理论

价层电子对互斥理论
120°
90°
形状 直线形 平面三角形 正四面体 三角双锥 八面体 名称
活动二:价层电子对互斥模型(VSEPR) 理论内涵
理论提出 预测分子的立体构型 理论应用
1940 西奇威克(N.V.Sidgwick)、坡维尔(H.M.Powell)提出 1960S吉列斯比(R.J.Gillespie)、尼霍尔姆(R.S.Nyholm)发展
高二 选修3
价层电子对互斥理论
(VSEPR theory)
形形色色的分子
原子通过共用电子对所形成的相互作用(共价键)结合成分子。 分子的立体构型是“价层电子对”相互排斥的结果。
活动一:模型初探
用气球模型的空间互斥类比电子对的电性互斥
电子 对数
2
3
4
5
6
气球 模型
VSEPR 模型
180°
90° 90°
价层电子对互斥模型(VSEPR)
1.分子的立体构型取决于中心原 子理价论层应电用子对排布。
2.分子的立体构型采用价层电子 对相互排斥作用最理小论的提构出型。
理论内涵
3.价层电子对之间保持最大距离 ,分子采用对称结构。
H
·· ··
H ·· C ·· H
斥力最小 能量最低
H
价层电子对互斥模型(VSEPR)
分子:价电子数(最外层电子数) 阳离子:价电子数-电荷数 阴离子:价电子数 + 电荷数
①σ键电子对数可由分子式确定。
②中心原子上的孤电子对数= 12(a-xb)
中心原子结合 的原子数
与中心原子结合的原子 最多能接受的电子数
O2 N3 N4
6
2 12
5
311
5-1=4 4 1 0

价层电子互斥理论(VSEPR)

价层电子互斥理论(VSEPR)

价层电子互斥理论价键理论和杂化轨道理论比较成功地说明了共价键的方向性和解释了一些分子的空间构型。

然而却不能预测某分子采取何种类型杂化,分子具体呈现什么形状。

例如,H2O、CO2都是AB2型分子,H2O分子的键角为104°45´,而CO2分子是直线型。

又如NH3和BF3同为AB3型,前者为三角锥形,后者为平面三角形。

为了解决这一问题,1940年英国化学家西奇威克(Sidgwick)和鲍威尔(Powell)提出价层电子对互斥理论(Valence-shell electrion-pair repulsion)简称VSEPR理论。

后经吉莱斯(Gillespie)和尼霍姆(Nyholm)于1957年发展为较简单的又能比较准确地判断分子几何构型的近代学说。

【VSEPR理论基本要点】1、分子的立体构型取决于中心原子的价电子对的数目。

价电子对包括价层轨道电子对和孤对电子对。

2、价电子对之间存在斥力,斥力来源于两个方面,一是各电子对间的静电斥力,而是电子对中自旋方向相同的电子间产生的斥力。

为减小价电子对间的排斥力,电子对间应尽量相互远离。

若按能量最低原理排布在球面上,其分布方式为:当电子对数目为2时,呈直线形;价电子对数目为3时,呈平面三角形;价电子对数目为4时,呈正四面体形;价电子对数目为5时,呈三角双锥形;价电子对数目为6时,呈八面体形等等。

如图7-22所示,抹去想象的球面,所得图形就是价电子对的几何构型。

3、键对由于受两个原子核的吸引,电子云比较集中在键轴的位置,而孤对电子不受这种限制。

显得比较肥大。

由于孤对电子肥大,对相邻电子对的排斥作用较大。

不同价电子对间的排斥作用顺序为:孤对-孤对> 孤对-键对> 键对-键对另外,电子对间的斥力还与其夹角有关,斥力大小顺序是90 °> 120°> 180°4、键对只包括形成σ键的电子对,不包括形成π键的电子对,即分子中的多重键皆按单键处理。

价层电子对互斥模型(VSEPR)

价层电子对互斥模型(VSEPR)

02
03
指导新物质合成
基于价层电子对互斥模型,化学家可 以预测新物质的可能几何构型,从而 指导新物质的合成和性质研究。
对其他学科的启示
物理学
价层电子对互斥模型中的电子排斥作用与物理学中的电磁 相互作用有相似之处,为理解电磁现象提供了新的视角。
材料科学
将价层电子对互斥模型应用于材料科学,有助于理解不同材料 的电子结构和性质,为新型材料的研发提供理论支持。
些因素,以更准确地预测分子的空间构型和性质。
04 价层电子对互斥模型的应用
在化学反应中的作用
预测分子间的相互作用
价层电子对互斥模型可以用于预测分子 间的相互作用,如氢键、离子键和共价 键的形成,从而帮助理解化学反应的机 理。
VS
预测反应活性
通过分析分子中的价层电子对分布,可以 预测分子的反应活性,从而预测化学反应 的方向和速率。
概念
该模型认为,在分子中,价层电子对 会尽可能地相互远离,以减少相互排 斥的能量,从而形成稳定的分子构型 。
发展历程与重要性
发展历程
价层电子对互斥模型最初由美国化学 家罗伯特·马利肯和丹麦物理学家哈那 德·詹森在20世纪50年代提出。
重要性
该模型在化学领域中具有重要意义, 因为它提供了一种简便的方法来预测 分子的空间构型,有助于理解分子的 性质和行为。
与价键理论的关系
关系
价层电子对互斥模型和价键理论是相辅相成的理论体 系。
区别
价键理论主要关注电子的成键和反键轨道,而价层电 子对互斥模型则更侧重于预测分子的空间构型。
联系
在价键理论的基础上,价层电子对互斥模型可以进一 步揭示分子构型的奥秘。
价层电子对互斥模型的基本原

价电子对互斥理论

价电子对互斥理论

生物化学
03
价电子对互斥理论在生物化学中也有应用,如预测生物大分子
的结构和功能,以及药物与生物大分子的相互作用等。
02 价电子对互斥原理
原子轨道与价电子
原子轨道
描述电子在原子核外运动状态的函数,决定了电子的空间分布和 能量。
价电子
原子参与化学反应的电子,通常位于原子的最外层轨道上。
原子轨道与价电子的关系
当价电子对数目为3时,原子 采用sp2杂化方式,形成平面 三角形分子,如BF3、SO3等 。此外,某些具有孤对电子的 分子也会采用sp2杂化方式, 如H2O、NH3等。
当价电子对数目为4时,原子 采用sp3杂化方式,形成四面 体构型的分子,如CH4、SiH4 等。此外,具有孤对电子的分 子也可能采用sp3杂化方式, 但其几何构型会发生变化,如 NH3为三角锥形,H2O为V形 。
互斥原理与化学键合
互斥原理不仅适用于价电子对之间的排斥,也适用于化学键合过程中 的电子排布和键角预测。
能量最低原则
01
能量最低原则
分子在形成时趋向于达到能量最低的状态,因为这样的状态最稳定。
02
价电子对互斥与能量最低原则的关系
价电子对之间的互斥作用使得分子在形成时趋向于调整几何构型以降低
电子对之间的排斥能,从而达到能量最低的状态。
价电子对数目与键角关系
价电子对数目越多,键角越小。 当价电子对数目相同时,不同杂化类型的分子键角也有所不同。
实例分析
水分子(H2O)
中心原子氧原子有两对价电子对,根据价电子对互斥理论,这两对价电子对应该尽量远离彼此,形成 109.5°的键角。然而,由于氧原子上还有两对孤电子对,这些孤电子对也对键角产生了影响,使得水分子 的键角略小于109.5°,实际测量值为104.5°。

价层电子对互斥模型

价层电子对互斥模型

价层电子对互斥模型英文:(valence-shell electron-pair repulsion model) (VSEPR)简称: VSEPR概念:VSEPR模型是将共用电子对与孤对电子的概念,与原子轨道的概念相结合,且电子斥力达到最小。

在这个模型中电子对相互排斥,成键电子与孤对电子距离越远越好。

VSEPR模型以最简单的方法形象化了化学变化,也很容易判断物质的空间构型。

简介在1940年,希吉维克(Sidgwick)和坡维尔(Powell)在总结实验事实的基础上提出了一种简单的理论模型,用以预测简单分子或离子的立体结构。

这种理论模型后经吉列斯比(R.J,Gillespie)和尼霍尔姆(Nyholm)在20世纪50年代加以发展,定名为价层电子对互斥模型,简称VSEPR(Valence Shell Electron Pair Repulsion)。

价层电子对互斥理论(英文VSEPR),是一个用来预测单个共价分子形态的化学模型。

理论通过计算中心原子的价层电子数和配位数来预测分子的几何构型,并构建一个合理的路易斯结构式来表示分子中所有键和孤对电子的位置。

同时,也是一种较简便的判断共价分子几何形状的方法,该理论紧紧抓住中心原子价层电子对数目这一关键因素,运用分子的几何构型取决于价层电子对数目这一假设,成功的解释并推测了许多简单分子的几何形状.常见分子构型二氧化硫 4sp3杂化正四面体 0 正四面体甲烷 1 三角锥氨 2V字型水 5sp3d 三角双锥 0 三角双锥 PCl5 1 变形四面体(跷跷板型) TeCl4 2T字型 ClF3 3 直线型I3 6sp3d2 正八面体 0 正八面体六氟化硫 1 四方锥 IF5 2 平面四边形 ICl4 3T字型 4 直线型 7sp3d3五角双锥 0 五角双锥 IF7AXE方法价层电子对互斥理论常用AXE方法计算分子构型。

这种方法也叫ABE,其中A代表中心原子,X或B代表配位原子,E代表孤电子对。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

价层电子对互斥理论(VSEPR )
现代化学的重要基础之一是分子(包括带电荷的离子)的立体结构。

实验测出,SO 3
分子是呈平面结构的,O —S —O 的夹角等于120º,而 SO 32-
离子却是呈三角锥体,硫是锥顶,三个氧原子是三个锥角,象一架撑开的照相用的三角架。

又例如SO 2的三个原子不在一条直线上,而CO 2却是直线分子等等。

价层电子对互斥理论用以预测简单分子或离子的立体结构,我们不难学会用这种理论来预测和理解分子或离子的立体结构,并用来进一步确定分子或离子的结构。

价层电子对互斥理论认为,在一个共价分子中,中心原子周围电子对排布的几何构型主要决定于中心原子的价电子层中电子对的数目。

所谓价层电子对包括成键的σ电子对和孤电子对。

价层电子对各自占据的位置倾向于彼此分离得尽可能地远些,这样电子对彼此之间的排斥力最小,整个分子最为稳定。

这样也就决定了分子的空间结构。

也正因此,我们才可以用价层电子对很方便地判断分子的空间结构。

例如:甲烷分子(CH 4),中心原子为碳原子,碳有4个价电子,4个氢原子各有一个电子,这样在中心原子周围有8个电子,4个电子对,所以这4个电子对互相排斥,为了使排斥力最小,分子最稳定,它们只能按正四面体的方式排布。

这样就决定了CH 4的正四面体结构。

利用VSEPR 推断分子或离子的空间构型的具体步骤如下:
①确定中心原子A 价层电子对数目。

中心原子A 的价电子数与配位体X 提供共用的电子数之和的一半,就是中心原子A 价层电子对的数目。

例如BF 3分子,B 原子有3个价电子,三个F 原子各提供一个电子,共6个电子,所以B 原子价层电子对数为3。

计算时注意:(ⅰ)氧族元素(ⅥA 族)原子作为配位原子时,可认为不提供电子(如氧原子有6个价电子,作为配位原子时,可认为它从中心原子接受一对电子达到8电子结构),
但作为中心原子时,认为它提供所有的6个价电子。

(ⅱ)如果讨论的是离子,则应加上或减去与离子电荷相应的
电子数。

如PO 43-离子中P 原子的价层电子数应加上3,而NH 4+
离子中N 原子的价层电子数则应减去1。

(ⅲ)如果价层电子数出现奇数电子,可把这个单电子当作电子对看待。

如NO 2分子中N 原子有 5个价电子,O 原子不提供电子。

因此中心原子N 价层电子总数为5,当作3对电子看待。

②确定价层电子对的空间构型。

由于价层电子对之间的相互排斥作用,它们趋向于尽可能的相互远离。

于是价层电子对的空间构型与价层电子对数目的关系如下表所示:
这样已知价层电子对的数目,就可及确定它们的空间构型。

③分子空间构型的确定。

价层电子对有成键电子对和孤电子对之分。

中心原子周围配位原子(或原子团)数,就是健对数,价层电子对的总数减去键对数,得孤对数。

根据键对数和孤对敌,可以确定相应的较稳定的分子几何构型,如下表所示: 电子对数 目 电子对的空间构型 成键电子对数 孤电子 对 数 电子对的 排列方式 分子的
空间构型
实 例
2 直 线 2 0 直 线 BeCl 2
CO 2
3 三角形
3 0 三角形
BF 3
SO 3
2 1
V —形
SnBr 2
PbCl 2
4
四面体
4
四面体
CH 4 CCl 4 3
1
三角锥 NH 3 PCl 3
2 2 V—形H2O
5 三角
双锥
5 0 三角双锥PCl5
4 1
变形
四面体
SF4
3 2 T—形BrF3
2 3 直线形XeF2
6 八面体6 0 八面体SF6 5 1 四角锥IF5 4 2 正方形XeF4
利用上表判断分子几何构型时应注意,如果在价层电对中出现孤电子对时,价层电子对空间构型还与下列斥力顺序有关:孤对—孤对>孤对—键对>键对—键对因此,价层电子对空间构型为正三角形和正四面体时,孤电子对的存在会改变键对电子的分布方向。

所以SnBr2的键角应小于120º,NH3、H2O分子的键角应小于109º28¹。

对于分子中有双键、叁键等多重键时,使用价层电子对理论判断其分子构型时,双键的两对电子和叁键的三对电子只能作为一对电子来处理。

或者说在确定中心原子的价电子层电子对总数时,不包括π键电子。

相关文档
最新文档