中考复习代数式练习题及答案

合集下载

完整版中考复习代数式练习题及答案

完整版中考复习代数式练习题及答案

中考复习代数式练习题(试卷总分值120 分,考试时间120 分钟)一、选择题(此题共10小题,每题3分,总分值30分)每一个小题都给出代号为A,B,C,D的四个结论,其中只有一个是正确的,把正确结论的代号写在题后的括号内.每一小题:选对得3分,不选、选错或选出的代号超过一个的〔不管是否写在括号内〕一律得0分。

1.一个代数式减去x2y2等于x22y2,那么这个代数式是〔〕。

A.3y2B.2x2y2C.3y22x2D.3y2 2.以下各组代数式中,属于同类项的是〔〕。

A.1a2b与1ab2B.a2b与a2c22C.22与34D.p与q3.以下计算正确的选项是〔〕。

A.3x2x23B.3a22a21C.3x25x38x5D.3a2a22a24.a=255,b=344,c=433,那么a、b、c的大小关系是〔〕。

A.a>c>b B.b>a>c C.b>c>a D.c>b>a解:a=255=〔25〕11=3211b=344=〔34〕11=8111=433=〔23〕11=8115.一个两位数,十位数字是x,个位数字是y,如果把它们的位置颠倒一下,得到的数是〔〕。

A.y xB.yxC.10yxD.10xy6.假设x2kx6(x3)(x2),那么k的值为〔〕。

A.2B.-2C.1D.–17.假设x2+mx+25是一个完全平方式,那么m的值是〔〕。

A.20B.10C.±20D.±10 8.假设代数式2y23y1,那么代数式4y26y9的值是〔〕。

A.2B.17C.7D.79.如果(2-x)2+(x-3)2=〔x-2〕+〔3-x〕,那么x的取值范围是〔〕。

A.x≥3B.x≤2C.x>3D.2≤x≤310.如下图,以下每个图是由假设干盆花组成的形如三角形的图案,每条边〔包括两个顶点〕有n 盆花,每个图案花盆总数是S,按此推断S与n的关系式为〔〕。

(中考复习)第2节 代数式与整式(含答案)

(中考复习)第2节 代数式与整式(含答案)

第2节代数式与整式(建议答题时间:45分钟)命题点一列代数式及求值1. (2017海南)已知a=-2,则代数式a+1的值为()A. -3B. -2C. -1D. 12. (2017重庆巴蜀模拟)若m=-1,n=2,则n2-2mn-1的值是()A. 1B. 7C. 9D. -43. (2017重庆西大附中模拟)已知2a-b=3,则2b-4a+3的值为()A. -6B. 9C. -3D. 64. (2017淄博)若a+b=3,a2+b2=7,则ab等于()A. 2B. 1C. -2D. -15. (2017宁夏)如图,从边长为a的大正方形中剪掉一个边长为b的小正方形,将阴影部分沿虚线剪开,拼成右边的矩形.根据图形的变化过程写出的一个正确的等式是()第5题图A. (a-b)2=a2-2ab+b2B. a(a-b)=a2-abC. (a-b)2=a2-b2D. a2-b2=(a+b)(a-b)6. (2017丽水)已知a2+a=1,则代数式3-a-a2的值为________.第7题图7. (2017山西)某商店经销一种品牌的洗衣机,其中某一型号的洗衣机每台进价为a元,商店将进价提高20%后作为零售价进行销售,一段时间后,商店又以9折优惠价促销,这时该型号洗衣机的零售价为________元.命题点二整式的相关概念8. (2017济宁)单项式9x m y 3与单项式4x 2y n 是同类项,则m +n 的值是( )A. 2B. 3C. 4D. 59. (2017河北)=( )A. 2m 3nB. 2m 3nC. 2m n 3D. m 23n命题点三 整式的运算10. (2017安徽)计算(-a 3)2的结果是( )A. a 6B. -a 6C. -a 5D. a 511. (2017乌鲁木齐)计算(ab 2)3的结果是( )A . 3ab 2B . ab 2C . a 3b 5D . a 3b 612. (2017武汉)下列计算的结果是x 5的为( )A. x 10÷x 2B. x 6-xC. x 2·x 3D. (x 2)313. (2017江西)下列运算正确的是( )A. (-a 5)2=a 10B. 2a ·3a 2=6a 2C. -2a +a =-3aD. -6a 6÷2a 2=-3a 314. (2017郴州改编)下列运算错误的是( )A. (a 2)3=a 6B. a 2·a 3=a 5C. a -1=1aD. (a +b )(a -b )=a 2+b 215. (2017黄冈)下列计算正确的是( )A. 2x +3y =5xyB. (m +3)2=m 2+9C. (xy 2)3=xy 6D. a 10÷a 5=a 516. (2017天津)计算x 7÷x 4的结果等于________.17. (2017眉山)先化简,再求值:(a +3)2-2(3a +4),其中a =-2.18. (2017重庆西大附中模拟)化简:(b+2a)(2a-b)-3(2a-b)219. (2017重庆八中模拟)化简:(2x+1)(2x-1)-(x+1)(3x-2).20. (2017河南改编)计算:(2x+y)2+(x-y)(x+y)-5x(x-y).21. 先化简,再求值:m(m-1)+(m+1)(m-2),其中m2-m-2=0.22. 已知b=-2a,求a(a-2b)+2(a+b)(a-b)-(a-b)2的值.命题点四因式分解23. (2017常德)下列各式由左到右的变形中,属于分解因式的是()A. a(m+n)=am+anB. a2-b2-c2=(a-b)(a+b)-c2C. 10x2-5x=5x(2x-1)D. x2-16+6x=(x+4)(x-4)+6x24. (2017甘肃)分解因式:x2-2x+1=________.25. (2017安徽)因式分解:a2b-4ab+4b=________.命题点五图形规律探索26. (2017烟台) 用棋子摆出下列一组图形:第26题图按照这种规律摆下去,第n个图形用的棋子个数为()A. 3nB. 6nC. 3n+6D. 3n+327. (2017随州)在公园内,牡丹按正方形种植,在它的周围种植芍药,下图反映了牡丹的列数(n)和芍药的数量规律,那么当n=11时,芍药的数量为()第27题图A. 84株B. 88株C. 92株D.121株28. (2017娄底)刘莎同学用火柴棒依图中的规律摆六边形图案,用10086根火柴棒摆出的图案应是第________个.第28题图答案1. C2. B3. C4. B5.D【解析】第一个图形的阴影部分的面积为两个正方形的面积差:a2-b2,第二个图形是长方形,长为(a+b),宽为(a-b),∴面积为(a+b)(a-b).6. 27. 1.08a【解析】洗衣机每台进价为a元,商店将进价提高20%后零售价为a(1+20%)=1.2a元,又九折促销为 1.2a·0.9=1.08a,则该型号洗衣机的零售价为1.08a元.8. D9. B10. A11. D12. C13. A14. D15. D16. x317.解:原式=a2+6a+9-6a-8=a2+1,当a=-2时,原式=(-2)2+1=5.18. 解:原式=4a2-b2-3(4a2-4ab+b2) =4a2-b2-12a2+12ab-3b2=-8a2+12ab-4b2.19.解:原式=4x2-1-(3x2-2x+3x-2) =x2-x+1.20.解:原式=4x2+4xy+y2+x2-y2-5x2+5xy=9xy.21.解:原式=m2-m+m2-m-2=2m2-2m-2=2(m2-m)-2,∵m2-m-2=0,∴m2-m=2,∴原式=2×2-2=2.22. 解:原式=a2-2ab+2(a2-b2)-(a2+b2-2ab)=a2-2ab+2a2-2b2-a2-b2+2ab=2a2-3b2.将b=-2a代入得,原式=2a2-3(-2a)2=2a2-12a2=-10a2.23. C24. (x-1)225.b(a-2)226. D【解析】第1个图形,棋子个数:3×1+3;第2个图形,棋子个数:3×2+3;第3个图形,棋子个数3×3+3;…;因此,第n个图形棋子的个数等于3·n +3=3n+3.27.B【解析】当n=1时,芍药的数量为8;当n=2时,芍药的数量为16;当n=3时,芍药的数量为24;当n=4时,芍药的数量为32,由此可发现规律,芍药的数量是n的8倍,所以芍药的数量为:8n株,所以当n=11时,芍药的数量为8×11=88株.28. 2017【解析】由图可以找出规律:第n个图形需要5n+1(其中n是正整数)个火柴棒,设5n+1=10086,解得n=2017.。

2024年深圳市中考数学模拟题汇编:代数式(附答案解析)

2024年深圳市中考数学模拟题汇编:代数式(附答案解析)

2024年深圳市中考数学模拟题汇编:代数式
一.选择题(共10小题)
1.下列各式去括号正确的是()
A.﹣(a﹣3b)=﹣a﹣3b
B.a+(5a﹣3b)=a+5a﹣3b
C.﹣2(x﹣y)=﹣2x﹣2y
D.﹣y+3(y﹣2x)=﹣y+3y﹣2x
2.已知:关于x,y的多项式ax2+2bxy+3x2﹣3x﹣4xy+2y不含二次项,则3a﹣4b的值是()
A.﹣3B.2C.﹣17D.18
3.如图,一个窗户的上部是由4个扇形组成的半圆,下部是由4个边长相同的小正方形组

成的大正方形,则这个窗户的外框总长为(
A.6a+πa B.12a C.15a+πa D.6a
4.若x m﹣1y2与x2y n的和仍是单项式,则n m的值()
A.3B.6C.8D.9
5.下列各选项中,不是同类项的是()
A.3a2b和﹣5ba2B.122和12B2
C.6和23D.5x n和−34
6.按如图所示的运算程序,能使运算输出的结果为2的是(

A.x=﹣1,y=﹣1B.x=5,y=﹣1C.x=﹣3,y=1D.x=0,y=﹣2 7.某种商品每件进价为a元,按进价增加50%出售,现“双十二”打折促销按售价的八折
第1页(共19页)。

2023年湖北省中考数学一轮复习专题训练2代数式与整式含答案解析

2023年湖北省中考数学一轮复习专题训练2代数式与整式含答案解析

专题2 代数式与整式一、单选题1.下列运算正确的是()A.a9−a7=a2B.a6÷a3=a2C.a2⋅a3=a6D.(−2a2b)2=4a4b22.下列运算正确的是()A.a2⋅a3=a6B.a3÷a2=1C.a3−a2=a D.(a3)2=a6 3.(2022·鄂州)下列计算正确的是()A.b+b2=b3B.b6÷b3=b2C.(2b)3=6b3D.3b﹣2b=b4.(2022·鄂州)生物学中,描述、解释和预测种群数量的变化,常常需要建立数学模型.在营养和生存空间没有限制的情况下,某种细胞可通过分裂来繁殖后代,我们就用数学模型2n来表示.即:21=2,22=4,23=8,24=16,25=32,……,请你推算22022的个位数字是()A.8B.6C.4D.25.(2022·十堰)下列计算正确的是()A.a6÷a3=a2B.a2+2a2=3a2C.(2a)3=6a3D.(a+1)2=a2+1 6.(2022·荆州)如图,已知矩形ABCD的边长分别为a,b,进行如下操作:第一次,顺次连接矩形ABCD各边的中点,得到四边形A1B1C1D1;第二次,顺次连接四边形A1B1C1D1各边的中点,得到四边形A2B2C2D2;…如此反复操作下去,则第n次操作后,得到四边形A n B n C n D n的面积是()A.ab2nB.ab2n−1C.ab2n+1D.ab22n7.(2022·荆州)化简a-2a的结果是()A.-a B.a C.3a D.0 8.(2022·黄冈)下列计算正确的是()A.a2⋅a4=a8B.(−2a2)3=−6a6C.a4÷a=a3D.2a+3a=5a29.(2022·宜昌)下列运算错误..的是()A.x3⋅x3=x6B.x8÷x2=x6C.(x3)2=x6D.x3+x3=x6 10.(2022·孝感)下列计算正确的是()A.a2•a4=a8B.(-2a2)3=-6a6C.a4÷a=a3D.2a+3a=5a2二、填空题11.(2022·仙桃)在反比例函数y=k−1x的图象的每一支上,y都随x的增大而减小,且整式x2−kx+4是一个完全平方式,则该反比例函数的解析式为.12.(2022·恩施)观察下列一组数:2,12,27,…,它们按一定规律排列,第n个数记为a n,且满足1a n+1a n+2=2a n+1.则a4=,a2022=.13.(2022·黄冈模拟)两千多年前,古希腊毕达哥拉斯学派的数学家曾经在沙滩上研究数学问题,他们在沙滩上画点或用小石子来表示数,按照点或小石子能排列的形状对数进行分类,如图中的实心点个数1,5,12,22,…,被称为五角形数,其中第1个五角形数记作a1=1,第2个五角形数记作a2=5,第3个五角形数记作a3=12,第4个五角形数记作a4=22,…,若按此规律继续下去,则a6=.14.(2022·十堰)如图,某链条每节长为2.8cm,每两节链条相连接部分重叠的圆的直径为1cm,按这种连接方式,50节链条总长度为cm .15.(2022七下·武汉期中)如图,在平面直角坐标系中,一动点从原点O出发,按向上、向右、向下、向右的方向依次平移,每次移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A2022的坐标为.16.(2021七上·洪山期末)计算-x2+2x2的结果是.17.(2021七上·云梦期末)一只昆虫从点A处出发,以每分钟2米的速度在一条直线上运动,它先前进1米,再后退2米,又前进3米,再后退4米,…依此规律继续走下去,则运动1小时时这只昆虫与A 点相距米.18.(2021八上·云梦期末)若a−b=6,ab=2,则a2+b2=.19.(2021七上·云梦期末)若3x m+5y2与x4y2n的和仍为单项式,则(m−n)3=. 20.(2021七上·云梦期末)减去−3m等于m2+3m+2的多项式是.三、计算题21.(2022八下·崇阳期中)已知x=√3+√2,y=√3−√2,求下列各式的值:(1)x2−y2(2)x2+y222.(2021八上·云梦期末)先化简再求值:(1)(a−3b)(3a+2b)−2b(5a−3b),其中a、b满足代数式:|a−2|+√b+1=0;(2)4(x﹣1)2﹣(2x+3)(2x﹣3),其中x=﹣1.23.(2022八下·十堰月考)计算:(1)√6÷√13−|√8−3|+(√5−1)0(2)(√7+√3)(√7−√3)−(√2+1)224.(2022八下·武昌期末)计算:(1)√18−√32+√2;(2)(2√3+√6)(2√3−√6).25.(2022八下·黄州期中)计算下列各题:(1)√12−√8×√0.5(2)(3√2−2√3)(3√2+2√3)答案解析部分1.【答案】D【解析】【解答】解:A.a9与a7不是同类项,所以不能合并,故A不符合题意B.原式=a3,故B不符合题意C.原式=a5,故C不符合题意D.原式=4a4b2,故D符合题意.故答案为:D.【分析】根据同类项是字母相同且相同字母的指数也相同的项可判断A;同底数幂相除,底数不变,指数相减,据此判断B;同底数幂相乘,底数不变,指数相加,据此判断C;积的乘方,先对每一项进行乘方,然后将结果相乘;幂的乘方,底数不变,指数相乘,据此判断D.2.【答案】D【解析】【解答】解:A、a2⋅a3=a5,则此项错误,不符题意;B、a3÷a2=a,则此项错误,不符题意;C、a3与a2不是同类项,不可合并,则此项错误,不符题意;D、(a3)2=a6,则此项正确,符合题意.故答案为:D.【分析】同底数幂相乘,底数不变,指数相加,据此判断A;同底数幂相除,底数不变,指数相减,据此判断B;同类项就是所含字母相同,而且相同字母的指数也分别相同的项,同类项与字母的顺序及系数没有关系,合并同类项的时候,只需要将系数相加减,字母和字母的指数都不变,但不是同类项的不能合并,据此可判断C;幂的乘方,底数不变,指数相乘,据此判断D.3.【答案】D【解析】【解答】解:A、b+b2=b+b2,选项计算错误,不符合题意;B、b6÷b3=b6−3=b3,选项计算错误,不符合题意;C、(2b)3=8b3,选项计算错误,不符合题意;D、3b−2b=b,选项计算正确,符合题意.故答案为:D.【分析】整式加法的实质就是合并同类项,所谓同类项就是所含字母相同,而且相同字母的指数也分别相同的项,同类项与字母的顺序及系数没有关系,合并同类项的时候,只需要将系数相加减,字母和字母的指数都不变,但不是同类项的不能合并,据此可判断A、D;同底数幂相除,底数不变,指数相减,据此判断B;积的乘方,先对每一个因式进行乘方,然后将结果相乘,据此判断C.4.【答案】C【解析】【解答】解:∵21=2,22=4,23=8,24=16,25=32,…,∴尾数每4个一循环,∵2022÷4=505……2,∴22022的个位数字应该是:4.故答案为:C.【分析】观察发现:尾数每4个一循环,求出2022÷4的商以及余数,据此解答.5.【答案】B【解析】【解答】解:A、a6÷a3=a3,故本选项错误,不符合题意;B、a2+2a2=3a2,故本选项正确,符合题意;C、(2a)3=8a3,故本选项错误,不符合题意;D、(a+1)2=a2+2a+1,故本选项错误,不符合题意.故答案为:B.【分析】根据同底数幂的除法,底数不变,指数相减,据此即可判断A;合并同类项的时候,只把同类项的系数相加减,字母和字母的指数都不变,据此即可判断B;根据积的乘方,等于把积中的每一个因式分别乘方,再把所得的幂相乘,据此即可判断C;根据完全平方公式的展开式是一个三项式即可判断D.6.【答案】A【解析】【解答】解:如图,连接AC,BD,A1C1,B1D1 .∵四边形ABCD是矩形,∴AC=BD,AD=BC,AB=CD.∵A1,B1,C1,D1分别是矩形四个边的中点,∴A1D1=B1C1=12BD,A1B1=C1D1=12AC,∴A1D1=B1C1=A1B1=C1D1,∴四边形A1B1C1D1是菱形,∵A1C1=AD=a,B1D1=AB=b,∴四边形A1B1C1D1的面积为:12A1C1⋅B1D1=12ab=12S▭ABCD.同理,由中位线的性质可知,D2C2=A2B2=12AD=12a,D2C2//A2B2//AD,D2A2=C2B2=12AB=12b,D2A2//C2B2//AB,∴四边形A2B2C2D2是平行四边形,∵AD⊥AB,∴C2D2⊥D2A2,∴四边形A2B2C2D2是矩形,∴四边形A2B2C2D2的面积为:C2D2⋅A2D2=12a⋅12b=14S▭ABCD=12S菱形A1B1C1D1.∴每一次操作后得到的四边形面积为原四边形面积的一半,∴四边形AnB n C n D n的面积是ab 2n.故答案为:A.【分析】连接AC,BD,A1C1,B1D1,易证四边形A1B1C1D1是菱形,可得四边形A1B1C1D1的面积为矩形ABCD面积的一半,则四边形A1B1C1D1的面积=12ab,易证四边形A2B2C2D2是矩形,可得矩形A2B2C2D2的面积==12a⋅12b=14S▭ABCD,从而得出每一次操作后得到的四边形面积为原四边形面积的一半,据此即可求解.7.【答案】A【解析】【解答】解:a−2a=(1−2)a=−a;故答案为:A.【分析】合并同类项,即是将系数相加减,字母及字母的指数不变,据此计算即可.8.【答案】C【解析】【解答】解:a2⋅a4=a6,故A选项错误,不符合题意;(−2a2)3=−8a6,故B选项错误,不符合题意;a4÷a=a3,故C选项正确,符合题意;2a+3a=5a,故D选项错误,不符合题意.故答案为:C.【分析】同底数幂相乘,底数不变,指数相加,据此判断A;积的乘方,先对每一个因式分别进行乘方,然后将所得的幂相乘;幂的乘方,底数不变,指数相乘,据此判断B;同底数幂相除,底数不变,指数相减,据此判断C;合并同类项法则:同类项的系数相加减,所得的结果作为系数,字母和字母的指数不变,据此判断D.9.【答案】D【解析】【解答】解:A、x3⋅x3=x6,计算正确,不符合题意;B、x8÷x2=x6,计算正确,不符合题意;C、(x3)2=x6,计算正确,不符合题意;D、x3+x3=2x3,计算错误,符合题意;故答案为:D.【分析】同底数幂相乘,底数不变,指数相加,据此判断A;同底数幂相除,底数不变,指数相减,据此判断B ;幂的乘方,底数不变,指数相乘,据此判断C ;合并同类项法则:同类项的系数相加减,所得的结果作为系数,字母和字母的指数不变,据此判断D.10.【答案】C【解析】【解答】解:A 、a 2•a 4=a 6,故选项A 错误;B 、(-2a 2)3=-8a 6,故选项B 错误;C 、a 4÷a =a 3,故选项C 正确;D 、2a +3a =5a ,故选项D 错误. 故答案为:C.【分析】同底数幂相乘,底数不变,指数相加,据此判断A ;积的乘方,先对每一个因式分别进行乘方,然后将所得的幂相乘;幂的乘方,底数不变,指数相乘,据此判断B ;同底数幂相除,底数不变,指数相减,据此判断C ;合并同类项法则:同类项的系数相加减,所得的结果作为系数,字母和字母的指数不变,据此判断D.11.【答案】y =3x【解析】【解答】解:∵x 2-kx+4是一个完全平方式,∴-k=±4,即k=±4,∵在在反比例函数y=k−1x 的图象的每一支上,y 都随x 的增大而减小,∴k -1>0, ∴k >1. 解得:k=4,∴反比例函数解析式为y =3x .故答案为:y =3x.【分析】形如“a 2±2ab+b 2”的式子就是完全平方式,据此可得k=±4,反比例函数y =k x中,当k >0时, 图象的每一支上,y 都随x 的增大而减小, 据此可得k -1>0,求出k 的范围,据此可得k 的值,进而可得反比例函数的解析式.12.【答案】15;13032【解析】【解答】解:∵1a n +1a n+2=2a n+1;∴1a n+1−1a n =1a n+2−1a n+1,∵1a 2−1a 1=112−12=2−12=32,∵1a 4−1a 3=1a 4−127=32,∴a 4=15,∴1a2022−1a2021=32,1a2021−1a2020=32,⋯1a 2−1a 1=32,把上述2022-1个式子相加得1a 2022−1a 1=3×20212,∴a 2022=13032.故答案为:15,13032.【分析】根据已知条件可得1an+1−1a n =1a n+2−1a n+1,据此可得1a 2−1a 1、1a 4−1a 3、……1a 2022−1a 2021,将各个等式相加即可得到1a 2022−1a 1的值,进而可得a 2022. 13.【答案】51【解析】【解答】解:第1个五角形数记作a 1=3×1-2=1;第2个五角形数记作a 2=a 1+3×2-2=1+3×2-2=5; 第3个五角形数记作a 3=a 2+3×3-2=5+3×3-2=12; 第4个五角形数记作a 4=a 3+3×4-2=12+3×4-2=22; 第5个五角形数记作a 5=a 4+3×5-2=22+3×5-2=35; 第6个五角形数记作a 6=a 5+3×6-2=35+3×6-2=51. 故答案为:51.【分析】利用已知条件总结规律,从而结合归纳推理的方法求出a n =a n -1+3n -2,然后将n=6代入计算即可.14.【答案】91【解析】【解答】解:2节链条的长度是(2.8×2-1) cm ,3节链条的长度是(2.8×3-1×2) cm , n 节链条的长度是2.8n -1×(n -1) cm , 所以50节链条的长度是:2.8×50-1×(50-1) =140-1×49 =91 (cm) 故答案为:91.【分析】由一节链条的长度,分别求出2节链条、3节链条的总长度,然后从数字得出规律n 节链条的长度是2.8n -1×(n -1),将n=50代入计算即可.15.【答案】(1011,1)【解析】【解答】解:∵2022÷4=505…2,∴动点移动4次为一个周期,一个周期向右移动2个单位, ∵点A 1(0,1),A 2(1,1),A 3(1,0),A 4(2,0),∴A2022的坐标是(505×2+1,1)=(1011,1).故答案为:(1011,1).【分析】根据图象可得移动4次图象完成一个循环,一个周期向右移动2个单位,即可得出点A2022的坐标.16.【答案】x2【解析】【解答】解:-x2+2x2=(-1+2)x2= x2.故答案为:x2.【分析】合并同类项法则:同类项的系数相加减,所得的结果作为系数,字母和字母的指数不变,据此计算.17.【答案】8【解析】【解答】解:1小时=60分,规定昆虫每前进一次和后退一次为一运动周期,则设昆虫的运动周期数为n,每一周期所用总时间为t.设每周期前进的距离为S,则s=2(n−1)+1=2n−1;由题意可得:t=2(n−1)+1.5=2n−0.5;假设昆虫运动所用总时间为T;则T=(2×1−0.5)+(2×2−0.5)+(2×3−0.5)+⋯+(2×n−0.5)=2(1+2+3+⋯+n)−0.5n=n2+0.5n;当T=60分时,代入上式中可得n=7但还剩余7.5分钟,由公式t=2(n−1)+1.5=2n−0.5可得第8周需要15.5分钟,但是每一周期中后退时间比前进时间多0.5分钟,所以在第8周期中前进时间为7.5分钟,后退时间为8分钟.由于运动一个周期后退一米,所以运动7个周期就后退7米,由于在60分钟内运动完7周期后正好剩余7.5分钟,这样在第8周期就正好前进的距离S=2×8−1=15米,故运动1小时时这只昆虫与A点相距为15−7=8米.故答案为:8.【分析】由于这只昆虫的速度为2米/分钟,所以“前进1米,再后退2米”共用了1.5分钟,此时实际上向后只退了一米;“前进3米,再后退4米”共用了3.5分钟,此时实际上也只向后退了一米.由此不难看出,后一次运动比前一次多用2分钟,每次实际上都是向后退一米.然后根据规律列式计算即可求解.18.【答案】40【解析】【解答】解:∵(a−b)2=a2−2ab+b2,a−b=6,ab=2,∴62=a2−2×2+b2,∴a2+b2=40.故答案为:40.【分析】利用完全平方公式可得到(a-b)2=a2-2ab+b2,再整体代入可求出a2+b2的值.19.【答案】-8【解析】【解答】解:∵3x m+5y2与x4y2n的和仍为单项式,∴3x m+5y2与x4y2n是同类项,∴m+5=4,2n=2,解得:m=−1,n=1,∴(m−n)3=(−1−1)3=−8;故答案为:-8.【分析】根据题意可知两个单项式是同类项,然后由同类项的定义“同类项是指所含字母相同,且相同的字母的指数也相同的项”可求得m、n的值,再代入所求代数式计算即可求解.20.【答案】m2+2【解析】【解答】解:根据题意得:(m2+3m+2)+(−3m)=m2+2=3m2+4m−1,故答案为:m2+2.【分析】根据被减数=差+减数列出式子,进而根据整式的加法法则可求解.21.【答案】(1)解:∵x=√3+√2,y=√3−√2,∴x+y=√3+√2+√3−√2=2√3,x−y=√3+√2−√3+√2=2√2,∴x2−y2=(x+y)(x−y)=2√3×2√2=4√6.(2)解:∵x=√3+√2,y=√3−√2,∴x+y=√3+√2+√3−√2=2√3,xy=(√3+√2)(√3−√2)=1,∴x2+y2=(x+y)2−2xy=(2√3)2−2×1=12−2=10【解析】【分析】(1)先求出x+y,x-y的值,利用平方差公式将原式变形为(x+y)(x-y),然后整体代入计算即可;(2)先求出xy的值,再利用完全平方公式将原式变形为x2+y2=(x+y)2−2xy,然后整体代入计算即可.22.【答案】(1)解:(a−3b)(3a+2b)−2b(5a−3b)=3a2+2ab−9ab−6b2−10ab+6b2=3a2−17ab∵|a−2|+√b+1=0∴a-2=0,b+1=0∴a=2,b=-1∴原式=3×22−17×2×(−1)=46(2)解:4(x﹣1)2﹣(2x+3)(2x﹣3)=4(x2−2x+1)−(4x2−9)=4x2−8x+4−4x2+9=13−8x当x=-1时,原式=13+8=21【解析】【分析】(1)利用多项式乘以多项式的法则及单项式乘以多项式的法则,先去括号,再合并同类项化简;再利用几个非负数之和为0,则每一个数都为0,可求出a,b的值,然后将a,b的值代入化简后的代数式进行计算;(2)利用完全平方公式和平方差公式先去括号,再合并同类项化简,然后将x的值代入化简后的代数式进行计算,可求出结果.23.【答案】(1)解:√6÷√13−|√8−3|+(√5−1)0=√6÷13+2√2−3+1=3√2+2√2−2=5√2−2(2)解:(√7+√3)(√7−√3)−(√2+1)2=7−3−(3+2√2)=4−3−2√2=1−2√2【解析】【分析】(1)从左往右,依次计算出二次根式的除法,绝对值及非零数的零次幂,再将同类二次根式合并,即可求解.;(2)从左往右,分别利用平方差公式和完全平方公式进行二次根式的乘法,再将结果化为最简式即可. 24.【答案】(1)解:√18−√32+√2=3√2−4√2+√2=0;(2)解:(2√3+√6)(2√3−√6)=(2√3)2−(√6)2=12−6=6【解析】【分析】(1)先进行二次根式的化简,再合并同类二次根式,即可求出结果;(2)利用平方差公式将括号展开,同时根据二次根式的性质分别计算,再进行有理数的减法运算,即可解答.25.【答案】(1)解:√12−√8×√0.5=2√3−√8×0.5=2√3−2;(2)解:(3√2−2√3)(3√2+2√3)=(3√2)2−(2√3)2=18-12=6.【解析】【分析】(1)根据二次根式的性质“√ab=√a√b(a≥0,b≥0)、√a2=|a|”可求解;(2)根据二次根式的性质“√a√b=√ab(a≥0,b≥0)、(√a)2=a(a≥0)”和平方差公式“(a+b)(a-b)=a2-b2”计算即可求解。

中考数学专题《代数式》复习试卷(含解析)

中考数学专题《代数式》复习试卷(含解析)

中考数学专题《代数式》复习试卷(含解析) 2022年中考数学专题复习卷:代数式一、选择题1.以下各式不是代数式的是()A.0B.C.D.2.若单项式am﹣1b2与的和仍是单项式,则nm的值是()A.3B.6C.8D.93.某一餐桌的表面如图所示(单位:m),设图中阴影部分面积S1,餐桌面积为S2,则(A.B.C.D.4.若M=3某2﹣8某y+9y2﹣4某+6y+13(某,y是实数),则M的值一定是()A.零B.负数C.正数D.整数5.代数式相乘,其积是一个多项式,它的次数是()A.3B.5C.6D.26.已知a+b=5,ab=1,则(a-b)2=()A.23B.21C.19D.177.若|某+2y+3|与(2某+y)2互为相反数,则某2﹣某y+y2的值是()A.1B.3C.5D.78.已知a、b满足方程组,则3a+b的值为()A.8B.4C.﹣4D.﹣89.黎老师做了个长方形教具,其中一边长为2a+b,另一边为a-b,则该长方形周长为()A.6aB.6a+bC.3aD.10a-b)10.A地在河的上游,B地在河的下游,若船从A地开往B地的速度为V1,从B地返回A地的速度为V2,则A,B两地间往返一次的平均速度为()A.B.C.D.无法计算11.如图,都是由同样大小的圆按一定的规律组成,其中,第①个图形中一共有2个圆;第②个图形中一共有7个圆;第③个图形中一共有16个圆;第④个图形中一共有29个圆;…;则第⑦个图形中圆的个数为()A.121B.113C.105D.9212.如图,已知,点A(0,0)、B(4,0)、C(0,4),在△ABC内依次作等边三角形,使一边在某轴上,另一个顶点在BC边上,作出的等边三角形分别是第1个△AA1B1,第2个△B1A2B2,第3个△B2A3B3,…则第2022个等边三角形的边长等于()A.B.C.D.二、填空题13.若是方程的一个根,则的值为________.14.已知-2某3m+1y2n与7某n-6y-3-m的积与某4y是同类项,则m2+n的值是________15.若a某=2,b某=3,则(ab)3某=________16.如图是一个运算程序的示意图,若开始输入的值为625,则第2022次输出的结果为________.17.若3a2﹣a﹣3=0,则5﹣3a2+a=________.18.已知+|b﹣1|=0,则a+1=________.19.已知某=2m+n+2和某=m+2n时,多项式某2+4某+6的值相等,且m ﹣n+2≠0,则当某=3(m+n+1)时,多项2式某+4某+6的值等于________.20.若规定一种特殊运算为:ab=ab-,则(﹣1)(﹣2)________.,,,,按照这样的规律,这组21.按照某一规律排列的一组数据,它的前五个数是:1,数据的第10项应该是________.22.已知的奇数时,,,,,,,…(即当为大于1________.;当为大于1的偶数时,),按此规律,三、解答题23.已知a和b互为相反数,c和d互为倒数,m是绝对值等于2的数,求式子(a+b)+m﹣cd+m.24.先化简,再求值:已知a2—a=5,求(3a2-7a)-2(a2-3a+2)的值.25.某公园欲建如图13-2-3所示形状的草坪(阴影部分),求需要铺设草坪多少平方米?若每平方米草坪需120元,则为修建该草坪需投资多少元?(单位:米)答案解析一、选择题1.【答案】C【解析】:A、是整式,是代数式,故不符合题意;B、是分式,是代数式,故不符合题意;C、是不等式,不是代数式,故符合题意;D、是二次根式,是无理式,是代数式,故不符合题意。

专题2代数式含答案解析2023年山东省中考数学一轮复习专题训练

专题2代数式含答案解析2023年山东省中考数学一轮复习专题训练

专题2 代数式一、单选题1.(2022·高青模拟)一种商品,先降价10%后又提价10%,现在商品的价格()A.比原价格高B.比原价格低C.与原价格相等D.无法比较2.(2022·高唐模拟)算筹是古代用来进行计算的工具,它是将几寸长的小竹棍摆在平面上进行运算,算筹的摆放形式有纵横两种形式(如图).当表示一个多位数时,像阿拉伯计数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间:个位、百位、万位数用纵式表示;十位,千位,十万位数用横式表示;“0”用空位来代替,以此类推.例如3306用算筹表示就是,则2022用算筹可表示为()A.B.C.D.3.(2022·泗水模拟)如图中,分别是由1个、2个、n个(n为正整数)正方形连接成的图形,在图1中,x=70°;在图2中,y=28°;通过以上计算,请写出图3中a+b+c+⋯+d=____(用含n的式子表示)A.45°n B.90°n C.135°n D.180°n 4.(2022·冠县模拟)计算31,32,33,34,35,36,并观察这些幂的个位数字,根据你发现的规律,判断32022的个位数字跟()的个位数字相同.A.31B.32C.33D.345.(2022·莱州模拟)已知抛物线y=x2−x−1与x轴的一个交点为(m,0),则代数式m2−m+2022的值为()A.2020B.2021C.2022D.2023 6.(2022·淄川模拟)当x=2时,代数式ax5+bx3+cx−7的值是-10,则当x=-2时,该代数式的值为()A.-10B.10C.4D.-47.(2022·日照模拟)观察下列树枝分叉的规律图,若第n个图树枝数用Y n表示,则Y9−Y4=()A.15×24B.31×24C.33×24D.63×24 8.(2022·沂源模拟)在使用DY-570型号的计算器时,小明输入一个数据后,按照以下步骤操作,依次按照从第一步到第三步循环按键:若一开始输入的数据为5,那么第2022步之后,显示的结果是()A.5B.15C.125D.259.(2021·邹城模拟)一种商品进价为每件a元,按进价增加25%出售,后因库存积压降价,按售价的九折出售,每件还盈利()A.0.125a元B.0.15a元C.0.25a元D.1.25a元10.(2021·博山模拟)根据如图所示的程序计算函数y的值,若输入的x的值为3或-4时,输出的y 值互为相反数,则b等于()A.-30B.-23C.23D.30 11.(2022·临清模拟)如图所示,将形状、大小完全相同的“•”和线段按照一定规律摆成下列图形,第1幅图形中“•”的个数为a1,第2幅图形中“•”的个数为a2,第3幅图形中“•”的个数为a3,…,以此类推,则a19的值为()A .378B .380C .386D .39912.(2022·淄博模拟)在平面直角坐标系中,正方形ABCD 的位置如图所示,点A 的坐标为(1,0),点D 的坐标为(0,2),延长CB 交x 轴于点A 1,作正方形A 1CC 1B 1;延长C 1B 1交x 轴于点A 2,作正方形A 2C 1C 2B 2,….按照这样的规律,第2021个正方形的面积是( )A .5×(94)2019B .5×(94)2020C .5×(94)2021D .5×(94)2022二、填空题13.(2021·金乡模拟)当代数式a +2b 的值为3时,代数式1+2a +4b 的值是 .14.(2021·菏泽)如图,一次函数 y =x 与反比例函数 y =1x( x >0 )的图象交于点 A ,过点 A作 AB ⊥OA ,交 x 轴于点 B ;作 BA 1//OA ,交反比例函数图象于点 A 1 ;过点 A 1 作 A 1B 1⊥A 1B 交 x 轴于点 B ;再作 B 1A 2//BA 1 ,交反比例函数图象于点 A 2 ,依次进行下去,……,则点 A 2021 的横坐标为 .15.(2021·乐陵模拟)阅读理解:用“十字相乘法”分解因式 2x 2−x −3 的方法.⑴二次项系数 2=1×2 ;⑵常数项 −3=−1×3=1×(−3) 验算:“交叉相乘之和”;1×3+2×(−1)=1;1×(−1)+2×3=5;1×(−3)+2×1=−1;1×1+2×(−3)=−5⑶发现第③个“交叉相乘之和”的结果1×(−3)+2×1=−1,等于一次项系数-1,即(x+1)(2x−3)=2x2−3x+2x−3=2x2−x−3,则2x2−x−3=(x+1)(2x−3).像这样,通过十字交叉线帮助,把二次三项式分解因式的方法,叫做十字相乘法.仿照以上方法,分解因式:3x2+5x−12=.16.(2021·枣庄)幻方是古老的数学问题,我国古代的《洛书》中记载了最早的幻方——九宫图.将数字1~9分别填入如图所示的幻方中,要求每一横行、每一竖行以及两条斜对角线上的数字之和都是15,则m的值为.17.(2021·金乡模拟)对于实数m,n,定义运算m⊗n=mn2﹣n.若2⊗a=1⊗(﹣2)则a=.18.(2021·烟台)幻方历史悠久,传说最早出现在夏禹时代的“洛书”.把洛书用今天的数学符号翻译出来,就是一个三阶幻方.将数字1~9分别填入如图所示的幻方中,要求每一横行,每一竖行以及两条对角线上的数字之和都是15,则a的值为.19.(2021·潍坊)在直角坐标系中,点A1从原点出发,沿如图所示的方向运动,到达位置的坐标依次为:A2(1,0),A3(1,1),A4(﹣1,1),A5(﹣1,﹣1),A6(2,﹣1),A7(2,2),….若到达终点A n(506,﹣505),则n的值为.20.(2021·滨城模拟)按一定规律排列的单项式:a2,−3a3,9a10,−27a15,81a26,…,第n个单项式是.21.(2021·东昌府模拟)观察下列等式:第一行:4−1=3第二行:9−4=5第三行:16−9=7第四行:25−16=9按照上述规律,第n行的等式为.22.(2021·夏津模拟)定义a※b=a(b+1),例如2※3=2×(3+1)=2×4=8.则(x﹣1)※x的结果为.23.(2022·曹县模拟)已知x−2y=3则1−2x+4y的值为.24.(2022·嘉祥模拟)观察下列各式:a1=23,a2=35,a3=107,a4=53,a5=2611,a6=3513,a7=103,根据其中的规律可得a8=.25.(2022·济宁模拟)如图所示,用棋子摆成“T”字形,按照图①,图②,图③的规律摆下去,若摆成第n个“T”字形需要m颗棋子,则m关于n的关系式是.答案解析部分1.【答案】B【解析】【解答】解:设商品初始价格为a元,降价10%后的价格为(1-10%)×a=0.9a元;又提价10%的价格为(1+10%)×0.9a =0.99a元;∵0.99a<a,∴比原价格低,故答案为:B.【分析】设商品初始价格为a元,分别求出降价和提价后的价格,再比较大小即可。

2025年天津市中考数学一轮复习:代数式(附答案解析)

2025年天津市中考数学一轮复习:代数式(附答案解析)

2025年天津市中考数学一轮复习:代数式一.选择题(共10小题)1.为了求1+2+22+23+…+22011+22012的值,可令S=1+2+22+23+…+22011+22012,则2S=2+22+23+24+…+22012+22013,因此2S﹣S=22013﹣1,所以1+22+23+…+22012=22013﹣1.仿照以上方法计算1+5+52+53+…+52012的值是()A.52013﹣1B.52013+1C.52013−44D.52013−142.如果单项式x2y m+2与x n y的和仍然是一个单项式,则m、n的值是()A.m=2,n=2B.m=﹣1,n=2C.m=﹣2,n=2D.m=2,n=﹣1 3.已知x﹣2y=3,则代数式6﹣2x+4y的值为()A.0B.﹣1C.﹣3D.3 4.某商店举办促销活动,促销的方法是将原价x元的衣服以(45x﹣10)元出售,则下列说法中,能正确表达该商店促销方法的是()A.原价减去10元后再打8折B.原价打8折后再减去10元C.原价减去10元后再打2折D.原价打2折后再减去10元5.若﹣2a m b4与5a n+2b2m+n可以合并成一项,则m n的值是()A.2B.0C.﹣1D.1 6.当x=1时,代数式12ax3﹣3bx+4的值是7,则当x=﹣1时,这个代数式的值是()A.7B.3C.1D.﹣77.若a是有理数,那么在①a+1,②|a+1|,③|a|+1,④a2+1中,一定是正数的有()A.1个B.2个C.3个D.4个8.下列运算中,正确的是()A.3a+2b=5ab B.2a3+3a2=5a5C.3a2b﹣3ba2=0D.5a2﹣4a2=19.下列各式由等号左边变到右边变错的有()①a﹣(b﹣c)=a﹣b﹣c②(x2+y)﹣2(x﹣y2)=x2+y﹣2x+y2第1页(共14页)。

中考数学真题精选专题试卷代数式(含答案解析)(含答案解析)

中考数学真题精选专题试卷代数式(含答案解析)(含答案解析)

代数式
一.选择题(共19小题)
1.(?海南)某企业今年
1月份产值为x 万元,2月份比1月份减少了10%,3月份比2月份增加了15%,则3月份的产值是
()
A .(1﹣10%)(1+15%)x 万元
B .(1﹣10%+15%)x 万元
C .(x ﹣10%)(x+15%)万元
D .(1+10%﹣15%)x 万元2.(?吉林)购买1个单价为a 元的面包和3瓶单价为b 元的饮料,所需钱数为(

A .(a+b )元
B .3(a+b )元
C .(3a+b )元
D .(a+3b )元3.(?自贡)为庆祝战胜利70周年,我市某楼盘让利于民,
决定将原价为a 元/米2的商品房价降价10%销售,降价后的销售价为(
)A .a ﹣10% B .a?10% C .a (1﹣10%)D .a (1+10%)
4.(?恩施州)随着服装市场竞争日益激烈,某品牌服装专卖店一款服装按原售价降价a 元后,再次降价20%,现售价为b 元,则原售价为(
)A .(a+b )元B .(a+b )元C .(b+a )元
D .(b+a )元5.(?江阴市模拟)某厂1月份产量为a 吨,以后每个月比上一个月增产
x%,则该厂3月份的产量(单位:吨)为(
)A .a (1+x )2B .a (1+x%)2C .a+a?x% D .a+a?(x%)2
6.(?海南)已知x=1,y=2,则代数式x ﹣y 的值为(
)A .1B .﹣1 C .2D .﹣3
7.(?娄底)已知a 2+2a=1,则代数式2a 2+4a ﹣1的值为(
)A .0B .1C .﹣1 D .﹣2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考复习代数式练习题(试卷满分 120 分,考试时间 120 分钟)董义刚一、选择题(本题共10 小题,每小题3 分,满分30分)每一个小题都给出代号为A,B,C,D的四个结论,其中只有一个是正确的,把正确结论的代号写在题后的括号内.每一小题:选对得3分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分。

1.一个代数式减去22x y -等于222x y +,则这个代数式是( )。

A.23y -B.222x y + C.2232y x - D.23y2.下列各组代数式中,属于同类项的是( )。

A .b a 221 与221ab B .b a 2 与c a 2 C .22与43 D . p 与q 3.下列计算正确的是( )。

》A.2233x x -= B.22321a a -= C.235358x x x +=D.22232a a a -=4.a = 255 , b = 344, c = 433 , 则 a 、b 、c 的大小关系是( )。

A . a>c>b B . b>a>c C . b>c>a D . c>b>a 解:a = 255=(25)11=3211 b = 344=(34)11=8111c = 433=(23)11=8115.一个两位数,十位数字是x ,个位数字是y ,如果把它们的位置颠倒一下,得到的数是( )。

A.y x +B.yx C.10y x + D.10x y +6.若26(3)(2)x kx x x +-=+-,则k 的值为( )。

A . 2B . -2 C. 1 D. –1》7.若x 2+mx +25 是一个完全平方式,则m 的值是( )。

A .20B .10 C. ± 20 D.±108.若代数式2231y y +=,那么代数式2469y y +-的值是( )。

A.2 B.17 C.7- D.79.如果(2-x)2 +(x -3)2 =(x -2)+(3-x ),那么x 的取值范围是( )。

A .x ≥3B . x ≤2 C.x>3 D.2≤x ≤310.如图所示,下列每个图是由若干盆花组成的形如三角形的图案,每条边(包括两个顶点)有n 盆花,每个图案花盆总数是S ,按此推断S 与n 的关系式为( )。

A .S=3nB .S=3(n -1)C .S=3n -1D .S=3n +1 二、填空题(本题共 4 小题,每小题 3 分,满分 12 分) -11.计算 :( -a 3)2 = _________。

12.把3222a ab a b +-分解因式的结果是_______________________。

13.在下面由火柴杆拼出的一列图形中,第n 个图形由n 个正方形组成:通过观察可以发现,第n 个图形中有_________根火柴杆。

14.观察等式:222211⨯=+,333322⨯=+,444433⨯=+,555544⨯=+,.设n 表示正整数,请用关于n 的等式表示这个观律为:____。

答案:11)1(2+++=+n nn n n三、(本题共2小题,每小题3分,满分 6分) 15.计算:265222x x x x -⎛⎫÷-- ⎪--⎝⎭. 16.先化简,再求值:2(32)(32)5(1)(21)x x x x x +-----,其中13x =-.【四、(本题共2小题,每小题4分,满分8分)17.已知A=-4a 3-3+2a 2+5a,B=3a 3-a -a 2,求:A -2B 。

18.已知x+y=7,xy=2,求①2x 2+2y 2的值;②(x -y)2的值. 五、(本题共2小题,每小题4分,满分8分)19.已知A =a +2,B = a 2-a +5,C =a 2+5a -19,其中a >2. (1)求证:B -A >0,并指出A 与B 的大小关系; (2)指出A 与C 哪个大说明理由.20.a、b、c为△ABC 三边长,利用因式分解说明b2-a2+2ac-c2的符号 21.(本题满分4分)如图,一块直径为a+b 的圆形钢板,从中挖去直径分别为a 与b 的两个圆,求剩下的钢板的面积。

.22.(本题满分4分)有规律排列的一列数:2,4,6,8,10,12,…它的每一项可用式子2n (n 是正整数)来表示.有规律排列的一列数:12345678----,,,,,,,,… (1)它的每一项你认为可用怎样的式子来表示 (2)它的第100个数是多少(3)2010是不是这列数中的数如果是,是第几个数23.(本题满分5分)某餐厅中1张餐桌可以坐6人,有以下两种摆放方式:一天中午,餐厅要接待98位顾客共同就餐,但餐厅中只有25张这样的餐桌,假设你是这个餐厅的经理,你打算选择哪种拼接方式来摆餐桌-24.(本题满分5分)已知:x 2+y 2+4x-6y+13=0,x 、y 均为有理数,求x y 的值。

25. (本题满分5分)已知:a+b=8,ab=16+c 2,求(a-b+c )2002的值。

26.(本题满分5分)已知:a 、b 、c 、d 为正有理数,且满足a 4+b 4+C 4+D 4=4abcd 。

求证:a=b=c=d 。

27. (本题满分5分)试确定32003的个位数字28. (本题满分5分)已知289319x y y x ==+-,,试求1713x y +的值。

29. (本题满分5分)已知x 、y 都为正数,且x y +=1998,求x+y 的值。

[30.(本题满分6分)若a 、b 、c 为有理数,且等式a b c a b c ++=+++2352629991001,则的值是。

31. (本题满分7分)方程x y x y +=336的整数解()的组数是(),20XX 年中考数学总复习专题测试卷(二) 参考答案一、1、B 2、C 3、D 4、C 5、C 6、C 7、D 8、C 9、D 10、B二、11、6a ; 12、2)(b a a -; 13、3n+1;14、11)1(2+++=+n nn n n 。

三、15.原式265(2)22x x x x -⎡⎤=÷-+⎢⎥--⎣⎦2(3)5(2)(2)222x x x x x x -+-⎡⎤=÷-⎢⎥---⎣⎦;22(3)5(4)22x x x x ---=÷--22(3)922x x x x --=÷--=)3)(3(22)3(2x x x x x -+-⨯--=32+-x16.原式()()2229455441x x x x x =-----+2229455441x x x x x =--+-+-95x =-.当13x =-时,原式195953x ⎛⎫=-=⨯-- ⎪⎝⎭35=--8=-.四、17、-10a 3+4a 2+7a -318、(1)90 (2)41。

五、19.已知A =a +2,B = a 2-a +5,C =a 2+5a -19,其中a >2.(1)求证:B -A >0,并指出A 与B 的大小关系;(2)指出A 与C 哪个大说明理由. 19、(1)B -A =(a -1)2+2 >0 所以 B >A (2)解一:C-A= a 2+5a -19-a-2=a 2+4a-21=(a+2)2-25[分析:当(a+2)2-25=0时 a=3;当(a+2)2-25<0时 2<a <3; 当(a+2)2-25>0时 a >3解二:C -A == a 2+5a -19-a-2=a 2+4a-21=(a +7)(a -3) 因为a >2,所以a +7>0 从而当2<a <3时,A >C , 当a =2时, A =C ,当 a >3时,A <C 20、b2-a2+2ac-c2=b2-(a-c )2=(b+a-c )(b-a+c )>0 六、21、2πab七、22、(1)它的每一项可用式子1(1)n n +-(n 是正整数)来表示.(2)它的第100个数是100-.)(3)2010不是这列数中的数,因为这列数中的偶数全是负数.(或正数全是奇数.)注:它的每一项也可表示为(1)nn --(n 是正整数).表示如下照样给分:,当n 为奇数时,表示为n .当n 为偶数时,表示为n -. 八、23.两种摆放方式各有规律:第一种n 张餐桌可容纳()42n +人,第二种n 张餐桌可容纳:()24n +人, 通过计算,第二种摆放方式要容纳98人是不可能的,而第一种可以. 24. 分析:逆用完全乘方公式,将x 2+y 2+4x-6y+13化为两个完全平方式的和,利用完全平方式的非负性求出x 与y 的值即可。

解:∵x 2+y 2+4x-6y+13=0, (x 2+4x+4)+(y 2-6y+9)=0, 即(x+2)2+(y-3)2=0。

∴x+2=0,y=3=0。

!即x=-2,y=3。

∴x y =(-2)3=-8。

25.分析:由已知条件无法直接求得(a-b+c )2002的值,可利用(a-b )2=(a+b )2-4ab 确定a-b 与c 的关系,再计算(a-b+c )2002的值。

解:(a-b )2=(a+b )2-4ab=82-4(16+c 2)=-4c 2。

即:(a-b )2+4c 2=0。

∴a-b=0,c=0。

∴(a-b+c )2002=0。

26. 分析:从a 4+b 4+C 4+D 4=4abcd 的特点看出可以化成完全平方形式,再寻找证明思路。

证明:∵a 4+b 4+C 4+D 4=4abcd ,∴a 4-2a 2b 2+b 4+c 4-2c 2d 2+d 4+2a 2b 2-4abcd+2c 2d 2=0,;(a 2-b 2)2+(c 2-d 2)2+2(ab-cd )2=0。

a 2-b 2=0,c 2-d 2=0,ab-cd=0 又∵a 、b 、c 、d 为正有理数, ∴a=b ,c=d 。

代入ab-cd=0, 得a 2=c 2,即a=c 。

所以有a=b=c=d 。

27. 解:∵32003=34×500+3=(34)500×33=(81)500×27∴32003的个位数字是7 28.剖析:欲求1173x y +的值,只有先求得x 、y 的值。

为此必须逆用幂的运算法则,把已知等式化为同底数幂,由指数相等列出方程组求解。

解:把已知等式化为同底数幂,得:"22333329x y y x ==+-,∴=+=-⎧⎨⎩x y y x 3329 解之得:x y ==⎧⎨⎩216∴原式=11216573⨯+⨯= 29.解:因为只有同类二次根式才能合并,而x y x y +=19981998,说明、都与是同类二次根式。

相关文档
最新文档