高二数学棱锥

合集下载

高二数学棱锥的概念及其性质

高二数学棱锥的概念及其性质

棱锥的性质
复习棱柱性质:
两个底面与 平行于底面 的截面是全 等的多边形
棱锥性质: S
D’
截面 A' B ' C ' D ' E '∽ 底面 ABCDE
S A'B 'C 'D 'E ' SH '2 S ABCDE SH 2
C’ B’
E’ A’
H′
D H
E
A
C B
棱柱性质:
侧棱都相等,侧 面是平行四边形
正棱锥性质: S
A B
1.各侧棱相等, 各侧面都是全等 C 的等腰三角形.
正棱锥的性质
S
底面是正多边形,并且顶点 正棱锥:在底面内射影是底面中心 1.各侧棱相等,各侧面都是 全等的等腰三角形.
A
O
C
M
B
2.棱锥的高、侧棱和侧棱在底 面内的射影组成一个直角三角形; 3.棱锥的高、斜高和斜高在 底面内的射影组成一个直角三角形.
V锥体
1 Sh 3
1.下列命题是否正确?如果正确,请给出证明; 否则请举出反例.
(1)正棱锥的侧面是正三角形; (2)正棱锥正棱锥的各侧面与底面所成的二面角都相等.
2.已知一个正六棱锥的高为h,侧棱为l,求它的底 面边长和斜高.
江氏兄弟桥香圆过桥米线连锁店是云南规模最大,店数最多的过桥米线专营连锁企业,由云南蒙自人江氏兄弟江勇,江俊二人创建于1988年, 历经十五载,兄弟俩本着"同心同德,至亲至诚"的理念,将一家不足160平方米的小餐馆发展壮大为云南为数不多的著名餐饮品牌。公司现有9 家直营店,2家加盟店,营业面积达6800平方米,员工700人,年销售额高居同行之首,是云南三大名小吃招牌的拥有者,西部著名企业。 ; /brands/3951.html 桥香园 lgh57neh 经过近二十余年的发展,江氏兄弟桥香园结合现代企业管理你理念总结出了一套具有“桥香园”特色的管理模式,并完善了加盟连锁管理体系, 使企业的规模和管理水平跃上了新的发展阶段。审时度势、准确把握市场动态,使公司一步一个脚印、踏踏实实的迈出了一片新天地。“同心 同德,至亲至诚;自我否定,创新争先”的优秀企业文化,是我们在竞争激烈的餐饮市场中取得辉煌成绩的有力法宝。 的恋情,初尝爱情甜蜜滋味,涉爱不深,远没有达到刻骨铭心的程度,所以即使是痛,也仅仅是只望花开,不见果实的淡然惆怅之痛。但是, 王爷就不壹样了。这份感情从壹开始就深深是种植在心中,逐渐地生根、发芽、开花。更是亲自请求了皇阿玛御赐的姻缘,经历了初得圣上允 诺的狂喜,又经历了物是人非的巨大落差,这种痛,简直就是痛彻心扉、痛不欲生、悲痛欲绝。“年丫鬟,壹切都准备妥当了。奴婢要叮嘱的 事情就是,今天之内,不得再进吃食,不得再饮茶水,以免坏了妆容。口渴的时候,会有人服侍您,用小勺喂水„„”冰凝根本就没有听那些 人在说什么,就这么壹直安安静静地坐着,待对方说完,她才开口道:“还有别的吩咐吗?”“没有了,年丫鬟。”“那你们都先下去吧,就 含烟壹个人留下,我有些事情还要交代她。姐姐,您先回房休息壹下吧,已经忙了壹上午了。”“凝儿,你真的没事?”“没有事的,放心吧 姐姐。”待众人退下,冰凝将含烟拉进了里间,压低了声音,几乎就是耳语:“含烟,我还有壹件事情要托付你。”“丫鬟,您千万别这么客 气,您待含烟就像是亲姐妹,含烟此生无以为报,能为丫鬟做事情,就是含烟最大的福份。”“我要托付你的事情就是,如果,如果,你再听 到那萧曲„„”“丫鬟!”只壹声,含烟就跪倒在了地上:“丫鬟,含烟知道您的心思,可是,可是,您今天就要嫁到王府了!„„”“含烟, 我的话你也不听了?因为我不再是你的丫鬟,你就不听我的话了?”“不是的,不是的,含烟是担心丫鬟!您今天就要成为王爷的侧福晋了, 那些事情,您可千万不能再想了!那可是要惹来,惹来事端的啊!丫鬟,您就听含烟的壹句劝吧。”“你放心,自从今天,我嫁进那王府,这 些事情,我不会再想了,我只是不想误了旁的人,这是我的壹幅字,如果你再听到萧曲,务必将这个交给他。”说着,冰凝从床头的深色色小 匣里拿出来壹个盖好漆封的信,郑重地交给了含烟。含烟吓得根本不敢伸出手来,她壹边哭着壹边跟丫鬟说:“丫鬟,丫鬟,您马上就是雍亲 王府的侧福晋了,您可千万不能这样啊!如果让王府的人知道了,您,还有老爷、夫人,大爷、二爷怎么办啊!丫鬟,您想过没有,您可千万 不能这么壹意孤行,您就听含烟的壹句劝吧!”“含烟,我知道你是为了我好,你知道这里面写的是什么吗?”“不知道。”含烟壹边摇着头, 壹边说道。“不知道就说这么多的话,你以为你家丫鬟是什么人?你家丫鬟做事自有分寸,你就按我的吩咐去做,我会做好王爷的侧福晋,你, 放心吧。只是,我托付你的事情,你也要照办,否则,你丫鬟我,就是死,都不会瞑目的。”见冰凝说得如此坚定,又是那样的绝决,含烟似 懂非懂地接过了信

高二数学必修一重点知识归纳

高二数学必修一重点知识归纳

高二数学必修一重点知识归纳【导语】知识是取之不尽,用之不竭的。

只有限度地发掘它,才能体会到学习的乐趣。

任何一门学科的知识都需要大量的记忆和练习来巩固。

虽然辛劳,但也相伴着快乐!下面是作者整理的《高二数学必修一重点知识归纳》,期望大家爱好。

1.高二数学必修一重点知识归纳等比数列求和公式(1)等比数列:a(n+1)/an=q(n∈N)。

(2)通项公式:an=a1×q^(n-1);推广式:an=am×q^(n-m);(3)求和公式:Sn=n×a1(q=1)Sn=a1(1-q^n)/(1-q)=(a1-an×q)/(1-q)(q≠1)(q为公比,n为项数)(4)性质:①若m、n、p、q∈N,且m+n=p+q,则am×an=ap×aq;②在等比数列中,顺次每k项之和仍成等比数列.③若m、n、q∈N,且m+n=2q,则am×an=aq^2(5)"G是a、b的等比中项""G^2=ab(G≠0)".(6)在等比数列中,首项a1与公比q都不为零.注意:上述公式中an表示等比数列的第n项。

等比数列求和公式推导:Sn=a1+a2+a3+...+an(公比为q)q*Sn=a1*q+a2*q+a3*q+...+an*q=a2+a3+a4+...+a(n+1)Sn-q*Sn=a1-a(n+1)(1-q)Sn=a1-a1*q^nSn=(a1-a1*q^n)/(1-q)Sn=(a1-an*q)/(1-q)Sn=a1(1-q^n)/(1-q)Sn=k*(1-q^n)~y=k*(1-a^x)。

2.高二数学必修一重点知识归纳判定函数零点个数的常用方法1、解方程法:令f(x)=0,如果能求出解,则有几个解就有几个零点。

2、零点存在性定理法:利用定理不仅要判定函数在区间[a,b]上是连续不断的曲线,且f(a)·f(b)<0,还必须结合函数的图象与性质(如单调性、奇偶性、周期性、对称性)才能肯定函数有多少个零点。

高二数学立体几何练习题

高二数学立体几何练习题

高二数学立体几何练习题
1. 三棱锥ABCDA1是一个底面为正三角形ABC的三棱锥。

已知
AD=3,BC=4,AB∥CD且AB=2CD。

求证:AB=√21。

解析:
首先,可以得到AB=2CD,即AB=2,CD=1.根据正三角形的性质,我们可以得到∠BAD=60°。

由于锥心角ABD=60°,且CD通过顶点D且平行于底面,所以可得CD与底面ABC的交点与锥顶点D和底面三个顶点构成的四个点在同
一个平面上。

我们可以称这个平面为α平面。

在平面α上,连接CD与顶点A1,作直线A1B∥AB,交线段AB
于点E。

△ABE与△ABC是相似三角形,因为∠EAB=∠ABC(对应角),
而∠ABE=∠ACB(平行线所成的内错角相等)。

由相似三角形的性质,可得AB/AE=AB/AC,即AE=AC=3√3(三棱锥ABCDA1的高度)。

又因为A1B∥AB,所以A1E=AE=3√3。

由△ADE可以得到∠DAE=60°。

根据勾股定理,在△ABE中,有AE^2=AB^2+BE^2,即(3√3)
^2=2^2+BE^2,解得BE=3。

根据勾股定理,在△ADE中,有AD^2+AE^2=DE^2,即3^2+
(3√3)^2=DE^2,解得DE=6。

所以,AB=AE+BE+ED=3√3+3+6=√21。

综上所述,满足题目要求,即证明了AB=√21。

高二数学现在学到哪了

高二数学现在学到哪了

高二数学现在学到哪了1、柱、锥、台、球的结构特征(1)棱柱:几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形.(2)棱锥几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方.(3)棱台:几何特征:上下底面是相似的平行多边形侧面是梯形侧棱交于原棱锥的顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成几何特征:底面是全等的圆;母线与轴平行;轴与底面圆的半径垂直;侧面展开图是一个矩形.(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成几何特征:底面是一个圆;母线交于圆锥的顶点;侧面展开图是一个扇形.(6)圆台:定义:以直角梯形的垂直与底边的腰为旋转轴,旋转一周所成几何特征:上下底面是两个圆;侧面母线交于原圆锥的顶点;侧面展开图是一个弓形.(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体几何特征:球的截面是圆;球面上任意一点到球心的距离等于半径.2、空间几何体的三视图定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下)注:正视图反映了物体的高度和长度;俯视图反映了物体的长度和宽度;侧视图反映了物体的高度和宽度.3、空间几何体的直观图——斜二测画法斜二测画法特点:原来与x轴平行的线段仍然与x平行且长度不变;原来与y轴平行的线段仍然与y平行,长度为原来的一半.4、柱体、锥体、台体的表面积与体积(1)几何体的表面积为几何体各个面的面积的和.(2)特殊几何体表面积公式(c为底面周长,h为高,为斜高,l为母线)(3)柱体、锥体、台体的体积公式高中数学必修二知识点总结:直线与方程(1)直线的倾斜角定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角.特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度.因此,倾斜角的取值范围是0°≤α<180°(2)直线的斜率定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率.直线的斜率常用k表示.即.斜率反映直线与轴的倾斜程度.当时,;当时,;当时,不存在.过两点的直线的斜率公式:注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;(2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到.(3)直线方程点斜式:直线斜率k,且过点注意:当直线的斜率为0°时,k=0,直线的方程是y=y1.当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l 上每一点的横坐标都等于x1,所以它的方程是x=x1.斜截式:,直线斜率为k,直线在y轴上的截距为b两点式:()直线两点,截矩式:其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为.一般式:(A,B不全为0)注意:各式的适用范围特殊的方程如:(4)平行于x轴的直线:(b为常数);平行于y轴的直线:(a为常数);(5)直线系方程:即具有某一共同性质的直线(一)平行直线系平行于已知直线(是不全为0的常数)的直线系:(C为常数)(二)垂直直线系垂直于已知直线(是不全为0的常数)的直线系:(C为常数)(三)过定点的直线系()斜率为k的直线系:,直线过定点;()过两条直线,的交点的直线系方程为(为参数),其中直线不在直线系中.(6)两直线平行与垂直注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否. (7)两条直线的交点相交交点坐标即方程组的一组解.方程组无解;方程组有无数解与重合(8)两点间距离公式:设是平面直角坐标系中的两个点(9)点到直线距离公式:一点到直线的距离(10)两平行直线距离公式在任一直线上任取一点,再转化为点到直线的距离进行求解.高中数学必修二知识点总结:圆的方程1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径.2、圆的方程(1)标准方程,圆心,半径为r;(2)一般方程当时,方程表示圆,此时圆心为,半径为当时,表示一个点;当时,方程不表示任何图形.(3)求圆方程的方法:一般都采用待定系数法:先设后求.确定一个圆需要三个独立条件,若利用圆的标准方程,需求出a,b,r;若利用一般方程,需要求出D,E,F;另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置.3、高中数学必修二知识点总结:直线与圆的位置关系:直线与圆的位置关系有相离,相切,相交三种情况:(1)设直线,圆,圆心到l的距离为,则有;;(2)过圆外一点的切线:k不存在,验证是否成立k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程一定两解(3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r24、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定.设圆,两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定.当时两圆外离,此时有公切线四条;当时两圆外切,连心线过切点,有外公切线两条,内公切线一条;当时两圆相交,连心线垂直平分公共弦,有两条外公切线;当时,两圆内切,连心线经过切点,只有一条公切线;当时,两圆内含;当时,为同心圆.注意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线5、空间点、直线、平面的位置关系公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内.应用:判断直线是否在平面内用符号语言表示公理1:公理2:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线符号:平面α和β相交,交线是a,记作α∩β=a.符号语言:公理2的作用:它是判定两个平面相交的方法.它说明两个平面的交线与两个平面公共点之间的关系:交线必过公共点.它可以判断点在直线上,即证若干个点共线的重要依据.公理3:经过不在同一条直线上的三点,有且只有一个平面.推论:一直线和直线外一点确定一平面;两相交直线确定一平面;两平行直线确定一平面.公理3及其推论作用:它是空间内确定平面的依据它是证明平面重合的依据公理4:平行于同一条直线的两条直线互相平行高中数学必修二知识点总结:空间直线与直线之间的位置关系异面直线定义:不同在任何一个平面内的两条直线异面直线性质:既不平行,又不相交.异面直线判定:过平面外一点与平面内一点的直线与平面内不过该店的直线是异面直线异面直线所成角:作平行,令两线相交,所得锐角或直角,即所成角.两条异面直线所成角的范围是(0°,90°],若两条异面直线所成的角是直角,我们就说这两条异面直线互相垂直.求异面直线所成角步骤:A、利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选在特殊的位置上.B、证明作出的角即为所求角C、利用三角形来求角(7)等角定理:如果一个角的两边和另一个角的两边分别平行,那么这两角相等或互补.(8)空间直线与平面之间的位置关系直线在平面内——有无数个公共点.三种位置关系的符号表示:aαa∩α=Aaα(9)平面与平面之间的位置关系:平行——没有公共点;αβ相交——有一条公共直线.α∩β=b2、空间中的平行问题(1)直线与平面平行的判定及其性质线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行.线线平行线面平行线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.线面平行线线平行(2)平面与平面平行的判定及其性质两个平面平行的判定定理(1)如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行(线面平行→面面平行),(2)如果在两个平面内,各有两组相交直线对应平行,那么这两个平面平行.(线线平行→面面平行),(3)垂直于同一条直线的两个平面平行,两个平面平行的性质定理(1)如果两个平面平行,那么某一个平面内的直线与另一个平面平行.(面面平行→线面平行)(2)如果两个平行平面都和第三个平面相交,那么它们的交线平行.(面面平行→线线平行)3、空间中的垂直问题(1)线线、面面、线面垂直的定义两条异面直线的垂直:如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直.线面垂直:如果一条直线和一个平面内的任何一条直线垂直,就说这条直线和这个平面垂直.平面和平面垂直:如果两个平面相交,所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(平面角是直角),就说这两个平面垂直.(2)垂直关系的判定和性质定理线面垂直判定定理和性质定理判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面.性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行.面面垂直的判定定理和性质定理判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.性质定理:如果两个平面互相垂直,那么在一个平面内垂直于他们的交线的直线垂直于另一个平面.4、空间角问题(1)直线与直线所成的角两平行直线所成的角:规定为.两条相交直线所成的角:两条直线相交其中不大于直角的角,叫这两条直线所成的角.两条异面直线所成的角:过空间任意一点O,分别作与两条异面直线a,b平行的直线,形成两条相交直线,这两条相交直线所成的不大于直角的角叫做两条异面直线所成的角.(2)直线和平面所成的角平面的平行线与平面所成的角:规定为.平面的垂线与平面所成的角:规定为.平面的斜线与平面所成的角:平面的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和这个平面所成的角.求斜线与平面所成角的思路类似于求异面直线所成角:“一作,二证,三计算”.在“作角”时依定义关键作射影,由射影定义知关键在于斜线上一点到面的垂线,在解题时,注意挖掘题设中两个主要信息:(1)斜线上一点到面的垂线;(2)过斜线上的一点或过斜线的平面与已知面垂直,由面面垂直性质易得垂线.(3)二面角和二面角的平面角二面角的定义:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面.二面角的平面角:以二面角的棱上任意一点为顶点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫二面角的平面角.直二面角:平面角是直角的二面角叫直二面角.两相交平面如果所组成的二面角是直二面角,那么这两个平面垂直;反过来,如果两个平面垂直,那么所成的二面角为直二面角求二面角的方法定义法:在棱上选择有关点,过这个点分别在两个面内作垂直于棱的射线得到平面角垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个面的交线所成的角为二面角的平面角必修二知识点总结:解三角形(1)正弦定理和余弦定理掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.(2)应用能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.高中数学必修二知识点总结:数列(1)数列的概念和简单表示法了解数列的概念和几种简单的表示方法(列表、图象、通项公式).了解数列是自变量为正整数的一类函数.(2)等差数列、等比数列理解等差数列、等比数列的概念.掌握等差数列、等比数列的通项公式与前项和公式.能在具体的问题情境中,识别数列的等差关系或等比关系,并能用有关知识解决相应的问题.了解等差数列与一次函数、等比数列与指数函数的关系.高中数学必修二知识点总结:不等式高中数学必修二知识点总结:不等关系了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景.(2)一元二次不等式会从实际情境中抽象出一元二次不等式模型.通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的联系. 会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图. (3)二元一次不等式组与简单线性规划问题会从实际情境中抽象出二元一次不等式组.了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.(4)基本不等式:了解基本不等式的证明过程.高二数学现在学到哪了。

高二数学最新教案-§9.9.6棱柱棱锥(6)—直棱柱和正棱锥的直观图的画法 精品

高二数学最新教案-§9.9.6棱柱棱锥(6)—直棱柱和正棱锥的直观图的画法 精品

直棱柱和正棱锥的直观图的画法,正多面体一、课题:直棱柱和正棱锥的直观图的画法,正多面体 二、教学目标:1.掌握直棱柱和正棱锥的直观图的画法;2.培养画图、视图、析图的能力;3.了解正多面体的概念,了解正多面体只有5种.三、教学重点、难点:坐标系的建立、顶点的确定. 四、教学过程:(一)复习:斜二测画法的规则. (二)新课讲解:1.直棱柱、正棱锥的直观图:例1.斜二测画法画一个底面边长为4cm ,高为6cm 的正六棱柱的直观图.分析:要画正六棱柱的直观图,根据斜二测画法的画法规则,只需建立恰当的坐标系,画出下底面的直观图,在根据正六棱柱的对称性确定上底面的六个顶点即可. 画法:根据斜二测画法的画法规则及画直观图的步骤可得以下步骤: (1)画轴:画x '轴、y '轴、z '轴,记坐标原点为O ',使如图所示; (2)画底面:按x '轴、y '轴画边长为4cm 正六边行的直观图ABCDE ;(3)画侧棱:过,,,,,A B C D E F 各点分别作'z 轴的平行线,并在这些平行线上截取AA '、BB '、CC '、DD '、EE '、FF ',使它们都等于6cm ;(4)成图:顺次连结,,,,,A B C D E F '''''',并加以整理(去掉辅助线,并将被遮住的部分该为虚 线),就得到正六棱柱的直观图.说明:本题的关键是建立恰当的三维坐标系及画正六边行的直观图,我们选择恰当的坐标系的标准是尽可能的使所画平面图形的边和坐标轴平行或在坐标轴上.例2.画一个底面边长为5cm ,高为11.5cm 的正五棱锥的直观图,比例尺为1:5.分析:画正五棱锥的直观图只需根据斜二侧画法,选择恰当的坐标系画出正五边形的直观图,进而确定出正五棱锥的顶点即可. 画法:(1)画轴:画x '轴、y '轴、z '轴,记坐标原点为O ',使45x O y '''∠=(或135),使90x O z '''∠=;(2)画底面:x '轴、y '轴画边长为1cm 正五边形的直观图ABCDE 并使正五边行的中心对应与点O ';(3)画高线:在'z 轴上取11.52.35O S cm '==; (4)成图:顺次连结,,,,SA SB SC SD SE ,并加以整理(去掉辅助线,并将被遮住的部分该为虚线),就得到正棱锥的直观图.说明:正棱锥的直观图由底面和顶点所决定。

高二数学棱柱、棱锥和棱台知识精讲

高二数学棱柱、棱锥和棱台知识精讲

高二数学棱柱、棱锥和棱台【本讲主要内容】棱柱、棱锥和棱台棱柱的概念及性质、棱锥的概念及性质和棱台的概念及性质【知识掌握】 【知识点精析】1. 棱柱的有关概念和性质。

(1)棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,这些面围成的几何体叫做棱柱。

(2)棱柱的几个概念。

这里,两个互相平行的面叫做棱柱的底面,其余各面叫做棱柱的侧面;两个面的公共边叫做棱柱的棱,其中两个侧面的公共边叫做棱柱的侧棱,侧面与底面的公共顶点叫做棱柱的顶点,不在同一个面内的两个顶点的连线叫做棱柱的对角线,两个底面的距离叫做棱柱的高。

(3)棱柱的表示方法:棱柱用表示底面各顶点的字母来表示,如三棱柱ABC A B C -111(4)棱柱的分类。

棱柱按底面边数可以分为三棱柱、四棱柱、五棱柱…… 按侧面与地面是否垂直,棱柱又可以分为直棱柱和斜棱柱。

底面是正多边形的直棱柱叫做正棱柱。

正棱柱是特殊的直棱柱。

(5)棱柱的性质: ①侧棱都相等;②侧面都是平行四边形;③两个底面与平行于底面的截面是全等的多边形;④过不相邻的两条侧棱的截面是平行四边形。

平行六面体:底面是平行四边形的四棱柱; 直平行六面体:侧棱与底面垂直的平行六面体; 长方体:底面是矩形的直平行六面体; 正方体:棱长都相等的长方体叫做正方体。

四棱柱与特殊的平行六面体有如下关系:{正方体}⊂{正四棱柱}⊂{长方体}⊂{直平行六面体}⊂{平行六面体}⊂{四棱柱} 长方体的性质:长方体的一条对角线的长的平方等于一个顶点上三条棱长的平方和。

2. 棱锥的有关概念。

(1)棱锥的定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,这些面围成的几何体叫做棱锥。

(2)棱锥的几个概念。

这个多边形叫做棱锥的底面,其余各面叫做棱锥的侧面,相邻侧面的公共边叫做棱锥的侧棱,各侧面的公共顶点叫做棱锥的顶点,顶点到底面的距离叫做棱锥的高。

(3)棱锥的表示方法:棱锥用表示顶点和底面各顶点,或者底面一条对角线端点的字母来表示,如棱锥S -ABCDE ,或者棱锥S -AC 。

高二数学棱锥的概念与性质PPT教学课件


是__27 a__.____
S
D O
A
C
M B
课题:棱锥的概念与性质
观察思考
棱锥的概念
如果一个多面体的一个面是多边形, 其余各面是有一个公共顶点的三角形, 那么这个多面体叫做棱锥.
S
三角形
A B
E
O
D
C
多边形
想一想
1.有一个面是多边形,其余各面 2.各面都是三角形的多面体 都是三角形的多面体是棱锥吗? 是棱锥吗?
棱锥的构成要素
棱锥的侧面
正三 A角 B 的 C形 中 . 心
A O C
A 2 B A M 2 O tM a 60 n 0 23 l2h2
B
S AB C 4 3A2 B 4 3 4 3 l2 h 2
33l2 h 2.
根据棱锥的性质 , 有
A
M
O
B
C
SSAABBCChh22
1 4
SABC 343l2h2.
棱锥的底面
在棱锥中有公共顶点(S)
棱锥中除了侧面以外多
边形叫做棱锥的底面.
各三角形叫做棱锥的侧面.
S
侧面
A B
E
O
D
C
底面
棱锥的侧棱
两个相邻侧面的公共边 叫做棱锥的侧棱
棱锥的顶点
各侧面的公共顶点叫做 棱锥的顶点
S
顶点
侧棱
A B
E
O
D
C
棱锥的高
由顶点到底面所在平面的垂线段(SO), 叫做棱锥的高
S
求 :截 证 A B 面 C D E ∽底面ABCDE, A H D
且SSAA BB CD CED ESSHH 22

高二数学立体几何试题答案及解析

高二数学立体几何试题答案及解析1.(本题满分10分)把边长为60cm的正方形铁皮的四角切去边长为xcm的相等的正方形,然后折成一个高度为xcm的无盖的长方体的盒子,问x取何值时,盒子的容积最大,最大容积是多少?【答案】16000【解析】设长方体高为xcm,则底面边长为(60-2x)cm.(0<x<30)…1分长方体容积(单位:),…3分…5分令解得x=10,x=30(不合题意合去)于是…7分在x=10时,V取得最大值为…10分2.已知三棱锥满足,则点在平面上的射影是三角形的心.【答案】外【解析】,设点在平面上的射影是.则,所以是外心.【考点】射影定理3.(本题满分16分,第(1)小题7分,第(2)小题9分)如图,在两块钢板上打孔,用钉帽呈半球形、钉身为圆柱形的铆钉(图1)穿在一起,在没有帽的一端锤打出一个帽,使得与钉帽的大小相等.铆合的两块钢板,成为某种钢结构的配件,其截面图如图2.(单位:mm,加工中不计损失).(1)若钉身长度是钉帽高度的2倍,求铆钉的表面积;(2)若每块钢板的厚度为mm,求钉身的长度(结果精确到mm).【答案】(1);(2)【解析】(1)观察铆钉的面积,钉身为圆柱形的侧面积,加半球的底面积加半球面的面积;(2)将钉身圆柱捶打成钢板厚的圆柱加一个半球形的帽,所以利用等体积建立方程,求的钉身的长度.试题解析:解:设钉身的高为,钉身的底面半径为,钉帽的底面半径为,由题意可知:圆柱的高圆柱的侧面积半球的表面积所以铆钉的表面积()(2)设钉身长度为,则由于,所以,解得答:钉身的表面积为,钉身的长度约为.【考点】1.组合体的表面积;2.组合体的体积;3.等体积.4.已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是()A.108cm3B.100 cm3C.92cm3D.84cm3【答案】【解析】由三视图可知原几何体如图所示:故几何体的体积,答案选B.【考点】空间几何体的三视图与体积5.直三棱柱中,,,、分别为、的中点.(1)求证:;(2)求异面直线与所成角的余弦值.【答案】(1)见解析(2)【解析】(1)以为原点,以,,为,,轴建立空间直角坐标系.设,计算与的数量积即可得到(2)同理可计算,利用向量的夹角的余弦公式可得向量与的余弦值,亦即异面直线与所成角的余弦值试题解析:由题知平面,,以为原点,以,,为,,轴建立空间直角坐标系.设,,,,,,,,,,,所以;(2),设异面直线与所成角为,则有【考点】向量法解决空间几何中的直线与直线垂直和异面直线所成的角.6.下列说法正确的是()A.三点确定一个平面B.四边形一定是平面图形C.梯形一定是平面图形D.平面和平面有不同在一条直线上的三个交点【答案】C【解析】A如果三点在一条直线上,则不能确定一个平面;B四边形可以为空间中的三棱锥;C梯形两平行边确定一个平面;D平面和平面相交所有的点都在交线上,所以三个点一点在同一条直线上,故选择C【考点】空间点、线、面7.一个几何体的三视图如图,则该几何体的体积为()A.B.C.D.【答案】D【解析】由三视图可知,该几何体是一个底面半径为1,高为1的圆锥的半个圆锥,故该几何体的体积为,故选D.【考点】空间几何体的三视图.8.在长方体中,,,,则与所成角的余弦值为.【答案】【解析】以D为坐标原点,DA,DC,DD1为x,y,z轴建立空间直角坐标系,则,,则与所成角的余弦值为【考点】空间向量求异面直线所成角9.正方体ABCD-A1B1C1D1中,O是上底面ABCD的中心,若正方体的棱长为,则三棱锥O-AB1D1的体积为_____________.【答案】【解析】【考点】棱锥体积10.设为不同的平面,为不同的直线,则的一个充分条件为().A.,,B.,,C.,,D.,,【答案】D【解析】一条直线垂直于两个互相垂直的平面的交线,则这条直线与这两个平面中的某一平面可能垂直也可能不垂直,所以选项A错误;同理,可说明B、C不正确;若,,,则∥,,所以。

高二数学教案:棱柱和棱锥(二)

9.9棱柱和棱锥(二)教学目的:1.理解平行六面体的概念掌握平行六面体、长方体、正方体的概念及性质;,弄清直平行六面体、长方体、正方体的关系.2.掌握长方体对角线的性质,能利用其计算有关长度与角度的问题. 教学重点:平行六面体、长方体的概念及性质. 教学难点:平行六面体、长方体的概念及性质. 授课类型:新授课. 课时安排:4课时.教具:多媒体、实物投影仪. 教学过程:一、复习引入:1.多面体的概念:由若干个多边形围成的空间图形叫多面体;每个多边形叫多面体的面,两个面的公共边叫多面体的棱,棱和棱的公共点叫多面体的顶点,连结不在同一面上的两个顶点的线段叫多面体的对角线.2.凸多面体:把多面体的任一个面展成平面,如果其余的面都位于这个平面的同一侧,这样的多面体叫凸多面体.如图的多面体则不是凸多面体.3.凸多面体的分类:多面体至少有四个面,按照它的面数分别叫四面体、五面体、六面体等.说明:我们今后学习的多面体都是..凸多面体. 4.棱柱的概念:有两个面互相平行,其余每相邻两个面的交线互相平行,这样的多面体叫棱柱.两个互相平行的面叫棱柱的底面(简称底);其余各面叫棱柱的侧面;两侧面的公共边叫棱柱的侧棱;两底面所在平面的公垂线段叫棱柱的高(公垂线段长也简称高).5.棱柱的分类:侧棱不垂直于底面的棱柱叫斜棱柱.侧棱垂直于底面的棱柱叫直棱柱.底面的是正多边形的直棱柱叫正棱柱.棱柱的底面可以是三角形、四边形、五边形……这样的棱柱分别叫三棱柱、四棱柱、五棱柱……设集合{}A =棱柱,{}B =斜棱柱,{}C =直棱柱,{}D =正棱柱, 则,BC AD C =⊂.6.棱柱的性质(1)棱柱的侧棱相等,侧面都是平行四边形;直棱柱侧面都是矩形;正棱柱侧面都是全等的矩形; (2)棱柱的两个底面与平行于底面的截面是对应边互相平行的全等的多边形 (3)过棱柱不相邻的两条侧棱的截面都是平行四边形. 7.直棱柱的直观图的画法画棱柱的直观图共分四个步骤: ①画轴; ②画底面; ③画侧棱; ④成图.底面一定要画成水平放置位置的平面图形的直观图. 二、讲解新课:1.平行六面体、长方体、正方体底面是平行四边形的四棱柱是平行六面体.侧棱与底面垂直的平行六面体叫直平行六面体,底面是矩形的直平行六面体长方体,棱长都相等的长方体叫正方体.D'C'B'A'DC BA2.平行六面体、长方体的性质定理1:平行六面体的对角线交于一点,求证:对角线,,,AC BD CA DB ''''相交于一点,且在点O 处互相平分.证明:设O 是AC '的中点,则11()22AO AC AB AD AA ''==++设,,P M N 分别是,,BD CA DB '''的中点,同理:1()2AP AB AD AA '=++,1()2AM AB AD AA '=++,1()2AN AB AD AA '=++,所以,,,,O P M N 四点重合,定理得证.定理2:长方体的一条对角线长的平方等于一个顶点上的三条棱长的平方和.已知:长方体AC '中,AC '是一条对角线, 求证:2222AC AB AD AA ''=++. 证明:∵AC AB AD AA ''=++,∴2||()()AC AB AD AA AB AD AA '''=++⋅++,∵AB AD ⊥,AB AA '⊥,AA AD '⊥,∴2||AC AB AB AD AD AA AA '''=⋅+⋅+⋅222||||||AB AD AA '=++,即2222AC AB AD AA ''=++. 三、讲解范例:例1.如图平行六面体ABCD A B C D ''''-中,,3A AB A AD BAD π''∠=∠∠=,,AB AD a AA b '===,求对角面BB D D ''的面积.解:∵BD AD AB =-,∴()AA BD AA AD AB ''⋅=⋅-,H OA'D'C'B'DCBA∵A AB A AD ''∠=∠,,AB AD a AA b '===,∴()(cos cos )0AA BD AA AD AB ab A AB A AD ''''⋅=⋅-=∠-∠=, ∴AA BD '⊥,∵//AA DD '',∴DD BD '⊥,所以,对角面BB D D ''是矩形,它的面积是BD BB ab '⨯=.例2.已知:正四棱柱ABCD A B C D ''''-的底面边长为2, (1)求二面角B AC B '--的大小;(2)求点B 到平面AB C '的距离. 解:(1)连结BD ,设,AC BD 交于O ,连结B O', ∵ABCD 是正方形,∴BO AC ⊥, 又∵BB '⊥底面ABCD ,∴B O AC '⊥,∴B OB '∠是二面角B AC B '--的平面角, 在Rt B OB '∆中,12OB AC ==BB '=, ∴45B OB '∠=,∴二面角B AC B '--为45.(2)作BH B O '⊥于H ,∵AC ⊥平面B OB ',∴BH AC ⊥, ∴BH ⊥平面AB C ',即BH 为点B 到平面AB C '的距离, 在等腰直角三角形B OB '中,∵BB BO '==∴1BH =,所以,点B 到平面AB C '的距离为1.例3.棱长为a 的正方体OABC O A B C ''''-中,,E F 分别为棱,A B B C上的动点,且(0)A E B F x x a==≤≤,(1)求证:A F C E ''⊥;(2)当BEF ∆的面积取得最大值时,求二面角B EF B '--的大小. 证:(1)以O 为原点,直线,,OA OC OO '分别为,,x y z 系,∴AE BF x ==,则(,0,)A a a ',(0,,)C a a ',(,,0)E a x ,(,,0)F a x a -, ∴(,,),(,,)A F x a a C E a x a a ''=--=--,2()A F C E ax a x a a ''⋅=-+-+220ax ax a a =-+-+=,∴A F C E ''⊥.(2)由,BF x EB a x ==-,则2211()()2228BEFx a x a S x a x ∆+-=-≤=,当且仅当x a x =-,即2ax =时等号成立,此时,E F 分别为,AB BC 的中点, 取EF 的中点M ,连BM ,则BM EF ⊥,根据三垂线定理知EF B M '⊥,∴B MB '∠即为二面角B EF B '--的平面角,在Rt BMF ∆中,,24BM BF a BB a '===, 在Rt B BM '∆中,tan 4B BB MB BM''∠=== 所以,二面角B EF B '--的大小是22arctan .例4如图,M 、N 分别是棱长为1的正方体''''D C B A ABCD -的棱'BB 、''C B 的中点.求异面直线MN 与'CD 所成的角. 解:∵MN =1(')2CC BC +,'CD ='CC CD +, ∴·'MN CD =1(')2CC BC +·(')CC CD + =21(2|'|CC +'?CC CD +·'BC CC +·BC CD ). ∵CD CC ⊥',BC CC ⊥',CD BC ⊥,∴'?0CC CD =,·'0BC CC =,·0BC CD =, ∴·'MN CD =212|'|CC =21. 又∵2||2MN =,|'|2CD = ∴c os <,'MN CD >=·'·'MN CD MN CD =212·2221=, ∴<,'MN CD >= 60,即异面直线MN 与'CD 所成的角为60.评述由以上例题,可以看到利用向量解几何题的一般方法:把线段或角度转化为向量表示式,并用已知向量表示未知向量,然后通过向量的运算去计算或证明.四、课堂练习:1.正方体1111ABCD A B C D -中,11AA =,M 为AD 中点,N 为1BD 上一点,1:1:2D N NB =,MCBD P =,A C 1(1)求证:NP 平面ABCD;CC D D所成的角;(2)求平面PNC与平面11D MB的距离.(3)求点C到平面12.直平行六面体的两条对角线分别为9cm,底面周长为18cm,侧棱长为4cm,求它的表面积.五、小结:.平行六面体的概念.直平行六面体、长方体、正方体的关系.长方体对角线的性质.能利用长方体对角线的性质计算有关长度与角度的问题.解决棱柱中有关线线、线面、面面问题时,常用的方法是推理法、向量法,推理及运算时要灵活的结合运用棱柱的性质.六、课后作业:七、板书设计(略).八、课后记:。

高二数学棱锥人教版知识精讲

高二数学棱锥人教版【同步教育信息】一. 本周教学内容:棱锥二. 重点、难点:(1)棱锥的定义:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。

(2)棱锥的分类:按底面边数可把棱锥分为三棱锥、四棱锥、五棱锥……(3)棱锥性质:如果棱锥被平行于底面的平面所截,那么截面和底面相似,并且它们面积的比等于截得的棱锥的高和已知棱锥的高的平方比。

过高的中点平行于底面的截面叫做中截面。

(4)特殊的棱锥——正棱锥:如果一个棱锥的底面是正多边形,并且顶点在底面的射影是底面中心,这样的棱锥叫做正棱锥。

正棱锥有下面一些性质:①各侧棱相等,各侧面都是全等的等腰三角形。

各等腰三角形底边上的高相等,叫做正棱锥的斜高。

②棱锥的高、斜高和斜高在底面上的射影组成一个直角三角形;棱锥的高、侧棱和侧棱在底面上的射影也组成一个直角三角形。

如果正棱锥的底面周长是c,斜高是h′,那么它的侧面积是:【典型例题】例1. 如图1,已知三棱锥S-ABC,下列命题中假命题是[ ]①若SA=SB=SC,则点S在平面ABC上的射影为△ABC的外心;②若SA=SB=SC,则三棱锥为正三棱锥;③若点S到△ABC各边的距离都相等,则点S在平面ABC上的射影为△ABC的内心;④若SA,SB,SC两两垂直,则点S在平面ABC上的射影为△SBC的垂心。

A. ①B. ②③C. ②④D. ④③解:设点S在平面ABC上的射影为点O,若SA=SB=SC,则OA=OB=OC。

所以O 为△ABC的外心。

所以①是真命题。

尽管O是外心,但是由于不能确定△ABC是否是正三角形,所以不能确定三棱锥是正三棱锥。

所以②是假命题。

过点S分别作SE⊥AB,SF⊥BC,SM⊥AC,垂足分别为E,F,M。

连结EO,OF,OM易证OE⊥AB,OF⊥BC,OM⊥AC,且OE=OF=OM。

若点O在△ABC内部(如图2),则O为三条内角平分线的交点,O为内心;若点O在△ABC外部(如图3),则显然O 不是△ABC的内心,O是△ABC一条内角平分线和两条外角平分线的交点(O是旁心)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
面直角坐标系与数学直角坐标系有3点不同:测量坐标系以过原点的子午线为X轴,测量坐标系以X轴正向为始边(),测量坐标系原点坐标为两个大正整数。A.逆时针定方位角与象限B.逆时针定象限角与象限C.顺时针定方位角与象限D.顺时针定象限角与象限 [单选]一般情况下问卷应在多长时间内完成,否则会影响应答的效率()A.20分钟B.30分钟C.40分钟D.50分钟E.1小时 [单选]根据《节约能源法》的相关规定,关于工业节能的表述,不正确的是()。A.国务院和省、自治区、直辖市人民政府推进能源资源优化开发利用和合理配置B.国家鼓励工业企业采用高效、节能的电动机、锅炉、窑炉、风机、泵类等设备C.禁止新建不符合国家规定的燃煤发电机组、燃油发电 [单选]开发合同中索赔的性质属于()。A.经济补偿B.经济惩罚C.经济制裁D.经济补偿和经济制裁 [单选]混凝土强度中()最大。A.抗压强度B.抗拉强度C.抗弯强度D.抗剪强度 [单选]以下疾病中除皮损外尚有周围神经病变的是()A.红斑狼疮B.迟发性皮肤卟啉病C.光线性网织细胞增多症D.烟酸缺乏症 [单选]下列选项中哪项不是小肠运动的基本形式?()A、钟摆运动B、集团蠕动C、蠕动和逆蠕动D、分节运动 [单选]某企业2012年度税前会计利润为2000万元,其中本年国债利息收入120万元,税收滞纳金20万元。企业所得税税率为25%,假定不考虑其他因素,该企业2012年度所得税费用为()万元。A.465B.470C.475D.500 [单选]对于放热反应,一般是反应温度(),有利于反应的进行。A、升高;B、降低;C、不变;D、改变。 [单选]具有祛风,通络,止痉作用的药物是()。A.白附子B.木瓜C.蕲蛇D.桑枝E.丝瓜络 [单选,A2型题,A1/A2型题]普查原发性肝癌最简单有效的方法是()。A.B超B.肝脏核素扫描C.MRID.AFP测定E.强化肝脏CT [单选]下列关于项目资本金验资的表述,错误的是()。A.项目资本金以货币资金出资的,应按照建设项目开户银行实际收到的资金和日期作为投资者投入资本的入账依据B.项目资本金以实物或无形资产作为出资的,应按照投资协议或合同确定的价值作为投资者出资入账的价值C.项目资本金以实 [问答题,简答题]王小航(8岁),父母为其购买机票,单独乘机去广州看外婆婆,在填写客票时,姓名栏中应如何注明?什么年龄范围的儿童允许办理这种旅行?这种小旅客的座位安排上应注意什么? [单选]下列选项中哪项不属于前肢的主要肌肉?()A、斜方肌B、半腱肌C、菱形肌D、背阔肌 [单选]对于长期处于潮湿环境的重要混凝土结构用砂,应采用砂浆棒(快速法)或砂浆长度法进行骨料的碱活性检验。经上述检验判断为有潜在危害时,应控制混凝土中的碱含量不超过()。A.1kg/m3B.2kg/m3C.3kg/m3 [单选,A2型题,A1/A2型题]有关著名的郭霍法则,下列说法不正确的是()。A.特殊的病原菌应在同一种疾病中查见,在健康者中不存在B.该特殊病原菌能被分离培养得纯种C.该纯培养物接种至易感动物,虽不引起病症,但可长期定植D.自人工感染动物体内能重新获得该病原菌纯培养E.郭霍法则 [单选]由婴儿到成人,上颌骨宽度增长约为()A.1.0倍B.1.6倍C.3.2倍D.0.8倍E.2.0倍 [单选]排水沟沿道路布置时,纵坡至少不得小于()。A.0.2%B.0.4%C.0.6%D.0.8% [单选]经济全球化的基础是()A.战后多边贸易的迅速发展B.战后科学技术的迅猛发展C.战后金融市场的迅速发展D.布雷顿森林会议体系崩溃 [问答题,案例分析题]某市政府投资的一建设工程项目,项目法人单位委托某招标代理机构采用公开招标方式代理项目施工招标,并委托具有相应资质的工程造价咨询企业编制了招标控制价。招标过程中发生以下事件:事件l:招标信息在招标信息网上发布后,招标人考虑到该项目建设工期紧,为 [单选,A1型题]以下哪种核反应同时放出中微子()A.&alpha;衰变B.&beta;衰变C.&gamma;衰变D.电子俘获E.裂变 [填空题]国内外普遍使用的罐藏容器为()、()、()。 [单选]审计监督的本质特征是其有()的经济监督行为。A.行政性B.严肃性C.独立性D.强制性 [填空题]在集邮门市前台业务管理子系统,提供两种预订方式,即()和暂发收据。 [问答题,案例分析题]【病例摘要】王某,女,68岁,工人。于2011年9月15日就诊。患者于3年前出现颜面及双下肢水肿,时轻时重,伴血压升高,血压最高170/100mmHg,曾到多家医院检查尿常规:蛋白(++)~(+++),近一个月来水肿加重,而来就诊。现症见:颜面及双下肢水肿,乏力,纳 [单选]甲、乙两公司因合同履行发生争议。甲依双方的仲裁条款申请仲裁。某仲裁委员受理该申请后,经双方当事人协议组成仲裁庭。仲裁庭确定7月21日开庭审理该争议案件后,依法书面通知了申请人与被申请人。7月21日,甲公司无正当理由未出庭参与案件的审理活动。此时仲裁庭可以采取: [单选]下列哪种仲裁协议无效?()A.限制民事行为能力人订立的仲裁协议B.甲、乙双方约定,将汽车购买合同争议提交中国国际经济贸易仲裁委员会进行仲裁C.甲、乙双方约定,将争议提交仲裁机构仲裁,同时约定仲裁规则D.甲、乙双方对仲裁委员会没有约定,在发生纠纷后,达成补充协议 [填空题]嘌呤环的C4、C5来自();C2和C8来自();C6来自();N3和N9来自()。 [判断题]生豆饼中因含有抗胰蛋白酶因子,故不能饲喂哺乳仔猪。()A.正确B.错误 [多选]导致钻孔灌注桩施工中断桩的原因有()。A.混凝土坍落度太小,骨料太大,运输距离过长,混凝土和易性差B.计算导管埋管深度时出错,或盲目提升导管,使导管脱离混凝土面C.钢筋笼将导管卡住,强力拔管时,使泥浆混入混凝土中D.桩底清孔不彻底E.导管接头处渗漏,泥浆进入管内,混 [单选,A2型题,A1/A2型题]属于真核细胞型微生物的是()A.葡萄球菌B.钩端螺旋体C.白假丝酵母菌D.沙眼衣原体E.流感病毒 [单选,A1型题]关于产后出血预防正确的是()A.宫口开全时肌注缩宫素10UB.应在宫缩较强时娩出胎头C.双胎妊娠,在第一胎肩部娩出后肌注催产素D.胎儿娩出后,应用手按摩子宫帮助胎盘娩出E.产后在产房密切观察宫缩及阴道流血情况2小时 [单选]选择ERP软件产品时,以下哪种因素不在我们的考虑范围?()A.供应商的实力、信誉B.实施队伍、服务C.产品的已有客户群D.企业和产品的宣传 [单选,A2型题,A1/A2型题]选择氢原子核作为人体磁共振成像的原子核的理由是()A.1H是人体中最多的原子核B.1H约占人体中总原子核数的2/3以上C.1H的磁化率在人体磁性原子核中是最高的D.以上都是E.以上都不是 [单选,A2型题,A1/A2型题]关于NBT试验下列说法正确的是()A.用于检测巨噬细胞的胞内杀菌能力B.细胞杀细菌过程中耗氧量逐渐减少C.细胞内磷酸己糖旁路代谢活力不变D.NBT试验可以接受氧分子E.淡黄色的NBT还原成点状的颗粒,并沉积于胞质内 [单选]Cotard综合征常见于()。A.精神分裂症B.老年性痴呆C.老年抑郁症D.顶叶病变E.麻痹性痴呆 [单选,A2型题,A1/A2型题]症见"吐涎沫""多涎唾""遗尿,小便数"者,治宜用()。A.甘草干姜汤B.小青龙加石膏汤C.射干麻黄汤D.泽泻汤E.葶苈大枣泻肺汤 [单选]某些人在收入较低时购买黑白电视机,在收入提高时,则去购买彩色电视机,黑白电视机对这些人来说是()。A、生活必需品B、奢侈品C、劣质商品D、吉芬商品 [单选,A1型题]下列泻下药中有效成分不溶于水,宜人丸散的药物是()A.芒硝B.番泻叶C.火麻仁D.牵牛子E.甘遂 [问答题,简答题]描述一下C#中索引器的实现过程,是否只能根据数字进行索引?
相关文档
最新文档