成都高二上期期末考试数学理及答案
四川省高二上学期期末教学质量检测理科数学试题(解析版)

期末教学质量检测 数学试题卷(理工类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题).满分150分,考试时间120分钟. 注意事项:1.答题前,务必将自己的姓名.准考证号等填写在答题卷规定的位置上.2.答选择题时,必须使用2B 铅笔将答题卷上对应题目的答案标号涂黑.3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卷规定的位置上.4.考试结束后,将答题卷交回.第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,有且只有一项是符合题目要求.1. 平面∥平面,,则直线和的位置关系( )αβ,a b αβ⊂⊂a b A. 平行 B. 平行或异面C. 平行或相交D. 平行或相交或异面【答案】B 【解析】 【分析】利用平面∥平面,可得平面与平面没有公共点,根据,可得直线,没有公共αβαβ,a b αβ⊂⊂a b 点,即可得到结论.【详解】∵平面平面,∴平面与平面没有公共点 //αβαβ∵,,∴直线,没有公共点 a α⊂b β⊂a b ∴直线,的位置关系是平行或异面, a b 故选:B.2. 双曲线的左、右焦点坐标分别是 ,虚轴长为4,则双曲线的标准方程是( )()()123,03,0F F -,A.B.22154x y -=22154y x -=C.D.221134x y -=221916x y -=【答案】A 【解析】【分析】根据双曲线的几何性质即可求解的值.,,a b c 【详解】由题意,双曲线的左、右焦点坐标分别是,所以, 12(3,0),(3,0)F F -3c =又虚轴长为,则,所以,所以,424b =2b =a = 所以双曲线的标准方程为, 22154x y -=故选:A.3. 已知表示两条不同直线,表示平面,下列说法正确的是 ,m n αA. 若,则 B. 若,则 ,m n ααA A m n A ,m n αα⊥∥m n ⊥C. 若,则 D. 若,则,m m n α⊥⊥n α⊥,m n m α⊥∥n αA 【答案】B 【解析】【分析】根据直线与平面的位置关系,可判定A ,利用线面垂直的性质,可判定B ;根据线面垂直的性质和直线与平面的位置关系,可判定C 、D ,得到答案.【详解】由题意,对于A 中,若,则与相交、平行或异面,所以不正确; ,m n ααA A m n 对于B 中,若,根据线面垂直的性质可知是正确的; ,m n αα⊥∥m n ⊥对于C 中,若,则与平行、相交或在平面内,所以不正确; ,m m n α⊥⊥n α对于D 中,若,则与的位置关系不确定,所以不正确,故选B.,m n m α⊥∥n α【点睛】本题主要考查了空间中直线与平面的位置关系的判定,其中解答中熟记空间中线面位置关系的判定定理和线面垂直的性质是解答本题的关键,着重考查了推理与论证能力,属于基础题.4. 在空间直角坐标系中,已知,则的中点关于平面的对称点坐标()()1,0,2,3,2,4M N --MN Q xOy 是()A. B.C.D.()1,1,1-()1,1,1--()1,1,1--()1,1,1【答案】D 【解析】 【分析】由中点坐标公式可得点,再由关于平面对称的点的特征即可得解. ()1,1,1Q -xOy 【详解】因为,所以的中点,()()1,0,2,3,2,4M N --MN ()1,1,1Q -所以点关于平面的对称点坐标是. Q xOy ()1,1,1故选:D.5. 已知椭圆的两个焦点是,点在椭圆上,若,则的面积是22142x y +=12F F 、P 12||||2PF PF -=12PF F ∆A.B.C.D.1+1+【答案】D 【解析】【详解】,可得,2212+1,4,242x y PF PF c =∴+== 122PF PF -= 123,1PF PF ==,是直角三角形,的面积故选(2219+= 21PF F ∴∆12PF F ∴∆21211122PF F F ⨯=⨯⨯=D.6. 某四棱锥的三视图如图所示,该四棱锥的表面积是A. 32B. 16+C. 48D. 16+【答案】B 【解析】【详解】由题意知原几何体是正四棱锥,其中正四棱锥的高为2,底面是一个边长为4的正方形,过顶点向底面做垂线,垂线段长是2,过底面的中心向长度是4的边做垂线,连接垂足与顶点,得到直角三角形,得到斜高是2,所以四个侧面积是,底面面积为,所以该四棱锥的表面积是16+,故选B .点评:本题考查由三视图求几何体的表面积,做此题型的关键是正确还原几何体及几何体的棱的长度.7. 已知为椭圆上的点,点到椭圆焦点的距离的最小值为,最大值为1P 2222:1(0)x y C a b a b+=>>P 28,则椭圆的离心率为( ) A.B.C.D.35455453【答案】B 【解析】【分析】根据点到椭圆焦点的距离的最小值为,最大值为18,列出a ,c 的方程组,进而解出a ,c ,最P 2后求出离心率.【详解】因为点到椭圆焦点的距离的最小值为,最大值为18, P 2所以,210188a c a a c c -==⎧⎧⇒⎨⎨+==⎩⎩所以椭圆的离心率为:. 45c e a ==故选:B.8. 在长方体中,,,为的中点,则异面直线与1111ABCD A B C D -12AB AA ==1AD =E 1CC 1BC AE 所成角的余弦值为 ( )A .B.C.D.【答案】B 【解析】【分析】建立空间直角坐标系结合空间向量的数量积即可求解.【详解】解:由题意,在长方体中,以为原点建立如图所示的空间直角坐标系D由题知,,为的中点,则12AB AA ==1AD =E 1CC ,,, ()1,0,0A ()1,2,0B ()10,2,2C ()0,2,1E 所以,()1,2,1AE =- ()11,0,2BC =-设直线与所成角为,则1BC AE α11cos AE BC AE BC α⋅====所以直线与 1BC AE 故选:B .9. 已知矩形,,,将矩形沿对角线折成大小为的二面角ABCD 4AB =3BC =ABCD AC θ,则折叠后形成的四面体的外接球的表面积是B ACD --ABCD A. B.C.D. 与的大小有关9π16π25πθ【答案】C 【解析】【详解】由题意得,在二面角内的中点O 到点A,B,C,D 的距离相等,且为,所以点O 即D B AC --AC 522AC =为外接球的球心,且球半径为,所以外接球的表面积为.选C . 52R =24=25S R ππ=10. 已知点P 是抛物线上的-个动点,则点P 到点A(0, 1)的距离与点P 到y 轴的距离之和的最小214x y =值为 A. 2 B.C.D.11+【答案】C 【解析】【详解】抛物线,可得:y 2=4x ,抛物线的焦点坐标(1,0). 214x y =依题点P 到点A (0,1)的距离与点P 到y 轴的距离之和的最小值,就是P 到(0,1)与P 到该抛物线准线的距离的和减去1.由抛物线的定义,可得则点P 到点A (0,1)的距离与P 到该抛物线焦点坐标的距离之和减1,.1故选C .11. 已知为坐标原点,双曲线:的右焦点为,直线过点且与的右支交于,O C 2213y x -=F l F C M 两点,若,,则直线的斜率为( )N 2OM ON OA +=8OA OF ⋅=l k A. B.C.D.2±±3±【答案】B 【解析】【分析】根据点差法,结合平面向量坐标表示公式、斜率的公式进行求解即可.【详解】设,,,由题可知,是线段的中点,()11,M x y ()22,N x y ()00,A x y ()2,0F A MN ,∴,∵,分别是双曲线右支上的点,∴两式相减并整理得028OA OF x ⋅== 04x =M N 221122221,31,3y x y x ⎧-=⎪⎪⎨⎪-=⎪⎩,∴,即, ()()()()1212121203y y y y x x x x +-+--=002203y k x⋅-=0403y k⋅-=又,∴,∴. 00022AF y yk k x ===-0y =±k =故选:B【点睛】关键点睛:应用点差法,结合平面向量运算的坐标表示公式是解题的关键.12. 已知是椭圆上一点,,是椭圆的左,右焦点,点是的内心,延长交M 2212516x y +=1F 2F I 12MF F ∆MI线段于,则的值为( )12F F N MI INA.B.C.D.53354334【答案】A 【解析】【分析】如图,点是椭圆上一点,过点M 作BM 垂直直线于点,过点作垂直直M 2212516x y +=12F F B I IA 线于点,设的内切圆半径为,则,由得:12F F A 12MF F ∆r IA r =121212MF F MF I MIF IF F S S S S =++A A A A 12112211112222F F MB r MF r F F r MF ⋅=++又,故得:,所以,由椭圆方程122MF MF a +=111222222c MB r a r c ⋅=⋅+⋅IA c MB a c =+得:,,,所以由与相似,可2212516x y +=5a =4b =3c ==38IA c MB a c ==+MNB A INA A 得:,令,则,可求得:,问38IA INMBMN ==3IN m =8MN m =383IN IN m IM MN IN m m ===--35题得解.【详解】如图,点是椭圆上一点,过点M 作BM 垂直直线于点,过点I 作垂直直M 2212516x y +=12F F B IA 线于点,设的内切圆半径为,则,由三角形面积相等即:12F F A 12MF F ∆r IA r =得:121212MF F MF I MIF IF F S S S S =++A A A A 12112211112222F F MB r MF r F F r MF ⋅=++又,故得:,所以,由椭圆方程122MF MF a +=111222222c MB r a r c ⋅=⋅+⋅IA c MB a c =+得:,,,所以由与相似,可2212516x y +=5a =4b =3c ==38IA c MB a c ==+MNB A INA A 得:,令,则,可求得:,故38IA INMBMN ==3IN m =8MN m =383IN IN m IM MN IN m m ===--35选A .【点睛】本题主要是利用三角形相似将所求的比值转化成三角形相似比问题,即构造两个三角形相似来处理,对于内切圆问题通常利用等面积法列方程.即:即:=++(其中是ABC S A IBC S A IAC S A IAB S A I ABC A 的内切圆圆心),从而解决问题. ⇔1()2ABC S r a b c =++A 第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题5分,共20分.请将答案填在答题卷中的相应位置.13. 若抛物线上任意一点到点的距离与到直线的距离相等,则___________. 22y px =(1,0)=1x -p =【答案】 2【解析】【分析】直接由抛物线的定义求解即可. 【详解】由抛物线的定义可得,解得. 12p=2p =故答案为:2.14. 已知直线与圆相切,则a 的值为_____________. 340x y a ++=221x y +=【答案】 5±【解析】 【分析】利用圆心到直线的距离,直接求的值.d r =a【详解】由题意可知圆心到直线的距离,d r =1d ∴==解得:. 5a =±故答案为:5±【点睛】本题考查直线与圆的位置相切,求参数,属于简单题型.15. 设点,分别为椭圆C :的左,右焦点,点是椭圆上任意一点,若使得1F 2F 2214x y +=P C 成立的点恰好是4个,则实数的一个取值可以为_________.12PF PF m ⋅=m 【答案】0(答案不唯一) 【解析】【分析】当时,说明椭圆上存在4点满足条件. 120PF PF ⋅=【详解】当时,,则,0m =120PF PF ⋅= 12PF PF ⊥由椭圆方程可知,,,,因为,所以以为直径的圆与椭圆有4个交点,使24a =21b =23c =c b >12F F 得成立的点恰好有4个,所以实数的一个取值可以为0.120PF PF ⋅=m 故答案为:0(答案不唯一)16. 在长方体中,已知底面为正方形,为的中点,,1111ABCD A B C D -ABCD P 11A D 2AD =,点为正方形所在平面内的一个动点,且满足,则线段的长度的1AA =Q ABCD QC =BQ 最大值是________. 【答案】 6【解析】【分析】在正方形所在平面内建立平面直角坐标系,设,由,可得ABCD (,)Q x y QC =,进而可得出结果.22(2)4x y ++=【详解】在正方形所在平面内建立平面直角坐标系,设, ABCD (,)Q x y 则有,, 2223(1)PQ x y =++-222(2)(2)QC x y =-+-因为,所以,QC =2222(2)(2)622(1)x y x y -+-=++-整理得,22(2)4x y ++=所以点的轨迹是以为圆心,以为半径的圆, Q (2,0)-2所以线段长度的最大值为. BQ 2226⨯+=故答案为6【点睛】本题主要考查点线面间的距离计算,以及立体几何中的轨迹问题,常用坐标系的方法处理,属于常考题型.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17. 已知圆经过坐标原点和点,且圆心在轴上. C O ()4,0x (1)求圆的方程;C (2)设直线经过点,且与圆相交所得弦长为的方程. l ()1,2l C l 【答案】(1)()2224x y -+=(2)或. 10x -=34110x y +-=【解析】【分析】(1)设圆的方程为,再利用待定系数法求出,即可得解;C ()()2220x a y rr -+=>,a r (2)分类讨论直线的斜率存在与不存在两种情况,结合弦长公式及点到直线的距离公式即可求解. 【小问1详解】依题意,设圆的方程为,C ()()2220x a y rr -+=>则有,解得, ()22224a r a r⎧=⎪⎨-=⎪⎩224a r =⎧⎨=⎩所以圆的方程为; C ()2224x y -+=【小问2详解】由弦长公式知,解得,==1d =即圆心到直线的距离为1,()2,0C l当直线斜率不存在时,即符合题意,l 1x =当直线斜率存在时,设直线方程为,即,l 2(1)y k x -=-20kx y k --+=,解得, 1=34k =-所以直线的方程为,即, l 32(1)4y x -=--34110x y +-=综上,直线的方程为或.l 10x -=34110x y +-=18. 如图所示,在四棱锥中,四边形是正方形,点分别是线段的中点.C ABED -ABED ,G F ,EC BD(1)求证:;//GF ABC 平面(2)线段上是否存在一点,使得面面,若存在,请找出点并证明;若不存在,请说BC H GFH ∥ACD H 明理由.【答案】(1)见证明;(2)见解析【解析】【分析】(1)由四边形为正方形可知,连接必与相交于中点,证得,利用ABED AE BD F GF AC A 线面平行的判定定理,即可得到面;GF A ABC (2)由点分别为中点,得,由线面平行的判定定理,证得面,G H ,CE CB GH EB AD ∥∥GH A ,由面面平行的判定定理,即可得到证明.ACD 【详解】(1)证明:由四边形为正方形可知,连接必与相交于中点ABED AE BD F 故GF AC A ∵面GF ⊄ABC ∴面GF A ABC (2)线段上存在一点满足题意,且点是中点BC H H BC理由如下:由点分别为中点可得:,G H ,CE CBGH EB AD A A ∵面GH ⊄ACD ∴面GH A ACD 由(1)可知,面GF A ACD 且GF GH G ⋂=故面面GFH A ACD 【点睛】本题考查线面位置关系的判定与证明,熟练掌握空间中线面位置关系的定义、判定、几何特征是解答的关键,其中垂直、平行关系证明中应用转化与化归思想的常见类型:(1)证明线面、面面平行,需转化为证明线线平行;(2)证明线面垂直,需转化为证明线线垂直,着重考查了推理与论证能力. 19. 如图,在多面体中,矩形,矩形所在的平面均垂直于正方形所在ABCDEFG ADEF CDEG ABCD 的平面,且.2,3AB AF ==(1)求多面体的体积;ABCDEFG (2)求平面与平面所成锐二面角的余弦值.BFG ADEF【答案】(1)10(2【解析】【分析】(1)利用补形法和体积差减去三棱锥的体积即可;B FHG -(2)以为坐标原点,分别为轴正方向建立空间直角坐标系,求出平面与平A ,,AB AD AF ,,x y z BFG 面的法向量,,求出,并结合立体图形判定二面角为锐角,从ADEF 21,1,3m ⎛⎫=- ⎪⎝⎭()1,0,0n = ,m n 而进一步求出二面角余弦值即可.【小问1详解】平面,同理均与平面垂直,故可将多面体补成如图所示的,AF AD AF ⊥∴⊥ ABCD ,ED GC ABCD 长方体,此长方体体积为,三棱锥的体积为,故此ABCD FHGE -22312⨯⨯=B FHG -12323⨯⨯=多面体的体积为10;【小问2详解】以为坐标原点,分别为轴正方向建立空间直角坐标系,则A ,,AB AD AF ,,x y z ,()()()()()0,0,0,2,0,0,0,2,0,0,0,3,2,2,3A B D F G ,设平面的法向量为,()()2,0,3,2,2,0BF FG ∴=-= BFG (),,m x y z =则,令得, 230220x z x y -+=⎧⎨+=⎩1x =21,1,3m ⎛⎫=- ⎪⎝⎭ 又为正方形,,故平面,ABCD AB AD ∴⊥AB ⊥ADEF 为平面的一个法向量,()1,0,0n∴= ADEF ,cos ,m n ==故平面与平面BFG ADEF 20. 已知在平面直角坐标系中,椭圆的离心率为,过焦点的直xOy 2222:1(0)x y C a b a b+=>>12(1,0)F 线与椭圆交于两点.l ,A B (1)求椭圆的标准方程;C (2)从下面两个条件中任选其一作为已知,证明另一个成立:①;②直线的斜率满足:. 415=AB l k 214k =【答案】(1) 22143x y +=(2)答案见解析【解析】【分析】(1)由椭圆的性质求解,(2)联立直线与椭圆方程公式,由弦长公式与韦达定理化简求解,【小问1详解】依题意,有:,则,121c a c ⎧=⎪⎨⎪=⎩21a b c =⎧⎪=⎨⎪=⎩故椭圆的标准方程为:· 22143x y +=【小问2详解】选①作为已知:当直线斜率不存在时,与椭圆交点为,此时,不合题意, :1l x =3(1,2±41215=≠AB 当直线斜率存在时,设,联立,有:, :l y kx k =-22::143l y kx k x y C =-⎧⎪⎨+=⎪⎩2222(43)84120k x k x k +-+-=,22222(8)4(43)(412)169(1)∆=--+-=⋅+k k k k 则, 22211243+=-==⋅+k AB x k 令,则有:, 154AB =22221511220151616443+=⋅⇒+=++k k k k 解得, 214k =选②作为已知:依题意,,则直线, 12k =±1:(1)2=±-l y x 联立,有, ()22112:143y x x y C ⎧=±-⎪⎪⎨⎪+=⎪⎩242110x x --=,2(2)44(11)180∆=--⨯⨯-=则, 2154AB x =-==即 415=AB 21. 如图,在四棱柱中,底面是正方形,平面平面,1111ABCD A B C D -ABCD 11A ADD ⊥ABCD ,.2AD =11AA A D =(1)求证:; 1A D AB ⊥(2)若直线与平面,求的长度. AB 11A DC 1AA 【答案】(1)证明见解析(2)12AA =【解析】【分析】(1)利用面面垂直的性质可证得平面,再利用线面垂直的性质可证得结论成立; AB ⊥11AA D D (2)取的中点,连接,证明出平面,以点为坐标原点,、、AD O 1AO 1A O ⊥ABCD O AB AD 1OA 的方向分别为、、的正方向建立空间直角坐标系,设,其中,利用空间向量法可得x y z 1A O a =0a >出关于的方程,求出的值,即可求得棱的长.a a 1AA 【小问1详解】证明:因为四边形为正方形,则,ABCD AB AD ⊥因为平面平面,平面平面,平面, 11A ADD ⊥ABCD 11 A ADD ABCD AD =AB ⊂ABCD 平面,AB ∴⊥11AA D D 平面,所以,.1A D ⊂Q 11AA D D 1AB A D ⊥【小问2详解】解:取的中点,连接,AD O 1AO,为的中点,则,11AA A D = O AD 1A O AD ⊥因为平面平面,平面平面,平面, 11AA D D ⊥ABCD 11AA D D ⋂ABCD AD =1AO ⊂11AA D D 所以,平面,1A O ⊥ABCD 以点为坐标原点,、、的方向分别为、、的正方向建立如下图所示的空间直角坐标O AB AD 1OA x y z 系,设,其中,1A O a =0a>则、、、、,()0,1,0A -()2,1,0B -()10,0,A a ()12,2,C a ()0,1,0D ,,,()2,0,0AB = ()112,2,0A C =u u u u r ()10,1,A D a =- 设平面的法向量为,则,取,则, 11A C D (),,m x y z = 1112200m A C x y m A D y az ⎧⋅=+=⎪⎨⋅=-=⎪⎩ x a =(),,1m a a =-- 由题意可得cos ,AB m AB m AB m ⋅<>====⋅,解得,则.0a > a =12AA == 22. 已知以动点为圆心的与直线:相切,与定圆:相外切. P P A l 12x =-F A 221(1)4x y -+=(Ⅰ)求动圆圆心的轨迹方程;P C (Ⅱ)过曲线上位于轴两侧的点、(不与轴垂直)分别作直线的垂线,垂足记为、C x M N MN x l 1M ,直线交轴于点,记、、的面积分别为、、,且1N l x A 1AMM ∆AMN ∆1ANN ∆1S 2S 3S 22134S S S =,证明:直线过定点.MN 【答案】(Ⅰ);(Ⅱ)详见解析.24y x =【解析】【分析】(Ⅰ)根据题意,点到直线的距离与到的距离相等,由抛物线的定义可得解; P =1x -(1,0)F (Ⅱ)设、,用坐标表示、、,利用韦达定理,代入即得解. 111,2M y ⎛⎫- ⎪⎝⎭21,2N y ⎛⎫- ⎪⎝⎭1S 2S 3S 【详解】(Ⅰ)设,半径为,则,,所以点到直线的距离(,)P x y P A R 12R x =+1||2PF R =+P =1x -与到的距离相等,故点的轨迹方程为.(1,0)F P C 24y x =(Ⅱ)设,,则、 ()11,M x y ()22,N x y 111,2M y ⎛⎫- ⎪⎝⎭21,2N y ⎛⎫- ⎪⎝⎭设直线:()代入中得MN x ty n =+0t ≠24y x =2440y ty n --=,124y y t +=1240y y n =-<∵、 1111122S x y =+⋅3221122S x y =+⋅∴ 131********S S x x y y ⎛⎫⎛⎫=++ ⎪⎪⎝⎭⎝⎭ 12121122ty n ty n y y ⎛⎫⎛⎫=++++ ⎪⎪⎝⎭⎝⎭ ()22121211422t y y n t y y n n ⎡⎤⎛⎫⎛⎫=+++++⋅-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦2221144422nt t n n n ⎡⎤⎛⎫⎛⎫=-++++⋅⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦ 221242t n n ⎡⎤⎛⎫=++⋅⎢⎥ ⎪⎝⎭⎢⎥⎣⎦又212111222S n y y n =+⋅-=+∴ ()()22222211116164422S n t n n t n ⎛⎫⎛⎫=+⋅+=+⋅+ ⎪ ⎪⎝⎭⎝⎭ 222222131114842222S S S nt n t n n n ⎛⎫⎛⎫=⇔=+⇔=+⇒= ⎪ ⎪⎝⎭⎝⎭∴直线恒过 MN 1,02⎛⎫ ⎪⎝⎭【点睛】本题考查了直线和抛物线综合,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.。
2023-2024学年四川省成都市校级联考高二(上)期末数学试卷(含答案)

2023-2024学年四川省成都市校级联考高二(上)期末数学试卷一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知向量a =(1,1,2),b =(−3,2,0),则a +b 在a 上的投影向量为( )A. (32,32,322) B. (1510, 1510, 3010)C. (34,34,3 24) D. (−25,35, 25)2.平面直角坐标系内,与点A(1,1)的距离为1且与圆(x−1)2+(y−4)2=4相切的直线有( )A. 4条B. 3条C. 2条D. 0条3.设−A 、−B 分别是事件A 、B 的对立事件,P(A)>0,P(B)>0,则下列结论不正确的是( )A. P(A)+P(−A )=1B. 若A 、B 是互斥事件,则P(A ∩B)=P(A)P(B)C. P(A ∪−A )=1D. 若A 、B 是独立事件,则P(A ∩B)=P(A)P(B)4.如图,在平行六面体ABCD−A 1B 1C 1D 1中,以顶点A 为端点的三条棱长度都为1,且两两夹角为60°,则AC1⋅BD 1=( )A. 12B. 1C. 32D. 25.在样本频率分布直方图中共有9个小矩形,若其中1个小矩形的面积等于其他8个小矩形面积和的25,且样本容量为210,则该组的频数为( )A. 28B. 40C. 56D. 606.已知双曲线C :x 22−y 24=1的左、右焦点分别为F 1,F 2,过F 1作其中一条渐近线的垂线,垂足为P ,则|P F 2|为( )A.3B. 23C. 2D. 47.已知抛物线y 2=4x 的焦点为F ,其上有两点A ,B ,若AB 的中点为M ,满足MF 的斜率等于1,则|BF|的最大值是( )A. 7B. 8C. 5+23D. 108.半径为R 的光滑半球形碗中放置着4个半径为r 的质量相同的小球,且小球的球心在同一水平面上,今将另一个完全相同的小球至于其上方,若小球不滑动,则Rr 的最大值是( )A. 25+1B. 27+1C. 211+1D. 213+1二、多选题:本题共4小题,共20分。
2022-2023学年四川省成都市高二上册期末数学(理)质量检测试题(含解析)

2022-2023学年四川省成都市高二上册期末数学(理)质量检测试题一、单选题1.某社区有500个家庭,其中高收入家庭125户,中等收入家庭280户,低收入家庭95户,为了调查社会购买力的某项指标,要从中抽取一个容量为100户的样本,记作①;某学校高一年级有12名女排球运动员,要从中选出3人调查学习负担情况,记作②,那么完成上述2项调查应采用的抽样方法是A .①用随机抽样法,②用系统抽样法B .①用分层抽样法,②用随机抽样法C .①用系统抽样法,②用分层抽样法D .①用分层抽样法,②用系统抽样法【正确答案】B【分析】调查社会购买力的某项指标,受到家庭收入的影响,而社区中各个家庭收入差别明显,所以分层抽样最佳;由于②样本容量不大,且抽取的人数较少,故可用随机抽样法.【详解】对于①,因为社会购买力的某项指标,受到家庭收入的影响,而社区中各个家庭收入差别明显,所以要从中抽一个样本容量是100的样本应该用分层抽样法;对于②,由于样本容量不大,且抽取的人数较少,故可采用简单随机抽样法抽取样本所以选B本题考查收集数据的方法,当总体中的个体较少时,一般用简单随机抽样;当总体中的个体较多时,一般用系统抽样;当总体由差异明显的几部分组成时,一般用分层抽样,属于基础题.2.下面命题正确的是()A .“若0ab ≠,则0a ≠”的否命题为真命题;B .命题“若任意的1x <,则21x <”的否定是“存在1x ≥,则21x ≥”;C .设,R x y ∈,则“2x ≥且2y ≥”是“224x y +≥”的必要不充分条件;D .设,a b R ∈,则“0a ≠”是“0ab ≠”的必要不充分条件.【正确答案】D【分析】对于A ,写出其否命题,判断其真假即可;对于B ,写出其否定即可判断;对于C ,D ,根据充分条件和必要条件的概念判断即可.【详解】对于A ,“若0ab ≠,则0a ≠”的否命题为“若0ab =,则0a =”,否命题显然是假命题,故A 不正确;对于B ,命题“若任意的1x <,则21x <”的否定是“存在1x <,则21x ≥”,故B 不正确;对于C ,由2x ≥且2y ≥能够推出224x y +≥,由224x y +≥不能够推出2x ≥且2y ≥,所以“2x ≥且2y ≥”是“224x y +≥”的充分不必要条件,故C 不正确;对于D ,由0a ≠不能够推出0ab ≠,由0ab ≠能够推出0a ≠,所以“0a ≠”是“0ab ≠”的必要不充分条件,故D 正确.故选:D3.直线3y kx =+被圆()()22234x y -+-=截得的弦长为2,则直线的倾斜角为()A .3πB .3π-或3πC .3π或23πD .6π或56π【正确答案】C【分析】根据垂径定理求出直线斜率,再求倾斜角得选项.【详解】因为2222|233|4()(),321k k k-+=+∴=±+,因此直线的倾斜角为3π或23π,故选:C本题考查垂径定理以及斜率与倾斜角关系,考查基本分析求解能力,属基础题.4.执行下面的程序框图,如果输入的3N =,那么输出的S =A .1B .32C .53D .52【正确答案】C【分析】根据框图的流程模拟运行程序,直到满足条件3K >,跳出循环,计算输出S 的值.【详解】由程序框图知:输入3N =时,1K =,0S =,T 1=,第一次循环1T =,1S =,2K =;第二次循环12T =,13122S =+=,3K =;第三次循环16T =,1151263S =++=,4K =;满足条件3K >,跳出循环,输出53S =,故选C .本题主要考查了循环结构的程序框图,当循环的次数较少时,根据框图的流程模拟运行程序是解答此类问题的常用方法,当循环次数较多时,寻找其规律,注意循环的终止条件是解题的关键,属于基础题.5.已知双曲线2222:1(0,0)x y C a b a b-=>>的离心率为2,则双曲线C 的渐近线方程为()A .y =B .y =C .12y x =±D .2y x=±【正确答案】A【分析】依题意2c a=,再根据222c a b =+,即可得到223b a =,从而求出渐近线方程;【详解】解:因为双曲线2222:1(0,0)x y C a b a b -=>>的离心率为2,即2c e a ==,又222c a b =+,所以2222222214c a b b e a a a +===+=,所以223b a =,所以b a =C 的渐近线方程为y =;故选:A6.从装有两个红球和两个白球的口袋内任取两个球,那么互斥而不对立的事件是()A .至少有一个白球与都是红球B .恰好有一个白球与都是红球C .至少有一个白球与都是白球D .至少有一个白球与至少一个红球【正确答案】B【分析】列举每个事件所包含的基本事件,结合互斥事件和对立事件的定义,依次验证即可.【详解】解:对于A ,事件:“至少有一个白球”与事件:“都是红球”不能同时发生,但是对立,故A 错误;对于B ,事件:“恰好有一个白球”与事件:“都是红球”不能同时发生,但从口袋内任取两个球时还有可能是两个都是白球,所以两个事件互斥而不对立,故B 正确;对于C ,事件:“至少有一个白球”与事件:“都是白球”可以同时发生,所以这两个事件不是互斥的,故C 错误;对于D ,事件:“至少有一个白球”与事件:“至少一个红球”可以同时发生,即“一个白球,一个红球”,所以这两个事件不是互斥的,故D 错误.故选:B.7.已知点(,)M x y 为平面区域212x y x y +≥⎧⎪≤⎨⎪≤⎩上的一个动点,则1y z x =+的取值范围是()A .1[2,)2⎛⎤-∞+∞ ⎥⎝⎦ ,B .122⎡⎤-⎢⎥⎣⎦,C .122⎡⎤⎢⎥⎣⎦D .1,22⎡⎤-⎢⎥⎣⎦【正确答案】C【分析】根据不等式组作出可行域,根据1yz x =+的几何意义:可行域内的点(,)x y 与(1,0)-连线的斜率求解即可.【详解】由约束条件212x y x y +≥⎧⎪≤⎨⎪≤⎩作出可行域如图:1yz x =+的几何意义是可行域内的点(,)x y 与(1,0)-连线的斜率,由可行域可知,当取点(0,2)B 时,连线斜率最大,所以z 的最大值为20201z -==+,当取点(1,1)A 时,连线斜率最小,所以z 的最小值为101112z -==+,则1y z x =+的取值范围是122⎡⎤⎢⎥⎣⎦,.故选:C.本题主要考查了简单线性规划问题中的目标函数范围问题,属于中档题,解决线性规划问题的关键是正确地作出可行域,准确地理解目标函数的几何意义.8.变量x 与y 的数据如表所示,其中缺少了一个数值,已知y 关于x 的线性回归方程为 1.2 3.8y x =-,则缺少的数值为()x2223242526y2324▲2628A .24B .25C .25.5D .26【正确答案】A【分析】可设出缺少的数值,利用表中的数据,分别表示出x 、y ,将样本中心点()x y 带入回归方程,即可求得参数.【详解】设缺少的数值为a ,则2223242526245x ++++==,2324262810155a ay +++++==,因为回归直线方程经过样本点的中心,所以101 1.224 3.85a+=⨯-,解得24a =.故选:A .9.已知抛物线C :212y x =的焦点为F ,准线为l ,点A 在C 上,AB l ⊥于B ,若π3FAB ∠=,则AF =()A .4B .12CD .【正确答案】B【分析】结合抛物线定义,ABF △为正三角形,即可解决.【详解】由题知抛物线C :212y x =,开口向右,6P =,记准线l 与x 轴交于点D ,因为AB l ⊥,根据抛物线定义有:AF AB =,因为π3FAB ∠=,所以ABF △为正三角形,所以ππ,33AFB AFx ∠=∠=,所以π3BFD ∠=因为焦点到准线的距离为6P =,所以12BF =,所以12AB AF ==,故选:B10.设集合{}|2,0A x a x a a =--<,命题p :1A ∈,命题q :2A ∈,若p q ∨为真命题,p q ∧为假命题,则a 的取值范围是()A .01a <<或2a >B .01a <<或2a ≥C .12a <≤D .12a ≤≤【正确答案】C【详解】试题分析:p q ∨ 为真命题,p q ∧为假命题∴当p 真q 假时有21{122a a a a --⇒≤≤<<<,当p 假q 真时有,故1{22a a a a ≤⇒∈∅--<<综上:12a ≤<故答案为12](,.复合命题的真假性判断和应用11.已知O 为坐标原点,双曲线C :()222104x y b b-=>的右焦点为F ,以OF 为直径的圆与C 的两条渐近线分别交于与原点不重合的点A ,B ,若OA OB +=,则ABF △的周长为()A .6B .C .4+D .4+【正确答案】B【分析】结合双曲线图像对称性,可得AB x ⊥轴,根据圆的性质和双曲线a ,b ,c 的关系可计算出||AF ,|BF |,||AB 的长度,进而求出ABF △的周长.【详解】设AB 与x 轴交于点D ,由双曲线的对称性可知AB x ⊥轴,||||OA OB =,2AB AD =,又因为OA OB +=,所以OA =,即2AD OA =,所以60AOF ∠=︒,因为点A 在以OF 为直径的圆上,所以OA AF ⊥,OA 所在的渐近线方程为by x a=,点(c,0)F 到渐进线by x a=距离为bc a AF b ==,所以2OA a ==,所以tan 60AF BF OA ==︒=sin 60AD BD OA ==︒,所以ABF △的周长为AF BF AD BD +++=故选:B12.设椭圆22221(0)x y a b a b+=>>的右焦点为F ,过点F 作与x 轴垂直的直线l 交椭圆于P ,B 两点(点P 在第一象限),过椭圆的左顶点和上顶点的直线1l 与直线l 交于A 点,且满足AP BP <,设O 为坐标原点,若(,)OP OA OB R λμλμ=+∈ ,29λμ=,则该椭圆的离心率为A .35B .1213C .35或1213D .45【正确答案】A【详解】分析:根据向量共线定理及29λμ=,AP BP < ,可推出λ,μ的值,再根据过点F 作与x 轴垂直的直线l 交椭圆于P ,B 两点(点P 在第一象限),可推出P ,B 两点的坐标,然后求出过椭圆的左顶点和上顶点的直线1l 的方程,即可求得A 点的坐标,从而可得a ,b ,c 三者关系,进而可得椭圆的离心率.详解:∵A 、P 、B 三点共线,(),OP OA OB R λμλμ=+∈∴1λμ+=又∵29λμ=∴1323λμ⎧=⎪⎪⎨⎪=⎪⎩或2313λμ⎧=⎪⎪⎨⎪=⎪⎩∵AP BP < ∴2313λμ⎧=⎪⎪⎨⎪=⎪⎩∵过点F 作与x 轴垂直的直线l 交椭圆于P ,B 两点(点P 在第一象限)∴2(,)b P c a ,2(,b B c a-∵过椭圆的左顶点和上顶点的直线1l 与直线l 交于A 点∴直线1l 的方程为为1x ya b+=-∴()(,)a c bA c a+∵2133OP OA OB =+ ∴222()1()33b a c b b a a a+=⋅+⋅-,即2b a c =+.∴22224()2a c a ac c -=++,即223520a c ac --=.∴25230e e +-=∵(0,1)e ∈∴35e =故选A.点睛:本题考查了双曲线的几何性质,离心率的求法,考查了转化思想以及运算能力,双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出,a c ,代入公式c e a=;②只需要根据一个条件得到关于,,a b c 的齐次式,转化为,a c 的齐次式,然后转化为关于e 的方程(不等式),解方程(不等式),即可得e (e 的取值范围).二、填空题13.抛物线28y x =的焦点到准线的距离是______.【正确答案】116【分析】化方程为标准方程,焦点到准线的距离【详解】抛物线28y x =化为标准方程为抛物线218x y =,则其焦准距为116=p ,即焦点到准线的距离是116.故11614.执行下面的程序后输出的第3个数是______.【正确答案】2【分析】运行程序,执行循环语句,即可求解.【详解】由题意,运行程序:第一次输出的数是1,第二次输出的数是13122x =+=,第三次输出的数是31222x =+=,故2.15.在定圆上随机取三点A 、B 、C ,则ABC 是锐角三角形的概率等于______.【正确答案】14##0.25【分析】根据题意,设,,A B C ∠∠∠对应的弧度数分别为,,πx y x y --,得到试验的全部结果构成事件:}{(,)0π,0π,0πB x y x y x y =<<<<<+<,再根据记“ABC 是锐角三角形”为事件A ,πππ(,)0,0,π222A x y x y x y ⎧⎫=<<<<<+<⎨⎬⎭⎩,作图,可得其概率的值.【详解】设,,A B C ∠∠∠对应的弧度数分别为,,πx y x y --,则试验的全部结果构成事件:}{(,)0π,0π,0πB x y x y x y =<<<<<+<,记“ABC 是锐角三角形”为事件A ,则πππ(,)0,0,π222A x y x y x y ⎧⎫=<<<<<+<⎨⎬⎭⎩,如下图阴影部分,结合图像,ABC 是锐角三角形的概率为1()4P A =.故1416.已知直线y kx =与椭圆C :222212x y b b +=交于A ,B 两点,弦BC 平行y 轴,交x 轴于D ,AD 的延长线交椭圆于E ,下列说法中正确的命题有______.①椭圆C 的离心率为:2;②12AE k k =;③12AE BE k k ⋅=-;④以AE 为直径的圆过点B .【正确答案】②③④【分析】根据椭圆C 的方程得到:222a b =,22c b =,即可求得椭圆的离心率;由椭圆的对称性知A 、B 关于原点对称,设()00,A x y ,则()00,B x y --,()0,0D x -,结合斜率公式可以判断②;设(),E m n ,联立直线()0:2k AE y x x =+和椭圆222212x y C b b+=:,得到:()222222002240k x k x x k x b +++-=,根据根与系数的关系和E 在直线AE 上得到1BE k k=-,即可判断③和④.【详解】由题意得:222a b =,则2222c a b b =-=,所以椭圆的离心率2c e a =,所以①错误;又由椭圆的对称性知A 、B 关于原点对称,设()00,A x y ,则()00,B x y --,()0,0D x -,由斜率公式得:002AD y k x =,000022AB y y k k x x ===,由题知0k ≠则12AD k k =,所以②正确;由上得直线AE 的方程为()02k y x x =+,设(),E m n ,则()02k n m x =+,则()000000022BE k m x y n y y k k m x m x m x +++===++++,联立直线AE 和椭圆C 得:()222222002240k x k x x k x b +++-=,因为直线AE 经过点D ,点D 在椭圆C 内,则0∆>,所以200222k x x m k -+=+,将其代入002BE y k k m x =++,又00k y x =,所以220202212222BE k k k k k y k x k k ⎛⎫++=+⨯-=-=- ⎪⎝⎭,则1BE AB k k ⋅=-,即BE AB ⊥,所以以AE 为直径的圆过点B ,所以④正确;又1122AE BE k k k k ⎛⎫⋅=⨯-=- ⎪⎝⎭,所以③正确;故②③④.三、解答题17.已知圆C 上有两个点A ()2,3,B ()4,9,且AB 为直径.(1)求圆C 的方程;(2)已知P ()0,5,求过点P 且与圆C 相切的直线方程.【正确答案】(1)()()223610x y -+-=(2)35y x =-+【分析】(1)由中点坐标公式求出圆心C 坐标,再求出半径,即可得到圆的方程;(2)先判断点P 在圆C 上,再求得直线PC 的斜率,从而得到切线的斜率,即可求解.【详解】(1)因为圆C 的直径为AB ,故其圆心为C ()3,6,其半径为12AB ,故圆C 的方程为:()()223610x y -+-=.(2)因为()()22035610-+-=,故P 在圆C 上,连接PC ,而直线PC 的斜率:561033PC k -==-,故圆C 在P 处的切线的斜率为3k =-,故所求切线的方程为:35y x =-+.18.某公司为了解所经销商品的使用情况,随机问卷50名使用者,然后根据这50名的问卷评分数据,统计得到如图所示的频率布直方图,其统计数据分组区间为[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].(1)求频率分布直方图中a 的值;(2)求这50名问卷评分数据的中位数;(3)从评分在[40,60)的问卷者中,随机抽取2人,求此2人评分都在[50,60)的概率.【正确答案】(1)0.006;(2)76;(3)310.【分析】(1)由频率分布直方图的各小矩形的面积和为1可得:()0.028 2 0.0232 0.0156 0.004101a +⨯+++⨯=,解之可得答案;(2)由频率分布的直方图可得设中位数为m ,列出方程()()0.004 0.006 0.023210 700.0280.5m ++⨯+-⨯=,解之可得答案;(3)由频率分布直方图可知评分在[40,60)内的人数和评分在[50,60)内的人数,再运用列举法可求得概率.【详解】(1)由频率分布直方图可得:()0.028 2 0.0232 0.0156 0.004101a +⨯+++⨯=,解得a =0.006;(2)由频率分布的直方图可得设中位数为m ,故可得()()0.004 0.006 0.023210 700.0280.5m ++⨯+-⨯=,解得m =76,所以这50名问卷评分数据的中位数为76.(3)由频率分布直方图可知评分在[40,60)内的人数为0.004 50100.00610505⨯⨯+⨯⨯=(人),评分在[50,60)内的人数为0.00650103⨯⨯=(人),设分数在[40,50)内的2人为12,a a ,分数在[50,60)内的3人为123,,b b b ,则在这5人中抽取2人的情况有:()12,a a ,()11,a b ,()12,a b ,()13,a b ,()21,a b ,()22,a b ,()23,a b ,()12,b b ,()13,b b ,()23,b b ,共有10种情况,其中分数在在[50,60)内的2人有()12,b b ,()13,b b ,()23,b b ,有3种情况,所以概率为P =310.本题考查频率直方图的识别和计算,以及运用列举法求古典概率的问题,属于中档题.19.已知双曲线C 的焦点在x 轴上,焦距为4,且它的一条渐近线方程为3y x =.(1)求C 的标准方程;(2)若直线1:12l y x =-与双曲线C 交于A ,B 两点,求||AB .【正确答案】(1)2213x y -=(2)【分析】(1)焦点在x 轴上,设方程为22221(0,0)x y a b a b-=>>根据题意求出,a b 即可(2)设点,联立方程组,消元得一元二次方程,由韦达定理,然后利用弦长公式计算即可【详解】(1)因为焦点在x 轴上,设双曲线C 的标准方程为22221(0,0)x y a b a b-=>>,由题意得24c =,所以2c =,①又双曲线C的一条渐近线为3y x =,所以b a =,②又222+=a b c ,③联立上述式子解得a =1b =,故所求方程为2213x y -=;(2)设11(,)A x y ,22(,)B x y ,联立2211213y x x y ⎧=-⎪⎪⎨⎪-=⎪⎩,整理得213604x x +-=,由2134((6)1504∆=-⨯⨯-=>,所以1212x x +=-,1224x x =-,即AB ===20.某书店销售刚刚上市的高二数学单元测试卷,按事先拟定的价格进行5天试销,每种单价试销1天,得到如下数据:单价/元1819202122销量/册6156504845由数据知,销量y 与单价x 之间呈线性相关关系.(1)求y 关于x 的回归直线方程;附:()()()121ni i i n i i x x y y b x x ==--=-∑∑,a y bx =-$$.(2)预计以后的销售中,销量与单价服从(1)中的回归直线方程,已知每册单元测试卷的成本是10元,为了获得最大利润,该单元测试卷的单价应定为多少元?【正确答案】(1) 4132y x =-+(2)21.5元【分析】(1)根据表中数据求得x 和y ,再求得b和 a ,即可得到y 关于x 的回归直线方程;(2)由题意得获得的利润241721320z x x =-+-,结合二次函数的性质即可求解.【详解】(1)由表格数据得1819202122205x ++++==,6156504845525y ++++==.则()()5140i i i x x y y =--=-∑,()52110i i x x=-=∑,则40410b -==- , ()52420132a y bx =-=--⨯= ,则y 关于的回归直线方程为 4132y x =-+.(2)获得的利润()()210413241721320z x x x x =--+=-+-,对应抛物线开口向下,则当()17221.524x =-=⨯-时,z 取得最大值,即为了获得最大利润,该单元测试卷的单价应定为21.5元.21.在平面直角坐标系xOy 中,椭圆2222:1(0)x y C a b a b +=>>P 到一个焦点的距离的最小值为1)-.(1)求椭圆C 的标准方程;(2)已知过点(0,1)M -的动直线l 与椭圆C 交于A ,B 两点,试判断以AB 为直径的圆是否恒过定点,并说明理由.【正确答案】(1)221189x y +=;(2)过定点(0,3),理由见解析.【分析】(1)利用2c a =,椭圆上动点P 到一个焦点的距离的最小值为3a c -=,求解a ,c ,得到b ,即可求出椭圆方程;(2)当直线l 的斜率为0时,令1y =-,则4x =±,此时以AB 为直径的圆的方程为22(1)16x y ++=.当直线l 的斜率不存在时,以AB 为直径的圆的方程为229x y +=,求出两个圆的交点坐标,即可得到猜想以AB 为直径的圆恒过定点(0,3)T .对一般情况证明如下:设过点(0,1)M -的直线l 的方程为1y kx =-与椭圆C 交于1(A x ,1)y ,2(B x ,2)y ,则221218y kx x y =-⎧⎨+=⎩利用韦达定理,通过数量积证明TA TB ⊥.即可得到结论.【详解】(1)由题意2c a =,故a ,又椭圆上动点P 到一个焦点的距离的最小值为1),所以3a c -=-,解得3c =,a =,所以2229b a c =-=,所以椭圆C 的标准方程为221189x y +=;(2)当直线l 的斜率为0时,令1y =-,则4x =±,此时以AB 为直径的圆的方程为2(1)16x y ++=.当直线l 的斜率不存在时,以AB 为直径的圆的方程为229x y +=,联立2222(1)169x y x y ⎧++=⎨+=⎩解得0x =,3y =,即两圆过点(0,3)T .猜想以AB 为直径的圆恒过定点(0,3)T .对一般情况证明如下:设过点(0,1)M -的直线l 的方程为1y kx =-与椭圆C 交于1(A x ,1)y ,2(B x ,2)y ,则221218y kx x y =-⎧⎨+=⎩整理得22(12)4160k x kx +--=,所以121222416,1212k x x x x k k +==-++.因为1122121212(,3)(,3)3()9TA TB x y x y x x y y y y =--=+-++ 121212(1)(1)3(11)9x x kx kx kx kx =+----+-+21212(1)4()16k x x k x x =+-++22222216(1)1616(12)16160121212k k k k k k -+-+=-+=+=+++,所以TA TB ⊥.所以存在以AB 为直径的圆恒过定点T ,且定点T 的坐标为(0,3).本题考查直线与椭圆的位置关系的综合应用,椭圆与圆的位置关系的应用,考查定值定点问题,考查转化思想以及计算能力,属于中档题.22.如图,已知点(10)F ,为抛物线22(0)y px p =>的焦点,过点F 的直线交抛物线于,A B 两点,点C 在抛物线上,使得ABC 的重心G 在x 轴上,直线AC 交x 轴于点Q ,且Q 在点F 右侧.记,AFG CQG △△的面积为12,S S.(1)求p 的值及抛物线的准线方程;(2)求12S S 的最小值及此时点G 的坐标.【正确答案】(1)2,=1x -;(2)1()2,0G .【分析】(1)由焦点坐标确定p 的值和准线方程即可;(2)设出直线方程,联立直线方程和抛物线方程,结合韦达定理求得面积的表达式,最后结合均值不等式的结论即可求得12S S 的最小值和点G 的坐标.【详解】(1)由题意可得12p =,则2,24p p ==,抛物线方程为24y x =,准线方程为=1x -.(2)设()()1122,,,A x y B x y ,设直线AB 的方程为()1,0y k x k =->,与抛物线方程24y x =联立可得:()2222240k x k x k -++=,故:1212242,1x x x x k+=+=,()12121242,4y y k x x y y k +=+-==-⨯=-,设点C 的坐标为()33,C x y ,由重心坐标公式可得:1233G x x x x ++=321423x k ⎛⎫++ ⎝=⎪⎭,1233G y y y y ++=3143y k =⎛⎫+ ⎪⎝⎭,令0G y =可得:34y k =-,则233244y x k ==.即222144123382G k x k k ⎛⎫⎛⎫+++ ⎪⎝⎭⎝=⎭=,由斜率公式可得:131322311313444AC y y y y k y y x x y y --===-+-,直线AC 的方程为:()33134y y x x y y -=-+,令0y =可得:()()231331331334444Q y y y y y y y y y x x -+-+=+=+=-,故()11112218121323118223G F y S x x y y k k ⎡⎤⎛⎫⎛⎫+-⨯=⨯- ⎪=⨯-⨯ ⎪⎢⎥⎝⎭⎝=⨯⎭⎣⎦,且()()32213311822423Q G y y y S x x y k ⎛⎫+ ⎪⎝⎭⎡⎤=⨯-⨯-=---⎢⎥⎣⎦,由于34y k=-,代入上式可得:12222833y S k k k ⎛⎫=-- ⎪⎝⎭,由12124,4y y y y k+==-可得1144y y k -=,则12144y k y =-,则()()()2211122121112281233222284433y y S y S y y k k k y k -==⎛⎫-+--⎛⎫⨯- ⎭ ⎪⎝⎭⎪⎝()212142488168y y =--++-21≥=当且仅当21214888y y-=-,即218y =+1y =.此时12144y k y ==-281223G x k ⎛⎫+= ⎪⎝⎭=,则点G 的坐标为()2,0G .直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系,本题主要考查了抛物线准线方程的求解,直线与抛物线的位置关系,三角形重心公式的应用,基本不等式求最值的方法等知识,意在考查学生的转化能力和计算求解能力.。
四川省成都市2023-2024学年高二上学期期末复习数学试题(三)含解析

成都高2025届高二期末考试数学复习试题(三)(答案在最后)一、单选题(共8个小题,每个小题5分,共40分)1.设直线l sin 20y θ++=,则直线l 的倾斜角的取值范围是()A.[)0,πB.πππ2π,,3223⎡⎫⎛⎤⎪ ⎢⎥⎣⎭⎝⎦C.π2π,33⎡⎤⎢⎥⎣⎦D.π2π0,,π33⎡⎤⎡⎫⎪⎢⎥⎢⎣⎦⎣⎭U 【答案】D 【解析】【分析】根据直线斜率的范围求倾斜角的取值范围.sin 20y θ++=的倾斜角为[)0πa a Î,,,则由直线可得tan a q =Î,所以π2π0,,π33a 轾轹÷Î犏÷犏臌滕,故选:D2.能够使得圆x 2+y 2-2x +4y +1=0上恰有两个点到直线2x +y +c =0距离等于1的c 的一个值为()A.2B.C.3D.【答案】C 【解析】【分析】利用圆心到直线的距离大于1且小于3,列不等式求解即可.【详解】由圆的标准方程()()22124x y -++=,可得圆心为()1,2-,半径为2,根据圆的性质可知,当圆心到直线的距离大于1且小于3时,圆上有两点到直线20x y c ++=的距离为1,由()1,3d =可得(c ∈-⋃,经验证,3c =∈,符合题意,故选C.【点睛】本题主要考查圆的标准方程,点到直线距离公式的距离公式以及圆的几何性质,意在考查数形结合思想的应用,属于中档题.3.若椭圆的中心为原点,对称轴为坐标轴,短轴的一个端点与两焦点构成个正三角形,焦点到椭圆上点的)A.221129x y +=B.221129x y +=或221912x y +=C.2213612x y += D.以上都不对【答案】B 【解析】【分析】由短轴的一个端点与两焦点构成个正三角形可得b =,由焦点到椭圆上点的最短距离为a c -,结合222a b c =+可得.【详解】由题意,当椭圆焦点在x 轴上,设椭圆方程为:22221x ya b+=,由题意b =,a c -=所以2a c ===,c =a =,3b =,所以椭圆方程为:221129x y +=,当椭圆焦点在y 轴上时,同理可得:221912x y+=,故选:B4.某市经济开发区的经济发展取得阶段性成效,为深入了解该区的发展情况,现对该区两企业进行连续11个月的调研,得到两企业这11个月利润增长指数折线图(如下图所示),下列说法正确的是()A.这11个月甲企业月利润增长指数的平均数没超过82%B.这11个月的乙企业月利润增长指数的第70百分位数小于82%C.这11个月的甲企业月利润增长指数较乙企业更稳定D.在这11个月中任选2个月,则这2个月乙企业月利润增长指数都小于82%的概率为411【答案】C 【解析】【分析】根据折线图估算AC ,对于B 项把月利润增长指数从小到大排列,计算1170⨯%=7.7可求,对于D 项用古典概型的概率解决.【详解】显然甲企业大部分月份位于82%以上,故利润增长均数大于82%,A 不正确;乙企业润增长指数按从小到大排列分别是第2,1,3,4,8,5,6,7,9,11,10又因为1170⨯%=7.7,所以从小到大排列的第8个月份,即7月份是第70百分位,从折线图可知,7月份利润增长均数大于82%,故B 错误;观察折现图发现甲企业的数据更集中,所以甲企业月利润增长指数较乙企业更稳定,故C 正确;P (2个月乙企业月利润增长指数都小于82%)26211C 3C 11==,故D 错误.故选:C.5.已知空间三点(4,1,9),(10,1,6),(2,4,3)A B C -,则下列结论不正确的是()A.||||AB AC =B.点(8,2,0)P 在平面ABC 内C.AB AC ⊥D.若2AB CD =,则D 的坐标为31,5,2⎛⎫-- ⎪⎝⎭【答案】D 【解析】【分析】根据空间两点距离公式判断A ,根据数量积的坐标运算判断B ,根据共面向量基本定理判断C ,根据向量的坐标运算判断D.【详解】因为||7AB ==,||7AC ==,故A 正确;因为(6,2,3)(2,3,6)126180AB AC →→⋅=--⋅--=--+=,所以AB AC ⊥,故C 正确;因为(6,2,3),(2,3,6)AB AC →→=--=--,(4,1,9)AP →=-,所以(4,1,9)AP AB AC →→→=+=-,所以点(8,2,0)P 在平面ABC 内,故B 正确;因为92(1,9,))(62(22,31,8,,),92AB CD ==------=-- ,显然不成立,故D 错误.故选:D6.已知某人收集一个样本容量为50的一组数据,并求得其平均数为70,方差为75,现发现在收集这些数据时,其中得两个数据记录有误,一个错将80记录为60,另一个错将70记录为90,在对错误得数据进行更正后,重新求得样本的平均数为X ,方差为2s ,则()A.270,75X sB.270,75X s ><C.270,75X s =>D.270,75X s =<【答案】D 【解析】【分析】根据平均数与方差的定义判断.【详解】因为80706090+=+,因此平均数不变,即70X =,设其他48个数据依次为1248,,,a a a ,因此()()()()()222221248707070607090705075a a a -+-++-+-+-=⨯ ,()()()()()22222212487070708070707050a a a s -+-++-+-+-=⨯ ,()250751004001004000s -=--=-<,∴275s <,故选:D .7.如图所示,在直三棱柱111ABC A B C -中,ACBC ⊥,且3BC =,4AC =,13CC =,点P 在棱1AA 上,且三棱锥A PBC -的体积为4,则直线1BC 与平面PBC 所成角的正弦值等于()A.4B.4C.5D.5【答案】C 【解析】【分析】利用锥体的体积公式可求得2PA =,然后以点C 为坐标原点,CB 、CA 、1CC 所在直线分别为x 、y 、z 轴建立空间直角坐标系,利用空间向量法可求得直线1BC 与平面PBC 所成角的正弦值.【详解】由已知得1AA ⊥底面ABC ,且AC BC ⊥,所以111344332A PBC P ABC ABC V V S PA PA --==⨯⨯=⨯⨯⨯⨯=△,解得2PA =.如图所示,以点C 为坐标原点,CB 、CA 、1CC 所在直线分别为x 、y 、z 轴建立空间直角坐标系,则()0,0,0C 、()0,4,2P 、()3,0,0B 、()10,0,3C ,则()3,0,0CB = ,()0,4,2CP = ,()13,0,3BC =-.设平面BCP 的法向量为(),,n x y z =,则由00n CB n CP ⎧⋅=⎨⋅=⎩可得30420x y z =⎧⎨+=⎩,即020x y z =⎧⎨+=⎩,得0x =,令1y =,得2z =-,所以()0,1,2n =-为平面BCP 的一个法向量.设直线1BC 与平面PBC 所成的角为θ,则11110sin cos ,5n BC n BC n BC θ⋅=<>==⋅.故选:C.【点睛】方法点睛:求直线与平面所成角的方法:(1)定义法,①作,在直线上选取恰当的点向平面引垂线,确定垂足的位置是关键;②证,证明所作的角为直线与平面所成的角,证明的主要依据是直线与平面所成角的概念;③求,利用解三角形的知识求角;(2)向量法,sin cos ,AB n AB n AB nθ⋅=<>=⋅ (其中AB 为平面α的斜线,n为平面α的法向量,θ为斜线AB 与平面α所成的角).8.已知F 1,F 2分别为双曲线C :221412x y -=的左、右焦点,E 为双曲线C 的右顶点.过F 2的直线与双曲线C的右支交于A ,B 两点(其中点A 在第一象限),设M ,N 分别为△AF 1F 2,△BF 1F 2的内心,则ME NE -的取值范围是()A.44,33⎛⎫-⎪⎝⎭B.,33⎛⎫- ⎪ ⎪⎝⎭C.3333,55⎛⎫- ⎪⎪⎝⎭ D.,33⎛⎫- ⎪ ⎪⎝⎭【答案】B 【解析】【分析】利用平面几何和内心的性质,可知M ,N 的横坐标都是a ,得到MN ⊥x 轴,设直线AB 的倾斜角为θ,有22,22-∠=∠=EF M EF N πθθ,根据θ∈(60∘,90∘],将ME NE -表示为θ的三角函数可求得范围.【详解】解:设1212,,AF AF F F 上的切点分别为H 、I 、J ,则1122||||,,===AH AI F H F J F J F I .由122AF AF a -=,得()()12||||2+-+=AH HF AI IF a ,∴122-=HF IF a ,即122-=JF JF a.设内心M 的横坐标为0x ,由JM x ⊥轴得点J 的横坐标也为0x ,则()()002c x c x a +--=,得0x a =,则E 为直线JM 与x 轴的交点,即J 与E 重合.同理可得12BF F △的内心在直线JM 上,设直线AB 的领斜角为θ,则22,22-∠=∠=EF M EF N πθθ,||||()tan()tan 22--=---ME NE c a c a πθθcos sin 2cos 222()()()sin tan sin cos 22⎛⎫ ⎪=-⋅-=-=-⎪ ⎪⎝⎭c a c a c a θθθθθθθ,当2πθ=时,||||0ME NE -=;当2πθ≠时,由题知,2,4,===b a c a,因为A ,B 两点在双曲线的右支上,∴233ππθ<<,且2πθ≠,所以tan θ<tan θ>,∴3133tan 3θ-<<且10tan θ≠,∴44343||||,00,tan 33⎛⎫⎛⎫-=∈- ⎪ ⎪⎝⎭⎝⎭ME NE θ,综上所述,44343||||,tan 33⎛⎫-=∈- ⎪⎝⎭ME NE θ.故选:B.二、多选题(共4个小题,每个小题5分,共20分)9.已知甲罐中有五个相同的小球,标号为1,2,3,4,5,乙罐中有四个相同的小球,标号为1,4,5,6,现从甲罐、乙罐中分别随机抽取1个小球,记事件A =“抽取的两个小球标号之和大于6”,事件B =“抽取的两个小球标号之积小于6”,则()A.事件A 与事件B 是互斥事件B.事件A 与事件B 不是对立事件C.事件A B ⋃发生的概率为1920D.事件A 与事件B 是相互独立事件【答案】ABC 【解析】【分析】由两球编号写出事件,A B 所含有的基本事件,同时得出所有的基本事件,然后根据互斥事件、对立事件的定义判断AB ,求出A B ⋃的概率判断C ,由公式()()()P AB P A P B =判断D .【详解】甲罐中小球编号在前,乙罐中小球编号在后,表示一个基本事件,事件A 含有的基本事件有:16,25,26,34,35,36,44,45,46,54,55,56,共12个,事件B 含有的基本事件有:11,14,15,21,31,41,51,共7个,两者不可能同时发生,它们互斥,A 正确;基本事件15发生时,事件,A B 均不发生,不对立,B 正确;事件A B ⋃中含有19个基本事件,由以上分析知共有基本事件20个,因此19()20P A B =,C 正确;123()205P A ==,7()20P B =,()0P AB =()()P A P B ≠,,A B 不相互独立,D 错.故选:ABC .10.在如图所示试验装置中,两个长方形框架ABCD 与ABEF 全等,1AB =,2BC BE ==,且它们所在的平面互相垂直,活动弹子,M N 分别在长方形对角线AC 与BF 上移动,且(0CM BN a a ==<<,则下列说法正确的是()A.AB MN⊥ B.MN 2C.当MN 的长最小时,平面MNA 与平面MNB 所成夹角的余弦值为13D .()25215M ABN a V-=【答案】ABC 【解析】【分析】建立空间直角坐标系,写出相应点的坐标,利用空间向量数量积的运算即可判断选项A ;利用空间两点间距离公式即可判断选项B ;根据二面角的余弦值推导即可判断选项C ;根据棱锥的体积计算公式即可判断选项D .【详解】由题意可知:,,BA BC BE 两两互相垂直,以点B 为坐标原点,,,BA BE BC为,,x y z 轴正方向,建立空间直角坐标系,建系可得525525,0,2,,,05555a a a a M N ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭()25250,,2,1,0,055a a MN BA ⎛⎫∴=-= ⎪ ⎪⎝⎭,0,AB MN AB MN ∴⋅=∴⊥,故选项A 正确;又MN===∴当2a=时,min||MN=,故选项B正确;当MN最小时,,,2a M N=分别是,AC BF的中点,取MN中点K,连接AK和BK,,AM AN BM BN==,,AK MN BK MN∴⊥⊥,AKB∠∴是二面角A MN B--的平面角.BMN中,,2BM BN MN===,可得2BK==,同理可得2AK=,由余弦定理可得331144cos322AKB∠+-==,故选项C 正确;2125252522365515M ABN ABNa aV S h-⎛⎫-=⨯⨯=⨯-=⎪⎪⎝⎭,故选项D错误.故选:ABC.11.抛物线有如下光学性质:由其焦点射出的光线经拋物线反射后,沿平行于拋物线对称轴的方向射出.反之,平行于拋物线对称轴的入射光线经拋物线反射后必过抛物线的焦点.已知抛物线2:,C y x O=为坐标原点,一束平行于x轴的光线1l从点41,116P⎛⎫⎪⎝⎭射入,经过C上的点()11,A x y反射后,再经C上另一点()22,B x y 反射后,沿直线2l 射出,经过点Q ,则()A.PB 平分ABQ ∠B.121y y =-C.延长AO 交直线14x =-于点D ,则,,D B Q 三点共线D.2516AB =【答案】ACD 【解析】【分析】对于A ,根据题意求得()1,1A ,11,164B ⎛⎫- ⎪⎝⎭,从而证得PA AB =,结合平面几何的知识易得PB 平分ABQ ∠;对于B ,直接代入12,y y 即可得到1214y y =-;对于C ,结合题意求得11,44D ⎛⎫-- ⎪⎝⎭,由,,D B Q 的纵坐标相同得,,D B Q 三点共线;对于D ,由选项A 可知2516AB =.【详解】根据题意,由2:C y x =得1,04F ⎛⎫⎪⎝⎭,又由//PA x 轴,得()1,1A x ,代入2:C y x =得11x =(负值舍去),则()1,1A ,所以141314AF k ==-,故直线AF 为4134y x ⎛⎫=- ⎪⎝⎭,即4310x y --=,依题意知AB 经过抛物线焦点F ,故联立24310x y y x --=⎧⎨=⎩,解得11614x y ⎧=⎪⎪⎨⎪=-⎪⎩,即11,164B ⎛⎫- ⎪⎝⎭,对于A ,412511616PA =-=,2516AB =,故PA AB =,所以APB ABP ∠=∠,又因为//PA x 轴,//BQ x 轴,所以//PA BQ ,故APB PBQ =∠∠,所以ABP PBQ ∠=∠,则PB 平分ABQ ∠,故A 正确;对于B ,因为12141,y y =-=,故1214y y =-,故B 错误;对于C ,易得AO 的方程为y x =,联立14y x x =⎧⎪⎨=-⎪⎩,故11,44D ⎛⎫-- ⎪⎝⎭,又//BQ x 轴,所以,,D B Q 三点的纵坐标都相同,则,,D B Q 三点共线,故C 正确;对于D ,由选项A 知2516AB =,故D 正确.故选:ACD..12.己知椭圆222:1(02)4x y C b b+=<<的左,右焦点分别为1F ,2F ,圆22:(2)1M x y +-=,点P 在椭圆C 上,点Q 在圆M 上,则下列说法正确的有()A.若椭圆C 和圆M 没有交点,则椭圆C的离心率的取值范围是2,1⎛⎫⎪ ⎪⎝⎭B.若1b =,则||PQ 的最大值为4C.若存在点P 使得213PF PF =,则0b <≤D.若存在点Q使得12QF =,则1b =【答案】ACD 【解析】【分析】A 根据已知,数形结合得01b <<时椭圆C 和圆M 没有交点,进而求离心率范围;B 令(,)P x y ,求得||MP =,结合椭圆有界性得max ||MP =即可判断;C 由题设123,1PF PF ==,令(,)P x y,进而得到((222291x y x y⎧++=⎪⎨⎪-+=⎩,结合点在椭圆上得到公共解(0,2]x =求范围;D将问题化为圆心为的圆与圆22:(2)1M x y +-=有交点.【详解】由椭圆C 中2a =,圆M 中圆心(0,2)M ,半径为1,如下图示,A :由于02b <<,由图知:当01b <<时椭圆C 和圆M 没有交点,此时离心率,12e ⎛⎫⎪ ⎪⎝==⎭,对;B :当1b =时,令(,)P x y,则||MP =,而224(1)x y =-,所以||MP =,又11y -≤≤,故max ||MP =所以||PQ1+,错;C :由1224PF PF a +==,若213PF PF =,则123,1PF PF ==,由12(F F ,令(,)P x y ,且2221)(4x y b =-,则((222291x y x y⎧++=⎪⎨⎪+=⎩,即2222(4)200(4)120b x b x ⎧-+-=⎪⎨--+=⎪⎩,所以(0,2]x =,则23b ≤,且02b <<,故0b <≤D :令(,)Q x y,若12QF =,所以2222(3[(]x y x y +=-+,则222(4)0x b y -+-+=,所以222(3(4)x y b -+=-,Q轨迹是圆心为的圆,而(0,2)M与的距离为,要使点Q 存在,则1|1-≤≤,可得22(1)0b -≤,且02b <<,即1b =,对;故选:ACD【点睛】关键点点睛:对于C ,根据已知得到123,1PF PF ==,设(,)P x y ,利用两点距离公式得到方程组,求出公共解(0,2]x =为关键;对于D ,问题化为圆心为的圆与圆22:(2)1M x y +-=有交点为关键.三、填空题(共4个小题,每个小题5分,共20分)13.若直线1x y +=与直线2(1)40m x my ++-=平行,则这两条平行线之间的距离是__.【答案】322【解析】【分析】由题意结合直线平行的性质可得2m =-,再由平行线间的距离公式即可得解.【详解】 直线1x y +=与直线2(1)40m x my ++-=平行,∴2(1)4111m m +-=≠-,解得2m =-,故直线1x y +=与直线2(1)40m x my ++-=即为直线10x y +-=与直线20x y ++=,2=,故答案为:2.【点睛】本题考查了直线平行性质的应用,考查了平行线间距离公式的应用,属于基础题.14.曲线1y =+与直线l :y =k (x -2)+4有两个交点,则实数k 的取值范围是________.【答案】53124,纟çúçú棼【解析】【分析】首先画出曲线表示的半圆,再判断直线l 是过定点()24,的直线,利用数形结合判断k 的取值范围.【详解】直线l 过点A (2,4),又曲线1y =+0,1)为圆心,2为半径的半圆,如图,当直线l 与半圆相切,C 为切点时,圆心到直线l 的距离d =r,2=,解得512k =.当直线l 过点B (-2,1)时,直线l 的斜率为()413224-=--,则直线l 与半圆有两个不同的交点时,实数k 的取值范围为53124,纟çúçú棼.故答案为:53124,纟çúçú棼15.数学兴趣小组的四名同学各自抛掷骰子5次,分别记录每次骰子出现的点数,四名同学的部分统计结果如下:甲同学:中位数为3,方差为2.8;乙同学:平均数为3.4,方差为1.04;丙同学:中位数为3,众数为3;丁同学:平均数为3,中位数为2.根据统计结果,数据中肯定没有出现点数6的是______同学.【答案】乙【解析】【分析】假设出现6点,利用特例法,结合平均数和方差的计算公式,即可求解.【详解】对于甲同学,当投掷骰子出现结果为1,2,3,3,6时,满足中位数为3,平均数为:()11233635x =++++=,方差为()()()()()22222211323333363 2.85S ⎡⎤-+-+-+-+-⎣⎦==,可以出现点数6;对于乙同学,若平均数为3.4,且出现点数6,则方差221(6 3.4) 1.352 1.045S >-=>,所以当平均数为3.4,方差为1.04时,一定不会出现点数6;对于丙同学,当掷骰子出现的结果为1,2,3,3,6时,满足中位数为3,众数为3,可以出现点数6;对于丁同学,当投掷骰子出现的结果为2,2,2,3,6时,满足平均数为3,中位数为2,可以出现点数6.综上,根据统计结果,数据中肯定没有出现点数6的是乙同学.故答案为:乙16.已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为12,F F ,离心率为e ,点P 在椭圆上,连接1PF 并延长交C 于点Q ,连接2QF ,若存在点P 使2PQ QF =成立,则2e 的取值范围为___________.【答案】)11,1⎡-⎣【解析】【分析】设11,QF m PF n ==,所以存在点P 使2PQ QF =等价于()2min0,PQ QF -≤由2112am n b +=可求222PQ QF m n a -=+-的最小值,求得22b a的范围,从而得到2e 的取值范围.【详解】设11,QF m PF n ==,则22QF a m =-.显然当P 靠近右顶点时,2PQ QF >,所以存在点P 使2PQ QF =等价于()22min0,22PQ QF PQ QF m n a -≤-=+-,在12PF F △中由余弦定理得22221121122cos PF PF F F PF F F θ=+-⋅⋅,即()2222422cos a n n c n c θ-=+-⋅⋅,解得2cos b n a c θ=-,同理可得2cos b m a c θ=+,所以2112a m n b +=,所以()(2223112223222b b b n m m n m n a m n a m n a +⎛⎫⎛⎫+=++=++≥ ⎪ ⎝⎭⎝⎭,所以22min1)(22)22b m n a a a++-=-,当且仅当n =时等号成立.由221)202b a a+-≤得2212b a ≤-,所以2111e -≤<.故答案为:)11,1⎡-⎣【点睛】关键点点睛:求离心率范围关键是建立,,a b c 的不等式,此时将问题转化为()2min0PQ QF -≤,从而只需求222PQ QF m n a -=+-的最小值,求最小值的方法是结合焦半径性质211112aPF QF b+=使用基本不等式求解.四、解答题(共7个题,17题10分,18题—22题每题12分,共70分)17.在平面直角坐标系xOy 中,存在四点()0,1A ,()7,0B ,()4,9C ,()1,3D .(1)求过A ,B ,C 三点的圆M 的方程,并判断D 点与圆M 的位置关系;(2)若过D 点的直线l 被圆M 截得的弦长为8,求直线l 的方程.【答案】(1)228870x y x y +--+=,D 在圆M 内;(2)43130x y +-=或1x =.【解析】【分析】(1)设出圆的一般方程,利用待定系数法计算可得圆的方程,把D 坐标代入圆的方程判定位置关系即可;(2)对直线分类讨论,设出直线方程,利用直线与圆相交,已知弦长求直线方程.【小问1详解】设圆M 方程为220x y Dx Ey F ++++=,把A ,B ,C 三点坐标代入可得:10,4970,1681490,E F D F D E F ++=⎧⎪++=⎨⎪++++=⎩解得8D =-,8E =-,7F =,所以圆M 方程是228870x y x y +--+=,把D 点坐标代入可得:1982470+--+<,故D 在圆M 内;【小问2详解】由(1)可知圆M :()()224425x y -+-=,则圆心()4,4M ,半径=5r ,由题意可知圆心到直线l 的距离是3,当直线l 斜率存在时,设直线l 方程为:()1330y k x kx y k =-+⇒-+-=,3=,解得43k =-,故直线l 的方程为43130x y +-=;当直线l 斜率不存在时,则直线l 方程为:1x =,此时圆心到直线l 的距离是3,符合题意.综上所述,直线l 的方程为43130x y +-=或1x =.18.我校举行的“青年歌手大选赛”吸引了众多有才华的学生参赛.为了了解本次比赛成绩情况,从中抽取了50名学生的成绩作为样本进行统计.请根据下面尚未完成并有局部污损的频率分布表和频率分布直方图(如图所示)解决下列问题:频率分布表组别分组频数频率第1组[50,60)80.16第2组[60,70)a ▓第3组[70,80)200.40第4组[80,90)▓0.08第5组[90,100]2b 合计▓▓(1)求出a ,b ,x ,y 的值;(2)在选取的样本中,从成绩是80分以上的同学中随机抽取2名同学参加元旦晚会,求所抽取的2名同学中至少有1名同学来自第5组的概率;(3)根据频率分布直方图,估计这50名学生成绩的中位数、平均数和方差(同一组的数据用该组区间的中点值作代表).【答案】(1)a =16,b =0.04,x =0.032,y =0.004(2)35(3)中位数为70.5,平均数为70.2,方差为96.96【解析】【分析】(1)利用频率=100%⨯频数样本容量,及频率组距表示频率分布直方图的纵坐标即可求出a ,b ,x ,y ;(2)由(2)可知第四组的人数,已知第五组的人数是2,利用组合的计算公式即可求出从这6人中任选2人的种数,再分两类分别求出所选的两人来自同一组的情况,利用互斥事件的概率和古典概型的概率计算公式即可得出.(3)根据频率分布直方图,估计这50名学生成绩的中位数、平均数和方差.【小问1详解】由题意可知,样本容量n =8500.16=,∴b =250=0.04,第四组的频数=50×0.08=4,∴508202416a =----=.y =0.0410=0.004,x =1650×110=0.032.∴a =16,b =0.04,x =0.032,y =0.004.【小问2详解】由题意可知,第4组共有4人,记为A ,B ,C ,D ,第5组共有2人,记为X ,Y .从竞赛成绩是80分以上(含80分)的同学中随机抽取2名同学,有AB ,AC ,AD ,BC ,BD ,CD ,AX ,AY ,BX ,BY ,CX ,CY ,DX ,DY ,XY ,共15种情况.设“随机抽取的2名同学中至少有1名同学来自第5组”为事件E ,有AX ,AY ,BX ,BY ,CX ,CY ,DX ,DY ,XY 共9种情况.所以随机抽取的2名同学中至少有1名同学来自第5组的概率是P (E )=93155=.∴随机抽取的2名同学中至少有1名同学来自第5组的概率35.【小问3详解】∵[50,70)的频率为:0.160.320.48+=,[70,80)的频率为0.4,∴中位数为:0.50.48701070.50.4-+⨯=,平均数为:550.16650.32750.4850.08950.0470.2⨯+⨯+⨯+⨯+⨯=.方差为:()()()()()222225570.20.166570.20.327570.20.48570.20.089570.20.0496.96⨯+⨯+⨯+⨯+⨯﹣﹣﹣﹣﹣=.19.已知抛物线()2:20C y px p =>的焦点为F ,点0(,4)M x 在C 上,且52pMF =.(1)求点M 的坐标及C 的方程;(2)设动直线l 与C 相交于,A B 两点,且直线MA 与MB 的斜率互为倒数,试问直线l 是否恒过定点?若过,求出该点坐标;若不过,请说明理由.【答案】(1)M 的坐标为()4,4,C 的方程为24y x =;(2)直线l 过定点()0,4-.【解析】【分析】(1)利用抛物线定义求出0x ,进而求出p 值即可得解.(2)设出直线l 的方程x my n =+,再联立直线l 与抛物线C 的方程,借助韦达定理探求出m 与n 的关系即可作答.【小问1详解】抛物线2:2C y px =的准线:2px =-,于是得0522p p MF x =+=,解得02x p =,而点M 在C 上,即2164p =,解得2p =±,又0p >,则2p =,所以M 的坐标为()4,4,C 的方程为24y x =.【小问2详解】设()()1122,,,A x y B x y ,直线l 的方程为x my n =+,由24x my n y x =+⎧⎨=⎩消去x 并整理得:2440y my n --=,则()2160m n ∆=+>,124y y m +=,124y y n =-,因此,121222121212444444144444444MA MB y y y y k k y y x x y y ----⋅=⋅==⋅=--++--,化简得()121240y y y y ++=,即4n m =,代入l 方程得4x my m =+,即()40x m y -+=,则直线l 过定点()0,4-,所以直线l 过定点()0,4-.【点睛】思路点睛:直线与圆锥曲线相交,直线过定点问题,设出直线的斜截式方程,与圆锥曲线方程联立,借助韦达定理求出直线斜率与纵截距的关系即可解决问题.20.如图,在四棱锥P ABCD -中,底面ABCD 是直角梯形,AD AB ⊥,//AB DC ,PA ⊥底面ABCD ,点E 为棱PC 的中点.22AD DC AP AB ====.()1证明://BE 平面PAD .()2若F 为棱PC 上一点,满足BF AC ⊥,求二面角F AD C --的余弦值.【答案】()1证明见解析;()210.【解析】【分析】()1在PD 上找中点G ,连接AG ,EG ,利用三角形中位线性质得出12EG CD =,因为底面ABCD 是直角梯形,2CD AB =,所以能得出EG 平行且等于AB ,得出四边形ABEG 为平行四边形,再利用线面平行的判定,即可证出//BE 平面PAD ;()2根据BF AC ⊥,求出向量BF的坐标,进而求出平面FAD 和平面ADC 的法向量,代入向量夹角公式,可得二面角F AD C --的余弦值.【详解】解:()1证明:在PD 上找中点G ,连接AG ,EG ,图象如下:G 和E 分别为PD 和PC 的中点,∴EG //CD ,且12EG CD =,又 底面ABCD 是直角梯形,2CD AB =∴AB //CD ,且12AB CD =,∴AB GE //且AB GE =.即四边形ABEG 为平行四边形.∴AG E //B .AG ⊂平面PAD ,BE ⊄平面PAD ,∴//BE 平面PAD.()2以A 为原点,以AB 所在直线为x 轴,AD 所在直线为y 轴,AP 所在直线为z 轴,建立如图所示的空间直角坐标系,可得()1,0,0B ,()2,2,0C ,()0,2,0D ,()002P ,,,()1,1,1E ,()1,2,0BC = ,()2,2,2CP =-- ,()2,2,0AC = .由F 为棱PC 上一点,设()2,2,2CF CP λλλλ==-- ()01λ≤≤,所以()12,22,2BF BC CF λλλ=+=-- ()01λ≤≤,由BF AC ⊥,得()()2122220BF AC λλ⋅=-+-= ,解得34λ=,即113,,222BF ⎛⎫=- ⎪⎝⎭ ,()1131131,0,0,,,,222222AF AB BF ⎛⎫⎛⎫=+=+-= ⎪ ⎪⎝⎭⎝⎭,设平面FAD 的法向量为(),,n a b c = ,由00n AF n AD ⎧⋅=⎨⋅=⎩ 可得113022220a b c b ⎧++=⎪⎨⎪=⎩所以030b a c =⎧⎨+=⎩,令1c =,则3a =-,则()3,0,1n =- ,取平面ADC 的法向量为()0,0,1m = ,则二面角F AD C --的平面角α满足:cos 10m n m nα⋅===⋅ ,故二面角F AD C --的余弦值为10.【点睛】本题考查线面平行的判定,空间二面角的平面角,建立空间直角坐标系,将二面角问题转化为向量夹角问题,属于难题.21.已知O 为坐标原点,()120F -,,()220F ,,点P 满足122PF PF -=,记点P 的轨迹为曲线.E (1)求曲线E 的方程;(2)过点()220F ,的直线l 与曲线E 交于A B ,两点,求+ OA OB 的取值范围.【答案】(1)()2211.3y x x -=≥(2)[)4∞+,【解析】【分析】(1)根据双曲线的定义,易判断点P 的轨迹是双曲线的右支,求出,a b 的值,即得;(2)设出直线方程与双曲线方程联立消元得到一元二次方程,推出韦达定理,依题得出参数m 的范围,将所求式等价转化为关于m 的函数式,通过整体换元即可求出其取值范围.【小问1详解】因()120F -,,()220F ,,且动点P 满足12122PF PF F F -=<,由双曲线的定义知:曲线E 是以12F F ,为焦点的双曲线的右支,且2c =,1a =,则2223b c a =-=,故曲线E 的方程为()2211.3y x x -=≥【小问2详解】当直线l 的斜率为0时,直线l 与双曲线的右支只有一个交点,故不符题意.如图,不妨设直线l 方程为:2x my =+,设()11A x y ,,()22B x y ,,联立22213x my y x =+⎧⎪⎨-=⎪⎩,得()22311290m y my -++=,由韦达定理得1221221231931m y y m y y m -⎧+=⎪⎪-⎨⎪⋅=⎪-⎩,2121222124()443131m x x m y y m m -+=++=+=---,2212121212234(2)(2)2()431m x x my my m y y m y y m +⋅=++=+++=--.由题意:()()22212221223101243190403134031m m m x x m m x x m ⎧-≠⎪-⨯-⨯>⎪⎪⎪⎨+=->⎪-⎪+⎪⋅=->⎪-⎩,解得:210.3m ≤<OA OB +=====,令2131t m =-,因210,3m ≤<故1t ≤-,而OA OB +== ,在(],1t ∞∈--为减函数,故4OA OB +≥ ,即OA OB + 的取值范围为[)4∞+,.22.如图,已知椭圆22122:1(0)x y C a b a b+=>>与等轴双曲线2C 共顶点(±,过椭圆1C 上一点P (2,-1)作两直线与椭圆1C 相交于相异的两点A ,B ,直线PA 、PB 的倾斜角互补,直线AB 与x ,y 轴正半轴相交,分别记交点为M ,N .(1)求直线AB 的斜率;(2)若直线AB 与双曲线2C 的左,右两支分别交于Q ,R ,求NQ NR 的取值范围.【答案】(1)12-(2)11(1,9+【解析】【分析】(1)先求出椭圆方程,联立直线与椭圆方程,利用韦达定理求解A ,B 坐标,直接计算直线AB 斜率即可.(2)联立直线与双曲线的方程,利用求根公式表示出Q ,R 的坐标,化简NQ NR 的表达式,整理求出NQ NR的取值范围即可得出结果.【小问1详解】由题椭圆22122:1(0)x y C a b a b+=>>,顶点(±,可得a =(2,1)P -在椭圆1C 上,即24118b +=,得22b =,所以椭圆方程为22182x y +=,设等轴双曲线2C :222x y m -=,0m >,由题意等轴双曲线2C 的顶点为(±,可得2=8m ,所以双曲线2C 的方程为:228x y -=,因为直线PA 、PB 的倾斜角互补,且A ,B 是不同的点,所以直线PA 、PB 都必须有斜率,设直线PA 方程为(2)1y k x =--,联立22(2)1182y k x x y =--⎧⎪⎨+=⎪⎩,整理得2222(14)(168)161640k x k k x k k +-+++-=,A 和P 点横坐标即为方程两个根,可得221681+4A P k k x x k ++=,因为=2P x ,所以22882=14A k k x k +-+,代入直线PA 可得2244114A k k y k--=+,即2222882441(,)1414k k k k A k k+---++,又因为直线PA 、PB 的倾斜角互补,将k 换成k -,可得2222882441(,)1414k k k k B k k --+-++,两点求斜率可得出12AB k =-所以直线AB 的斜率为12-【小问2详解】由(1)可设直线AB 的方程:12y x n =-+,又因为直线AB 与x ,y 轴正半轴相交,则0n >,联立方程组2212182y x n x y ⎧=-+⎪⎪⎨⎪+=⎪⎩,整理得2224480x nx n -+-=,22Δ168(48)0n n =-->,解得02n <<.联立直线AB 和双曲线方程221(02)28y x n n x y ⎧=-+<<⎪⎨⎪-=⎩,消去y 得22344320x nx n +--=,利用求根公式可得23n x -±=,所以1Q R x NQ NR x ====,又因为204n <<,所以2632n >,则11>,即29<,所以1121019NQNR+<<,所以NQNR 的取值范围为11210(1,9+【点睛】方法点睛:(1)解答直线与圆锥曲线题目时,时常把两个曲线的方程联立,消去一个未知数建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系.(2)涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率不存在的特殊情况.。
2025届成都树德中学高二上数学期末学业水平测试试题含解析

2025届成都树德中学高二上数学期末学业水平测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.为了解青少年视力情况,统计得到10名青少年的视力测量值(五分记录法)的茎叶图,其中茎表示个位数,叶表示十分位数,则该组数据的中位数是( )A.4.6B.4.5C.4.3D.4.22.若双曲线22221x y a b-=(0a >,0b >)的一条渐近线经过点()3,1,则双曲线的离心率为( )23B.623 D.23.已知椭圆的长轴长为10,焦距为8,则该椭圆的短轴长等于( ) A.3 B.6 C.8D.124.若函数()ln f x kx x =-在区间()1,+∞上单调递增,则实数k 的取值范围是 A.(],2-∞- B.(],1-∞- C.[)2,+∞D.[)1,+∞5.已知点12,F F 分别是椭圆221259x y+=的左、右焦点,点P 在此椭圆上,1260F PF ∠=,则12PF F ∆的面积等于3 B.33C.63 D.36.已知命题:p “若a b >,则33a b >”,命题:q “若a b >,则11ba>”,则下列命题中为真命题的是()A.p ⌝B.qC.p q ∧D.()()p q ⌝∨⌝7.已知双曲线C :()222210,0x y a b a b-=>>的右焦点为(),0F c ,一条渐近线被圆()222x c y c -+=截得的弦长为2b ,则双曲线C 的离心率为()C.2D.8.已知双曲线2222:1(0,0)x y C a b a b-=>>的右焦点为F ,双曲线C 的右支上有一点P 满是||||||OP OF PF ==(点O 为坐标原点),那么双曲线C 的离心率为()A.1B.4+19.抛物线2y x 的焦点坐标是()A.()0,1B.()1,0C.10,4⎛⎫ ⎪⎝⎭D.1,04⎛⎫ ⎪⎝⎭10.已知直线的倾斜角为60,在y 轴上的截距为2-,则此直线的方程为( )A.2y =+ B.2y =+C.2y =-D.2y =-11.已知函数39,0(),0x x x f x xe x ⎧-≥=⎨<⎩( 2.718e =为自然对数的底数),若()f x 的零点为α,极值点为β,则αβ+=()A.1-B.0C.1D.212.已知12,F F 分别是双曲线22:14x C y -=的左、右焦点,动点P 在双曲线的左支上,点Q 为圆22:(2)1G x y ++=上一动点,则2||PQ PF +的最小值为()A.6B.7C.35+D.5二、填空题:本题共4小题,每小题5分,共20分。
四川省成都外国语学校高二上学期期末数学试卷(理科) Word版含解析

2016-2017学年四川省成都外国语学校高二(上)期末数学试卷(理科)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知命题p:∃x∈R,sinx>1,则()A.¬p:∃x∈R,sinx≤1 B.¬p:∃x∈R,sinx≤1C.¬p:∀x∈R,sinx≤1 D.¬p:∀x∈R,sinx>12.若10件产品中有7件正品,3件次品,从中任取2件,则恰好取到1件次品的概率是()A.B.C.D.3.“﹣3<m<5”是“方程+=1表示椭圆”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件4.执行如图所示的程序框图,若输出的S=88,则判断框内应填入的条件是()A.k>7 B.k>6 C.k>5 D.k>45.过抛物线y=ax2(a>0)的焦点F作一直线交抛物线于P,Q两点,若线段PF和线段FQ的长分别是p,q,则等于()A.B.C.2a D.4a6.如图,一竖立在地面上的圆锥形物体的母线长为4,一只小虫从圆锥的底面圆上的点P出发,绕圆锥爬行一周后回到点P处,若该小虫爬行的最短路程为,则这个圆锥的体积为()A.B.C.D.7.已知a∈R,若方程a2x2+(a+2)y2+4x+8y+5a=0表示圆,则此圆心坐标()A.(﹣2,﹣4)B.C.(﹣2,﹣4)或D.不确定8.样本(x1,x2,…,x n)的平均数为,样本(y1,y2,…y m)的平均数为,若样本(x1,x2,…,x n,y1,y2,…y m)的平均数,其中0<a<,则m,n的大小关系为()A.n<m B.n>m C.n=m D.不能确定9.某农户计划种植黄瓜和冬瓜,种植面积不超过50亩,投入资金不超过54万元,假设种植黄瓜与冬瓜的产量、成本和售价如表:年产量/亩年种植成本/亩每吨售价黄瓜4吨 1.2万元0.55万元冬瓜6吨0.9万元0.3万元为使一年的种植总利润(总利润=总销售收入﹣总种植成本)最大,那么黄瓜与冬瓜的种植面积(单位:亩)分别为()A.50,0 B.30,20 C.20,30 D.0,5010.已知椭圆+=1(a>b>0),F1,F2为椭圆的左.右焦点,M是椭圆上任一点,若•的取值范围为[﹣3,3],则椭圆方程为()A.B.C. +=1 D. +y2=111.在等腰直角三角形ABC中,AB=AC=4,点P是边AB上异于A,B的一点,光线从点P出发,经BC,CA发射后又回到原点P(如图11).若光线QR经过△ABC 的重心,则BP等于()A.2 B.1 C.D.12.如图,F1,F2分别是双曲线C:(a,b>0)的左、右焦点,B是虚轴的端点,直线F1B与C的两条渐近线分别交于P,Q两点,线段PQ的垂直平分线与x轴交于点M,若|MF2|=|F1F2|,则双曲线C的渐近线方程是()A.y=±x B.C. D.二、填空题(本大概题共4小题,每小题5分.)13.根据如图算法语句,当输入x=60时,输出y的值为.14.若x,y满足约束条件,则z=x﹣y的最小值为.15.如果双曲线的一个焦点到渐近线的距离为3,且离心率为2则此双曲线的方程.16.设点M(x0,2﹣x0),设在圆O:x2+y2=1上存在点N,使得∠OMN=30°,则实数x0的取值范围为.三、解答题(应写出文字说明过程或演算步骤)17.某校高一(1)班一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,其可见部分如图1和图2所示,据此解答如下问题:(1)计算频率分布直方图中[80,90)间的小长方形的高;(2)根据频率分布直方图估计这次测试的平均分.18.命题p:“关于x的不等式x2+(a﹣1)x+a2≤0,(a>0)的解集为∅”,命题q:“在区间[﹣2,4]上随机地取一个数x,若x满足|x|≤a(a>0)的概率”,当“p∧q”与“p∨q”一真一假时,求实数a的取值范围.19.在如图所示的几何体中,四边形ABCD为矩形,平面ABEF⊥平面ABCD,EF∥AB,∠BAF=90°,AD=2,AB=AF=2EF=1,点P在棱DF上.(1)若P为DF的中点,求证:BF∥平面ACP(2)若直线PC与平面FAD所成角的正弦值为,求PF的长度.20.某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:日期12月1日12月2日12月3日12月4日12月5日温差x(°C)101113128发芽数y(颗)2325302616该农科所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验.(1)求选取的2组数据恰好是不相邻2天数据的概率;(2)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求出y关于x的线性回归方程;并预报当温差为9 0C时的种子发芽数.21.已知动圆过定点A(4,0),且在y轴上截得的弦MN的长为8.(Ⅰ)求动圆圆心的轨迹C的方程;(Ⅱ)已知点B(﹣3,0),设不垂直于x轴的直线l与轨迹C交于不同的两点P,Q,若x轴是∠PBQ的角平分线,证明直线l过定点.22.已知椭圆C1:=1(a>b>0)的离心率为,其短轴的下端点在抛物线x2=4y的准线上.(Ⅰ)求椭圆C1的方程;(Ⅱ)设O为坐标原点,M是直线l:x=2上的动点,F为椭圆的右焦点,过点F 作OM的垂线与以为OM直径的圆C2相交于P,Q两点,与椭圆C1相交于A,B 两点,如图所示.•①若PQ=,求圆C2的方程;②‚设C2与四边形OAMB的面积分别为S1,S2,若S1=λS2,求λ的取值范围.2016-2017学年四川省成都外国语学校高二(上)期末数学试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知命题p:∃x∈R,sinx>1,则()A.¬p:∃x∈R,sinx≤1 B.¬p:∃x∈R,sinx≤1C.¬p:∀x∈R,sinx≤1 D.¬p:∀x∈R,sinx>1【考点】命题的否定.【分析】原命题是特称命题,其否定为全称命题,将“存在”改为“任意的”,“>“改为“≤”即可得答案.【解答】解:∵命题p:“∃x∈R,sinx>1,”是特称命题,∴¬p:∀x∈R,sinx≤1故选:C2.若10件产品中有7件正品,3件次品,从中任取2件,则恰好取到1件次品的概率是()A.B.C.D.【考点】相互独立事件的概率乘法公式.【分析】先求出基本事件总数n==45,再求出恰好取到1件次品包含的基本事件个数m==21,由此能求出恰好取到1件次品的概率.【解答】解:10件产品中有7件正品,3件次品,从中任取2件,基本事件总数n==45,恰好取到1件次品包含的基本事件个数m==21,恰好取到1件次品的概率p==.故选:B.3.“﹣3<m<5”是“方程+=1表示椭圆”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】利用充分条件和必要条件的定义判断.【解答】解:若方程+=1表示椭圆,则,所以,即﹣3<m<5且m≠1.所以“﹣3<m<5”是“方程+=1表示椭圆”的必要不充分条件.故选B.4.执行如图所示的程序框图,若输出的S=88,则判断框内应填入的条件是()A.k>7 B.k>6 C.k>5 D.k>4【考点】程序框图.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输入S的值,条件框内的语句是决定是否结束循环,模拟执行程序即可得到答案.【解答】解:程序在运行过程中各变量值变化如下表:K S 是否继续循环循环前1 0第一圈2 2 是第二圈3 7 是第三圈4 18 是第四圈5 41 是第五圈6 88 否故退出循环的条件应为k>5?故答案选C.5.过抛物线y=ax2(a>0)的焦点F作一直线交抛物线于P,Q两点,若线段PF 和线段FQ的长分别是p,q,则等于()A.B.C.2a D.4a【考点】直线与抛物线的位置关系.【分析】选择题遵循一般结论利用特殊法,设PQ的斜率k=0,因抛物线焦点坐标为(0,),把直线方程y=代入抛物线方程得x=±,可得PF=FQ=,从而求得结果.【解答】解:不妨设PQ的斜率k=0,因抛物线焦点坐标为(0,),把直线方程y=代入抛物线方程得x=±,∴PF=FQ=,即p=q=,则=2a+2a=4a,故选:D.6.如图,一竖立在地面上的圆锥形物体的母线长为4,一只小虫从圆锥的底面圆上的点P出发,绕圆锥爬行一周后回到点P处,若该小虫爬行的最短路程为,则这个圆锥的体积为()A.B.C.D.【考点】棱柱、棱锥、棱台的体积.【分析】作出该圆锥的侧面展开图,该小虫爬行的最短路程为PP',由余弦定理求出∠P′OP=.求出底面圆的半径r,从而求出这个圆锥的高,由此能求出这个圆锥的体积.【解答】解:作出该圆锥的侧面展开图,如图所示:该小虫爬行的最短路程为PP′,由余弦定理可得cos∠P′OP==﹣,∴.设底面圆的半径为r,则有,解得r=.∴这个圆锥的高为h==,这个圆锥的体积为V====.故选:C.7.已知a∈R,若方程a2x2+(a+2)y2+4x+8y+5a=0表示圆,则此圆心坐标()A.(﹣2,﹣4)B.C.(﹣2,﹣4)或D.不确定【考点】圆的标准方程.【分析】由已知可得a2=a+2≠0,解得a=﹣1或a=2,把a=﹣1代入原方程,配方求得圆心坐标和半径,把a=2代入原方程,由D2+E2﹣4F<0说明方程不表示圆,则答案可求.【解答】解:∵方程a2x2+(a+2)y2+4x+8y+5a=0表示圆,∴a2=a+2≠0,解得a=﹣1或a=2.当a=﹣1时,方程化为x2+y2+4x+8y﹣5=0,配方得(x+2)2+(y+4)2=25,所得圆的圆心坐标为(﹣2,﹣4),半径为5;当a=2时,方程化为x2+y2+x+2y+2.5=0,此时D2+E2﹣4F<0,方程不表示圆,故选:A.8.样本(x1,x2,…,x n)的平均数为,样本(y1,y2,…y m)的平均数为,若样本(x1,x2,…,x n,y1,y2,…y m)的平均数,其中0<a<,则m,n的大小关系为()A.n<m B.n>m C.n=m D.不能确定【考点】众数、中位数、平均数.【分析】由0<a<,得1﹣a>a,由此利用平均数的性质能判断m,n的大小关系.【解答】解:∵0<a<,∴1﹣a>a,∵样本(x1,x2,…,x n)的平均数为,样本(y1,y2,…y m)的平均数为,样本(x1,x2,…,x n,y1,y2,…y m)的平均数,其中0<a<,∴=+=(1﹣a),∴,∴m,n的大小关系为n>m.故选:B.9.某农户计划种植黄瓜和冬瓜,种植面积不超过50亩,投入资金不超过54万元,假设种植黄瓜与冬瓜的产量、成本和售价如表:年产量/亩年种植成本/亩每吨售价黄瓜4吨 1.2万元0.55万元冬瓜6吨0.9万元0.3万元为使一年的种植总利润(总利润=总销售收入﹣总种植成本)最大,那么黄瓜与冬瓜的种植面积(单位:亩)分别为()A.50,0 B.30,20 C.20,30 D.0,50【考点】简单线性规划.【分析】设黄瓜和冬瓜的种植面积分别为x,y亩,总利润z万元,求出目标函数,以及线性约束条件,利用线性规划求出结果即可.【解答】解:设黄瓜和冬瓜的种植面积分别为x,y亩,总利润z万元,则目标函数z=(0.55×4x﹣1.2x)+(0.3×6y﹣0.9y)=x+0.9y线性约束条件为,即做出可行域,求得A(0,50),B(30,20),C(0,45),平移直线z=x+0.9y,可知直线z=x+0.9y,经过点B(30,20),即x=30,y=20时,z取得最大值.故选:B10.已知椭圆+=1(a>b>0),F1,F2为椭圆的左.右焦点,M是椭圆上任一点,若•的取值范围为[﹣3,3],则椭圆方程为()A.B.C. +=1 D. +y2=1【考点】椭圆的简单性质.【分析】设M(m,n),F1(﹣c,0),F2(c,0),运用向量的数量积的坐标表示,结合椭圆上的点和原点的距离的最值,即可得到a,b的值,进而得到所求方程.【解答】解:设M(m,n),F1(﹣c,0),F2(c,0),=(﹣c﹣m,﹣n),=(c﹣m,﹣n),•=(﹣c﹣m)(c﹣m)+n2=m2+n2﹣c2,由m2+n2的几何意义为点(0,0)与点M的距离的平方,即有m2+n2的最大值为a2,最小值为b2,则•的取值范围是[b2﹣c2,a2﹣c2],由题意可得b2﹣c2=﹣3,a2﹣c2=3,b2+c2=a2,求得b2=3,a2=9,c2=6,可得椭圆的方程为:故选A.11.在等腰直角三角形ABC中,AB=AC=4,点P是边AB上异于A,B的一点,光线从点P出发,经BC,CA发射后又回到原点P(如图11).若光线QR经过△ABC 的重心,则BP等于()A.2 B.1 C.D.【考点】与直线关于点、直线对称的直线方程.【分析】建立坐标系,设点P的坐标,可得P关于直线BC的对称点P1的坐标,和P关于y轴的对称点P2的坐标,由P1,Q,R,P2四点共线可得直线的方程,由于过△ABC的重心,代入可得关于a的方程,解之可得P的坐标,进而可得AP,BP 的值.【解答】解:建立如图所示的坐标系:可得B(4,0),C(0,4),故直线BC的方程为x+y=4,△ABC的重心为(,),设P(a,0),其中0<a<4,则点P关于直线BC的对称点P1(x,y),满足,解得,即P1(4,4﹣a),易得P关于y轴的对称点P2(﹣a,0),由光的反射原理可知P1,Q,R,P2四点共线,直线QR的斜率为k=,故直线QR的方程为y=(x+a),由于直线QR过△ABC的重心(,),代入化简可得3a2﹣4a=0,解得a=,或a=0(舍去),故P(,0),故AP=,BP=故选C.12.如图,F1,F2分别是双曲线C:(a,b>0)的左、右焦点,B是虚轴的端点,直线F1B与C的两条渐近线分别交于P,Q两点,线段PQ的垂直平分线与x轴交于点M,若|MF2|=|F1F2|,则双曲线C的渐近线方程是()A.y=±x B.C. D.【考点】直线与双曲线的位置关系.【分析】由题意知直线F1B的方程为y=,分别与双曲线的渐近线联立,得到P,Q的坐标,从而得到PQ的中点坐标,进而求出PQ的垂直平分线方程,推导出a与b的等量关系,由此能求出双曲线C的渐近线方程.【解答】解:由题意知直线F1B的方程为y=,联立,得Q(),联立,得P(﹣),∴PQ的中点为(,),∴PQ的垂直平分线方程为y﹣=﹣(x﹣),令y=0,得x=c(1+),∴(1+)=3c,∴a2=2b2,∴双曲线C的渐近线方程y=x.故选:D.二、填空题(本大概题共4小题,每小题5分.)13.根据如图算法语句,当输入x=60时,输出y的值为31.【考点】选择结构.【分析】由已知中的算法语句可得:程序的功能是计算并输出分段函数y=的函数值,将x=60代入可得答案.【解答】解:由已知中的算法语句可得:程序的功能是计算并输出分段函数y=的函数值∵x=60>50∴y=25+0.6(60﹣50)=31故输出结果为31故作案为:3114.若x,y满足约束条件,则z=x﹣y的最小值为﹣1.【考点】简单线性规划.【分析】根据二元一次不等式组表示平面区域,画出不等式组表示的平面区域,由z=x﹣y得y=x﹣z,利用平移求出z最小值即可.【解答】解:不等式组对应的平面区域如图:(阴影部分).由z=x﹣y得y=x﹣z,平移直线y=x﹣z,由平移可知当直线y=x﹣z,与x﹣y+1=0重合时,直线y=x﹣z的截距最大,此时z取得最小值,可得x﹣y=﹣1,即z=x﹣y的最小值是﹣1,故答案为:﹣115.如果双曲线的一个焦点到渐近线的距离为3,且离心率为2则此双曲线的方程.【考点】双曲线的简单性质.【分析】利用双曲线的焦点到渐近线的距离,求出b,离心率求出c,然后求解b,即可得到双曲线方程.【解答】解:双曲线的一个焦点(c,0)到渐近线bx+ay=0的距离为3,可得:3==b,b=3,离心率为2,可得:,解得:a=,所求双曲线方程为:.故答案为:.16.设点M(x0,2﹣x0),设在圆O:x2+y2=1上存在点N,使得∠OMN=30°,则实数x0的取值范围为[0,2] .【考点】直线与圆相交的性质.【分析】过M作⊙O切线交⊙C于R,则∠OMR≥∠OMN,由题意可得∠OMR≥30°,|OM|≤2.再根据M(x0,2﹣x0),求得x0的取值范围.【解答】解:过M作⊙O切线交⊙C于R,根据圆的切线性质,有∠OMR≥∠OMN.反过来,如果∠OMR≥30°,则⊙O上存在一点N使得∠OMN=30°∴若圆O上存在点N,使∠OMN=30°,则∠OMR≥30°.∵|OR|=1,OR⊥MR,∴|OM|≤2.又∵M(x0,2﹣x0),∴|OM|2=x02+y02=x02+(2﹣x0)2=2x02 ﹣4x0+4,∴2x02﹣4x0+4≤4,解得,0≤x0≤2.∴x0的取值范围是[0,2],故答案为[0,2].三、解答题(应写出文字说明过程或演算步骤)17.某校高一(1)班一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,其可见部分如图1和图2所示,据此解答如下问题:(1)计算频率分布直方图中[80,90)间的小长方形的高;(2)根据频率分布直方图估计这次测试的平均分.【考点】茎叶图;众数、中位数、平均数.【分析】(1)由直方图在得到分数在[50,60)的频率,求出全班人数;由茎叶图求出分数在[80,90)之间的人数,进一步求出概率;(2)分别算出各段的概率,计算平均分.【解答】解:(1)分数在[50,60)的频率为0.008×10=0.08,由茎叶图知,分数在[50,60)之间的频数为2,所以全班人数为=25,所以分数在[80,90)之间的人数为25﹣21=4,则对应的频率为=0.16.所以[80,90)间的小长方形的高为0.16÷10=0.016.(2)全班共25人,根据各分数段人数得各分数段的频率为:分数段[50,60)[60,70)[70,80)[80,90)[90,100]频率0.080.280.40.160.08所以估计这次测试的平均分为55×0.08+65×0.28+75×0.4+85×0.16+95×0.08=73.8.18.命题p:“关于x的不等式x2+(a﹣1)x+a2≤0,(a>0)的解集为∅”,命题q:“在区间[﹣2,4]上随机地取一个数x,若x满足|x|≤a(a>0)的概率”,当“p∧q”与“p∨q”一真一假时,求实数a的取值范围.【考点】命题的真假判断与应用.【分析】当“p∧q”与“p∨q”一真一假时,则p与q一真一假时,进而可得实数a 的取值范围.【解答】解:命题p:因为关于x的不等式x2+(a﹣1)x+a2≤0的解集为∅所以:x2+(a﹣1)x+a2=0对应的△<0即:3a2+2a﹣1>0,即:a<﹣1或,又a>0,所以:命题q:“在区间[﹣2,4]上随机地取一个数x,若x满足|x|≤a(a>0)的概率”因为|x|≤a(a>0),所以﹣a<x<a当a≤2时,则不满足条件,当a>2时,则,所以a≥3当“p∧q”与“p∨q”一真一假时,则p与q一真一假时,当p真q假时,a∈,当p假q值时,不存在满足条件的a值,综上可得到实数a的取值范围:.19.在如图所示的几何体中,四边形ABCD为矩形,平面ABEF⊥平面ABCD,EF∥AB,∠BAF=90°,AD=2,AB=AF=2EF=1,点P在棱DF上.(1)若P为DF的中点,求证:BF∥平面ACP(2)若直线PC与平面FAD所成角的正弦值为,求PF的长度.【考点】直线与平面平行的判定;平面与平面垂直的性质.【分析】(1)连接BD,交AC于点O,连接OP.利用OP为三角形BDF中位线,可得BF∥OP,利用线面平行的判定,可得BF∥平面ACP;(2)由已知中平面ABEF⊥平面ABCD,由面面垂直的性质定理可得AF⊥平面ABCD,进而AF⊥CD,结合四边形ABCD为矩形及线面垂直的判定定理,可得CD⊥平面FAD,故∠CPD就是直线PC与平面FAD所成角,进而解三角形求出DF和PD,进而可得PF的长度.【解答】证明:(1)连接BD,交AC于点O,连接OP.∵P是DF中点,O为矩形ABCD对角线的交点,∴OP为三角形BDF中位线,…∴BF∥OP,又∵BF⊄平面ACP,OP⊂平面ACP,∴BF∥平面ACP.…解:(2)∵∠BAF=90°,∴AF⊥AB,又∵平面ABEF⊥平面ABCD,且平面ABEF∩平面ABCD=AB,∴AF⊥平面ABCD,…∴AF⊥CD∵四边形ABCD为矩形∴AD⊥CD …又∵AF∩AD=A,AF,AD⊂平面FAD∴CD⊥平面FAD∴∠CPD就是直线PC与平面FAD所成角…∴sin∠CPD=,又∵AD=2,AB=CD=AF=1,∴DF==,PD===,∴得PF=DF﹣PD=…20.某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:日期12月1日12月2日12月3日12月4日12月5日温差x(°C)101113128发芽数y(颗)2325302616该农科所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验.(1)求选取的2组数据恰好是不相邻2天数据的概率;(2)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求出y关于x的线性回归方程;并预报当温差为9 0C时的种子发芽数.【考点】回归分析的初步应用;线性回归方程;列举法计算基本事件数及事件发生的概率.【分析】(1)根据题意列举出从5组数据中选取2组数据共有10种情况,每种情况都是可能出现的,满足条件的事件包括的基本事件有6种.根据等可能事件的概率做出结果.(2)根据所给的数据,先做出x,y的平均数,即做出本组数据的样本中心点,根据最小二乘法求出线性回归方程的系数,写出线性回归方程并进行预报.【解答】解:(1)设抽到不相邻的两组数据为事件A,从5组数据中选取2组数据共有10种情况:(1,2)(1,3)(1,4)(1,5)(2,3)(2,4)(2,5)(3,4)(3,5)(4,5),…其中数据为12月份的日期数.每种情况都是可能出现的,事件A包括的基本事件有6种.∴P(A)=∴选取的2组数据恰好是不相邻2天数据的概率是…(2)由数据,求得,.…由公式,求得b=,a=﹣b=﹣3∴y关于x的线性回归方程为x﹣3.…由此可以预报当温差为9 0C时的种子发芽数为19或20颗.…21.已知动圆过定点A(4,0),且在y轴上截得的弦MN的长为8.(Ⅰ)求动圆圆心的轨迹C的方程;(Ⅱ)已知点B(﹣3,0),设不垂直于x轴的直线l与轨迹C交于不同的两点P,Q,若x轴是∠PBQ的角平分线,证明直线l过定点.【考点】轨迹方程;抛物线的简单性质.【分析】(Ⅰ)根据勾股定理,建立方程,进而求得动圆圆心的轨迹C的方程;(Ⅱ)设P(x1,y1),Q(x2,y2),由题意,直线PQ的方程代入化简,利用角平分线的性质可得k PB=﹣k QB,可化为:﹣16tm+(3+m)8t=0,所以:m=3,l:x=ty+3,即可得到定点.【解答】解:(Ⅰ)设动圆圆心P(x,y),则|PM|2=|PA|2=42+x2即:(x﹣4)2+y2=42+x2,即动圆圆心的轨迹方程为:y2=8x,(Ⅱ)设两点P(x1,y1),Q(x2,y2)设不垂直于x轴的直线:l:x=ty+m(t≠0),则有:y2﹣8ty﹣8m=0,所以:y1+y2=8t,y1y2=﹣8m,因为x轴是∠PBQ的角平分线,所以:k BP+k BQ=0即:即:2ty1y2+(m+3)(y1+y2)=0,则:﹣16tm+(3+m)8t=0,所以:m=3l:x=ty+3所以直线l过定点(3,0).22.已知椭圆C1:=1(a>b>0)的离心率为,其短轴的下端点在抛物线x2=4y的准线上.(Ⅰ)求椭圆C1的方程;(Ⅱ)设O为坐标原点,M是直线l:x=2上的动点,F为椭圆的右焦点,过点F 作OM的垂线与以为OM直径的圆C2相交于P,Q两点,与椭圆C1相交于A,B 两点,如图所示.•①若PQ=,求圆C2的方程;②‚设C2与四边形OAMB的面积分别为S1,S2,若S1=λS2,求λ的取值范围.【考点】椭圆的简单性质.【分析】(Ⅰ)由椭圆离心率为,其短轴的下端点在抛物线x2=4y的准线上,列出方程组求出a,b,由此能求出椭圆C1的方程.(Ⅱ)①设M(2,t),则C2的方程为(x﹣1)2+(y﹣)2=1+,由此利用圆的性质结合已知条件能求出圆C2的方程.②由①知PQ方程为2x+ty﹣2=0,(t≠0),代入椭圆方程得(8+t2)x2﹣16x+8﹣2t2=0,t≠0,由此利用根的判断式、韦达定理、弦长公式、分类讨论思想,能求出λ的取值范围.【解答】解:(Ⅰ)∵椭圆C1:=1(a>b>0)的离心率为,其短轴的下端点在抛物线x2=4y的准线上,∴,解得a=,b=c=1,∴椭圆C1的方程为.(Ⅱ)①由(Ⅰ)知F(1,0),设M(2,t),则C2的圆心坐标为(1,),C2的方程为(x﹣1)2+(y﹣)2=1+,直线PQ方程为y=(x﹣1),(t≠0),即2x+ty﹣2=0,(t≠0)又圆C2的半径r==,由()2+d2=r2,得()2+=,解得t2=4,∴t=±2,∴圆C2的方程为:(x﹣1)2+(y﹣1)2=2或(x﹣1)2+(y+1)2=2.②由①知PQ方程为2x+ty﹣2=0,(t≠0),由,得(8+t2)x2﹣16x+8﹣2t2=0,t≠0,则△=(﹣16)2﹣4(8+t2)(8﹣2t2)=8(t4+4t2)>0,,,|AB|===2×,∴==,S1=πr2=,∵S1=λS2,∴==,当t=0时,PQ的方程为x=1,|AB|=,|OM|=2,|OM|×|AB|=,=π,∴.∵S1=λS2,∴====>=.当直线PQ的斜率不存在时,PQ方程为x=1,|AB|=,|OM|=2,∴S2=|OM|×|AB|=,S1==π,.综上,.2017年2月23日。
2021-2022学年四川省成都市高二(上)期末数学试卷(理科)(附详解)
2021-2022学年四川省成都市高二(上)期末数学试卷(理科)一、单选题(本大题共12小题,共60.0分)1.命题“∀x∈N,e x>sinx”的否定是()A. ∀x∈N,e x≤sinxB. ∀x∈N,e x<sinxC. ∃x0∈N,e x0>sinx0D. ∃x0∈N,e x0≤sinx02.抛物线y2=4x的准线方程是()A. y=116B. y=−116C. x=−1D. x=13.在空间直角坐标系Oxyz中,点A(1,−1,1)关于x轴对称的点的坐标为()A. (1,1,1)B. (1,1,−1)C. (−1,−1,−1)D. (1,−1,−1)4.设直线l1:ax+(a−2)y+1=0,l2:x+ay−3=0.若l1⊥l2,则a的值为()A. 0或1B. 0或−1C. 1D. −15.下列有关命题的表述中,正确的是()A. 命题“若a+b是偶数,则a,b都是偶数”的否命题是假命题B. 命题“若a为正无理数,则√a也是无理数”的逆命题是真命题C. 命题“若x=2,则x2+x−6=0”的逆否命题为“若x2+x−6≠0,则x≠2”D. 若命题“p∧q”,“p∨(¬q)”均为假命题,则p,q均为假命题6.执行如图所示的算法框图,则输出的结果是()A. 99100B. 100101C. 101100D. 991017.方程x2m+3+y21−m=1表示椭圆的充分不必要条件可以是()A. m∈(−3,1)B. m∈(−3,−1)∪(−1,1)C. m∈(−3,0)D. m∈(−3,−1)8.如图,是对某位同学一学期8次体育测试成绩(单位,分)进行统计得到的散点图,关于这位同学的成绩分析,下列结论错误的是()A. 该同学的体育测试成绩总的趋势是在逐步提高,且8次测试成绩的极差超过15分B. 该同学8次测试成绩的众数是48分C. 该同学8次测试成绩的中位数是49分D. 该同学8次测试成绩与测试次数具有相关性,且呈正相关9.若椭圆x23+y24=1的弦AB恰好被点M(1,1)平分,则AB所在的直线方程为()A. 3x−4y+1=0B. 3x+4y−7=0C. 4x−3y−1=0D. 4x+3y−7=010.七巧板是中国古代劳动人民发明的一种传统智力玩具,被誉为“东方魔社”,它是由五块等腰直角三角形,一块正方形和一块平行四边形共七块板组成的.如图是一个用七巧板拼成的正方形,若在此正方形中随机地取一点,则该点恰好取自白色部分的概率为()A. 916B. 716C. 1332D. 113211.已知双曲线x2a2−y2b2=1(a>0,b>0)的左、右焦点分别为F1、F2.若双曲线右支上存在点P,使得PF1与双曲线的一条渐近线垂直并相交于点Q,且|PF1|=4|F1Q|,则双曲线的浙近线方程为()A. y=±xB. y=±43x C. y=±34x D. y=±√2x12. 数学美的表现形式不同于自然美或艺术美那样直观,它蕴藏于特有的抽象概念,公式符号,推理论证,思维方法等之中,揭示了规律性,是一种科学的真实美.平面直角坐标系中,曲线C :x 2+y 2=|x|+|y|流是一条形状优美的曲线,对于此曲线,给出如下结论:①曲线C 围成的图形的面积是2+π; ②曲线C 上的任意两点间的臥离不超过2;③若P(m,n)是曲线C 上任意一点,则|3m +4n −12|的最小值是17−5√22. 其中正确结论的个数为( )A. 0B. 1C. 2D. 3二、单空题(本大题共4小题,共20.0分) 13. 椭圆x 2+2y 2=4的长轴长为______.14. 某班有40位同学,将他们从01至40编号,现用系统抽样的方法从中选取5人参加文艺演出,抽出的编号从小到大依次排列,若排在第一位的编号是05,那么第四位的编号是______.15. 根据某市有关统计公报显示,随着“一带一路”经贸合作持续深化,该市对外贸易近几年持续繁荣,2017年至2020年每年进口总额x(单位:千亿元)和出口总额y(单位:千亿元)之间的一组数据如下:若每年的进出口总额x ,y 满足线性相关关系y ̂=b ̂x −0.84,则b ̂=______;若计划2022年出口总额达到5千亿元,预计该年进口总额为______千亿元.16. 已知椭圆和双曲线有相同的焦点F 1和F 2,设椭圆和双曲线的离心率分别为e 1,e 2,P 为两曲线的一个公共点,且|PF⃗⃗⃗⃗⃗ 1−PF ⃗⃗⃗⃗⃗ 2|=2|PO ⃗⃗⃗⃗⃗ |(O 为坐标原点).若e 1∈(√22,√32],则e 2的取值范围是______.三、解答题(本大题共6小题,共70.0分)17. 已知△ABC 的三个顶点是A(4,0),B(6,7),C(0,3).(Ⅰ)求AC 边所在的直线方程;(Ⅱ)求经过AB 边的中点,且与AC 边平行的直线l 的方程.18.某班主任对全班50名学生进行了作业量多少与手机网游的调查,数据如下表:(Ⅰ)若随机抽问这个班的一名学生,分别求事件“认为作业不多”和事件“喜欢手机网游且认为作业多”的概率;(Ⅱ)若在“认为作业多”的学生中已经用分层抽样的方法选取了5名学生.现要从这5名学生中任取2名学生了解情况,求其中恰有1名“不喜欢手机网游”的学生的概率.19.已知圆C的圆心为C(1,2),且圆C经过点P(5,5).(Ⅰ)求圆C的一般方程;(Ⅱ)若圆O:x2+y2=m2(m>0)与圆C恰有两条公切线,求实数m的取值范围.20.为了讴歌中华民族实现伟大复兴的奋斗历程,增进学生对中国共产党的热爱,某学校举办了一场党史竞赛活动,共有500名学生参加了此次竞赛活动.为了解本次竞赛活动的成绩,从中抽取了50名学生的得分(得分均为整数,满分为100分)进行统计,所有学生的得分都不低于60分,将这50名学生的得分进行分组,第一组[60,70),第二组[70,80),第三组[80,90),第四组[90,100](单位:分),得到如下的频率分布直方图.(Ⅰ)求图中m的值,估计此次活动学生得分的中位数;(Ⅱ)根据频率分布直方图,估计此竞赛活动得分的平均值.若对得分不低于平均值的同学进行奖励,请估计在参赛的500名学生中有多少名学生获奖.21.已知抛物线E:x2=2py(p>0)的焦点为F,直线y=3与抛物线E在第一象限的交点为A,且|AF|=4.(Ⅰ)求抛物线E的方程;(Ⅱ)经过焦点F作互相垂直的两条直线l1,l2,l1与抛物线E相交于P,Q两点,l2与抛物线E相交于M,N两点.若C,D分别是线段PQ,MN的中点,求|FC|⋅|FD|的最小值.22. 已知点P 是圆C :(x +√3)2+y 2=16上任意一点,A(√3,0)是圆C 内一点,线段AP的垂直平分线与半径CP 相交于点Q .(1)当点P 在圆上运动时,求点Q 的轨迹E 的方程;(2)设不经过坐标原点O ,且斜率为12的直线l 与曲线E 相交于M ,N 两点,记OM ,ON 的斜率分别是k 1,k 2,以OM ,ON 为直径的圆的面积分别为S 1,S 2.当k 1,k 2都存在且不为0时,试探究S 1+S 2k1k 2是否为定值?若是,求出此定值;若不是,请说明理由.答案和解析1.【答案】D【解析】解:命题为全称命题,则命题的否定为∃x0∈N,e x0≤sinx0,故选:D.根据含有量词的命题的否定即可得到结论.本题主要考查含有量词的命题的否定,比较基础.2.【答案】C【解析】解:由已知抛物线方程可得:2p=4,所以p=2,=−1,即x=−1,所以准线方程为x=−p2故选:C.由已知抛物线方程以及求出p的值,进而可以求解.本题考查了抛物线的性质以及准线方程,属于基础题.3.【答案】B【解析】解:∵点A(1,−1,1),一个点关于x轴对称的点的坐标是只有横标不变,纵标和竖标改变,∴点A(1,−1,1)关于x轴对称的点的坐标为(1,1,−1)故选:B.根据所给的点的坐标,知一个点关于x轴对称的点的坐标是只有横标不变,纵标和竖标改变,写出点的坐标.本题考查空间中点的对称,是一个基础题,注意点在空间中关于坐标轴和坐标平面对称的点的坐标,这种题目通常单独作为一个知识点出现.4.【答案】A【解析】解:∵直线l1:ax+(a−2)y+1=0,l2:x+ay−3=0,l1⊥l2,∴a×1+(a−2)×a=0,解得a=0或a=1.故选:A.利用直线与直线垂直的性质直接求解.本题考查实数值的求法,考查直线与直线垂直的性质等基础知识,考查运算求解能力,是基础题.5.【答案】C【解析】解:对于A:命题“若a+b是偶数,则a,b都是偶数”的逆命题是:“若a,b都是偶数,则a+b是偶数”,该命题为真命题,由于逆命题和否命题等价,故否命题为真命题,故A错误;对于B:命题“若a为正无理数,则√a也是无理数”的逆命题是:若√a是无理数,则a也为无理数”是假命题,故B错误;对于C:命题“若x=2,则x2+x−6=0”的逆否命题为“若x2+x−6≠0,则x≠2”,故C正确;对于D:若命题“p∧q”,“p∨(¬q)”均为假命题,则p为假命题,q为真命题,故D 错误.故选:C.直接利用四种命题的转换和命题真假的判定的应用求出结果.本题考查的知识要点:命题真假的判定,四种命题的转换,主要考查学生对基础知识的理解,属于基础题.6.【答案】B【解析】解:模拟程序的运行,可得该程序的功能是利用循环结构计算并输出变量S=1 1×2+12×3+...+1100×101的值,S=11×2+12×3+...+1100×101=(1−12)+(12−13)+...+(1100−1101)=1−1101=100101.故选:B.模拟程序的运行,可得该程序的功能是利用循环结构计算并输出变量S=11×2+12×3+...+1100×101的值,进而根据裂项法即可求解. 本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.7.【答案】D【解析】解:若方程x 2m+3+y 21−m=1表示椭圆,则{m +3>01−m >0m +3≠1−m ,解得:−3<m <1且m ≠−1, 则方程x 2m+3+y 21−m =1表示椭圆的充要条件是{m|:−3<m <1且m ≠−1},则:方程x 2m+3+y 21−m =1表示椭圆的充分不必要条件所对应的集合必须是{m|:−3<m <1且m ≠−1}的真子集,选项D ,m ∈(−3,−1)符合条件. 故选:D . 求得方程x 2m+3+y 21−m =1表示椭圆的条件,根据利用充分条件和必要条件的定义判断. 本题主要考查充分条件和必要条件的应用,以及椭圆的方程,属于基础题.8.【答案】C【解析】解:由散点图得:对于A ,该同学的体育测试成绩总的趋势是在逐步提高,且8次测试成绩的极差为:56−38=18,超过15分,故A 正确;对于B ,该同学8次测试成绩的众数是48分,故B 正确; 对于C ,该同学8次测试成绩的中位数是:48+482=48分,故C 错误;对于D ,该同学8次测试成绩与测试次数具有相关性,且呈正相关,故D 正确. 故选:C .利用散点图、极差、众数、中位数、相关性直接求解.本题考查命题真假的判断,考查散点图、极差、众数、中位数、相关性等基础知识,考查运算求解能力,是基础题.9.【答案】D【解析】解:设A(x1,y1),B(x2,y2),则x123+y124=1,x223+y224=1,两式相减得:x12−x223+y12−y224=0,因为弦AB恰好被点M(1,1)平分,所以有x1+x2=2,y1+y2=2.所以直线AB的斜率k=y2−y1x2−x1=−43⋅x1+x2y2+y1=−43,因此直线AB的方程为y−1=−43(x−1),即4x+3y−1=0,故选:D.设A(x1,y1),B(x2,y2),利用平方差法求出直线的斜率,然后求解直线方程.本题考查直线与椭圆的位置关系的应用,椭圆的简单性质的应用,平方差法的应用,考查计算能力,属于中档题.10.【答案】A【解析】解:如图,设大正方形的边长为2,则最大的三角形是腰长为√2的等腰直角三角形,角上的三角形是腰长为1的等腰直角三角形,最小的三角形是腰长为√22的等腰直角三角形,∴白色部分的面积为:S 白=22−12×√2×√2−12×√22×√22−12×1×1=94,∴在此正方形中任取一点,则此点取自白色部分的概率为:P=S白S正方形=944=916.故选:A.设大正方形的边长为2,求出白色部分的面积,利用几何概型能求出在此正方形中任取一点,则此点取自白色部分的概率.本题考查概率的运算,考查几何概型等基础知识,考查运算求解能力,是基础题.11.【答案】B【解析】解:设双曲线x 2a 2−y 2b 2=1(a >0,b >0)的左、右焦点分别为: F 1(−c,0),F 2(c,0),一条渐近线方程为bx −ay =0,可得F 2到渐近线的距离为|F 2Q|=|bc|√a 2+b 2=b , 则|PF 2|=4b ,|PF 1|=4b −2a ,在直角三角形OF 2Q 中,cos∠QF 2O =|QF 2||OF 2|=bc ,在△PF 2F 1中,可得cos∠PF 2F 1=|F 1F 2|2+|PF 2|2−|PF 1|22|F 1F 2||PF 2|=4c 2+16b 2−(4b−2a)22×2c×4b=bc,化为3b =4a ,所以双曲线的渐近线方程为:y =±43x. 故选:B .设出双曲线的焦点和一条渐近线方程,求得F 2到渐近线的距离,可得|PF 2|=4b ,|PF 1|=4b −2a ,由直角三角形的锐角三角函数和三角形的余弦定理,化简可得3b =4a ,可得渐近线方程.本题考查双曲线的定义、方程和性质,主要是渐近线方程的求法,考查三角形的余弦定理和锐角三角函数的定义,考查方程思想和运算能力,属于中档题.12.【答案】C【解析】解:曲线C :x 2+y 2=|x|+|y|可知曲线关于原点,x ,y 轴对称, 当x ≥0,y ≥0时,可得x 2+y 2−x −y =0,可得(x −12)2+(y −12)2=12,所以可得是以C(12,12)为圆心,r =√22为半径的半圆,由此可作出曲线C 的图象,如图所示,所以曲线C 围成的图形的面积是√2×√2+2×π×(√22)2=2+π,故命题①正确;曲线上任意两点间距离的最大值为4×√22=2√2,故命题②错误;设圆心C 到直线3x +4y −12=0的距离为d =∣3×12+4×12−12∣22=1710,故曲线上任意一点P(m,n)到直线l 的距离的最小值为3m+4n−12√32+42最小值为1710−√22, 故|3m +4n −12|的最小值是17−5√22,故命题③正确. 故选:C .由曲线方程知曲线关于原点,x ,y 轴对称,当x ≥0,y ≥0时,可得x 2+y 2−x −y =0,可得(x −12)2+(y −12)2=12,所以可得是以C(12,12)为圆心,r =√22为半径的半圆,由此可作出曲线C 的图象,从而通过运算可判断命题①②③的真假.本题考查命题真假的判断,以及考查由曲线方程研究曲线的相关性质,属中档题.13.【答案】4【解析】解:椭圆x 2+2y 2=4,可得x 24+y 22=1,可得a =2,所以椭圆长轴长为:4. 故答案为:4.化简椭圆方程为标准方程,然后求解长轴长即可. 本题考查椭圆的简单性质的应用,是基础题.14.【答案】29【解析】解:系统抽样间隔为40÷5=8,且抽取的第一位编号是05, 所以第四位的编号是5+8×3=29. 故答案为:29.求出系统抽样间隔,根据抽取的第一位编号即可写出第四位的编号. 本题考查了系统抽样应用问题,是基础题.15.【答案】1.6 3.65【解析】解:由题意可得:x −=1.8+2.2+2.6+3.04=2.4.y −=2.0+2.8+3.2+4.04=3.因为样本中心满足回归直线方程,可得3=2.4 b ⏜−0.84, 解得 b⏜=1.6. y ̂=1.6x −0.84,2022年出口总额达到5千亿元,预计该年进口总额为x , 则5=1.6x −0.84,解得x =3.65. 故答案为:1.6;3.65.求出样本中心坐标,代入回归直线方程,求解b ^,然后代入计划2022年出口总额达到5千亿元,求解即可.本题考查回归直线方程的求法与应用,考查分析问题解决问题的能力,是中档题.16.【答案】[√62,+∞)【解析】解:设椭圆C 1:x 2a 12+y 2b 12=1(a 1>b 1>0),双曲线C 2:x 2a 22−y 2b 22=1(a 2>0,b 2>0),F 1(−c,0),F 2(c,0)为C 1与C 2的共同焦点,则c 2=a 12−b 12,c 2=a 22+b 22, 由|PF 1⃗⃗⃗⃗⃗⃗⃗ −PF 2⃗⃗⃗⃗⃗⃗⃗ |=2|PO ⃗⃗⃗⃗⃗ |,得|F 2F 1⃗⃗⃗⃗⃗⃗⃗⃗ |=2|PO ⃗⃗⃗⃗⃗ |, 所以2c =2|PO|,所以|PO|=c , 所以|OF 1|=|OP|=|OF 2|=c ,所以∠F 1PF 2=90°(P 为C 1与C 2的一个公共点), 设|PF 1|=m ,|PF 2|=n ,则m 2+n 2=4c 2,① m +n =2a 1,②, |m −n|=2a 2,③②2+③2,得2m 2+2n 2=4(a 12+a 22), 代入①,得2×4c 2=4(a 12+a 22), 所以2c 2=a 12+a 22,所以a 12c 2+a 22c 2=2,④ 又e 1=ca 1,e 2=ca 2,所以1e 1=a 1c,1e 2=a 2c,所以④化为1e 12+1e 22=2,即1e 22=2−1e 12,因为e 1∈(√22,√32],所以12<e 12≤34,所以43≤1e 12<2,所以−2<−1e 12≤−43,所以0<2−1e 12≤2−43=23,即0<1e 22≤23,则e 22≥32,又e 2>1,所以e 2≥√62, 所以e 2的取值范围为[√62,+∞),故答案为:[√62,+∞).设椭圆C 1:x 2a 12+y 2b 12=1(a 1>b 1>0),双曲线C 2:x 2a 22−y 2b 22=1(a 2>0,b 2>0),F 1(−c,0),F 2(c,0)为C 1与C 2的共同焦点,则c 2=a 12−b 12,c 2=a 22+b 22,由|PF 1⃗⃗⃗⃗⃗⃗⃗ −PF 2⃗⃗⃗⃗⃗⃗⃗ |=2|PO ⃗⃗⃗⃗⃗ |,得|PO|=c ,则∠F 1PF 2=90°(P 为C 1与C 2的一个公共点),设|PF 1|=m ,|PF 2=n ,可得m 2+n 2=4c 2①,m +n =2a 1②,|m −n|=2a 2③,进一步求出e 2的取值范围. 本题考查椭圆与双曲线的性质,解题中需要理清思路,属于中档题.17.【答案】解:(Ⅰ)由题意知AC 斜率为k =3−00−4=−34,所以AC 边所在直线方程为y −0=−34(x −4),即3x +4y −12=0.(Ⅱ)由(Ⅰ)知l 可设为3x +4y +m =0,又AB 边中点为(5,72),将点(5,72)代入直线l 的方程得3×5+4×72+m =0,解得m =−29,所以l 方程为3x +4y −29=0.【解析】(Ⅰ)由A 、C 两点坐标可以写出直线AC 斜率,再代入A 、C 中的一个点就可以求出AC 方程.(Ⅱ)求出AB 中点,l 与AC 平行,从而斜率相等,即可设出l ,代入A 、C 中点求得l .本题考查了直线方程的求解和两直线平行的关系,属于简单题.18.【答案】解::(Ⅰ)用A 表示“认为作业不多”,用B 表示“喜欢手机网游且认为作业多”,则P(A)=2550=12,P(B)=2050=25.(Ⅱ)若在“认为作业多”的学生中已经用分层抽样的方法选取了5名学生, “不喜欢手机网游”与“喜欢手机网游”的人数的比值为520=14, ∴采用分层抽样方法抽取5人,其中“不喜欢手机网游”的有1人, “喜欢手机网游”有4人,记“不喜欢手机网游”的1名学生为B,“喜欢手机网游”的4名学生分别为B1,B2,B3,B4,从5名学生中抽取2名学生的所有可能情况有n=C52=10,恰有1名“不喜欢手机网游”学生的情况有:{B,B1},{B,B2},{B,B3},{B,B4},共4种,∴其中恰有1名“不喜欢手机网游”的学生的概率P=410=25.【解析】(Ⅰ)利用古典概型直接求解.(Ⅱ)采用分层抽样方法抽取5人,其中“不喜欢手机网游”的有1人,“喜欢手机网游”有4人,记“不喜欢手机网游”的1名学生为B,“喜欢手机网游”的4名学生分别为B1,B2,B3,B4,从5名学生中抽取2名学生的所有可能情况有n=C52=10,利用列举法求出恰有1名“不喜欢手机网游”学生的情况有4种,由此能求出其中恰有1名“不喜欢手机网游”的学生的概率.本题考查概率的求法,考查古典概型基础知识,考查运算求解能力,是基础题.19.【答案】解:(I)设圆C的方程为(x−1)2+(y−2)2=r2(r为圆C的半径),∵圆C经过点P(5,5),∴(5−1)2+(5−2)2=r2,即r2=25,∴圆C的标准方程为(x−1)2+(y−2)2=25.(II)由(I)知圆C的圆心为C(1,2),半径为5,∵圆O:x2+y2=m2(m>0)与圆C恰有两条公切线,∴圆O与圆C相交,∴|5−m|<|OC|<5+m,∵|OC|=√(1−0)2+(2−0)2=√5,∴5−√5<m<5+√5,故m的取值范围是(5−√5,5+√5).【解析】(I)设圆C的方程为(x−1)2+(y−2)2=r2(r为圆C的半径),再将点P(5,5)代入圆C方程,即可求解.(II)将已知条件转化为两圆相交,再结合圆心距与两圆半径之间的关系,即可求解.本题主要考查两圆之间的位置关系,属于基础题.20.【答案】(Ⅰ)由图知第三组频率为1−(0.01+0.04+0.02)×10=0.30,所以第三组矩形的高为m =0.3010=0.03.因为前两组的频率为(0.01+0.03)×10=0.4<0.5,前三组的频率为(0.01+0.03+0.04)×10=0.8>0.5,所以得分的中位数在第三组内,设中位数为x ,(0.01+0.03)×10+(x −80)×0.04=0.5,解得x =82.5,所以估计此次得分的中位数是 82.5分.(Ⅱ)由频率分布直方图知,学生得分的平均值为x −=65×10×0.01+75×10×0.03+85×10×0.04+95×10×0.02=82.参赛的500名学生中得分不低于82分的人数为500×[0.02×10+(90−82)×0.04]=260,所以估计此次参加比赛活动学生得分的平均值为82分,参赛的500名学生中有260名学生获奖.【解析】(Ⅰ)所有组频率之和为1,每个小长方形面积为该组对应的频率,这样让1减去其它组频率即为所求组频率,所求组频率即为对应长方形面积,面积除以宽得到高就是m 值.频率分布直方图中的中位数是频率0.5位置为应的x 的值.(Ⅱ)平均值是各组中点值乘以对应的频率之和,不低于平均值的学生人数为总数500乘以不低于平均值的频率.本题考查了频率直方图中的频率、中位数、平均数,频数的求解,考查较基础难度不大.21.【答案】解:(Ⅰ)由题意,|AF|=3+p2=4,得p =2.∴抛物线E 的方程为x 2=4y ; (Ⅱ)由(Ⅰ)知焦点为F(0,1).由已知可得两直线PQ 、MN 的斜率都存在且均不为0. 设直线PQ 的斜率为k ,则直线MN 的斜率为−1k , 故直线PQ 的方程为y =kx +1,联立方程组{y =kx +1x 2=4y ,消去y ,整理得x 2−4kx −4=0,设点P(x 1,y 1),Q(x 2,y 2),则x 1+x 2=4k ,∵C(x C ,y C )为弦PQ 的中点,∴x C =12(x 1+x 2)=2k . 由y C =kx C +1=2k 2+1,故点C(2k,2k 2+1),同理,可得D(−2k ,2k 2+1),故|FC|=√4k 2+4k 4=2√k 4+k 2,|FD|=√4k 2+4k 4=2√1k 4+1k 2.∴|FC|⋅|FD|=4√(k 4+k 2)(1k+1k)=4√(2+k 2+1k)≥4√2+2√k 2⋅1k =8.当且仅当k 2=1k 2,即k =±1时,等号成立. ∴|CF|⋅|FD|的最小值为8.【解析】(Ⅰ)由题意可得|AF|=3+p2=4,求得p ,则抛物线E 的方程可求; (Ⅱ)由(Ⅰ)知焦点为F(0,1).由已知可得两直线PQ 、MN 的斜率都存在且均不为0.设直线PQ 的斜率为k ,则直线MN 的斜率为−1k ,可得直线PQ 与MN 的方程,与抛物线方程联立,利用根与系数的关系及中点坐标公式求得C 与D 的坐标,再求出|FC|与|FD|的值,作积后整理,再由基本不等式求最值.本题考查抛物线的方程和性质,考查直线和抛物线的位置关系的应用,考查化简运算能力和推理能力,训练了利用基本不等式求最值,属于中档题.22.【答案】解:(1)由题意知|PQ|=|AQ|,又|PQ|+|CQ|=|CP|=4,且|AC|=2√3, ∴|AQ|+|CQ|=4>|AC|,由椭圆定义知Q 点的轨迹是以A ,C 为焦点的椭圆, 设椭圆的方程为x 2a 2+y 2b 2=1(a >b >0), 则a =2,c =√3. ∴b 2=1. ∴曲线E 的方程为x 24+y 2=1.(2)由题意知直线l 的方程为y =12x +m(m ≠±1), 设直线l 与椭圆的交点为M(x 1,y 1),N(x 2,y 2),由{y =12x +mx 24+y 2=1,消去y ,化简得x 2+2mx +2m 2−2=0,∴Δ=4m 2−4(2m 2−2)=8−4m 2>0, 即m 2<2,∴x 1+x 2=−2m,x 1x 2=2m 2−2, ∴k 1k 2=y 1x 1⋅y 2x 2=12x 1+m x 1⋅12x 2+m x 2=14+m 2x 1x 2+m(x 1+x 2)2x 1x 2=14+m 22m 2−2+m⋅(−2m)4m 2−4=14, S 1+S 2=π4(|OM|2+|ON|2)=π4(x 12+y 12+x 22+y 22)=π4(x 12+x 22+y 12+y 22), ∵x 12+x 22=(x 1+x 2)2−2x 1x 2=4m 2−2(2m 2−2)=4,∴y 12+y 22=(1−x 124)+(1−x 224)=2−x 12+x 224=1,∴S 1+S 2=π4(x 12+x 22+y 12+y 22)=5π4,∴S 1+S 2k 1k 2=5π414=5π,∴S 1+S 2k 1k 2是定值,为5π.【解析】(1)由条件可得Q 点轨迹满足椭圆定义,设出椭圆方程,由a ,c 的值可得b 的值,从而求得轨迹方程;(2)设出直线l 的方程,结合韦达定理,分别求得k 1k 2为定值,S 1+S 2也为定值,从而可得S 1+S 2k1k 2是定值.本题考查了椭圆的标准方程,直线与椭圆的综合,属于难题.。
2014-2021学年四川省成都市高二(上)期末数学试卷(理科) Word版含解析
2022-2021学年四川省成都市高二(上)期末数学试卷(理科)一、选择题(每小题5分,共50分)1.在空间直角坐标系Oxyz中,已知点A(2,1,﹣1),则与点A关于原点对称的点A1的坐标为()A.(﹣2,﹣1,1)B.(﹣2,1,﹣1)C.(2,﹣1,1)D.(﹣2,﹣1,﹣1)2.如图是某样本数据的茎叶图,则该样本数据的众数为()A.10 B.21 C.35 D.463.已知点A(﹣1,2),B(1,3),若直线l与直线AB平行,则直线l的斜率为()A.﹣2 B.2 C.﹣D.4.依据如图的程序语句,当输入的x的值为2时,则执行程序后输出的结果是()A.4 B. 6 C.8 D.105.经过点(2,1),且倾斜角为135°的直线方程为()A.x+y﹣3=0 B.x﹣y﹣1=0 C.2x﹣y﹣3=0 D.x﹣2y=06.已知圆C1:x2+y2+2x﹣4y+1=0,圆C2:(x﹣3)2+(y+1)2=1,则这两圆的位置关系是()A.相交B.相离C.外切D.内含7.如图,在平行六面体ABCD﹣A1B1C1D1中,E为BC1与B1C 的交点,记=,=,=,则=()A.++B.++C.++D.﹣﹣8.已知l,m是两条不同的直线,α,β是两个不同的平面,则在下列条件中,确定能得到l⊥m的是()A.α∩β=l,m与α,β所成角相等B.α⊥β,l⊥α,m∥βC.l,m与平面α所成角之和为90°D.α∥β,l⊥α,m∥β9.已知直线l:xsinα﹣ycosα=1,其中α为常数且α∈[0,2π).有以下结论:①直线l的倾斜角为α;②无论α为何值,直线l总与确定圆相切;③若直线l与两坐标轴都相交,则与两坐标轴围成的三角形的面积不小于1;④若P(x,y)是直线l上的任意一点,则x2+y2≥1.其中正确结论的个数为()A.1 B. 2 C. 3 D. 410.在Rt△ABC中,已知D是斜边AB上任意一点(如图①),沿直线CD将△ABC折成直二面角B﹣CD ﹣A(如图②).若折叠后A,B两点间的距离为d,则下列说法正确的是()A.当CD为Rt△ABC的中线时,d取得最小值B.当CD为Rt△ABC的角平分线时,d取得最小值C.当CD为Rt△ABC的高线时,d取得最小值D.当D在Rt△ABC的AB边上移动时,d为定值二、填空题(每小题5分,共25分)11.在空间直角坐标系Oxyz中,已知点P(1,0,5),Q(1,3,4),则线段PQ的长度为.12.某单位有1200名职工,其中年龄在50岁以上的有500人,35~50岁的400人,20~35岁的300人.为了解该单位职工的身体健康状况,现接受分层抽样的方法,从1200名职工抽取一个容量为60的样本,则在35~50岁年龄段应抽取的人数为.13.执行如图所示的程序框图,则输出的结果为.14.在正方体ABCD﹣A1B1C1D1的12条面对角线所在的直线中,与A1B所在的直线异面而且夹角为60°的直线有条.15.记空间向量=,=,=,其中,,均为单位向量.若⊥,且与,的夹角均为θ,θ∈[0,π].有以下结论:①⊥(﹣);②直线OC与平面OAB所成角等于向量与+的夹角;③若向量+所在直线与平面ABC垂直,则θ=60°;④当θ=90°时,P为△ABC内(含边界)一动点,若向量与++夹角的余弦值为,则动点P 的轨迹为圆.其中,正确的结论有(写出全部正确结论的序号).三、解答题(共75分,解答应写出文字说明、证明过程或演算步骤)16.(12分)(2022秋•成都期末)如图,在正方体ABCD﹣A1B1C1D1中,M,N ,P分别是棱AB,A1D1,AD的中点,求证:(Ⅰ)平面MNP∥平面BDD1B1;(Ⅱ)MN⊥AC.17.(12分)(2022秋•成都期末)某校要调查高中二班级男生的身高状况,现从全班级男生中随机抽取一个容量为100的样本.样本数据统计如表,对应的频率分布直方图如图所示.(1)求频率分布直方图中a,b的值;(2)用样本估量总体,若该校高中二班级男生共有1000人,求该班级中男生身高不低于170cm的人数.身高(单位:cm)[150,155)[155,160)[160,165)[165,170)[170,175)[175,180)[180,185)[185,190)人数 2 8 15 20 25 18 10 218.(12分)(2022秋•成都期末)如图,在三棱柱ABC﹣A1B1C1中,向量,,两两垂直,||=1,||=2,E,F分别为棱BB1,BC的中点,且•=0.(Ⅰ)求向量的模;(Ⅱ)求直线AA1与平面A1EF所成角的正弦值.19.(12分)(2022秋•成都期末)已知直线l1:mx﹣(m+1)y﹣2=0,l2:x+2y+1=0,l3:y=x﹣2是三条不同的直线,其中m∈R.(Ⅰ)求证:直线l1恒过定点,并求出该点的坐标;(Ⅱ)若l2,l3的交点为圆心,2为半径的圆C与直线l1相交于A,B两点,求|AB|的最小值.20.(13分)(2022秋•成都期末)如图,在四棱锥P﹣ABCD中,△PAB是边长为2的正三角形,底面ABCD 为菱形,且平面PAB⊥平面ABCD,PC⊥AB,E为PD上一点,且PD=3PE.(Ⅰ)求异面直线AB与CE所成角的余弦值;(Ⅱ)求平面PAC与平面ABCD所成的锐二面角的余弦值.21.(14分)(2022秋•成都期末)已知点P(0,2),设直线l:y=kx+b(k,b∈R)与圆C:x2+y2=4相交于异于点P的A,B两点.(Ⅰ)若•=0,求b的值;(Ⅱ)若|AB|=2,且直线l 与两坐标轴围成的三角形的面积为,求直线l的斜率k的值;(Ⅲ)当|PA|•|PB|=4时,是否存在确定圆M,使得直线l与圆M相切?若存在,求出该圆的标准方程;若不存在,请说明理由.2022-2021学年四川省成都市高二(上)期末数学试卷(理科)参考答案与试题解析一、选择题(每小题5分,共50分)1.在空间直角坐标系Oxyz中,已知点A(2,1,﹣1),则与点A关于原点对称的点A1的坐标为()A.(﹣2,﹣1,1)B.(﹣2,1,﹣1)C.(2,﹣1,1)D.(﹣2,﹣1,﹣1)考点:空间中的点的坐标.专题:空间位置关系与距离.分析:利用关于原点对称的点的特点即可得出.解答:解:与点A关于原点对称的点A1的坐标为(﹣2,﹣1,1),故选:A.点评:本题考查了关于原点对称的点的特点,属于基础题.2.如图是某样本数据的茎叶图,则该样本数据的众数为()A.10 B.21 C.35 D.46考点:众数、中位数、平均数.专题:概率与统计.分析:通过样本数据的茎叶图直接读出即可.解答:解:通过样本数据的茎叶图发觉,有3个数据是35,最多,故选:C.点评:本题考查了样本数据的众数,考查了茎叶图,是一道基础题.3.已知点A(﹣1,2),B(1,3),若直线l与直线AB平行,则直线l的斜率为()A.﹣2 B.2 C.﹣D.考点:直线的斜率.专题:直线与圆.分析:直接由两点坐标求得直线AB的斜率,再由两直线平行斜率相等得答案.解答:解:∵A(﹣1,2),B(1,3),∴,又直线l与直线AB平行,则直线l 的斜率为.故选:D.点评:本题考查了由直线上的两点的坐标求直线的斜率公式,是基础的计算题.4.依据如图的程序语句,当输入的x的值为2时,则执行程序后输出的结果是()A.4 B. 6 C.8 D.10考点:选择结构.专题:算法和程序框图.分析:执行程序语句,可得程序的功能是计算并输出分段函数y=的值,将x=2代入即可求值.解答:解:执行程序语句,可得程序的功能是计算并输出分段函数y=的值,故当x=2时,y=2×(2+1)=6.故选:B.点评:本题主要考查了程序与算法,正确理解程序的功能是解题的关键,属于基础题.5.经过点(2,1),且倾斜角为135°的直线方程为()A.x+y﹣3=0 B.x﹣y﹣1=0 C.2x﹣y﹣3=0 D.x﹣2y=0考点:直线的点斜式方程.专题:直线与圆.分析:由直线的倾斜角求出直线的斜率,代入直线的点斜式方程得答案.解答:解:∵直线的倾斜角为135°,∴直线的斜率k=tan135°=﹣1.又直线过点(2,1),由直线的点斜式可得直线方程为y﹣1=﹣1×(x﹣2),即x+y﹣3=0.。
四川省成都市2023-2024学年高二上学期期末能力测评数学试题含答案
高二2023-2024学年度上期期末能力测评数学(答案在最后)满分150分考试时间120分钟注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡指定位置;2.回答选择题时,选出每小题答案后,用铅笔把答题卡上相应题目答案标号涂黑.如需改动,请用橡皮擦干净;3.回答非选择题时,在答题卡上作答.写在本试卷上无效;4.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.每小题的四个选项中,只有一个选项符合题目要求.1.直线:l 2310x y +-=的一个方向向量为()A.()2,3- B.()3,2- C.()2,3 D.()3,2【答案】B 【解析】【分析】利用直线方向向量的定义和直线斜率与方向向量的关系直接求解即可.【详解】由2310x y +-=得,2133y x -+,所以直线的一个方向向量为2(1,)3-,而2(3,2)3(1,)3-=--,所以(3,2)-也是直线的一个方向向量.故选:B.2.对于变量x ,条件:p Q x ∈,条件:q R ,则p 是q 的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件【答案】D 【解析】【分析】根据充分必要条件的要求,分别判断p 能否推出q ,以及q 能否推出p 即得.【详解】由Q x ∈,若取=1x -R ,即p 不是q 的充分条件;R ,若取πx =,显然不满足Q x ∈,即p 不是q 的必要条件.3.对某社团进行系统抽样,编号为001,002,⋯,120,则抽取的序号不可能是()A.001,004,⋯,117B.008,020,⋯,116C.005,015,⋯,115D.014,034,⋯,114【答案】A 【解析】【分析】根据系统抽样的要求抽取的序号的间隔相同,序号构成等差数列,逐项验证.【详解】根据系统抽样的要求抽取的序号的间隔相同,序号构成等差数列,对A :121,4,3,32n a a d a n ====-,令32117n -=此方程没有正整数解,故A 不可能;对B :128,20,12,124n a a d a n ====-,令124116n -=得10n =满足要求,故B 可能;对C :125,15,10,105n a a d a n ====-,令105115n -=得12n =满足要求,故C 可能;对D :1214,34,20,206n a a d a n ====-,令206114n -=得6n =满足要求,故D 可能;故选:A4.若直线:l 260x y m -+-=平分圆:C 22240x mx y +++=,则实数m 的值为()A .2- B.2 C.3 D.2-或3【答案】C 【解析】【分析】列出22240x mx y +++=所满足的条件,由直线l 过圆心求得m 的值.【详解】22240x mx y +++=可化为()2224x m y m ++=-,则240m ->,直线260x y m -+-=始终平分圆22240x mx y +++=的周长,则直线l 经过圆心(,0)m -.代入直线得260m m --=,解得3m =或2m =-.因为2m =-不满足240m ->,故3m =故选:C.5.若数列{}n a 满足12a =,1123n nn S S n a +++=+,则88S a +的值为()A.9B.10C.11D.12【解析】【分析】由n S 与n a 的关系求得()()112n n S n S n +=++,从而1n S n ⎧⎫⎨⎬+⎩⎭为常数列,得到1n S n =+,即可求88S a +的值.【详解】由11n n n S S a ++-=及1123n nn S S n a +++=+得()()1123n n n n S S n S S +++=+-,即()()112323n n n n S S n S n S ++-+=++,即()()112n n S n S n +=++,所以112n n S S n n +=++,即1n S n ⎧⎫⎨⎬+⎩⎭为常数列,又11221S a ==,所以11n Sn =+,即1n S n =+,所以878879,81,S S a S S ===-=,所以8810S a +=.故选:B6.已知实数,x y28x y =+-,则点(),P x y 的轨迹为()A.抛物线B.双曲线C.一条直线D.两条直线【答案】D 【解析】【分析】将已知方程等价变形为()()334170x x y -⋅+-=,即可判断点(),P x y 的轨迹.28x y =+-,所以两边平方得()()22223246443216x y x y xy x y -+-=+++--,化简整理得2351426120x xy x y ++--=,所以()()334170x x y -⋅+-=,所以30x -=或34170x y +-=,即点(),P x y 的轨迹方程为30x -=或34170x y +-=,所以点(),P x y 的轨迹为两条相交直线.故选:D7.若复数z 满足()24z z z ⋅+=,则23z z +的最小值为()A .16B. C. D.【答案】C 【解析】【分析】设i z x y =+,利用复数的乘法运算及模的公式得422491016x x y y ++=,所求式子为()2244x y +,令224t x y =+,则利用422152160x tx t --+=有解求得t ≥,即可得解.【详解】设i z x y =+,则()()()()222i 3i 34i 4z z z x y x y x yxy ⋅+=+⋅+=-+=,所以()()22223416x y xy -+=,即422491016x x y y ++=,而()()()2222222333i i 42i 16444z zx y x y x y x y x y +=++-=+=+=+,令224t x y =+,则224y t x =-,所以()()242229104416x x t x t x +-+-=,即422152160x tx t --+=,记20m x =≥,则22152160m tm t --+=,由题意,该方程存在非负根,且二次函数对称轴015tm =>,所以()()22Δ2415160t t =-⨯⨯-+≥,所以215t ≥,又0t >,所以t ≥,所以234z z t +=≥,即23z +的最小值为.故选:C8.计算:cos 20cos 40cos 40cos80cos80cos 20-+= ()A.12B.23C.34D.2【答案】C 【解析】【分析】根据和差角公式以及积化和差公式即可求解.【详解】()()()()11cos 20cos 40cos 40cos80cos80cos 20cos 4020cos 4020cos 8040cos 804022⎡⎤⎡⎤-+=++--++-⎣⎦⎣⎦()()1cos 8020cos 80202⎡⎤+++-⎣⎦111131cos 20cos 40cos100cos 202cos 40cos100222242112⎡⎤⎡⎤⎡⎤⎡⎤=+-+++=+⎣⎦-⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣-⎦+()()3131cos 20cos 40cos100cos 3010cos 3010sin104242⎡⎤⎡⎤=+=+--+-⎣⎦-+⎦⎣3132sin 30sin10sin10424⎡⎤=+-=⎣⎦,故选:C二、选择题:本题共4小题,每小题5分,共20分.在每小题的四个选项中,有多个选项符合题目要求.全部选对得5分,部分选对得2分,有选错的得0分.9.设集合A ={|αα为两个非零向量可能的夹角},集合B ={|ββ为两条异面直线可能的夹角},则下列说法错误的是()A.4π3A ∉ B.2π3B ∈C.ππ2A B θθ⎧⎫⊆≤≤⎨⎬⎩⎭ð D.ππ2A B θθ⎧⎫⊇≤≤⎨⎬⎩⎭ð【答案】BCD 【解析】【分析】由向量夹角定义和异面直线所成角取值范围求出集合A ,B ,再结合集合相关概念即可求解.【详解】由题集合[]0,πA =,π0,2B ⎛⎤= ⎥⎝⎦,所以4π3A ∉,2π3B ∈,故A 对,B 错;由上{}π0,π2A B ⎛⎤=⋃ ⎥⎝⎦ð,故C 、D 错.故选:BCD.10.已知曲线:Γ1x x y y +=-,将曲线Γ用函数()f x 表示,则下列说法正确的是()A.()f x 在R 上单调递减;B.()y f x =的图象关于34y x =对称;C.()22fx x +的最小值为9;D.若直线:l y kx b =+()0b <与()y f x =的图象没有交点,则实数k 为定值.【答案】ACD 【解析】【分析】分段讨论确定Γ所表示的曲线方程作出图象,由图象判断A ,B ,D 选项;求出()22f x x +的表达式求其最小值判断C 选项;【详解】当0,0x y >≥时,221916x y+=-不存在,故在第一象限内无图象;当0,0x y <≥时,221916x y-+=-,在第二象限内为双曲线的一部分,其渐近线为43y x =-,此时2216169x y =-,即()()221616,39x f x x =-≤-,所以()222251699x f x x +=-≥;当0,0x y ≤<时,221916x y +=,在第三象限内为椭圆的一部分;此时2216169x y =-,即()()221616,309x f x x =--<≤,所以()22271699x f x x +=->当0,0x y ><时,22916x y -=-,在第四象限内为双曲线的一部分,其渐近线为43y x =-;此时2216169x y =+,即()()221616,09x f x x =+>,所以()2222516169x f x x +=+>;综上:()22fx x +的最小值为9,故C 正确;()y f x =图象如图所示:对于A :由图象可得()f x 在R 上单调递减,故A 正确;对于B ,由图象可得()f x 图象不关于直线34y x =成轴对称图形,也可以求得()3,0-关于直线34y x =对称的点2172,2525⎛⎫-- ⎪⎝⎭不在()f x 图象上,故B 错误;对D :若直线:l y kx b =+()0b <与()y f x =的图象没有交点,则直线l 与渐近线平行,即43k =-为定值,否则直线l 与渐近线相交,则一定会与()y f x =的图象相交,故D 正确.故选:ACD【点睛】关键点点睛:本题关键是能根据,x y 的正负去掉绝对值符号得到曲线方程,作出图象,数形结合分析.11.已知独立的事件A 、B 满足()()0P A P B <<,则下列说法错误的是()A.()()P A P AB +一定小于()2P B ;B.()()P A B P AB +可能等于()2PB ;C.事件AB 和事件AB 不可能相互独立;D.事件AB 和事件A B +可以相互独立.【答案】BC 【解析】【分析】利用独立事件的定义和性质可判断A 正确,B 错误;根据事件A 与B ,A 与B ,A 与B ,A 与B 都相互独立,利用相互独立事件概率公式计算即可.【详解】()()P A P B <且,A B 相互独立,则()()P AB P B <,()()2()P A P AB P B +<,A 正确.∵A B +表示事件,A B 至少发生一个,AB 表示事件,A B 同时发生,∴()(),()()()()P A B P B P AB P A P B P B +>=<,∴()()P A B P AB +不能等于()2P B ,B 错误.若1()2P B =,则1()2P B =,此时()()P AB P AB =,∵AB AB A = .∴()(()(()()()P A P AB AB P AB P AB P A P B P AB ==+=+ .∴移项得(()()()()()()(1())()()P AB P A P AB P A P A P B P A P B P A P B =-=-=-=.∴事件A 与B 相互独立,同理可知事件A 与B ,A 与B 也都相互独立.∴事件AB 和AB 可能相互独立,事件AB 和A B +可能相互独立,C 错误,D 正确.故选:BC【点睛】关键点点睛:解题的关键是已知独立事件A 、B ,可推出事件A 与B ,A 与B ,A 与B ,A 与B 都相互独立.12.如图,在棱长为6的正方体1111ABCD A B C D -上,点M 为体对角线1BD 靠近1D 点的三等分点,点E F 、为棱AB 、1CC 的中点,点P 在平面MEF 上,且在该平面与正方体表面的交线所组成的封闭图形中(含边界),则下列说法正确的是()A.平面MEF 与底面ABCD 的夹角余弦值为77;B.点D 到平面MEF 的距离为11; C.点D 到点P 的距离最大值为6345;D.设平面MEF 与正方体棱的交点为1T 、…、n T ,则n 边形1n T T ⋯最长的对角线的长度大于172.【答案】BCD 【解析】【分析】建立空间直角坐标系,即可利用法向量的夹角求解A ,根据点面距离的向量法即可求解B ,根据面面平行的性质可得截面为六边形EQFNKT ,即可根据点点距离公式求解CD.【详解】建立如图所示的空间直角坐标系,则()()()2,2,4,6,3,0,0,6,3M E F ,()()4,1,4,2,4,1ME MF =-=--,设平面MEF 法向量为(),,m x y z =,440240ME m x y z MF m x y z ⎧⋅=+-=⎪⎨⋅=-+-=⎪⎩,取4y =,则()5,4,6m = ,而平面ABCD 的一个法向量为()10,0,6AA =,所以平面MEF 与底面ABCD的夹角余弦值为1677cos ,77m AA ==.故A 错误,()2,2,4,DM = 所以点D 到平面MEF的距离为11DM m m ⋅==,故B正确,延长EM 交11D C 于点N ,连接NF 交DC 延长线于点H ,连接EH 交BC 于Q ,由于点M 为体对角线1BD 靠近1D 点的三等分点,所以1111322D M D N D N MB EB ==⇒=,11912C N C F CH CH CF ==⇒=,9612235CH CQ BQ BQ EB BQ BQ -=⇒=⇒=,在棱11A D 上取K ,使得165D K =,由于11116124455,35352D K D KBQ BQ D N EB EB D N==⇒=⇒=,故//KN EQ ,连接,,TE TK FQ ,故六边形EQFNKT 即为平面MEF 上与正方体所截得的截面,由于1121863,6,555FC AE CQ D K ===-==113//,2932C F AT ATNF TE AT NC AE ∴=⇒=⇒= ,由于CQ 最大,故DQ为最大值5DQ =,故当P 在Q 处时,DP最大为5,C正确,由于()()()1863,6,0,6,3,0,0,6,3,6,0,2,,0,6,0,,6,552Q E F T K N ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭172NE ==>,因此六边形EQFNKT 的最长对角线的长度不小于NE 的长度,因此六边形EQFNKT 的最长对角线的长度大于172,故D 正确,故选:BCD【点睛】方法点睛:作截面的常用三种方法:直接法,截面的定点在几何体的棱上;平行线法,截面与几何体的两个平行平面相交,或者截面上有一条直线与几何体的某个面平行;延长交线得交点,截面上的点中至少有两个点在几何体的同一平面上.三、填空题:本题共4小题,每小题5分,共20分.13.函数()f x =的定义域为______.【答案】()11,2∞⎧⎫+⋃⎨⎬⎩⎭【解析】【分析】根据根式函数和对数函数及分式函数定义域法则列不等式求解即可.【详解】由题意2100ln 0x x x -≥⎧⎪>⎨⎪>⎩或2100ln 0x x x -=⎧⎪>⎨⎪≠⎩,解得1x >或12x =,所以函数()f x =的定义域为()11,2∞⎧⎫+⋃⎨⎬⎩⎭.故答案为:()11,2∞⎧⎫+⋃⎨⎬⎩⎭14.已知某平面内三角形ABC 为等腰三角形,AB AC =,点D 为AC 中点,且3BD =,则ABC 面积的最大值为____________.【答案】6【解析】【分析】根据向量的模长公式可得259cos 4A x=-,即可利用面积公式得()()2229203664ABC S x =--+ ,利用二次函数的性质即可求解.【详解】设AB AC x==由于12BD AC AB =- ,所以2222215cos 44BD AC AB AC AB x x A =+-⋅=- ,故259cos 4A x=-,()()222424211159sin 1cos 12444ABC S AB AC A x A x x ⎡⎤⎛⎫⎛⎫==-=--⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦()24229458192036648464x x x =-+-=--+故当220x =时,此时()2ABC S 取最大值36,故面积的最大值为6,故答案为:615.已知锐角α,β满足2tan cos αβ=,2tan tan2αβ=,则sin sin βα的值为______.【答案】56【解析】【分析】根据已知结合同角关系消去β得1tan tan2tan ααα-=,再根据二倍角公式化弦为切得1sin 2cos αα+=,然后利用同角三角函数关系求得33sin ,tan 54αα==,然后代入sin sin βα==计算可得.【详解】因为2tan cos αβ=,2tan tan 2αβ=,所以22sin 1tan tan 2cos tan αβαβα-==,又2sin2sin 1cos 22tan 2sin cos 2sin cos 222αααααααα-===,所以1cos 1tan cos sin sin tan sin ααααααα---==,所以1cos cos sin ααα-=-,即1sin 2cos αα+=,又22sin cos 1αα+=,所以25sin 2sin 30αα+-=,又α为锐角,解得3sin 5α=,或sin 1α=-(舍去),所以43cos ,tan 54αα==,所以sin 5sin 6βα==.故答案为:5616.假设视网膜为一个平面,光在空气中不折射,眼球的成像原理为小孔成像.思考如下成像原理:如图,地面内有圆1O ,其圆心在线段MB 上,且与线段MB 交于不与,M B 重合的点A ,PM ⊥地面,且24BM PM ==,P 点为人眼所在处,视网膜平面与直线BM 垂直.过A 点作平面α平行于视网膜平面.科学家已经证明,这种情况下圆1O 上任意一点到P 点的直线与平面α交点的轨迹(令为曲线C )为椭圆或圆,且由于小孔成像,曲线C 与圆1O 在视网膜平面上的影像是相似的,则当视网膜平面上的圆1O 的影像为圆时,圆1O 的半径r 为____________.当圆1O 的半径r 满足112r ≤≤时,视网膜平面上的圆1O 的影像的离心率的取值范围为____________.【答案】①.32②.26,23⎣⎦【解析】【分析】使用空间向量方法可以验证曲线C 的两条半轴(半长轴和半短轴,但顺序可能不对应)的长分别为2r和,然后根据题设求解.【详解】由于视网膜平面与直线BM 垂直,平面α平行于视网膜平面,故平面α与直线BM 垂直.设地面平面为β,则据已知条件有PM β⊥.从而在β内可过M 作MA 的垂线MD ,使得,,MA MD MP 可分别作为以M为原点的一个右手坐标系的,, x y z轴正方向.由已知有4BM=,2PM=,故()0,0,0M,()4,0,0B,()0,0,2P.而42MA MB AB r=-=-,故()42,0,0A r-.再由1O A r=,知()14,0,0O r-.由于平面α与直线BM垂直,即平面α与x轴垂直,从而平面α上每一点的坐标的x轴分量都是定值42r-.再根据点A在线段MB内部及4BM=,又有0424r<-<,得02r<<.此时,地面平面即平面xOy,故圆1O的方程为()2224x r y rz⎧+-+=⎪⎨=⎪⎩.据此可设圆1O上的一点Q的坐标为()4cos,sin,0r r t r t-+,故()4cos,sin,2PQ r r t r t=-+-.设直线PQ和平面的交点为R,则,,P Q R三点共线,且R的坐标的x轴分量是42r-.故()22sin424842,,4cos4cos4cosr r tr rPR PQ rr r t r r t r r t⎛⎫---==-⎪-+-+-+⎝⎭,这得到R的坐标为()()22sin21cos42,,4cos4cosr r t r trr r t r r t⎛⎫-+-⎪-+-+⎝⎭.设()22sin4cosr r tyr r t-=-+,()21cos4cosr tzr r t+=-+,则()222221682242r ry zrr r-⎛⎫⎛⎫⋅+-⎪ ⎪⎝⎭⎝⎭-()()22222242142r ry zrr r--⎛⎫=⋅+-⎪⎝⎭-()()()222168sin41cos14cos4cosr t tr r tr r t⎛⎫-+=+-⎪-+-+⎝⎭()()()()()()22221681cos4cos4cos4cosr t r t rr r t r r t---+=+-+-+()()()()()2221681cos 4cos 4cos r t r t r r r t --+-+=-+()()()()()22222168168cos 168cos 24cos 4cos r r t r r t r r t r r r t ---+-++-+=-+()()()222216824cos cos 4cos r r r r t r tr r t -++-+=-+()()224cos 4cos r r t r r t -+=-+1=.所以我们得到点R 的轨迹为()222224216821242x r r r y z r r r =-⎧⎪-⎛⎫⎛⎫⎨⋅+-= ⎪ ⎪⎪⎝⎭⎝⎭-⎩.由此可知,曲线C 是位于平面α内,以42,0,2r r ⎛⎫- ⎪⎝⎭为中心,半长轴和半短轴分别(顺序可能不对应)为2r22-=的椭圆(或者是圆,因为在二者相等时是圆).而曲线C 和视网膜平面上的圆1O 的影像相似,故其中一个是圆当且仅当另一个是圆,且二者离心率相等.当曲线C 是圆时,有2r=12=,两边平方可得32r =.当112r ≤≤时,2r>=>,故和2r分别(顺序对应)是半长轴和半短轴的长,从而离心率e =再由112r≤≤,23⎣⎦.故答案为:32,26,23⎣⎦.【点睛】关键点点睛:本题的关键点在于,利用已知的坐标,采取适当的配凑得到类似椭圆的方程,从而得到相应曲线的性质.四、解答题:本题共5小题,共70分.解答题应写出文字说明、证明过程或演算步骤.17.已知抛物线C 的顶点是坐标原点O ,焦点是双曲线2241x y -=的右顶点.(1)求抛物线C 的方程;(2)若直线:l 2x y +=与抛物线相交于A 、B 两点,解决下列问题:(i )求弦长AB ;(ii )求证:OA OB ⊥.【答案】(1)22y x =;(2)(i);(ii )证明见解析.【解析】【分析】(1)求出双曲线右顶点,再求出抛物线的方程即得.(2)把直线l 的方程与抛物线方程联立,利用韦达定理,结合弦长公式及数量积的坐标表示求解即得.【小问1详解】双曲线2241x y -=,即22114x y -=,其右顶点为1(,0)2,则抛物线C 的焦点为1(,0)2,而抛物线C 的顶点是坐标原点O ,所以抛物线C 的方程:22y x =.【小问2详解】(i )设211)1(,2A y y ,222)1(,2B y y ,由222y xx y ⎧=⎨=-+⎩消去x 得:2240y y +-=,则122y y +=-,124y y =-,于是12y y -==所以12AB y y =-==.(ii )显然211)1(,2OA y y = ,222)1(,2OB y y = ,则221212121211(1)044OA OB y y y y y y y y ⋅=+=+= ,显然0,0OA OB ≠≠ ,即OA OB ⊥ ,所以OA OB ⊥.18.已知递增数列{}n a 和{}n b 分别为等差数列和等比数列,且113=a b ,422a b =,73a b =,126a b +=(1)求数列{}n a 和{}n b 的通项公式;(2)若ln ln n nb n a ac b =,证明:1211nc c c n 迹+.【答案】(1)2n a n =+,13n n b -=(2)证明见解析【解析】【分析】(1)由等差和等比数列的性质结合题意列方程组,解出11,,,a d q b ,再由基本量法求出通项即可;(2)由对数的运算性质化简再简单放缩可得()11133log 32log 31n n n n n nc n ++-=+≤=+,最后利用累乘法可证明.【小问1详解】设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q ,由题意可得:11112111133266a b a d b q a d b q a b q =⎧⎪+=⎪⎨+=⎪⎪+=⎩,前两式化简后有1111131322a b a d b q ⎧=⎪⎪⎨⎪+=⎪⎩,由上述式子可得:()21111136322a a d a d ⎛⎫+=+ ⎪⎝⎭,化简得:()()11930a d a d +-=,则19a d =-或13a d =,若19a d =-,可得1233b b b d ===-,数列{}n b 为常数列,故舍去;若13a d =,带入得3q =,又由116a b q +=,解得1d =,13a =,11b =,于是得到数列{}n a 的通项公式为2n a n =+,数列{}n b 的通项公式为13n n b -=.【小问2详解】由题可得()113ln log log 32ln n n a n nnb n n b b a ac a b +-===+,由于N n *∈时,()()113322310nn n ---+=-≥,则1332n n -³+(当且仅当1n =时取等号),所以()11133log 32log 31n n n n n nc n ++-=+≤=+,则121212311nn c c c n n 迹创即=++(当且仅当1n =时取等号).所以1211n c c c n 迹+.19.如图,1111ABCD A B C D -为一个平行六面体,且12AB AD AA ===,1BAA ∠=23πBAD ∠=,13DAA π∠=.(1)证明:直线AB 与直线1AC 垂直;(2)求点1B 到平面ABCD 的距离;(3)求直线1AC 与平面ABCD 的夹角的余弦值.【答案】(1)证明见解析(2)3(3)3【解析】【分析】(1)利用垂直关系的向量表示求1AB AC即可证明.(2)由已知条件得三棱锥1B ABC -为正四面体,再利用正四面体结构特征即可求解得到点1B 到平面ABCD 的距离.(3)由(1)可得1AC,再由(2)得点1C 到平面ABCD 的距离,进而可求出线面角的正弦值,再结合同角三角函数平方和为1求解余弦值即可.【小问1详解】由题可得111AC AC CC AB AD AA =+=++,所以()2111····AB AC AB AB AD AA AB AB AD AB AA =++=++ 2π2π422cos 22cos 033=+⨯+⨯=,则1AB AC ⊥,于是得证:1AB AC ⊥.【小问2详解】连接11,,AB CB AC ,则由题意可知1113DAA CBB ABC ABB π∠=∠=∠=∠=,且1AB BB BC ==,所以三棱锥1B ABC -为正四面体,所以由正四面体结构性质1B 在底面ABC 的投影O 在BG (G 为AC 中点)上,且1112333GO BO BG ====,所以1B O ⊥平面ABC ,且1263B O ==,即点1B 到平面ABCD 的距离为3.【小问3详解】设直线1AC 与平面ABCD 的夹角为θ,由于1111ABCD A B C D -为一个平行六面体,则点1C 到平面ABCD 的距离等于点1B 到平面ABCD 的距离为3d =,由(1)中11AC AB AD AA =++,得到:1AC === ,则1sin 3d AC θ== ,显然π0,2θ⎛⎫∈ ⎪⎝⎭,则cos 3θ==.20.已知圆1:O 224x y +=,圆2:O ()221x y m +-=()01m ≤<,点P 为圆2O 上的一点.(1)若过P 点作圆2O 的切线l 交圆1O 于A 、B 两点,且弦AB长度最大值与最小值之积为m 的值;(2)当0m =时,圆1O 上有C 、D 两点满足PC PD ⊥,求线段CD 长度的最大值.【答案】(1)12(21【解析】【分析】(1)画出图形,得出AB =,进一步由三角形三边关系得出1O Q 的最值,由此即可顺利得解.(2)由三角形三边关系、直角三角形性质可得关于CD 的不等式,解不等式即可得解.【小问1详解】设AB 中点为Q 点,连接12O O 、1O Q 、2O Q 、2O P ,由01m ≤<,得12211O O <-=,则圆1O 内含圆2O ,由垂径定理得:AB =,1AB O Q ⊥,由切线l 可得2AB O P ⊥,可得112121O Q O P O P O O m ≤≤+=+(当且仅当直线AB 为1y m =+时都取等),12121121O Q O P O O O P O O m ≥-≥-=-(当且仅当直线AB 为1y m =-+时都取等),所以111m O Q m -≤≤+,于是=,解得12m =.【小问2详解】取CD 中点T ,连接1O T 、TP 、1O P .当0m =时,1O 和2O 重合,由于PC PD ⊥,则12PT CD =,而11112O T PT O P CD ≥-=-,221144O T CD +=,则22114142CD CD ⎛⎫-≥- ⎪⎝⎭,解得:1CD ≤,当且仅当1O 在线段TP 上时取等,所以CD 1.21.请解决以下两道关于圆锥曲线的题目.(1)已知圆:M ()22224x y a ++=()02a <<,圆P 过点()2,0N 且与圆M 外切.设P 点的轨迹为曲线E .①已知曲线Γ:x yλ=()R λ∈与曲线E 无交点,求λ的最大值(用a 表示);②若记(2)中题①的λ最大值为0λ,圆:Q ()2211x y -+=和曲线00Γ:x y λ=相交于A 、B 两点,曲线E 与x 轴交于K 点,求四边形OAKB 的面积的最大值,并求出此时a 的值.(参考公式:322223a b c abc ⎛⎫++≤ ⎪⎝⎭,其中,,0a b c >,当且仅当a b c ==时取等号)(2)如图,椭圆:C 22221x y a b+=()0a b >>的左右焦点分别为1F 、2F ,其上动点M 到1F 的距离最大值和最小值之积为1,且椭圆C 的离心率为2.①求椭圆C 的标准方程;②已知椭圆C 外有一点P ,过P 点作椭圆C 的两条切线,且两切线斜率之积为12-.是否存在合适的P 点,使得123F PF π∠=?若存在,请写出P 点的坐标;若不存在,请说明理由.【答案】(1;②四边形OAKB 的面积的最大值为839,实数a的值为3(2)①2214x y +=;②不存在P 点使得123F PF π∠=,理由见解析【解析】【分析】(1)①根据已知条件求出点P 的轨迹方程E ,再将两个曲线无交点转化为对应的方程组无解即可.②根据已知条件求出,A B 两点坐标,表示出所求四边形的面积结合参考的不等式求解即可.(2)①根据焦点弦的范围和离心率列方程组求解即可.②由点P 和椭圆关系可以求出点P 的轨迹方程;再根据123F PF π∠=也以确定点所在圆弧的轨迹方程;根据联立两个方程有没有解来判断是否存在这样的点P 即可.【小问1详解】由圆P 过点()2,0N 且与圆M 外切可得:2P P M P ON R OM R R R a ⎧=⎪⎨=+=+⎪⎩,所以有24OM ON a MN -=<=,则点P 的轨迹为以M 、N 为左右焦点,实轴长为2a 的双曲线右支,所以曲线:E 222214x y a a-=-()0x >.①显然,当0λ≤时,曲线Γ与曲线E 无交点,当0λ>时,()222Γ:Γ:0x y x y x λλ=⇔=≥,于是令2222222014x x y a a x y λ>⎧⎪⎪-=⎨-⎪=⎪⎩,得222241a a x λ⎛⎫--= ⎪⎝⎭,若该方程在()0,∞+上无实数解,则22240a a λ--≤,解得λ≤所以λ.②将0λ=曲线00Γ:x y λ=得:曲线0Γ:x =22224a x y a ⇔=-()0x ≥,不妨令()222222411a x y a x y ⎧=⎪-⎨⎪-+=⎩,得0x =或212a ,于是212A B x x a ==,则四边形OAKB的面积12OAKB S a ==根据参考公式将该式化为32222228283269OAKB a a a S a ⎛⎫⎛⎫++-=≤= ⎪ ⎪ ⎪⎝⎭⎝⎭,2a =取等号,解得263a =或3-,负值舍去)所以四边形OAKB 的面积的最大值为839,此时实数a 的值为263.【小问2详解】①由焦点弦取值范围1a c MF a c -≤≤+,离心率c e a =得:()()21c a a c a c ⎧=⎪⎨⎪-+=⎩,解得:21a b c ⎧=⎪=⎨⎪=⎩,所以椭圆C 的标准方程为2214x y +=.②设00(,)P x y ,过点P 的切线方程为()00y y k x x -=-,由对称性不妨令00≥y ,()220014x y y y k x x ⎧+=⎪⎨⎪-=-⎩,消元得()()()2220000418440k x k y kx x y kx ++-+--=,令Δ0=,化简得:()()22200004210x k x y k y --+-=,由于两切线斜率之积为12-,则202020401142x y x ⎧-≠⎪-⎨=-⎪-⎩,化简得:2200163x y +=()02x ≠±,由于123F PF π∠=,则点P 在以12F F 为弦所对圆心角为23π的圆的优弧 12F F 上,当00≥y 时,易得该圆的方程为()2214x y +-=,不妨令()22221631420x y x y x y ⎧+=⎪⎪⎪+-=⎨⎪≠±⎪⎪≥⎩,解得该方程组无实数解,则当00≥y 时,不存在P 点使得123F PF π∠=,由对称性可知,当00≤y 时也不存在P 点使得123F PF π∠=,综上,不存在P 点使得123F PF π∠=.。
2023-2024学年四川省成都市高二上学期期末联考数学(理)质量检测模拟试题(含解析)
2023-2024学年四川省成都市高二上册期末联考数学(理)模拟试题一、单选题1.命题“N,3sin x x x ∀∈>”的否定是()A .N,3sin x x x∀∈≤B .N,3sin x x x∀∈<C .000N,3sin xx x ∃∈>D .000N,3sin xx x ∃∈≤【正确答案】D【分析】由全称命题的否定的定义即可得出结果.【详解】由全称命题的否定的定义可知,N,3sin x x x ∀∈>的否定为000N,3sin xx x ∃∈≤.故选:D.2.直线0x y -=的倾斜角为()A .6πB .4πC .3πD .34π【正确答案】B【分析】由直线的斜率与倾斜角的关系即可求出倾斜角.【详解】由0x y -=得斜率1tan 4k π==,故选:B.3.抛物线236y x =的准线方程是()A .9y =B .9y =-C .9x =D .9x =-【正确答案】D【分析】根据抛物线方程()220y px p =>的准线方程为2px =-求解.【详解】由236y x =得18p =,∴准线方程为92px =-=-,故选:D4.在空间直角坐标系O xyz -中,点(2,1,4)A -与(2,1,4)A '关于()对称.A .xOy 平面B .yOz 平面C .xOz 平面D .原点【正确答案】B【分析】根据空间直角坐标系的定义求解.【详解】因为点(2,1,4)A -与(2,1,4)A '两点的横坐标互为相反数,其余坐标相等,所以两点则关于yOz 平面对称,故选:B .5.若x ,y 满足约束条件5802310032110x y x y x y +-≥⎧⎪-+≥⎨⎪+-≤⎩,则y x 的取值范围是()A .11,3⎡⎤-⎢⎥⎣⎦B .1,43⎡⎤⎢⎥⎣⎦C .(]1,1,3⎡⎫-∞-⋃+∞⎪⎢⎣⎭D .[]1,4-【正确答案】C【分析】根据约束条件画出可行域,利用目标函数的几何意义即可求解.【详解】画出可行域如图,()1,4A ,()2,2B -,()3,1C ,y x 表示点(),x y 与()0,0O 连线的斜率,13OC k =,1OB k =-,∴y x 的取值范围是(]1,1,3⎡⎫-∞-⋃+∞⎪⎢⎣⎭,故选:C.6.某程序框图如图所示,则输出的S =()A .8B .27C .85D .260【正确答案】C【分析】直接运行程序框图即可求解.【详解】由图可知,初始值2,1S k ==;第一次循环,112,3228k S =+==⨯+=,23k =>不成立;第二次循环,213,38327k S =+==⨯+=,33k =>不成立;第三次循环,314,327485k S =+==⨯+=,43k =>成立;退出循环,输出S 的值为85.故选:C.7.已知命题p :直线340ax y +-=与()220x a y +++=平行,命题:3q a =-,则p 是q 的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【正确答案】B【分析】判断命题p 与命题q 间关系可得答案.【详解】直线340ax y +-=与()220x a y +++=平行,则()233a a a +=⇒=-或1a =,又当1a =或3a =-时,两直线均不重合,即命题p 等价于3a =-或1a =,则由命题p 不能得到命题q ,但由命题q 可得命题p ,则p 是q 的必要不充分条件.故选:B.8.下列命题是真命题的是()A .“若x ,y 互为相反数,则0x y +=”的逆否命题B .“偶函数的图象关于y 轴对称”是特称命题C .“1x >且1y >”是”2x y +>”的充要条件D .若0xy ≠,则x ,y 只有一个不为0【正确答案】A【分析】根据命题的定义一一判断即可求解.【详解】A 选项,原命题与逆否命题等价,原命题“若x ,y 互为相反数,则0x y +=”为真命题,则逆否命题为真命题,A 正确;B 选项,原命题可改写为“所有偶函数的图象关于y 轴对称”是全称命题,B 错误;C 选项,x >且1y >可得到2x y +>,但2x y +>,如取1,4x y =-=得不到x >且1y >,所以“1x >且1y >”是”2x y +>”的充分不必要条件,C 错误;D 选项,若0xy ≠,则x ,y 都不为0,D 错误.故选:A.9.若直线20x y m -+=与椭圆22152x y+=交于,A B 两点,且AM MB = ,则点M 的坐标可能是()A .11,210⎛⎫- ⎪⎝⎭B .(5,1)-C .11,210⎛⎫⎪⎝⎭D .(5,1)【正确答案】A【分析】利用中点弦问题的点差法求解.【详解】因为AM MB =,所以M 为AB 中点,设112200(,),(,),(,)A x y B x y M x y ,因为,A B 在椭圆上,所以22112222152152x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,两式相减得12121212()()()()052x x x x y y y y +-+-+=,即()()()()1212121225y y y y x x x x +-=-+-,即25OM AB k k ⋅=-,因为直线20x y m -+=过点,A B ,所以2AB k =,所以0015OM y k x ==-,经检验C 、D 不满足0015y x =-,A 、B 选项均满足0015y x =-,但(5,1)-在椭圆外,不符合条件,故选:A.10.已知直线()100,0x my n m n ++-=>>与圆()2219x y +-=相交于A ,B 两点,且AB 的长度始终为6,则4n mmn+的最小值为()A .2B .4C .8D .9【正确答案】D【分析】由题知,直线恒过圆心()0,1,则1m n +=,结合基本不等式即可求解.【详解】圆()2219x y +-=的圆心()0,1,半径为3,由题知,直线恒过圆心()0,1,则1m n +=,而0,0m n >>,所以()4141441559n m m n m n mn m n m n n m +⎛⎫⎛⎫=+⨯=+⨯+=++≥+= ⎪ ⎪⎝⎭⎝⎭,当且仅当4m nn m=且1m n +=,即12,33m n ==时等号成立.故选:D.11.已知动点P 在双曲线22215x y a -=的右支上,过点P 作圆22:1C x y +=的切线,切点为M ,切线长|PM |)A .32B .52C.2D.2【正确答案】A【分析】由勾股定理知,切线长|PM |取得最小值可转化为|OP |取得最小值,即可求出,a c 进而求出离心率.【详解】解:由勾股定理知,切线长|PM |取得最小值可转化为|OP |取得最小值,当|OP |取得最小值时,P 为双曲线右顶点(a ,0),则2a ==,则2223459,3,2c c a b c e a =+=+====.故选:A.12.已知直线1x my =+与抛物线C :24y x =交于A ,B 两点,M 为抛物线上一动点,OM 与线段AB 交于点N ,且3OM ON =,则ABM 面积的最小值为()A .4B .6C .8D .10【正确答案】A【分析】联立直线与抛物线方程,结合韦达定理求得弦长AB ,进而求出ABO S ,由3OM ON =,得2ABM ABO S S = △,根据表达式求出最值即可.【详解】由214x my y x=+⎧⎨=⎩得2440y my --=,2(4)160m ∆=-+>设1122(,),(,)A x y B x y ,则12124,4y y y y m =-+=,()241AB m =+,O 到直线1x my =+的距离d =,∴12ABO S AB d =⨯⨯=△∵3OM ON =,∴2ABM ABO S S ==△△,∴当0m =时,ABM S △取最小值4.故选:A .二、填空题13.双曲线22152x y -=的实半轴长为___________.【分析】根据实半轴定义求解.【详解】由题可得25a =,所以a =,所以实半轴长为a ,故答案为:14.粮食安全是国之大者,解决吃饭问题,根本出路在科技.某科技公司改良试种了A ,B ,C 三类稻谷品种,今年秋天分别收获了A 类稻谷1200株,B 类稻谷1500株,C 类稻谷2100株.现用分层抽样的方法从上述所有稻谷中抽取一个容量为320株的样本进行检测,则从B 类稻谷中应抽取的株数为___________.【正确答案】100【分析】先求出A 、B 、C 株数之比,然后按比例抽取.【详解】A 、B 、C 株数之比为457::,则B 类抽取的株数为532010016⨯=.故10015.天府绿道是成都人民朋友圈的热门打卡地,经统计,天府绿道旅游人数x (单位:万人)与天府绿道周边商家经济收入y (单位:万元)之间具有线性相关关系,且满足回归直线方程为ˆ12.60.6yx =+,对近五个月天府绿道旅游人数和周边商家经济收入统计如下表:x23 3.5 4.57y26384360a则表中a 的值为___________.【正确答案】88【分析】根据样本平均值满足回归直线方程求解.【详解】样本平均值满足回归直线方程,x 的平均值为23 3.5 4.5745++++=,则y 的平均值2638436012.640.65a++++=⨯+,解得88a =,故88.三、双空题16.已知()2,0A -,()2,0B ,动点M 满足2MB MA -=,(N ,则MNB 周长的最小值为______,此时点M 的坐标为______.【正确答案】1054⎛- ⎝⎭【分析】由题意得动点M 的轨迹是以,A B 为焦点,实轴长为2的双曲线的左支,求出轨迹方程,根据双曲线定义及三点共线求得MNB 周长的最小值,将直线AN 的方程代入双曲线方程可求得M 的坐标.【详解】由题意得动点M 的轨迹是以,A B 为焦点,实轴长为2的双曲线的左支,则2,1,c a b ===M 的轨迹方程为()22103y x x -=<,∵4NB ==,∴MNB 的周长最小时,MN MB +最小,2MN MB MN MA +=++,又4MN MA AN +≥=,当且仅当N ,M ,A 三点共线且M 在线段AN 上时,等号成立,∴MNB 的周长为24610MN MB NB MN MA AN ++=+++≥+=,直线AN 的方程为)2y x =+,将其代入到2213y x -=,化简得:441x --=,54x =-,则524y ⎫=-+=⎪⎭M 的坐标为5,44⎛- ⎝⎭.故10,54⎛- ⎝⎭.四、解答题17.已知直线1:20l x y -+=和2:0l x y +=相交于点P .(1)若直线l 经过点P 且与3:220l x y +-=垂直,求直线l 的方程;(2)若直线l '经过点P 且与4:2310l x y --=平行,求直线l '的方程.【正确答案】(1)230x y -+=(2)2350x y -+=【分析】(1)联立两直线方程,求出交点坐标,设l 的方程为20x y m -+=,将()1,1P -代入方程,求出参数m 的值,即可得解;(2)依题意设l '的方程为230x y n -+=,将()1,1P -代入方程,求出参数n 的值,即可得解;【详解】(1)解:由200x y x y -+=⎧⎨+=⎩,解得11x y =-⎧⎨=⎩,所以1:20l x y -+=与2:0l x y +=的交点P 为()1,1-设与3:220l x y +-=垂直的直线l 的方程为20x y m -+=,将()1,1P -代入20x y m -+=,即()2110m ⨯--+=解得3m =,则l 的方程为230x y -+=;(2)解:依题意设l '的方程为230x y n -+=,将()1,1P -代入230x y n -+=,即()21310n ⨯--⨯+=解得5n =,∴l '的方程为2350x y -+=.18.成都电视台在全市范围内开展创建全国文明典范城市知识竞赛,随机抽取n 名参赛者的成绩统计如下表:成绩分组频数频率[)50,60100.10[)60,7025a[)70,80350.35[)80,90b0.20[]90,100100.10(1)请求出n ,a ,b 的值,并画出频率分布直方图;(2)请估计这n 名参赛者成绩的中位数和平均值(结果均保留一位小数)【正确答案】(1)100n =,0.25a =,20b =,频率分布直方图见解析(2)中位数为74.3,平均值为74.5【分析】(1)根据频率计算公式求出n ,a ,b 的值,进而画出频率分布直方图;(2)由中位数左边和右边的直方图的面积相等,求出中位数;由每个小矩形底边中点的横坐标与小矩形的面积的乘积之和,求出平均值.【详解】(1)由[)70,80组数据可得:351000.35n ==,则250.25100a ==,1000.220b =⨯=,画出频率分布直方图如图,(2)设中位数为x ,则()0.10.250.035700.5x ++⨯-=,解得74.3x ≈,平均值为550.1650.25750.35850.2950.174.5⨯+⨯+⨯+⨯+⨯=.19.已知m ∈R ,命题p :[]0,2x ∀∈,22m x x ≤-,命题q :()0,x ∃∈+∞,使得方程4x m x+=成立.(1)若p 是真命题,求m 的取值范围;(2)若p q ∨为真命题,p q ∧为假命题,求m 的取值范围.【正确答案】(1)1m ≤-(2)(][),14,-∞-⋃+∞【分析】(1)根据恒成立的思想可知()2min2m x x≤-,由二次函数最值可求得结果;(2)根据基本不等式可求得44x x+≥,由能成立的思想可知4m ≥时;由题意可知,p q 一真一假,分别讨论p 真q 假和p 假q 真两种情况即可.【详解】(1)若p 是真命题,则22m x x ≤-在[]0,2上恒成立,∵()22211x x x -=--,[]0,2x ∈,∴当1x =时,()2min 21x x -=-,∴1m ≤-;(2)对于q ,当0x >时,4424x x x x +≥⋅=,当且仅当2x =时取等号,若()0,x ∃∈+∞,使得方程4x m x+=成立,只需4m ≥即可,若p q ∨为真命题,p q ∧为假命题,则p 和q 一真一假,当p 真q 假时,114 m m m ≤-⎧⇒≤-⎨<⎩,当p 假q 真时,144 m m m >-⎧⇒≥⎨≥⎩综上,m 的取值范围为(][),14,-∞-⋃+∞.20.已知直线:30l x y λλ+--=和圆22:6210C x y x y +--+=(1)证明:无论λ取何值,直线l 始终与圆C 有两个公共点;(2)若l 与圆C 交于A ,B 两点,求弦长|AB |的最小值.【正确答案】(1)证明见解析(2)2【分析】(1)注意到直线l 过定点,再证该定点在圆C 内部即可;(2)当l 与CM 垂直的时,弦长|AB |取得最小值,即可得答案.【详解】(1)()130:l λx y -+-=,恒过点M (1,3),22:6210C x y x y +--+=化简为()()22319:C x y -+-=将M (1,3)代入圆的方程得()()2213319-+-<,则M (1,3)在圆内,∴无论λ取何值,直线l 始终与圆C 有两个公共点;..(2)当l 与CM 垂直的时,弦长|AB |取得最小值,则CM ==C 半径r 为3,得22AB ==⨯=.21.已知动点M 到点()1,0F 的距离等于它到直线=1x -的距离,记动点M 的轨迹为曲线C .(1)求动点M 的轨迹方程C ;(2)已知()2,0A -,()0,1B ,过点B 的直线l 与曲线C 有且只有一个公共点P ,求PAB 的面积.【正确答案】(1)24y x=(2)1或18或12【分析】(1)根据抛物线定义得动点M 的轨迹是以()1,0F 为焦点,直线=1x -为准线的抛物线,则2p =,即可得出答案;(2)分三种情况讨论:①当l 斜率不存在时;②当l 斜率为0时;③当l 斜率存在且不为0时,根据题意求出点P 坐标,即可得出PAB 的面积.【详解】(1)根据抛物线定义得动点M 的轨迹是以()1,0F 为焦点,直线=1x -为准线的抛物线,故2p =,动点M 的轨迹方程C :24y x =;(2)①当l 斜率不存在时,点P 与原点()0,0O 重合,12112PAB S =⨯⨯= ;②当l 斜率为0时,直线l :1y =与抛物线C :24y x =交于点1,14P ⎛⎫ ⎪⎝⎭,1111248PAB S =⨯⨯=△;③当l 斜率存在且不为0时,设l :()10y kx k =+≠,由214y kx y x=+⎧⎨=⎩,得:()222410k x k x +-+=,①因为直线l 与曲线C 有且只有一个公共点P ,则()22Δ24416160k k k =--=-=,解得1k =,将1k =代入①可得2210x x -+=,解得1x =,此时解得()1,2P ,直线AP :()20212y x -=++,即()223y x =+,则直线AP 与y 轴交于点40,3Q ⎛⎫ ⎪⎝⎭,故111112123232PAB BQA BQP S S S =+=⨯⨯+⨯⨯=△△△.综上,PAB 的面积为:1或18或12.22.已知1F ,2F 分别为椭圆C :()222210x y a b a b+=>>的左、右焦点,椭圆C 的上顶点到右焦点的距离为2,右焦点2F 与抛物线24y x =的焦点重合.(1)求椭圆C 的标准方程;(2)已知点()2,0A -,斜率为k 的动直线l 与椭圆C 交于P ,Q 两点(P ,Q 均异于点A ),且满足()3AP AQ k k k +=-,设点A 到直线l 的距离为d ,若d λ<恒成立,求实数λ的最小值.【正确答案】(1)22143x y +=(2)1【分析】(1)根据题意求出,,a b c ,写出椭圆方程即可;(2)设直线l 的方程为y kx m =+,与椭圆方程联立,结合韦达定理与()3AP AQ k k k +=-得,m k 的关系,可得直线l 恒过点()1,0B -,则1d AB <=,即可得出答案.【详解】(1)由题意得抛物线的焦点为()21,0F ,∴1c =,∵椭圆C 的上顶点到右焦点的距离为2,∴2a =,∴b ,∴椭圆C 的标准方程为.22143x y +=(2)设直线l 的方程为y kx m =+,联立22143y kx m x y =+⎧⎪⎨+=⎪⎩,消去y ,整理得:()()222438430k mk m x x +++-=,设()11,P x y ,()22,Q x y ,则122843mk x x k -+=+,()21224343m x x k -=+()121212122222AP AQ y y kx m kx m k k k k k x x x x ⎛⎫⎛⎫++∴+=+=+ ⎪ ⎪++++⎝⎭⎝⎭()()()1212121222424kx x k m x x m k x x x x ++++=+++()()()2222224382244343438244343m mk k k m m k k km mk k k --⋅+++++=--+⋅+++2221224341616mk k m mk k -==--+,化简得:22032m mk k -+=,即()()20m k m k --=,则2m k =或m k =,当2m k =时,()22y kx k k x =+=+,直线l 恒过点()2,0A -,不合题意,当m k =时,()1y kx k k x =+=+,直线l 恒过点()1,0B -,此时点A 到直线l 的距离1d AB <=,∵d λ<恒成立,∴λ的最小值为1.。