动平衡静平衡计算公式
静平衡与动平衡

静平衡与动平衡1. 质量中心(质点定义)此点周围的静态质量力矩为零。
可用下列关系表示:m r i i∑=0 式中,i m --各部分质量,i r --每部分质量与质点之间的距离矢量。
计算实例:我们可看出:1132575gr mm m r ==⋅⋅⨯2217575 gr mm m r ==⋅⋅⨯2. 惯性轴(定义)围绕其周围质量力矩之和为零的一条直线。
根据定义可得出如下公式:m r i i∑=0 式中,i m --各部分质量,i r --各部分质量与惯性轴的垂直距离。
从惯性轴的定义可得出惯性轴与不平衡量的如下关系:如果一物体的惯性轴与旋转轴是重叠在一起,则此物体的不平衡量为零。
也就是说当一物体的质量平均分布在旋转轴也就是惯性轴的周围,则此物体处于平衡状态。
3. 不平衡量的定义质量在旋转轴周围分布不均。
当一个旋转件的质量没有均匀的分布在旋转轴周围,就产生了不平衡量。
从这个定义可清楚看出没有确定旋转轴,不平衡量就无从谈起。
此旋转轴只是质量均匀分布在其周围的假设中的一根轴。
如下图所示:平衡位置 不平衡位置 每个转子可分成很多不同的部分(垂直旋转轴的方向),每个部分有自己单独的不平衡量,我们将局部不平衡量(每个部分的)的表达式定义如下:j j i r m U ⋅=∑式中,i U --i 部分的不平衡量(用垂直旋转轴方向的矢量来表示),j m --I 部分每个足够小的块的质量,j r --每小块与旋转轴之间的距离,符号∑表示矢量的叠加。
从每部分的不平衡量的定义可清楚看出不平衡量是静态质量根据与旋转轴之间的距离计算出来的力矩。
总不平衡量是局部不平衡量之和,可用下述数学公式表示:{}i t U U =旋转体的不平衡量可看作是垂直旋转轴各自平行截面的不平衡量的矢量之和。
旋转轴旋转轴即上式中,t U --总不平衡量,i U --相互平行截面的不平衡量。
上图所指的每个矢量可看作旋转体单个截面的不平衡量。
4. 静不平衡量(定义)如果不平衡量完全等同一个矢不平衡量,其矢不平衡量与转子质点所处同一截面(惯性轴平行旋转轴)。
刚性转动零件的静平衡与动平衡试验的概述

刚性转动零件的静平衡与动平衡试验的概述————————————————————————————————作者:————————————————————————————————日期:刚性转动零件的静平衡与动平衡试验的概述1. 基本概念:1.1 不平衡离心力基本公式:具有一定转速的刚性转动件(或称转子),由于材料组织不均匀、加工外形的误差、装配误差以及结构形状局部不对称(如键槽)等原因,使通过转子重心的主惯性轴与旋转轴线不相重合,因而旋转时,转子产生不平衡离心力,其值由下式计算:C=(G/g)×e×ω2=(G/g)×e×(πn/30)2--------(公斤)式中:G------转子的重量(公斤)e-------转子的重心对旋转轴线的偏心量(毫米)n-------转子的转速(转/分)ω------转子的角速度(弧度/秒)g-------重力加速度9800(毫米/秒2)由上式可知,当重型或高转速的转子,即使具有很小的偏心量,也会引起非常大的不平衡的离心力,成为轴或轴承的磨损、机器或基础振动的主要原由之一.所以零件在加工和装配时,转子必须进行平衡.1.2转子不平衡类别:1.2.1静不平衡——转子的惯性轴与旋转轴线不相重合,但相互平行,即转子重心不在旋转轴线上,如图1a所示.当转子旋转时,将产生不平衡的离心力.1.2.2动不平衡——转子的主惯性轴与旋转轴线主交错将产生不平衡的离心力,且相交于转子的重心上,即转子重心在旋转轴线上,如图1b所示.这时转子虽处于平衡状态,但转子旋转时将产生一不平衡力矩.1.2.3静动不平衡——大多数情况下,转子既存在静不平衡,又存在动不平衡,这种情况称静动不平衡.即转子的主惯性轴与旋转轴线既不重合,又不平行,而相交于转子旋转轴线中非重心的任何一点, 如图1c所示.当转子旋转时,将产生一个不平衡的离心力和一个力矩.1.2.4 转子静不平衡只须在一个平面上(即校正平面)安放一个平衡重量,就可以使转子达到平衡,故又称单面平衡.平面的重量的数值和位置,在转子静力状态下确定,即将转子的轴颈放置在水平刀刃支承上,加以观察,就可以看出其不平衡状态,较重部份会向下转动,这种方法叫静平衡.1.2.5转子动不平衡及静动不平衡必须在垂直于旋转轴的二个平面(即校正平面)内各加一个平衡重量,使转子达到平衡. 平面的重量的数值和位置, 必须在转子旋转情况下确定,这种方法叫动平衡.因需两个平面作平衡校正,故又称双面平衡刚性转子只须作低速动平衡试验,其平衡转速一般选用第一临界转速的1/3以下。
动平衡相关计算公式

动平衡相关计算公式
1.转矩平衡
转矩平衡公式主要用来计算转子的转矩平衡,公式如下:
T= Sum(M1* r1^2)+Sum(M2*r2^2)+...Sum(Mn*rn^2)
其中,T为转子转矩平衡,M1、M2...Mn为各个转矩半径的转矩,r1、r2...rn为各个转矩半径。
2.动量平衡
动量平衡公式是用来计算转子的动量平衡,公式如下:
I=Sum(m1* r1^2)+Sum(m2*r2^2)+...Sum(mn*rn^2)
其中,I为转子动量平衡,m1、m2…mn为各个转矩半径的质量,r1、
r2…rn为各个转矩半径。
3.转速平衡
转速平衡公式是用来计算转子的转速平衡,公式如下:
ω=Sum(ρ1*r1)+Sum(ρ2*r2)+...Sum(ρn*rn)
其中,ω为转子转速平衡,ρ1、ρ2…ρn为各个转矩半径的转速,
r1、r2…rn为各个转矩半径。
4.转动惯量平衡
转动惯量平衡公式是用来计算转子的转动惯量平衡,公式如下:
J ο = Sum(J1 ο +J2 ο )+…+Sum(Jn ο )
其中,Jο为转子转动惯量平衡,J1等为转子各个转矩半径的转动惯量。
5.加速度平衡
加速度平衡公式是用来计算转子的加速度平衡,公式如下:
a ο =Sum(a1 ο +a2 ο )+…+Sum(an ο )
其中,aο为转子加速度平衡,a1等为转子各个转矩半径的加速度。
6.转移平衡
转移平衡公式是用来计算转子的转移平衡,公式如下:
F ο =Sum(F1 ο +F2 ο )+…+Sum(Fn ο )
其中,Fο为转子转移平衡。
什么是动平衡? 什么是静平衡?

什么是动平衡?什么是静平衡?发布日期:2010-5-25 13:13:46常用机械中包含着大量的作旋转运动的零部件,例如各种传动轴、主轴、电动机和汽轮机的转子等,统称为回转体。
在理想的情况下回转体旋转时与不旋转时,对轴承产生的压力是一样的,这样的回转体是平衡的回转体。
但工程中的各种回转体,由于材质不均匀或毛坯缺陷、加工及装配中产生的误差,甚至设计时就具有非对称的几何形状等多种因素,使得回转体在旋转时,其上每个微小质点产生的离心惯性力不能相互抵消,离心惯性力通过轴承作用到机械及其基础上,引起振动,产生了噪音,加速轴承磨损,缩短了机械寿命,严重时能造成破坏性事故。
为此,必须对转子进行平衡,使其达到允许的平衡精度等级,或使因此产生的机械振动幅度降在允许的范围内。
1、定义:转子动平衡和静平衡的区别1)静平衡在转子一个校正面上进行校正平衡,校正后的剩余不平衡量,以保证转子在静态时是在许用不平衡量的规定范围内,为静平衡又称单面平衡。
2)动平衡(Dynamic Balancing)在转子两个校正面上同时进行校正平衡,校正后的剩余不平衡量,以保证转子在动态时是在许用不平衡量的规定范围内,为动平衡又称双面平衡。
2、转子平衡的选择与确定如何选择转子的平衡方式,是一个关键问题。
其选择有这样一个原则:只要满足于转子平衡后用途需要的前提下,能做静平衡的,则不要做动平衡,能做动平衡的,则不要做静动平衡。
原因很简单,静平衡要比动平衡容易做,省时、省力、省费用。
现代,各类机器所使用的平衡方法较多,例如单面平衡(亦称静平衡[1])常使用平衡架,双面平衡(亦称动平衡)使用各类动平衡试验机。
静平衡精度太低,平衡效果差;动平衡试验机虽能较好地对转子本身进行平衡,但是对于转子尺寸相差较大时,往往需要不同规格尺寸的动平衡机,而且试验时仍需将转子从机器上拆下来,这样明显是既不经济,也十分费工(如大修后的汽轮机转子)。
特别是动平衡机无法消除由于装配或其它随动元件引发的系统振动。
动平衡计算公式和方法

动平衡计算公式和方法嘿,你问动平衡计算公式和方法啊?这可有点复杂呢。
先说计算公式吧。
动平衡一般用不平衡量来衡量,不平衡量等于质量乘以偏心距。
啥是偏心距呢?就是重心偏离旋转中心的距离呗。
就像你转一个有点歪的轮子,那个歪的程度就是偏心距。
质量好理解吧,就是东西有多重。
所以不平衡量就是这两个家伙乘起来的结果。
那方法呢,首先得找到要做动平衡的东西,比如一个轮子啊,一个风扇啊啥的。
然后把它装在动平衡机上。
这动平衡机就像个医生,能给这个东西做检查。
接着,开动动平衡机,让东西转起来。
这时候动平衡机就能检测出不平衡的地方在哪里,有多大。
就像医生用听诊器听你的心跳,能听出有没有问题。
然后呢,根据检测出来的结果,在合适的地方加上或者减去一些重量。
比如说在轮子的一边加上一个小铁片,或者在风扇的叶片上刮掉一点漆。
这就像你给一个不平衡的天平加上或者减去一些砝码,让它平衡起来。
加或者减重量的时候要小心哦,不能太多也不能太少。
得一点一点地试,直到动平衡机显示平衡了为止。
就像你调一个收音机的频道,得慢慢转旋钮,找到最合适的位置。
比如说有个修车的师傅,他要给一个汽车轮子做动平衡。
他把轮子装在动平衡机上,开动机器。
机器检测出轮子有点不平衡,显示出不平衡量是多少。
师傅根据这个结果,在轮子的一边加上了一个小铁片。
然后再转轮子,看看平衡了没有。
如果还不平衡,就再调整铁片的位置或者重量。
直到动平衡机显示平衡了,师傅才把轮子装回汽车上。
这样汽车跑起来就不会抖动了。
所以说啊,动平衡计算公式和方法虽然有点难,但掌握好了就能让东西转得更平稳。
咋样,现在知道动平衡咋算咋做了吧?。
动平衡校正的计算公式

动平衡校正的计算公式动平衡校正是一种用于修正转子系统或旋转机械部件的重量不平衡的技术。
在旋转速度增加时,由于离心力的作用,未校正的转子或旋转机械部件会产生振动,从而引起机械故障、降低运行效率、增加功耗以及缩短设备的使用寿命。
为了消除或减轻振动引起的问题,动平衡校正可以通过增加或减少恰当位置的质量来实现平衡。
1.转子的不平衡力:不平衡力(N)= 质量(kg)× 加速度(m/s^2)2.不平衡力的矫正质量:矫正质量(kg)= 不平衡力(N)/ 加速度(m/s^2)3.矫正质量与平衡质量的转换:校正质量(g·mm)= 矫正质量(kg)× 千分之一(g/kg)× 激振器的离心距离(mm)4.不平衡质量与频率的关系:不平衡质量(g·mm)= 0.102 × 转子转速(rpm)× 振幅严重度(g)/ 运行频率(Hz)5.校正质量的转换:校正质量(g·cm)= 矫正质量(g·mm)/ 10动平衡校正的计算公式涉及到多个参数和单位的转换。
常常需要根据具体的工程要求和设备特点进行调整和修正。
值得注意的是,动平衡校正并不是一种精确的科学,通常只能达到满足设备正常运行要求的水平。
因此,在实际应用中需要结合经验和实际情况进行适当的调整和改进。
动平衡校正计算公式的应用可以通过现代化计算机软件来实现。
这些软件可以根据输入的参数和数据自动计算出平衡质量的大小和位置,并给出相应的校正方案。
此外,一些先进的动平衡设备还可以通过自动控制系统实时监测振动信号,并根据实际振动情况和校正效果来调整校正方案。
这样可以大大提高校正的精度和效率。
叶轮的静平衡和动平衡完整版

叶轮的静平衡和动平衡标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]转子(泵叶轮)的静平衡和动平衡1、动静平衡的定义1)静平衡在转子一个校正面上进行校正平衡,校正后的剩余不平衡量,以保证转子在静态时是在许用不平衡量的规定范围内,为静平衡又称单面平衡。
2)动平衡在转子两个校正面上同时进行校正平衡,校正后的剩余不平衡量,以保证转子在动态时是在许用不平衡量的规定范围内,为动平衡又称双面平衡。
2、转子平衡的选择与确定如何选择转子的平衡方式,是一个关键问题。
其选择有这样一个原则:只要满足于转子平衡后用途需要的前提下,能做静平衡的,则不要做动平衡,能做动平衡的,则不要做静动平衡。
原因很简单,静平衡要比动平衡容易做,动平衡要比静动平衡容易做,省功、省力、省费用。
如何进行转子平衡型式的确定则需要从以下几个因素和依据来确定:1)转子的几何形状、结构尺寸,特别是转子的直径D与转子的两校正面间的距离尺寸b之比值,以及转子的支撑间距等。
2)转子的工作转速。
3)有关转子平衡技术要求的技术标准,如GB3215、API610第八版、GB9239和ISO1940等。
3、转子做静平衡的条件在GB9239-88平衡标准中,对刚性转子做静平衡的条件定义为:"如果盘状转子的支撑间距足够大并且旋转时盘状部位的轴向跳动很小,从而可忽略偶不平衡(动平衡),这时可用一个校正面校正不平衡即单面(静)平衡,对具体转子必须验证这些条件是否满足。
在对大量的某种类型的转子在一个平面上平衡后,就可求得最大的剩余偶不平衡量,并除以支撑距离。
如果在最不利的情况下这个值不大于许用剩余不平衡量的一半,则采用单面(静)平衡就足够了。
从这个定义中不难看出转子只做单面(静)平衡的条件主要有三个方面:一个是转子几何形状为盘状;一个是转子在平衡机上做平衡时的支撑间距要大;再一个是转子旋转时其校正面的端面跳动要很小。
对以上三个条件作如下说明:1)何谓盘状转子主要用转子的直径D与转子的两校正面间的距离尺寸b之比值来确定。
动平衡静平衡计算公式

动平衡静平衡计算公式
静平衡计算有两种方法:
质量平衡法和力平衡法。
质量平衡法是根据每一个物体的质量来衡量
其运动,而力平衡法则是根据每一物体受到的外力的大小来衡量其运动,
这两种方法可以有效地计算出静平衡状态的平衡量。
质量平衡法
质量平衡法的计算公式为:
M=F
其中,M为物体的质量,F为物体受到的力。
力平衡法
力平衡法的计算公式为:
F=M*a
其中,F为物体受到的力,M为物体的质量,a为物体受到的加速度。
动平衡的计算公式主要有两种:
一种是动平衡力计算公式:
F=mv2/r
其中,F为动平衡力,m为物体的质量,v为物体的速度,r为物体的
转角半径。
另一种是动平衡角度计算公式:
θ=mv2/T
其中,θ为动平衡角度,m为物体的质量,v为物体的速度,T为物体受到的拉力和杆力的绝对值的和。
上述两种公式可以有效地计算出物体在动态平衡状态的力量和角度。