集成电路实验报告(信号的放大,滤波,AD采样电路)
集成运算放大器实验报告

集成运算放大器实验报告集成运算放大器实验报告引言集成运算放大器(Integrated Operational Amplifier)是一种常见的电子器件,广泛应用于各个领域,如通信、医疗、工业控制等。
本实验旨在通过实际操作和测量,了解集成运算放大器的基本原理和特性,并探讨其在电路设计中的应用。
一、实验目的本实验的主要目的如下:1. 理解集成运算放大器的基本原理和特性;2. 掌握集成运算放大器的基本参数测量方法;3. 探索集成运算放大器在电路设计中的应用。
二、实验仪器与器件1. 实验仪器:示波器、函数发生器、直流电源、万用表等;2. 实验器件:集成运算放大器、电阻、电容等。
三、实验步骤1. 搭建基本的集成运算放大器电路,并连接相应的仪器;2. 调节函数发生器,输入不同的信号波形,观察输出信号的变化;3. 测量并记录集成运算放大器的增益、输入阻抗、输出阻抗等参数;4. 尝试改变电路中的电阻和电容数值,观察输出信号的变化;5. 根据实验结果,分析集成运算放大器的应用场景和电路设计方法。
四、实验结果与分析1. 在实验中,我们观察到集成运算放大器具有很高的增益,可以将输入信号放大到几十倍甚至几百倍的程度。
这使得它在信号放大和放大器设计中发挥着重要的作用。
2. 通过测量,我们还发现集成运算放大器具有很高的输入阻抗和很低的输出阻抗。
这使得它可以有效地隔离输入和输出电路,提高信号传输的质量。
3. 在实验中,我们改变了电路中的电阻和电容数值,观察到输出信号的变化。
这进一步验证了集成运算放大器的灵活性和可调性,可以根据实际需求进行电路设计和调整。
五、实验总结通过本次实验,我们深入了解了集成运算放大器的基本原理和特性,并掌握了相关的测量方法。
我们还通过实际操作,探索了集成运算放大器在电路设计中的应用。
实验结果表明,集成运算放大器在信号放大、隔离和调节方面具有重要作用,可以在各个领域中发挥重要的作用。
六、参考文献[1] 张三, 李四. 集成运算放大器原理与应用[M]. 北京:电子工业出版社,2018.[2] 王五, 赵六. 集成运算放大器电路设计与实验[M]. 上海:上海科学技术出版社,2019.以上即为本次集成运算放大器实验报告的全部内容。
集成电路实验日常实训报告

一、实训时间2022年X月X日至2022年X月X日二、实训地点XX大学电子实验室三、实训目的1. 熟悉集成电路的基本原理和实验方法;2. 培养动手能力和实验操作技能;3. 深入了解集成电路的设计与制造过程;4. 提高对电子电路的分析与解决实际问题的能力。
四、实训内容1. 集成电路基本原理及实验(1)半导体材料与器件:了解半导体材料的特性,掌握PN结、二极管、晶体管等基本器件的原理和特性。
(2)集成电路基本电路:学习放大器、稳压器、滤波器等基本电路的设计与实验。
(3)集成电路制造工艺:了解集成电路的制造工艺流程,包括光刻、蚀刻、离子注入、扩散等。
2. 集成电路设计及实验(1)模拟集成电路设计:学习模拟电路的基本原理,掌握运算放大器、滤波器、稳压器等模拟电路的设计方法。
(2)数字集成电路设计:学习数字电路的基本原理,掌握逻辑门、触发器、计数器等数字电路的设计方法。
(3)集成电路版图设计:学习版图设计软件,掌握版图设计的基本规则和技巧。
3. 集成电路制造工艺实验(1)光刻实验:学习光刻原理,掌握光刻机的操作方法和光刻工艺流程。
(2)蚀刻实验:学习蚀刻原理,掌握蚀刻机的操作方法和蚀刻工艺流程。
(3)离子注入实验:学习离子注入原理,掌握离子注入机的操作方法和离子注入工艺流程。
五、实训过程及结果1. 集成电路基本原理及实验在实训过程中,我们学习了半导体材料与器件的基本原理,掌握了PN结、二极管、晶体管等基本器件的特性和应用。
通过实验,我们验证了放大器、稳压器、滤波器等基本电路的性能。
2. 集成电路设计及实验在模拟集成电路设计方面,我们学习了运算放大器、滤波器、稳压器等模拟电路的设计方法,并成功设计出满足要求的电路。
在数字集成电路设计方面,我们掌握了逻辑门、触发器、计数器等数字电路的设计方法,并成功设计出满足要求的电路。
3. 集成电路制造工艺实验在光刻实验中,我们学会了光刻机的操作方法和光刻工艺流程,成功完成了光刻实验。
集成运算放大电路实验报告

电子技术基础实验与课程设计------运算放大器基本放大电路实验目的1.通过实验,进一步理解集成运算放大器线性应用电路的特点。
2.掌握集成运算放大器基本线性应用电路的设计方法。
3.了解限幅放大器的转移特性以及转移特性曲线的绘制方法。
集成运算放大器放大电路概述集成电路是一种将“管”和“路”紧密结合的器件,它以半导体单晶硅为芯片,采用专门的制造工艺,把晶体管、场效应管、二极管、电阻和电容等元件及它们之间的连线所组成的完整电路制作在一起,使之具有特定的功能。
集成放大电路最初多用于各种模拟信号的运算(如比例、求和、求差、积分、微分……)上,故被称为运算放大电路,简称集成运放。
集成运放广泛用于模拟信号的处理和产生电路之中,因其高性价能地价位,在大多数情况下,已经取代了分立元件放大电路。
1.1反相比例放大电路输入输出关系: 输入电阻: Ri=R1 输出电阻: Ro=01.1.1设计要求1.1.2选择器件与多数计算通过查找资料选用TL082集成运放设计放大12倍。
反相比例放大电路仿真电路图i oV R R V 12-=i R o V R R V R R V 1212)1(-+=输入与输出电压所以输出放大倍数 =12电压输入输出波形图i oV R R V 12-=1.2同相比例放大电路输入输出关系: 输入电阻: Ri=∞ 输出电阻: Ro=0 1.2.1设计要求1.2.2选择器件与多数计算通过查找资料选用TL082集成运放设计放大12倍。
i o V RRV )1(12+=R o V R RV R R V 12i 12)1(-+=同相比例放大电路仿真电路图输入与输出电压所以输出放大倍数: =12 电压输入输出波形图i o V RRV )1(12+=1.3微分电路R fU iR 2U oC 1foi R U dt dU C -=1dtdU C R U if o 1-=max 1)(dtdU U C R i oM f ≤实用微分电路RC1=RfC电路的输出电压为o u 为:21io du u R C dt =- 式中,21R C 为微分电路的时间常数。
集成运算放大器的基本应用实验报告

集成运算放大器的基本应用实验报告集成运算放大器的基本应用实验报告引言:集成运算放大器(Operational Amplifier,简称Op-Amp)是一种广泛应用于电子电路中的重要器件。
它具有高增益、低失调、宽带宽等特点,可以实现信号放大、滤波、积分、微分等功能。
在本次实验中,我们将通过几个基本应用实验,探索集成运算放大器的工作原理和应用场景。
实验一:非反相放大器非反相放大器是Op-Amp最常见的应用之一。
它通过将输入信号与放大倍数相乘,输出一个放大后的信号。
我们在实验中使用了一个标准的非反相放大器电路,将一个正弦波信号作为输入,观察输出信号的变化。
实验结果显示,输出信号的幅度和输入信号的幅度相比,增大了放大倍数倍。
而相位方面,输出信号与输入信号的相位保持一致。
这说明非反相放大器能够有效放大输入信号,并且不改变其相位。
实验二:反相放大器反相放大器是Op-Amp另一种常见的应用。
它与非反相放大器相比,输入信号与放大倍数相乘后取反,输出一个反向的放大信号。
我们在实验中使用了一个反相放大器电路,将一个正弦波信号作为输入,观察输出信号的变化。
实验结果显示,输出信号的幅度与输入信号的幅度相比,同样增大了放大倍数倍。
但是相位方面,输出信号与输入信号相差180度。
这说明反相放大器能够有效放大输入信号,并且改变其相位。
实验三:积分器积分器是Op-Amp的另一个重要应用。
它可以将输入信号进行积分运算,输出一个积分后的信号。
我们在实验中使用了一个积分器电路,将一个方波信号作为输入,观察输出信号的变化。
实验结果显示,输出信号呈现一个斜率逐渐增大的曲线,表明输入信号得到了积分。
这说明积分器能够有效对输入信号进行积分运算,输出一个积分后的信号。
实验四:微分器微分器是Op-Amp的又一个重要应用。
它可以将输入信号进行微分运算,输出一个微分后的信号。
我们在实验中使用了一个微分器电路,将一个正弦波信号作为输入,观察输出信号的变化。
EDA实验报告4_ADC采样控制电路

EDA实验报告4_ADC采样控制电路引言:ADC(模数转换器)是将模拟信号(连续电压)转换为数字信号(离散电压)的一种设备。
在实际应用中,ADC采样控制电路是非常重要的,它可以通过控制采样频率和采样时间来保证采样的准确性和稳定性。
本实验旨在设计并实现一种ADC采样控制电路,以提高ADC的性能表现。
一、实验目的:1.了解ADC采样控制电路的工作原理;2.学习采样频率和采样时间的设置方法;3.提高ADC采样的准确性和稳定性。
二、实验器材:1.ADC模数转换器;2.电压源;3.可调电阻;4.示波器;5.杜邦线。
三、实验步骤:1.将ADC模数转换器与电压源连接,并通过示波器观察转换后的数字信号;2.调节可调电阻,改变采样频率和采样时间;3.分别记录不同采样频率和采样时间下的ADC转换结果;4.分析实验数据,并总结ADC采样控制电路的工作特点。
四、实验原理:ADC采样控制电路的主要作用是控制ADC的采样频率和采样时间。
采样频率是指单位时间内采样次数,采样时间是每次采样持续的时间。
采样频率和采样时间的设置直接影响到ADC转换的准确性和稳定性。
五、实验结果:根据实验数据统计,我们可以得到不同采样频率和采样时间下的ADC 转换结果,进一步分析实验结果。
通过对比实验数据,我们可以发现,采样频率越高,转换结果的准确性越高,但同时也会增加系统的复杂度和功耗;而采样时间越长,可以减少ADC转换时的噪声干扰,但也会增加转换所需的时间。
六、实验总结:本实验利用ADC采样控制电路,通过控制采样频率和采样时间,提高了ADC的转换准确性和稳定性。
实验结果表明,采样频率和采样时间的设置对ADC转换结果具有重要影响。
在实际应用中,根据需要选择合适的采样频率和采样时间,以实现满足系统要求的ADC采样控制电路。
1."ADC采样控制电路设计与实施",XXX,XX出版社;2.“ADC采样控制电路设计要点分析”,XXX,XXX杂志,20XX年,第XX期,第XX-XX页。
集成放大电路实验报告

集成放大电路实验报告
报告题目:集成放大电路实验
报告撰写人: XXX
实验时间: XXX
实验目的
本实验旨在深入了解集成放大电路的工作原理,以及如何通过电路的设计来实现集成放大器的功能和特性的测试,掌握基于集成放大电路应用的工作原理以及电路设计技术。
实验内容
1.实验介绍
本实验使用的集成放大电路是由多器件驱动构建出的放大器。
它受到低功率输入信号的控制,将低功率输入信号放大后输出高功率信号。
2.实验设备
实验用到的设备有:多节点稳压电源、多节点测量稳压电源(模拟电源)、多节点钳形表(多用表)、多功能电磁振荡器(电振器)和导线夹子(探头)等。
3.实验步骤
(1)搭建电路并调试电源。
(2)用测量仪器检查放大器的基线稳定性。
(3)用调试板连接放大器,将输入信号连接到调试板上,并调节输入信号的幅度,以获取最大放大倍数;
(4)用电振器提供定时信号并用多用表测量输出信号。
(5)检查放大器的负反馈稳定性。
实验结果
实验中发现,放大器的基线稳定性良好,最大放大倍数可达30倍,负反馈稳定性也很好,噪声含量低。
实验总结
本实验证明,集成放大电路可用来实现高品质的放大和音质处理。
实验中发现,放大器的基线模型、最大增益和噪音控制通过电路调试可获得性能优良的结果。
通过本实验,增强了对集成放大电路工作原理和电路设计技术的理解,有助于提高应用放大器的技术水平。
集成电路实验报告(信号的放大-滤波-AD采样电路)

Multisim实验报告内容姓名:胡俊超学号:200805010615一、题目:基于Multisim信号采集处理系统在multisim软件基础上,主要是实现信号的放大,滤波,AD采样电路。
二、设计要求:1.系统的电源输入为正负15V,系统各个电源都由集成电路产生的稳压电压供给。
2. 输入信号的为100Hz或者500Hz或者1kHz,幅度为10mv。
3. 放大电路要求:考虑提高输入阻抗;考虑放大后的信号是否超过的AD的输入范围;放大倍数由信号与AD的输入决定。
可以考虑集成仪表运放。
4. 滤波电路:四阶巴特沃思低通滤波器,截止频率为500Hz。
计算各个电阻和电容的取值。
5.AD采样;可以使用8位和16位AD,并设定AD的电压范围为0-5v。
考虑采样定理的约束。
6.DA输出;AD的数字信号直接输出给DA模块7.对比原始信号和DA输出信号。
三,各个部分详细的设计方法和思路。
电源部分:原理分析:由于题目给出了直流15V的条件,考虑到整个系统中所采用的741运放以及AD,DA的采样参考电压,所以选取5V和-5V供电电压。
集成电路中78系列的线性稳压器件7812以及7805可以构成两级稳压达到要求的5V电源,78系列压差在3V以上的范围,也满足我们的设计要求,同理,采用7912和7905即可以得到-5的电压。
电路原理图:构成5V电源电压电路图构成-5V电源电压原理图信号输入和放大部分原理分析:信号的幅度为10mV,频率可以选择,此时选择500Hz,放大倍数放大30倍。
为了提高输入阻抗,考虑采用集成运放741作为输入,用反向放大,便于计算放大倍数,再用741做一次同比列的方向放大,这样信号的相位和输入信号无相移,构成了线性无相移的放大环节。
原理电路图(放大部分)放大部分仿真结果图中可以看到输入信号为红色10mV的VPP幅值,输出为蓝色300mV的VPP,所以放大了30倍,输入输出周期相同,相位一致。
放大信号的滤波部分原理分析;四阶巴特沃斯低通滤波器,技术指标要求Wn=500Hz ,由于考虑到输入信号角频率是500Hz,所以将Wn提高到550Hz,在设计滤波器是取滤波电容C3和C4的值相等,R6和R7相等,R12和R10相等,C8和C7的值相等。
集成电路实验报告

集成电路实验报告第一篇:集成电路实验报告集成电路实验报告班级:姓名:学号:指导老师:实验一:反相器的设计及反相器环的分析一、实验目的1、学习及掌握cadence图形输入及仿真方法;2、掌握基本反相器的原理与设计方法;3、掌握反相器电压传输特性曲线VTC的测试方法;4、分析电压传输特性曲线,确定五个关键电压VOH、VOL、VIH、VIL、VTH。
二、实验内容本次实验主要是利用 cadence 软件来设计一基本反相器(inverter),并利用仿真工具Analog Artist(Spectre)来测试反相器的电压传输特性曲线(VTC,Voltage transfer characteristic curves),并分析其五个关键电压:输出高电平VOH、输出低电平VOL、输入高电平VIH、输入低电平VIL、阈值电压 VTH。
三、实验步骤1.在cadence环境中绘制的反相器原理图如图所示。
2.在Analog Environment中,对反相器进行瞬态分析(tran),仿真时间设置为4ns。
其输入输出波形如图所示。
分开查看:分析:反相器的输出波形在由低跳变到高和由高跳变到底时都会出现尖脉冲,而不是直接跳变。
其主要原因是由于MOS管栅极和漏极上存在覆盖电容,在输出信号变化时,由于电容储存的电荷不能发生突变,所以在信号跳变时覆盖电容仍会发生充放电现象,进而产生了如图所示的尖脉冲。
3.测试反相器的电压传输特性曲线,采用的是直流分析(DC),我们把输入信号修改为5V直流电源,如图所示。
4.然后对该直流电源从0V到5V进行线性扫描,进而得到电压传输特性曲线如图所示。
5.为反相器创建symbol,并调用连成反相器环,如图。
6.测量延时,对环形振荡器进行瞬态分析,仿真时间为4ns,bcd 节点的输出波形如图所示。
7.测量上升延时和下降延时。
(1)测量上升延时:可以利用计算器(calculator)delay函数来计算信号c与信号b间的上升延时和下降延时如图所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Multisim实验报告内容
姓名:胡俊超学号:200805010615
一、题目:基于Multisim信号采集处理系统
在multisim软件基础上,主要是实现信号的放大,滤波,AD采样电路。
二、设计要求:
1.系统的电源输入为正负15V,系统各个电源都由集成电路产生的稳压电压供给。
2. 输入信号的为100Hz或者500Hz或者1kHz,幅度为10mv。
3. 放大电路要求:考虑提高输入阻抗;考虑放大后的信号是否超过的AD的输入范围;放大倍数由信号与AD的输入决定。
可以考虑集成仪表运放。
4. 滤波电路:四阶巴特沃思低通滤波器,截止频率为500Hz。
计算各个电阻和电容的取值。
5.AD采样;可以使用8位和16位AD,并设定AD的电压范围为0-5v。
考虑采样定理的约束。
6.DA输出;AD的数字信号直接输出给DA模块
7.对比原始信号和DA输出信号。
三,各个部分详细的设计方法和思路。
电源部分:
原理分析:
由于题目给出了直流15V的条件,考虑到整个系统中所采用的741运放以及AD,DA的采样参考电压,所以选取5V和-5V供电电压。
集成电路中78系列的线性稳压器件7812以及7805可以构成两级稳压达到要求的5V电源,78系列压差在3V以上的范围,也满足我们的设计要求,同理,采用7912和7905即可以得到-5的电压。
电路原理图:
构成5V电源电压电路图
构成-5V电源电压原理图
信号输入和放大部分
原理分析:信号的幅度为10mV,频率可以选择,此时选择500Hz,放大倍数放大30倍。
为了提高输入阻抗,考虑采用集成运放741作为输入,用反向放大,便于计算放大倍数,再用741做一次同比列的方向放大,这样信号的相位和输入信号无相移,构成了线性无相移的放大环节。
原理电路图(放大部分)
放大部分仿真结果
图中可以看到输入信号为红色10mV的VPP幅值,输出为蓝色300mV的VPP,所以放大了30倍,输入输出周期相同,相位一致。
放大信号的滤波部分
原理分析;
四阶巴特沃斯低通滤波器,技术指标要求Wn=500Hz ,由于考虑到输入信号角频率是500Hz,所以将Wn提高到550Hz,在设计滤波器是取滤波电容C3和C4的值相等,R6和R7相等,R12和R10相等,C8和C7的值相等。
由公式f=1/(2πRC)
计算出当:f=550Hz时R=3.2K
时的电容值为180pF,查表得到四阶巴特沃斯的发大倍数为2.235×1.152=2.5742。
经过实际电路的调试得到,,R6=R7=R12=R10=3.2k
C8和C7=120nF C3和C4=100nF
电路原理图:
如上图图所示,输入和输出信号有2.5倍左右的放大,且有相位的移动,下面的BODE图放映了相位的移动和幅度变化。
在-3db 左右时频率为526Hz,既是达到了Wn的要求值
从图中可以看到在526db,或者是500Hz时有相位的移动,接近-90度,这也是造成了输入输出相位移动的原因。
A/D ,D/A部分
设计原理;
由于要将实际现实生活中的声光电等信号用于计算机处理和信息的传输,就需要采样器件
A/D将模拟的信号转换成数字的信号,采样完成后经A/D的采样保持电路,然后量化成数字信号,完成对信号的数字计算或者数字处理及滤波后用D/A将其转换成模拟信号,以便于人们感受和观察。
但是,要完成以上过程是在采样时单位采样序列信号的频率要至少2倍于输入信号的截至频率Wn,我们已知Wn为800Hz,为了保证不引起频谱混叠,以致不能将数字信号恢复成模拟信号,取采样信号的频率为10KHz。
电路原理图:
图中采用的是8位的A/D和D/A采样频率10KHz,采样方波信号的幅度为10v VPP,
如图所示:
滤波信号经AD,DA变换后的输入输出结果:
如下图所示
图中蓝色曲线为输入AD的曲线,红色的阶梯上升曲线为输出的DA曲线,其中DA的输出曲线之所以为阶梯上升的,是因为AD采样输入信号完后进行数字的量化,产生了量化误差,导致的结果就是DA转化不能连续的变化,在频域进行分析时,采样完成后信号的频谱是输入信号频谱的周期性延拓,且周期是采样单位序列信号的周期,所以要由离散的序列恢复成连续的信号,只要对输出的信号进行低通滤波即可,得到离散序列的基带频谱。
所以改进方式如下:
对输出的阶梯形信号低通滤波:
示波器中红色为输入的阶梯信号,深绿色的为低通滤波的输出信号。
从图中可以看出,输出放大了2.5倍左右,也有相位移动,这跟采用的滤波器有关。
将AD采样前的输入信号和经AD,DA变化后再次滤波后的信号进行比较得到如下图所示:
图中淡黄色曲线为DA输出低通滤波后的曲线,和输入AD的蓝色曲线相比较,有相位移动和放大,同时,滤掉了DA出来的信号的阶梯上升部分,即使高频部分被去掉。