数字集成电路设计实验报告综述

合集下载

集成电路综合设计实验报告

集成电路综合设计实验报告

集成电路设计综合实验报告学院:电控学院班级:微电子1001班姓名:xxx学号:xxxxxxxxxx一、实验目的1、培养从版图提取电路的能力2、学习版图设计的方法和技巧3、复习和巩固基本的数字单元电路设计4、学习并掌握集成电路设计流程二、实验内容1、反向提取给定电路模块,要求画出电路原理图,分析出其所完成的逻辑功能,并进行仿真验证;再画出该电路的版图,完成DRC验证。

)(1)实验原理标准CMOS工艺下的集成半导体器件主要有NMOS晶体管、PMOS晶体管、多晶硅电阻和多晶硅电容等。

在P型衬底N阱CMOS工艺中,NMOS 晶体管直接制作在衬底材料上,PMOS晶体管制作在N阱中。

在集成电路版图的照片中,NMOS管阵列和PMOS管阵列一般分别制作在不同区域,PMOS管阵列制作在几个N阱内,NMOS管阵列制作在多个区域。

这一点在照片中可以明显地区分开来。

N阱和两种有源区存在较为明显的颜色差别。

通过对N阱、P型有源区和N型有源区的颜色辨别,可以确认PMOS 管阵列和NMOS管阵列位置。

N型选择区和有源区共同构成了N型掺杂区,P型选择区和有源区共同构成了P型掺杂区。

在实际的电路连接关系中接触孔的多少取决于晶体管的连接关系,当晶体管一侧或两侧与其它器件存在物理连接时,不需要接触孔。

从图中可以看出,形成晶体管的重要结构是多晶硅与有源区的十字交叉区域,只要存在多晶硅栅和某种有源区十字交叉图形,就可以确定一只晶体管的位置,进而通过测量可以确定其宽长比参数。

确定MOS管的类别主要是通过观察该十字交叉区域是否在N阱区域内,N阱区域内为PMOS晶体管,阱外则为NMOS晶体管。

在P型衬底N阱CMOS工艺条件下,NMOS器件直接制作在衬底材料上,PMOS器件制作在N阱中。

在模拟集成电路中,MOS晶体管常常工作在线性区或饱和区,需要承受较大的功耗,这些晶体管具有较大的宽长比。

模拟集成电路版图常常不规则,这就要求在电路提取时要充分注意电路连接关系。

数字集成电路设计实验报告

数字集成电路设计实验报告

数字集成电路设计实验报告
摘要:
本实验旨在设计一个数字集成电路,实现特定功能。

本报告将介绍实验目的、背景和理论知识、设计方法、实验步骤、结果分析和讨论以及实验总结。

1.实验目的:
设计一个数字集成电路,实现特定功能,并通过实验验证设计的正确性和可行性。

2.背景和理论知识:
简要介绍数字集成电路的基本概念和原理,并介绍与本实验相关的理论知识,包括逻辑门、布尔代数、时序电路等。

3.设计方法:
本部分将详细介绍实验中采用的设计方法,包括采用的逻辑门类型、布尔代数的转换方法、时序电路的设计方法等。

4.实验步骤:
本部分将详细描述实验的具体步骤,包括电路图的绘制、器件的选择和布局、逻辑设计的步骤、时序电路的设计方法、电路的仿真等。

5.结果分析和讨论:
本部分将对实验结果进行分析和讨论,比较设计与实际结果的差异,分析可能的原因,并讨论实验的局限性和改进方向。

6.实验总结:
总结实验过程中的收获和经验,评估实验的结果和设计的可行性,并提出对未来工作的展望和建议。

通过对数字集成电路设计实验的详细介绍和分析,本报告旨在提供一份完整的实验报告,帮助读者理解实验过程和结果,并为今后的设计工作提供参考。

西工大数字集成电路实验报告 数集实验2(1)

西工大数字集成电路实验报告 数集实验2(1)

实验二、反相器(上)一、分析电路,解答下面的问题1.这个电路是不是反相器,为什么?该门属于有比逻辑,还是无比逻辑,为什么?是。

因为当Vin=1时,下拉网络导通,Vout=0;当Vin=0时,M1截止,Vout经RL充电至1,所以是反相器。

有比逻辑。

因为上拉网络始终导通,所以当下拉网络导通时存在竞争,所以是有比逻辑。

2.计算出这个电路的V OH V OL及V IH V IL。

(计算可先排除速度饱和的可能)V in=0时,V OH=2.5VV in=2.5时,假设NMOS 工作在临界饱和区:AI V R I vV V V A I V V L W K I D out L D T in out D T in D61142`1073.55.207.243.05.21039.7)(2/--⨯=⇒+=⎪⎩⎪⎨⎧=-=-=⨯=⇒-⨯=这样的话根据D D I I <1,器件实际工作在线性区⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=--=v V V R I V V V V L W KI in OL L D OL OL T in D 5.25.2]2)[(2`6`10115-⨯=K 将, 5.0/5.1=L W,43.0=T V代入kohm R L 75=解得:=OL V 0.04633V由图得:V OH =2.5V, V OL =0.0356V. 当out in V V =时,NMOS 工作在饱和区⎪⎩⎪⎨⎧+=-⨯=outL D T in DV R I V V L W K I 5.2)(2/2`反相器阈值电压===out in M V V V 0.7932 此时-6.8978)43.0(875.255.2,)43.0(9375.125.22=--==--=in VinVoutin out V d d g V V ⎪⎪⎩⎪⎪⎨⎧=--==+=0.5458||0.9082||g V V V V g V V V M OH M IL M M IH由图得:V IH =0.881V, V IL =0.0378V. SP 文件:.TITLE 1.2UM CMOS INVERTER .options probe.options tnom=25.options ingold=2 limpts=30000 method=gear.options lvltim=2 imax=20 gmindc=1.0e-12.protect.lib'C:\synopsys\cmos25_level49.lib' TT.unprotect.global vddMn out in 0 0 NMOS W=1.5u L=0.5u *(工艺中要求尺寸最大0.5u)RL OUT V DD 75kVDD VDD 0 2.5VVIN IN 0 0.DC VIN 0 2.5V 0.1V.op.probe dc v(out).end3.分析电路噪声容限。

数字集成电路原理标准实验报告

数字集成电路原理标准实验报告

电子科技大学微电子与固体电子学院标准实验报告(实验)课程名称数字集成电路原理学号:24姓名:李天生指导老师:张驰2013年7月8日电子科技大学教务处制表电子科技大学实验报告学生姓名:学号:指导教师:实验地点:实验时间:一、实验室名称:二、实验项目名称:数字集成电路最优延迟设计与分析三、实验学时:3四、实验原理1、Hspice的具体功能电路级和行为级仿真直流特性分析、灵敏度分析交流特性分析瞬态分析电路优化(优化元件参数)温度特性分析噪声分析傅立叶分析Monte Carlo, 最坏情况,参数扫描,数据表扫描功耗、各种电路参数(如H参数、T参数、s参数)等可扩展的性能分析2、Hspice界面Hspice是一个在cmd shell窗口中运行的程序,无图形化界面;Hspice的输入网单文件是一个有特定格式的纯文本文件——可在任意的文本编辑工具中编辑;Hspice的输出也是一系列纯文本文件,根据不同分析要求,输出不同扩展名的文件。

如:.lis .mt0 .dat .smt等。

HSPICE 的运行:在运行HSPICE之前,应该首先登录到SUN工作站上,并确保你的使用HSPICE的权限和环境变量已设好。

打开一个“终端”窗口,然后进入到你的工作目录下。

输入行命令运行。

hspice有两种工作模式:提示行模式和非提示行模式3、Hspice两种工作模式a)、提示行模式键入hspice, 然后回车;系统会提示你输入一些参数,比如Enter input file name:此时输入你的HSPICE网表文件,缺省的扩展名为.spEnter output file name or directory: [<filename.lis>]缺省值为输入HSPICE网表文件名加上.lis扩展名。

但.sp 和.lis 并不是必须。

除此之外,还有一些参数(这些参数的隐含值一般不需要更改),直接回车即可。

等你按照系统的提示确定所有的参数后,HSPICE就开始运行。

数字集成电路课程实验报告

数字集成电路课程实验报告

数字集成电路设计课程实验报告姓名:班级:学号:指导老师:实验时间:实验地点:实验一:设计一个反相器一、实验目的1、学习及掌握cadence 图形输入及仿真方法;2、掌握基本反相器的原理与设计方法;3、掌握反相器电压传输特性曲线VTC 的测试方法;4、分析电压传输特性曲线,确定五个关键电压OH V 、OL V 、IH V 、IL V 、TH V 。

二、实验内容本次实验主要是利用cadence 软件来设计一基本反相器(inverter),并利用仿真工具Analog Artist(Spectre)来测试反相器的电压传输特性曲线(VTC, Voltage transfer characteristic curves),并分析其五个关键电压:输出高电平OHV 、输出低电平OLV 、输入高电平IHV 、输入低电平ILV 、阈值电压THV 。

1、在cadence 环境中绘制的反相器原理图如图一所示。

值得注意的是应将NMOS 的衬底接地(GND ),而相应的应将PMOS 的衬底接电源(VDD ),这样不仅能消除体效应,而且还能够减弱闩锁效应(在NMOS 实现中并不存在)。

2、在Analog Environment 中,对反相器进行瞬态分析(tran),仿真时间设置为4ns 。

其输入输出波形如图二所示。

三、实验环境 软件:Cadence硬件:计算机四、实验结果由图可以看出:输出高电平5OH V V =、输出低电平0OL V V =、输入高电平 3.15IH V V =、输入低电平 2.24IL V V =、阈值电压 2.66TH V V =。

所以,噪声容限为:2.240 2.24L IL OL NM V V V =-=-= 53.15 1.85H OH IH NM V V V =-=-=实验二:设计一个水位控制器一、设计要求1、给出满足题目要求的电路图;2、根据设计目标,计算各MOS 管的尺寸;3、对电路进行仿真,仿真内容包括:直流输入范围、直流输出范围;4、对结果进行分析。

数字电路实验报告

数字电路实验报告

数字电路实验报告本次实验是数字电路的实验,在本次实验中,我和我的同学们成功地完成了数字电路的实验,并且成功将LED灯显示。

1. 实验目的本次实验的目的是:通过实践操作,掌握数字电路的基础知识,能够有效地使用布尔代数和卡诺图方法进行电路设计和分析。

2. 实验基础数字电路是由数字电子元器件组成的电路。

数字电路能够处理数字信号,是所有数字计算机的基础核心部件。

数字电路的基础是数字集成电路的设计和应用。

数字电路的核心是门电路,门电路有多个种类,包括与门、或门、非门、异或门等。

门电路能够接受输入信号并输出信号,能够实现与、或、非、异或等逻辑运算。

在数字电路的实验中,我们需要掌握基本逻辑门的真值表和逻辑图,以及逻辑门的电路实现方法。

此外,我们还需要掌握一些进制转换的方法和数字电路的布线和测试方法。

3. 实验步骤本次实验中,我们的主要任务是设计和实现一个数字电路,该电路能够将数字输入转化成二进制显示输出,并且使用LED灯进行显示。

以下是我们的实验步骤。

步骤一:设计真值表首先,我们需要使用布尔代数和卡诺图方法,设计出一个真值表,该真值表能够将数字输入转换成二进制数输出。

步骤二:设计逻辑电路图在真值表的基础上,我们设计了一个逻辑电路图,该电路图包括与门、或门、非门、异或门等逻辑门电路,以及输入输出接口电路。

步骤三:建立硬件电路接下来,我们开始搭建硬件电路,将逻辑电路图中的元件进行布线连接。

步骤四:测试电路在布线完毕后,我们进行了电路的测试,确认电路能够工作,并且LED灯能够正常显示。

4. 实验结论通过本次实验,我学习到了数字电路的基础知识,能够使用布尔代数和卡诺图方法进行电路设计和分析。

我还学会了逻辑门的真值表和逻辑图的设计方法,以及数字电路的布线和测试方法。

最终,我和我的同学们成功地完成了数字电路的实验,将数字转换为二进制数并成功显示。

这次实验对我的学习和科研工作具有重要的启示和帮助。

数字集成电路设计实验二报告

数字集成电路设计实验二报告

《数字集成电路设计》实验报告
一、实验内容
有一水箱由大、小两台水泵M
L 和M
S
供水,如下图所示,箱中设置了3个水位
检测元件A、B、C。

水面低于检测元件时,检测元件给出高电平;水面高于检测元件时,检测元件给出低电平。

现要求当水位低于C点时两个水泵同时工作;水位高于C点而低于B点时M
S
单独工作;水位低于A点而高于B点时
M L 单独工作;水位高于A点时M
L
和M
S
停止工作。

试设计一个集成电路用于控
制两台水泵的工作,要求电路尽量简单。

二、实验目的
1、熟悉Cadence环境
2、熟悉并掌握Cadence的操作步骤
3、利用Cadence软件进行相应的电路原理图的设计并进行仿真
4、利用Cadence绘制版图并进行DRC和LVS等验证
三、实验使用软件环境、硬件设备
PC电脑Windows XP平台,Cadence软件
四、实验步骤
1,打开Cadence软件;
2,电路设计;
3,计算Mos管数值;
4,电路仿真;
5,
五、实验结果
1.实现要求目标
2.实验电路图:
3.实验仿真图:
六、实验心得体会
掌握了集成电路设计的一般步骤,熟悉Cadence软件的使用,了解简单的水位控制器设计原理。

通过这次课程设计,进一步的掌握了数字集成电路设计的基础知识与实际应用。

数字集成电路实验报告2

数字集成电路实验报告2

1.1表决电路:设有三人对一事进行表决,多数(二人以上)赞成即通过;否则不通过。

1.2若三人中的A有否决权,即A不赞成,就不能通过,又应如何实现呢?
2、交通信号灯监测电路:设一组信号灯由红(R)、黄(A)、绿(G)三盏灯组成。

正常情况下,点亮的状态只能是红、绿或黄加绿当中的一种。

当出现其它五种状态时,是信号灯发生故障,要求监测电路发出故障报警信号。

3. 故障报警:某实验室有红、黄两个故障指示灯,用来指示三台设备的工作情况。

当只有一台设备有故障时,黄灯亮;有两台设备有故障时,红灯亮;只有当三台设备都发生故障时,才会使红、黄两个故障指示灯同时点亮。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

哈尔滨理工大学数字集成电路设计实验报告学院:应用科学学院专业班级:电科12 - 1班学号:1207010132姓名:周龙指导教师:刘倩2015年5月20日实验一、反相器版图设计1.实验目的1)、熟悉mos晶体管版图结构及绘制步骤;2)、熟悉反相器版图结构及版图仿真;2. 实验内容1)绘制PMOS布局图;2)绘制NMOS布局图;3)绘制反相器布局图并仿真;3. 实验步骤1、绘制PMOS布局图:(1) 绘制N Well图层;(2) 绘制Active图层;(3) 绘制P Select图层;(4) 绘制Poly图层;(5) 绘制Active Contact图层;(6) 绘制Metal1图层;(7) 设计规则检查;(8) 检查错误;(9) 修改错误;(10)截面观察;2、绘制NMOS布局图:(1) 新增NMOS组件;(2) 编辑NMOS组件;(3) 设计导览;3、绘制反相器布局图:(1) 取代设定;(2) 编辑组件;(3) 坐标设定;(4) 复制组件;(5) 引用nmos 组件;(6) 引用pmos组件;(7) 设计规则检查;(8) 新增PMOS基板节点组件;(9) 编辑PMOS基板节点组件;(10) 新增NMOS基板接触点;(11) 编辑NMOS基板节点组件;(12) 引用Basecontactp组件;(13) 引用Basecontactn 组件;(14) 连接闸极Poly;(15) 连接汲极;(16) 绘制电源线;(17) 标出Vdd 与GND节点;(18) 连接电源与接触点;(19) 加入输入端口;(20) 加入输出端口;(21) 更改组件名称;(22) 将布局图转化成T-Spice文件;(23) T-Spice模拟;4. 实验结果4.1 nmos版图4.2 pmos版图4.3反相器的版图4.4反相器的spice文件4.5反相器的仿真曲线5.实验结论通过对仿真曲线的分析,当输入为高电平时,输出为低电平;当输入为低电平时,输出为高电平。

所以通过版图仿真曲线的分析,我们所绘制的版图具有反相器的功能。

实验二、反相器的电路设计1. 实验目的:1、熟悉静态互补反相器电路;2、掌握反相器静态及瞬态测试方法;3、了解晶体管尺寸大小对反相器性能的影响。

2. 实验内容:1、绘制反相器电路图;2、反相器瞬时分析;3、反相器直流分析;4、观察晶体管宽长比对VTC曲线的影响;5、观察电源电压比对VTC曲线的影响。

3. 实验步骤:1、绘制反相器电路图:(1) 编辑模块;(2) 从组件库引用模块;(3) 编辑反相器;(4) 加入联机;(5) 加入输入端口与输出端口;(6) 建立反相器符号;(7)加入输入端口与输出端口;(8) 更改模块名称;(9) 输出成SPICE文件;2、反相器瞬时分析:(l) 复制inv模块;(2)打开inv模块;(3) 加入工作电源;(4) 加入输入信号;(5) 更改模块名称;(6)输出成SPICE文件(7)加载包含文件;(8)分析设定(9)输出设定;(10)进行模拟;(11)观看结果;(12)分析结果;(13)时间分析;(14) 进行模拟;(15) 观看时间分析结果;(16)测试上升时间(tr)、从输入到输出的延迟(tpHL,tpLH),并手工计算反相器的门延迟tp。

(17)选中反相器当中的nmos或者pmos晶体管,选择Edit---Edit Object命令,按(18)中的要求修改Properties中晶体管的宽度W,保存后重新进行反相器的瞬态分析,并测量输出的下降延迟(tf)、上升时间(tr)、从输入到输出的延迟(tpHL,tpLH),并计算反相器的门延迟tp。

观察晶体管大小改变后对延迟的影响。

另:晶体管的宽度W也可以在inv_tran.sp 文件中直接改变M1或者M2描述语句中W后的数值。

(18)晶体管宽度W修改要求:示例中nmos晶体管M1和pmos晶体管M2大小相同,长L=2,宽W=22。

修改时要求(I)修改pmos晶体管M2的宽度,nmos晶体管M1大小保持不变,使得M1<M2;(II)修改nmos晶体管M1的宽度,pmos晶体管M2大小保持不变,使得M1> M2。

3、反相器直流分析:(1) 复制inv模块;(2) 打开inv模块;(3)加入工作电源;(4)加入输入信号(5)更改模块名称;(6)编辑Source v dc对象;(7) 输出成SPICE文件;(8) 加载包含文件;(9)分析设定;(10)输出设定;(11)进行模拟;(12)观看结果;4、观察晶体管宽长比对VTC曲线的影响:选中反相器当中的nmos或者pmos晶体管,选择Edit---Edit Object命令,按要求修改Properties中晶体管的宽度W,保存后重新进行反相器的扫描分析,观察晶体管大小改变后对VTC曲线的影响。

另:晶体管的宽度W也可以在inv_tran.sp文件中直接改变M1或者M2描述语句中W后的数值。

晶体管宽度W修改要求:示例中nmos晶体管M1和pmos晶体管M2大小相同,长L=2,宽W=22。

修改时要求(I)修改pmos晶体管M2的宽度,nmos晶体管M1大小保持不变,使得M1<M2;(II)修改nmos晶体管M1的宽度,pmos晶体管M2大小保持不变,使得M1> M2。

5、观察电源电压比对VTC曲线的影响:修改电源电压vvdd的电压值,查看电源电压改变对VTC曲线的影响。

4. 实验结果4.1反相器的电路图4.2加入输入电压信号及反相器的spicce文件4.3 反相器的仿真曲线分析:通过上图的仿真曲线,我们可以看到,当输入为高电平时,其输出为低电平,当输入为低电平的时候,其输出为高电平,显然满足我们所要求的反相器功能。

4.4反相器的瞬时分析4.4.1 spice文件中加入时间分析语句以及其仿真曲线4.4.2 out文件分析分析:下降时间fall time为 1.7102e-009; 上升时间rise time 为1.6705e-009;TPHL=1.2326e-009 ; TPLH=-4.5352e-010;TP =(TPHL+TPLH)= 7.7927e-104.4.3修改pmos晶体管M2(w=45u),nmos晶体管M1大小保持不变,使得M1<M2;1)spice文件和out文件分析分析:下降时间fall time为 1.6949e-009; 上升时间rise time 为1.8146e-009;TPHL=4.5976e-010; TPLH=2.4134e-010;TP =(TPHL+TPLH)= 3.5055e-104.4.4修改nmos晶体管M1(W=45u),pmos晶体管M2大小保持不变,使得M1> M2。

1)pice文件和out 文件分析分析:下降时间fall time为1.3795e-009; 上升时间rise time 为1.3060e-009;TPHL=1.8695e-010; TPLH=-1.1460e-010;TP =(TPHL+TPLH)= 3.6175e-10总结:通过对比上面对nmos和pmos的宽度修改的对比,我们显然发现其门延迟TP明显的减小,即增大其某一晶体的宽度,能够减小电路的门延迟。

4.5反相器的直流分析反相器的电路图和spice文件仿真曲线:4.5.1修改nmos晶体管M1(W=100u),pmos晶体管M2大小保持不变,使得M1> M2M1<M2;分析:通过对比上面三个VTC曲线,我们发现通过改变mos晶体管的宽度,可以改变VTC曲线的形状,我们发现增大Nmos的宽度,VTC曲线的线性区域左移,增大pmos的宽度,VTC曲线的线性区域右移。

所以可以通过设计mos晶体管的尺寸可以得到我们所要的VTC曲线,进而设计我们的电路。

4.5.3观察电源电压比对VTC曲线的影响:1)修改电源电压vvdd=1v时:2)修改电源电压vvdd=10v分析:通过对比电源电压的改变对VTC曲线的影响,我们发现,当电源电压vvdd 较小时,其线性区域左移,相反,当电源电压vvdd较大时,其线性区域右移。

所以,我们可以通过改变和设计电源电压同样可以得到我们所需要的VTC曲线,进而设计我们所需要的电路。

5. 实验结论通过本次实验,我们可以分别对反相器做瞬时分析和直流分析,并绘制电路的VTC曲线,通过改变某一mos 晶体管的宽度,我们发现其线性区域会发生变化,而且改变电源电压的大小,同样可以影响VTC曲线的形状。

实验三、静态组合电路设计1. 实验目的:1、熟悉静态互补组合电路设计方法;2、掌握静态组合电路测试方法;3、了解不同实现方式对静态组合电路性能的影响。

2. 实验内容:F ;1、自行选择一个静态逻辑表达式,例如AB2、绘制静态互补方式逻辑电路图;3、采用有比逻辑实现逻辑电路;4、对静态逻辑电路分别进行瞬时分析;5、观察不同实现方式对电路性能的影响;6、观察电源电压对电路性能的影响。

3. 实验步骤1、绘制与非门电路图2、与非门瞬时分析(1)加入测试上升时间(tr)、从输入到输出的延迟(tpHL,tpLH),并手工计算与非门的门延迟tp。

(2)在nand_tran.sp文件中直接改变晶体管描述语句中W后的数值,修改晶体管的宽度W,保存后重新进行与非门的瞬态分析,并测量输出的下降延迟(tf)、上升时间(tr)、从输入到输出的延迟(tpHL,tpLH),并计算与非门的门延迟tp。

观察晶体管大小改变后对延迟的影响。

3、采用有比逻辑实现相同功能电路,并对其进行瞬态分析。

4、分析不同实现方式对电路性能的影响。

5、修改电源电压vvdd的电压值,查看电源电压改变对VTC曲线的影响。

4.实验结果4.1与非门电路图Spice文件:与非门的仿真曲线:功能分析:通过仿真曲线的分析,当输入A、B同时为高电平时,输出F为低电平;当输入A为低电平时,B为高电平时,输出F为高电平;当输入A为高电平时,输入B为低电平时,其输出F为高电平。

所以通过上面的功能分析,我们可以发现我们所设计的电路实现了与非门的功能。

4.2 与非门的瞬时分析1)在spice 文件中加入时间分析语句及out文件的分析分析:下降时间fall time为 1.8274e-009; 上升时间rise time 为2.1371e-009;TPHL=1.0552e-009; TPLH=-1.1383e-009;TP =(TPHL+TPLH)= 1.09675e-0094.2.1 修改nmos的宽度W=45u的out结果文件分析分析:下降时间fall time为 1.5066e-009; 上升时间rise time 为2.0545e-009;TPHL=1.7249e-009; TPLH=-3.0750e-010;TP =(TPHL+TPLH)= 1.0162e-0094.2.2修改pmos的宽度W=45u的结果文件分析分析:下降时间fall time为 1.8214e-009; 上升时间rise time 为1.6748e-009;TPHL=2.5566e-0010; TPLH=1.8202e-009;TP =(TPHL+TPLH)= 1.0379e-009总结:通过对比上面对nmos和pmos的宽度修改的对比,我们显然发现其门延迟TP明显的减小,即增大其某一晶体的宽度,能够减小电路的门延迟。

相关文档
最新文档