高频脉冲专题

合集下载

高频脉冲电化学去毛刺

高频脉冲电化学去毛刺

高频脉冲电化学去毛刺一、电化学去毛刺的原理⏹ ECM电化学去毛刺(electrochemical machining-ECM)是利用金属在电解液中发生阳极溶解反应而去除工件上多余的材料、将零件去毛刺的一种方法。

电化学去毛刺决定因素一、决定去毛刺去除量的主要参数:⏹ 去毛刺电流:根据去毛刺工件的所去毛刺的范围而定。

⏹ 去毛刺时间:根据去毛刺工件的毛刺大小有关。

⏹ 工件材料导电率:根据去毛刺工件的材质有关。

二、决定去毛刺质量的参数:1、电流密度:电流的密度决定着切削量和表面质量。

2、电导率:电化学液的浓度决定着电导率,单位[mS]。

根据去毛刺要求,电化学液的浓度应控制在8%-25%.(根据实际工件)。

当然,温度对电导率也有影响。

3、间隙:夹具(阴极)和工件(阳极)之间的间隙决定着电流大小和电解液的冷却能力。

4、电化学液压力:间隙中电化学液的压力影响着电流和材料的去除,它同时决定着电解液的流量和流速。

5、电化学液温度:温度影响着电解液的传导率,根据去毛刺要求,温度应控制在20℃到35℃。

(根据产品而定)6、电化学液的PH值:电化学液的PH值应该控制在6.5到8.5之间,(根据产品而定)电化学液的PH值决定着电解液的浓度和质量。

7、电化学液的纯度:纯净的电化学液能确保恒量生产,并且可防止工件和/或夹具被阻塞。

电化学液在工作的作用⏹ 为电化学去毛刺提供电路导通。

⏹ 冷却夹具。

⏹ 冲走去毛刺中产生的废屑。

电化学加工的反应(钢在与NaCl水溶液)一、阳极反应⏹ Fe—2e Fe+2⏹ Fe—3e Fe+3⏹ 4OH-—4e O2↑+2H2O⏹ 2CL-—2e CL2 ↑⏹ Fe+2+2OH- Fe(OH)2↓(墨绿色的絮状物)⏹ 沉淀为4Fe(OH)2+2H2O+O2 4Fe(OH)3↓(黄褐色沉淀)二、阴极反应(按可能性为)⏹ 2H++2e H2↑⏹ Na++e Na↓⏹ 按照电极反应的基本原理,电极电位最正的粒子将首先在阴极反应。

深入学习高频脉冲变压器的设计

深入学习高频脉冲变压器的设计

深入学习高频脉冲变压器的设计但凡真正的KC人,都有不同程度的偏执,对一个问题不摸到根源绝不罢手—ehco脉冲变压器属于高频变压器的范畴,与普通高频变压器工况有别。

脉冲变压器要求输出波形能严格还原输入波形,前后沿陡峭,平顶斜降小。

在众多的制作实践中,随处可见脉冲变压器的身影。

例如DRSSTC中的全桥驱动GDT(Gate Driving Transformers门极驱动变压器),感应加热电路中的GDT等等,相信KCer对其功能和重要性都有一定了解。

但谈到如何具体设计一个符合规格的脉冲变压器,相信也还有不少人停留在简单的匝比计算或是经验设计层面,没有深入地研究。

每每遇到磁芯的选择,匝数、线材的确定时,都无从下手。

本文针对这些问题,在高压版black、ry7740kptv、山猫等大神的鼓舞下,将本人的学习心得形成图文与大家分享,旨在抛砖引玉。

因本人水平有限,如若存在错漏,望斧正为谢。

下面从一个简易的GDT驱动电路说起上图中,T1为脉冲变压器,当初级(左侧)为上正下负时,右侧输出上正下负信号,该信号通过D3、D4、C23、RG,给IGBT的Cge充电,当充电电压达到VGE(ON)时IGBT的C、E开通,并且C23充电,C23的充电电压被D5钳制在8V。

当T1输入为上负下正时,D3反向截止,T1的输出被阻断。

在R15偏置电阻提供的偏流下,C23存储的电压构成反偏,迅速抽干Cge 存储的电荷,使IGBT快速关断。

那么,根据实测值或相关厂商数据,有以下已知数据。

1、IGBT型号:IKW50N60T2、开关频率fs:50KHz3、栅极正偏电压+VGE:+15V4、栅极反偏电压-VGE:-8V5、脉冲变压器初级侧驱动电压:+24V6、单个IGBT驱动电压占空比D:0.467、栅极电阻RG:10Ω8、IGBT管内栅极电阻Rg:0Ω9、三极管饱和压降:Vces=0.3V10、二极管压降:VDF=0.55V11、GDT效率η:90%一、计算IGBT驱动所需的峰值电流IGPKIGPK =(+VGE-(-VGE))/RG+Rg=23/5.1=2.3A二、计算次级电流有效值IsrmsI srms =I GPK D^0.5=2.3×0.68=1.56A三、计算次级单个绕组输出功率P sPs=V s I srms =(+V GE +V DF +(R G +R g )I srms )I srms=(+15+0.5+(10+0)×1.56)×1.56=48.5W四、计算初级输入功率Pi ,因为该电路中,一个变压器含2个相同的输出绕组,所以 Pi=2Ps/η=2×48.5/0.9=107.8W五、计算脉冲变压器初、次级总功率Pr 。

高频pwm

高频pwm

高频pwm高频脉冲宽度调制(PWM)是一种常见的电子调制技术,用于控制开关信号的占空比。

在PWM信号中,周期保持不变,但脉冲宽度可以根据需要进行调整。

这种技术在电子设备、通信系统和工业自动化中广泛应用。

本文将介绍高频PWM的原理、应用和优势。

高频PWM技术的核心原理是通过不同的脉冲宽度来调制信号,以控制输出电压或电流的大小。

在传统的PWM中,脉冲宽度以固定的频率重复,但是高频PWM的频率非常高,通常在几十千赫兹到几百千赫兹之间。

这样的高频率能够使电子器件的响应更加迅速,从而提高系统的稳定性和性能。

高频PWM的应用非常广泛。

在电机控制领域,高频PWM可以用于调节电机的转速和转矩。

通过改变脉冲宽度,可以实现对电机的精确控制,使其在不同的负载下保持恒定的运行速度。

此外,高频PWM还可以用于直流电源和逆变器的稳压和稳流控制,保证输出电压和电流的稳定性。

在通信系统中,高频PWM可以实现数字信号的调制和解调。

通过调整脉冲宽度,可以将数字信息嵌入到高频脉冲信号中,从而实现信号的传输和解码。

这种调制技术被广泛应用于无线通信、光纤通信和电力线通信等领域。

除了电机控制和通信系统,高频PWM还可以用于工业自动化领域。

在工业生产过程中,高频PWM可以控制电磁阀、电磁铁等执行器的开关,实现对工业过程的自动化控制。

通过将高频PWM与传感器和反馈电路相结合,可以实现对温度、压力等参数的精确控制和调节。

高频PWM技术具有许多优势。

首先,它具有高效性能。

由于高频PWM的工作频率很高,电子器件的响应速度快,能够更好地跟踪输出信号的变化,从而提高系统的响应速度和稳定性。

其次,高频PWM技术可以实现精确的控制。

通过调整脉冲宽度,可以实现对输出电压或电流的精确调节,满足不同应用的需求。

此外,高频PWM还具有较低的功耗和噪声,能够提高系统的能效和工作环境。

总之,高频脉冲宽度调制是一种重要的电子调制技术,可以应用于各种领域。

通过调整脉冲宽度,高频PWM技术可以实现对电机、通信系统和工业自动化过程的精确控制。

航空弧焊新技术之超高频脉冲TIG焊接技术

航空弧焊新技术之超高频脉冲TIG焊接技术

航空弧焊新技术之超高频脉冲TIG焊接技术超高频脉冲TIG焊接技术可实现20kHz以上的电流变换频率且具有超快速的电流沿变化速率(di/dt≥50A/us),在其基础上可分别进行超高频直流脉冲TIG焊及超高频变极性脉冲TIG焊,完成对钛合金、铝合金等航空工业常用金属材料的焊接加工。

结果表明,超高频脉冲TIG焊接技术可有效降低焊缝的气孔敏感性,细化晶粒,显著提高焊接接头力学性能,能大幅提升航空飞行器焊接结构件的综合性能,具有重要的工程意义和广泛的应用前景。

焊接作为一种传统的材料加工技术,在航空工业占有重要地位,广泛应用于飞机结构件连接、发动机制造等领域,其主要对象为钛合金、铝合金等金属材料,目前,尽管高能束流焊接(电子束、激光焊等)和固态焊接技术(搅拌摩擦焊等)都取得了较大进步,但钨极氩弧焊(TIG 焊)作为航空工业中针对钛合金、铝合金的常用焊接方式,仍将以其独特的优势和工艺特点在今后相当长一段时间内占据重要地位。

钛合金具有较高的比刚度、优异的抗腐蚀性能,同时具有密度小,韧性和焊接性好等特点,在航空器制造中应用广泛,目前使用的钛合金中有50%为a + b双相Ti-6Al-4V钛合金。

2219高强铝合金因为其优良的性能在航空领域也得到广泛应用。

由于TIG焊局部加热的工艺特点,常规TIG焊钛合金焊件普遍存在接头晶粒粗大和组织不均匀的问题;2219铝合金常规TIG焊接头强度仅为母材金属的50%~60%,接头软化严重,气孔倾向性大。

以上问题都阻碍了航空工业中常用金属材料的焊接加工,因此需要改进常规TIG焊技术以满足工程需求。

随着现代先进电源变换理论的发展,脉冲TIG焊作为一种先进的焊接工艺方法逐步在航空焊接中得到了广泛应用和推广,研究表明在自由电弧的基础上加入高频脉冲电流可提高电弧稳定性,促进焊缝晶粒细化,提高接头力学性能,有利于改善焊接质量。

超高频脉冲TIG焊接技术基于新型电源拓扑大幅提升了电流沿变化速率(di/dt≥50A/us),可输出20kHz以上的超高频脉冲方波电流,进一步增大了电弧能量密度、电弧力,提高了焊缝质量,并将在钛合金、铝合金等金属材料的航空器零部件加工中逐步得到应用,对焊接结构件的综合性能提升作用显著,具有重要的工程应用价值。

电抗器匝间绝缘检测中的高频脉冲振荡法应用

电抗器匝间绝缘检测中的高频脉冲振荡法应用

设备管理与维修2021翼2(上-下)电抗器匝间绝缘检测中的高频脉冲振荡法应用孙永哲,孙家文(中车大连电力牵引研发中心有限公司,辽宁大连116041)摘要:电抗器是变电设备的重要组成部分,及时发现匝间绝缘问题非常必要。

为探索电抗器匝间绝缘检测判别方法,利用高频脉冲振荡法测量分析,发现电抗器匝间绝缘故障,对匝间绝缘检测系统电路原理图仿真分析。

根据电抗器匝间短路故障等值电阻与电感变化建立判断依据。

仿真结果表明,通过脉冲振荡电压波形对比,可确定电抗器匝间绝缘故障,证实高频振荡法进行匝间试验的科学性,设计电抗器匝间绝缘检测系统满足测量要求。

关键词:电抗器;匝间绝缘;高频脉冲振荡法中图分类号:U224文献标识码:B DOI :10.16621/ki.issn1001-0599.2021.02.660引言干式空心电抗器具有结构简单、损耗低等优点,由于电抗器使用状况等方面原因,经常发生匝间绝缘,使得电抗器电感量发生变化。

干式空心电抗器烧毁事故频发,经济损失较大。

由于短路匝出现,在电抗器内产生很大环流,导致电抗器电压衰减加速,使电抗器电流衰减加快,若不及时发现电抗器存在匝间绝缘会造成设备停运。

2011年,国家标准允许采用高频脉冲振荡试验方法进行电抗器匝间过电压试验,高频脉冲振荡波形易分辨匝间短路故障特点,及时发现电抗器匝间绝缘故障非常必要。

本文提出检测应用高频脉冲振荡法,利用过电压检测在标定电压下频率变化情况,发现电抗器匝间绝缘故障。

1干式空心电抗器匝间绝缘缺陷简述随着我国电力系统迅猛发展,电网容量不断扩大,电网装机容量增大造成系统短路时电流增大。

由于输电线距离不断提高,线路中经常出现功率增大等现象,安装空心电抗器可解决相关问题。

国外生产空心电抗器厂家有欧洲的ABB 等。

我国自1980年引进后受到电力系统广泛欢迎,主要应用厂家有思源电气、晶鑫电工等。

干式空心电抗器体积小、结构简单,采用无油结构,杜绝了油浸电抗器的缺点。

高频脉冲实验报告

高频脉冲实验报告

一、实验目的1. 理解高频脉冲的基本概念和特性。

2. 掌握高频脉冲信号的产生、传输和检测方法。

3. 学习使用相关仪器设备进行高频脉冲实验。

4. 分析高频脉冲信号的波形和参数,验证理论公式。

二、实验原理高频脉冲信号是一种周期性变化的电信号,其频率远高于普通交流信号。

在高频脉冲实验中,我们主要关注以下方面:1. 脉冲产生:通过晶体管、集成电路等电子元件产生高频脉冲信号。

2. 脉冲传输:研究高频脉冲信号在传输线上的传播特性,包括衰减、色散和反射等。

3. 脉冲检测:使用示波器等仪器设备检测和分析高频脉冲信号的波形和参数。

三、实验仪器与设备1. 晶体管或集成电路2. 高频信号发生器3. 高频示波器4. 传输线5. 测试线夹6. 万用表7. 调制解调器(可选)四、实验内容1. 脉冲产生:(1)搭建晶体管或集成电路产生高频脉冲信号的电路。

(2)调整电路参数,观察并记录脉冲信号的波形和参数。

(3)分析脉冲信号的波形和参数,验证理论公式。

2. 脉冲传输:(1)搭建传输线实验电路,将脉冲信号从产生端传输到检测端。

(2)观察并记录传输线上的脉冲信号波形,分析脉冲信号的衰减、色散和反射等特性。

(3)计算传输线上的特性阻抗,验证理论公式。

3. 脉冲检测:(1)使用示波器检测和分析脉冲信号的波形和参数。

(2)调整示波器参数,观察脉冲信号的上升时间、下降时间、占空比等特性。

(3)分析脉冲信号的波形和参数,验证理论公式。

五、实验结果与分析1. 脉冲产生:实验结果表明,晶体管或集成电路可以产生高频脉冲信号。

通过调整电路参数,可以改变脉冲信号的波形和参数。

2. 脉冲传输:实验结果表明,传输线对高频脉冲信号有衰减、色散和反射等特性。

通过计算传输线上的特性阻抗,可以验证理论公式。

3. 脉冲检测:实验结果表明,示波器可以有效地检测和分析高频脉冲信号的波形和参数。

通过调整示波器参数,可以观察到脉冲信号的上升时间、下降时间、占空比等特性。

六、实验结论1. 高频脉冲信号是一种重要的电子信号,在通信、雷达、医疗等领域有着广泛的应用。

高频脉冲振荡法在电抗器匝间绝缘检测中的应用 习栋

高频脉冲振荡法在电抗器匝间绝缘检测中的应用    习栋

高频脉冲振荡法在电抗器匝间绝缘检测中的应用习栋摘要:对于电抗器而言,主要是作为变电设备的一个重要的组成内容,并且对于电网的稳定运行也是存在着十分重要的一个重要。

因为电抗器在长期进行运行的过程中将会不可避免年的存在着各种各样的绝缘问题,所以能够及时的去发现电抗器匝间的绝缘问题便显得十分的重要。

在本文之中,主要是针对了高频脉冲震荡的方法在电抗器匝间绝缘检测之中的测试应用做出了全面的分析研究,在这个基础之上提出了下文之中的内容,希望可以为同行业工作的人员提供出一定价值的参考。

关键词:高频脉冲;震荡法;电抗器;匝间绝缘;检测应用;分析引言:针对于干式空心电抗器而言,其具有着比较良好的线性度以及损耗比较低和维护较为方便等方面的优点,现如今已经是被广泛的应用到了电站内部,但是其电抗器的使用情况以及维护管理等方面所存在着的原因,进而导致电抗器匝间通常情况下会出现短路方面的问题。

首先是因为电抗器是存在着匝间的绝缘缺陷,使整个电抗器的电感量从而出现了相应的变化。

其次则是因为短路匝的存在,短路匝将会在电抗器内部出现一个比较大的电流,导致电抗器的磁场强度被降低,也使电抗器的电感量出现了降低,进而导致了电抗器的电压以及电流出现了衰减速度提高。

最终则是因为短路匝间存在着,对原来的磁势平衡打破,在这个基础上导致了电抗器之中的电流分配关系存在着比较大的变化,同时整个电抗器的电压以及电流自身的衰减速度也是在提高。

因此要是没有能够及时的去发现电抗器所存在着的匝间绝缘方面的故障问题,那么将会导致设备的停止运行或者是其他方面的重大事故出现。

1.现状的分析因为电抗器主要是长期处于在户外较为严酷的环境之下所运行的,大气之中的粉尘将会集中的聚集在电抗器的表面上,这个时候将会存在着不同程度的污物沉积,导致其表面的泄漏电流出现了相应的增加,与此同时因为电抗器的表面也是喷涂了一定程度的绝缘材料进而出现了粉花以及脱落等情况,在加上一个较为潮湿的环境之下,电抗器的表面污层将会受到潮湿,这样将会使其表面的电场集中区域的水分存在着比较快的一个蒸发,进而在这个基础上导致电抗器的表面一部分存在着龟裂的情况,这样将会直接的引起电抗器的局部电阻出现一定程度的改变,电流也将会在这个位置上出现局部的电弧,伴随着时间的不断的增加,电弧的也将会不断的进行着扩大,在电抗器的表面上也将会形成一个树形桩的爬电痕迹,也是沿着树枝状的情况来进行放电,此外电抗器在运行的过程中也将会存在着相对来说比较大的拉应力,虽然是电抗器已经是经过了高温固化的整体,也具有着比较高的抗拉应力,然而每一个包封的多层铝线之间,从而将会因为环氧胶没有渗透或者是绕线的不密实等在运行的过程中震动,可能会使其某一根铝线的焊点出现了相应的脱落,或者是处于在一中似断非断的状态之下,电抗器自身的直流电阻也将会随之不断的增加。

超高频法与高频脉冲电流法在海上某石油平台首次合二为一应用

超高频法与高频脉冲电流法在海上某石油平台首次合二为一应用

超高频法与高频脉冲电流法在海上某石油平台首次合二为一应用摘要】中海油海上石油平台身处大海,海上环境湿度大、盐分多、潮湿等问题,变压器都采取室内安装,室内空间及其有限,对设备强制散热有较高要求,因此干式变压器较传统的油式变压器在中海油海上平台有着巨大的优势,同时具备安装方便、无需调试、几乎不用维护、运行维护成本低等优点。

由于干式变压器在海上石油平台的供电系统中占据着枢纽地位,一旦发生故障,有可能导致大面积停电,给海上石油平台的正常生产造成重大损失。

在干式变压器的众多故障中,局部放电故障的影响最大。

由于干式变压器的内部存在气隙,而空气中的介电系数较绝缘材料要小一些,即使绝缘材料处于不太高的场强下,气隙部位的场强也可能很高,从而导致气隙被击穿,产生局部放电。

局部放电对干式变压器的危害主要表现在使干式变压器的绝缘寿命降低,因此对干式变压器进行局部放电实时在线监测有着重要的意义。

海上某平台首次采用超高频局部检测方法(UHF,Ultra High Frequency)和高频脉冲电流法(High Frequency Pulse Current Method)相结合的合二为一的组合监测方法,避免了单一方法的片面性,实现了局部放电实时在线监测双层应用的监测方法,效果良好。

【关键词】气隙、超高频法UHF、高频脉冲电流法HFPCM1 引言干式变压器在运行过程中随着绝缘介质劣化、性能降低以至于绝缘击穿的过程有一定时间,局部放电的长期维持会导致干式变压器产生严重的缺陷,由于局部放电的形成多在干式变压器本体内部,其过程细微发展极其缓慢,一般很难通过肉眼和常规技术手段发现,因此局部放电成为困扰着干式变压器安全可靠运行的一大难题,利用超高频UHF法和高频脉冲电流法相结合的合二为一的组合监测方法对可能存在局部放电现象的干式变压器进行实时在线监测,能够有效地监测局部放电的发展趋势,从而对局部放电隐患进行及时消除。

局部放电检测超高频UHF法的基本原理是通过UHF传感器对电力设备中局部放电时产生的超高频电磁波(300MHz--3000MHz)信号进行检测,从而获得局部放电的相关信息,实现局部放电的在线实时监测。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、高频电源在电除尘前电场的应用
电除尘前电场的粉尘浓度大,且粉尘空间分布均匀,所以前电场主要作用就是收集粒径较大的颗粒,因此烟气电离越充分,,收尘越好。

根据除尘效率公式(多依奇公式):η=1-e-Aω/Q
其中:η为电除尘器的效率;A为电除尘器的比收尘面积;ω为带电粒子在电场中的趋进速度;Q为电除尘器的处理烟气量,电除尘中Q值,A值是既定的,所以只能通过改变驱进速度ω来提高电除尘的除尘效率。

驱进速度ω的公式:ω=0.11aE²/η
式中:a为带电粒子的粒径,E为场强;η为含尘烟气的粘度,所以只有提高粉尘荷电量或提高前电场电压才能提高驱进速度。

高频电源是通过整流桥把三项交流整流成直流,通过IGBT逆变和LC振荡,变成高频交流,再经整流变压器升压整流后,形成高频窄脉冲电流送到除尘器,负载运行时,高频起晕电压平均值和峰值一样高,有利于二次电流的提高,电晕功率增大,电场内粉尘的荷电能力也就增加了。

当使用间隙供电时,其脉冲宽度更窄,频率范围更大,可以有效抑制反电晕,提高除尘效率。

二、脉冲电源在电除尘末电场的应用
末电场粉尘颗粒小,质量轻,高频电源和公平的供电特性无法使其有效荷电,电场强度上不去,采用脉冲MPS脉冲电源技术,使用短宽度的脉冲施加高脉冲电压所产生的电场很稳定,而且不会产生反电晕,微妙级脉冲电源使细微粉尘荷电更好,径粒在10um附件颗粒物,电量从34有效提高到67,且脉冲电源对粒子的驱尽速度快,所以脉冲电源对用在末电场的效果是非常显著的。

脉冲电源的高电压、低电流也是非常节能的。

三、结论:高频电源和脉冲都是新技术,根据各电场灰的情况和特性,前边电场用高
频,末电场用脉冲的组合是合理的。

导电滤槽的弊端:对于后面电场增加导电滤槽,经过参考多个项目使用效果,
安装导电滤槽后,开始效果比较不错,运行一段时间后,滤槽就会出现严重积灰,槽孔堵死,尤其用顶部电磁振打,下半部分的灰根本无法清楚,导致烟气流场不均,末电场运行不是很稳定。

而且滤槽距离出口最近,所以振打滤槽时,二次扬尘很大,尤其电磁振打一个一个打过去,会造成出口粉尘排放连续性超标。

相关文档
最新文档