光电传感器实验
光电传感器实验报告(文档4篇)

光电传感器实验报告(文档4篇)以下是网友分享的关于光电传感器实验报告的资料4篇,希望对您有所帮助,就爱阅读感谢您的支持。
光电传感器实验报告第一篇实验报告2――光电传感器测距功能测试1.实验目的:了解光电传感器测距的特性曲线;掌握LEGO基本模型的搭建;熟练掌握ROBOLAB软件;2.实验要求:能够用LEGO积木搭建小车模式,并在车头安置光电传感器。
能在光电传感器紧贴红板,以垂直红板的方向作匀速直线倒车运动过程中进行光强值采集,绘制出时间-光强曲线,然后推导出位移-光强曲线及方程。
3.程序设计:编写程序流程图并写出程序,如下所示:ROBOLAB程序设计:4.实验步骤:1) 搭建小车模型,参考附录步骤或自行设计(创新可加分)。
2) 用ROBOLAB编写上述程序。
3) 将小车与电脑用USB数据线连接,并打开NXT的电源。
点击ROBOLAB 的RUN按钮,传送程序。
4) 取一红颜色的纸板(或其他红板)竖直摆放,并在桌面平面与纸板垂直方向放置直尺,用于记录小车行走的位移。
5) 将小车的光电传感器紧贴红板放置,用电脑或NXT的红色按钮启动小车,进行光强信号的采样。
从直尺上读取小车的位移。
6) 待小车发出音乐后,点击ROBOLAB的数据采集按钮,进行数据采集,将数据放入红色容器。
共进行四次数据采集。
7) 点击ROBOLAB的计算按钮,分别对四次采集的数据进行同时显示、平均线及拟和线处理。
8) 利用数据处理结果及图表,得出时间同光强的对应关系。
再利用小车位移同时间的关系(近似为匀速直线运动),推导出小车位移同光强的关系表达式。
5.调试与分析a) 采样次数设为24,采样间隔为0.05s,共运行1.2s。
采得数据如下所示。
b) 在ROBOLAB的数据计算工具中得到平均后的光电传感器特性曲线,如图所示:c) 对上述平均值曲线进行线性拟合,得到的光强与时间的线性拟合函数:d) 取四次实验小车位移的平均值,根据时间与光强的拟合函数求取距离与光强的拟合函数:由上图可得光强与时间的关系为:y=-25.261858×t+56.524457 ; 量取位移为4.5cm,用时1.2s,得:x=3.75×t ;光强与位移的关系为:y= -6.73649547×x+56.524457 ;e) 通过观测上图及导出的光强位移函数可知,光电传感器在短距离里内对位移信号有着良好的线性关系,可以利用光强值进行位移控制。
光电传感器设计实验报告

光电传感器设计实验报告引言光电传感器是一种重要的光电转换器件,广泛应用于工业控制、自动化、光电测量等领域。
本实验旨在通过设计和验证光电传感器的原理和性能,加深对光电传感器的理解和应用。
实验目的1.了解光电传感器的基本原理;2.学习光电转换器件的电路设计方法;3.掌握光电传感器的性能测试与分析;4.实践并完善光电传感器的设计过程。
实验步骤1. 光电传感器原理分析在实验开始之前,我们首先需要了解光电传感器的基本原理。
光电传感器是利用光电效应将光能转换为电能的装置。
根据光电效应的不同类型,光电传感器主要分为光电导、光电二极管和光电三极管等。
光电导可以将可见光转换为电流,光电二极管则是将光能转换为电压。
而光电三极管不仅可以将光能转换为电流或电压,还可以增益电流或电压。
2. 设计光电传感器电路根据实验要求,我们需要设计一个能够将光能转换为电流的光电传感器电路。
根据光电传感器的工作原理,我们可以选择光电导或光电二极管作为光电转换器件。
在电路设计中,我们需要考虑到以下几个因素: - 光敏电阻的选择:根据实验需求和电路特性,选择合适的光敏电阻; - 电流放大电路设计:设计一个合适的电流放大电路,以增强光电传感器的输出信号; - 电源电压的选择:根据电路要求,选择合适的电源电压。
3. 制作光电传感器电路根据设计的电路原理图,我们可以开始制作光电传感器电路。
首先,准备所需元件,包括光电转换器件、电阻、电容等。
然后,按照电路原理图逐步完成电路的连接。
注意保持良好的焊接质量和连接稳定性。
4. 测试光电传感器电路在完成光电传感器电路的制作后,我们需要进行电路的测试和性能分析。
首先,连接电源并打开电源开关。
然后,使用光源照射光电传感器,观察输出信号的变化情况,并记录下输出电流或电压的数值。
5. 性能分析与改进根据实验结果,我们可以对光电传感器的性能进行分析。
通过对比实验数据与设计要求,评估光电传感器的灵敏度、响应时间等性能指标。
运用光电传感器设计光敏测量实验方案

使用前检查设备 在使用光电传感器之前,应对其 进行检查,确保设备完好无损, 避免因设备故障导致的实验误差 或安全事故。
正确连接线路 按照实验要求正确连接光电传感 器与测量设备之间的线路,确保 信号传输的稳定与准确。
等。根据分析结果,可以得出光敏参数与光源亮度之间的关系,以及光电传感器的响应特性等信息。
04
数据分析与结果展示
数据处理方法
数据筛选
01
去除异常值和噪声数据,保留有效数据。
数据平滑
02
采用滑动平均、指数平滑等方法对数据进行平滑处理,减小数
据波动。
数据拟合
03
根据实验需求,选择合适的函数对数据进行拟合,如线性拟合
搭建步骤
1. 将光电传感器固定在实验台上,确保 其位置稳定且不易受到外界干扰。
5. 启动数据采集卡,开始采集光电传感 器输出的电信号。
4. 打开计算机上的实验控制程序,设置 相关参数,如采样频率、测量范围等。
2. 连接数据采集卡与计算机,确保通信 正常。
3. 将光源放置在适当位置,并通过光路 调节装置调整光路,使光线能够准确地 照射到光电传感器上。
设备维护与保养建议
01
02
03
定期清洁设备
定期对光电传感器进行清 洁,保持其表面的干净与 光洁,避免因灰尘或污垢 导致的测量误差。
防潮防晒
将光电传感器存放在干燥 、阴凉的地方,避免阳光 直射和潮湿环境对设备造 成损害。
定期校准
定期对光电传感器进行校 准,确保其测量结果的准 确性与可靠性。
应急处理措施
对光电传感器输出的影响。
实验5-光电传感器

实验5 光电传感器(反射型)测转速实验实验目的:1.了解光电传感器测转速的原理及运用;2.了解光电池的光照特性,熟悉其应用。
3. 了解光敏电阻的光照特性和伏安特性。
基本原理:1.光电传感器由红外发射二极管、红外接收管、达林顿输出管及波形整形组成。
发射管发射红外光经电机反射面反射,接收管接收到反射信号,经放大,波形整形输出方波,再经F/V 转换测出频率。
2. 在光照作用下,由于元件内部产生的势垒作用,在结合部使光激发的电子空穴分离,电子与空穴分别向相反方向移动而产生电势的现象称为光伏效应。
硅光电池就是利用这一效应制成的光电探测器件。
3. 在光线的作用下,电子吸收光子的能量从键合状态过渡到自由状态,引起电导率的变化,这种现象称为光电导效应。
光电导效应是半导体材料的一种体效应。
光照愈强,器件自身的电阻愈小。
基于这种效应的光电器件称光敏电阻。
光敏电阻无极性,其工作特性与入射光光强、波长和外加电压有关。
所需单元及部件:电机控制单元、小电机、F/V 表、光电传感器、+5V 电源、可调±2V -±10V 直流稳压电源、主副电源、示波器;硅光电池、直流稳压电源、数字电压表;光敏电阻、直流稳压电源、电桥平衡网络中W1电位器、F/V 表。
实验步骤(一):光电传感器测转速实验图1 测速电路图1.在传感器的安装顶板上,拧松小电机前面的轴套的调节螺钉,连轴拆去电涡流传感器,换上光电传感器。
将光电传感器控头对准小电机上小的白圆圈(反射面),调节传感器高度,离反射面2mm —3mm 为宜。
2.传感器的三根引线分别接入传感器安装顶板上的三个插孔中(红色接+2V ,黑色接地,兰色接Vo )。
再把Vo 和地接入数显表(F/V 表)的Vi 和地口。
3.合上主、副电源,将可调整±2V -±10V 的直流稳压电源的切换开关切换到±4V ,在电机控制单元的V +处接入+4V 电压,调节转速旋钮使电机转动。
实验一.光电传感器实验

实验一光电传感器实验1-1 PSD光电位置传感器——位移测量一.实验目的:1.了解PSD光电位置传感器的结构。
2.掌握PSD光电位置传感器的工作原理。
二.实验原理:光电位置敏感器件(PSD)是基于光伏器件的横向效应的器件,是一种对入射到光敏面上的光电位置敏感的光电器件。
因此,称其为光电位置敏感器件(Position Sensitive Detector,简称为PSD),如图1所示为PIN型PSD器件的结构示意图,它由三层构成,上面为P型层,中间位I型层,下面为N型层。
在上面的P型层上设置有两个电极,两电极间的P型层除具有接受入射光的功能外还具有横向分布电阻的特性。
即P型层不但为光敏层,而且还是一个均匀的电阻层。
当光束入射到PSD器件光敏层上距中心点得距离为xA时,在入射位置上产生与入射辐射成正比的信号电荷,此电荷形成的光电流通过电阻P型层分别由电极1和2输出,设P型层的电阻是均匀的,两电极间的距离为2L,流过两电极的电流分别为I1和I2,则流过N 型层上电极的电流I0为I1和I2之和,即I0=I1+I2。
若以PSD器件的几何中心点O为原点,光斑中心距原点O的距离为xA,则利用上式即可测出光斑能量中心对于器件中心的位置xA,它只与电流I1和I2的和、差及其比值有关,而与总电流无关。
图1 图2PSD器件已被广泛地应用于激光自准直、光点位移量和振动的测量、平板平行度的检测和二维位置测量等领域。
目前,PSD器件已有一维和二维两种PSD器件。
本仪器用的是一维PSD器件,主要用来测量光斑在一维方向上的位置或移动量的装置,图2为一维PSD器件的原理图,其中①和②为信号电极,③为公共电极。
它的光敏面为细长的矩形条。
图3为其等效电路,它由电流源Ip、理想二极管VD、结电容Cj、横向分布电阻RD和并联电阻Rsh组成, PSD器件属于特种光伏器件,它的基本特性与一般硅光伏器件基本相同,如光谱响应、时间响应和温度响应等与前面讲述的PN结光伏器件相同。
实验十四光电传感器原理及应用

实验十四光电传感器原理及应用一、实验目的:1.了解光电传感器的工作原理;2.学习光电传感器的应用领域;3.掌握光电传感器的基本使用方法;二、实验原理:光电传感器是一种能够将光信号转换为电信号的器件。
其主要原理是利用光电效应,当光线照射到光电传感器上时,光电传感器内的光敏元件(如光敏二极管、光电二极管、光敏三极管等)会产生电流或电压信号。
这个信号可以用来检测或测量光线的强弱、颜色等信息。
光电传感器在工业、机器人、自动化控制等领域有着广泛的应用。
三、实验步骤:1.实验准备:将光电传感器与电源和电路连接起来,组成一个电路实验装置。
保证电路连接正确,电源电压稳定。
2.测量光电传感器的电压输出:将光电传感器的输出端接入示波器的输入端,调节示波器的触发阈值,观察示波器上的波形变化。
可以发现当光线照射到光电传感器上时,示波器上会显示出对应的电压信号。
3.测量不同光强下的输出电压:利用可调节的光源,调节光源的亮度,分别测量不同光强下的光电传感器输出电压。
记录下每一组的测量结果,并进行对比分析。
4.测量不同颜色光线的输出电压:利用不同颜色的光源(如红、绿、蓝等),分别测量不同颜色光线下的光电传感器输出电压。
记录下每一组的测量结果,并进行对比分析。
四、实验结果及分析:根据实验步骤得到的测量结果,可以发现光电传感器的输出电压与光线强弱呈正相关关系。
当光线较强时,输出电压较高;当光线较弱时,输出电压较低。
此外,不同颜色的光线对光电传感器的输出电压也会产生影响,不同颜色的光线下的输出电压有所不同。
这些结果可以为后续光电传感器的应用提供参考。
五、实验应用:1.自动光敏灯控制系统:利用光电传感器对光线强弱进行检测和控制,实现自动灯光开关的功能。
当光线较暗时,系统自动打开灯光;当光线充足时,系统自动关闭灯光。
这样可以节省能源,提高使用效率。
2.产业自动化控制系统:将光电传感器与机械手臂等设备相结合,利用光电传感器对物体位置、形状等进行检测和测量,实现自动化控制。
光电传感器设计实验报告

光电传感器设计实验报告光电传感器设计实验报告引言:光电传感器作为一种常见的传感器设备,在现代科技中扮演着重要的角色。
它能够将光信号转化为电信号,从而实现对光的测量和控制。
本实验旨在设计一种基于光电传感器的系统,通过实际操作和数据分析,探索其工作原理和性能特点。
实验步骤:1. 实验器材准备在本实验中,我们使用了光电传感器、光源、电压表和示波器等器材。
光电传感器是核心设备,用于接收光信号并转化为电信号。
光源的选择应根据实验需求,确保提供充足的光强度。
电压表用于测量光电传感器输出的电压信号,示波器则可以显示电压信号的波形。
2. 光电传感器特性测试首先,我们需要对光电传感器的特性进行测试。
将光电传感器与电压表连接好,然后将光源照射到传感器上。
通过调节光源的距离和强度,记录传感器输出的电压值。
在测试过程中,可以尝试不同的光源和角度,以观察其对传感器输出的影响。
3. 光电传感器灵敏度测量接下来,我们将对光电传感器的灵敏度进行测量。
在一定距离下,以不同的光源强度照射传感器,并记录相应的电压值。
通过绘制电压与光源强度的关系曲线,可以得到光电传感器的灵敏度。
此外,还可以通过改变光源的颜色和波长,探究其对传感器灵敏度的影响。
4. 光电传感器响应时间测试光电传感器的响应时间是指其从接收光信号到输出电信号的时间间隔。
为了测量传感器的响应时间,我们可以使用示波器来观察电压信号的变化情况。
将示波器与光电传感器连接好,然后用光源照射传感器,并记录示波器上的波形图。
通过分析波形图的上升时间和下降时间,可以得到传感器的响应时间。
5. 光电传感器的应用实例在实验的最后,我们将探索光电传感器的应用实例。
例如,可以将光电传感器与微控制器相结合,实现对光强度的自动调节。
此外,光电传感器还可以用于环境监测、光照控制等领域。
通过实际操作和数据分析,我们可以更好地理解光电传感器的工作原理和应用场景。
结论:通过本次实验,我们深入了解了光电传感器的设计原理和性能特点。
光电传感器系列实验

东南大学物理实验报告姓名学号指导教师日期报告成绩实验名称光敏传感器的光电特性研究目录实验一光敏电阻特性实验实验二光敏二极管特性实验一、实验目的:1、了解光敏电阻的基本特性,测出它的伏安特性曲线和光照特性曲线;2、了解硅光电池的基本特性,测出它的伏安特性曲线和光照特性曲线;3、了解硅光敏二极管的基本特性,测出它的伏安特性和光照特性曲线;4、了解硅光敏三极管的基本特性,测出它的伏安特性和光照特性曲线。
二、实验原理:光敏传感器是将光信号转换为电信号的传感器,也称为光电式传感器,它可用于检测直接引起光强度变化的非电量,如光强、光照度、辐射测温、气体成分分析等;也可用来检测能转换成光量变化的其它非电量,如零件直径、表面粗糙度、位移、速度、加速度及物体形状、工作状态识别等。
光敏传感器具有非接触、响应快、性能可靠等特点,因而在工业自动控制及智能机器人中得到广泛应用。
1、光电效应光敏传感器的物理基础是光电效应,在光辐射作用下电子逸出材料的表面,产生光电子发射称为外光电效应,或光电子发射效应,基于这种效应的光电器件有光电管、光电倍增管等。
电子并不逸出材料表面的则是内光电效应。
光电导效应、光生伏特效应则属于内光电效应。
即半导体材料的许多电学特性都因受到光的照射而发生变化。
光电效应通常分为外光电效应和内光电效应两大类,几乎大多数光电控制应用的传感器都是此类,通常有光敏电阻、光敏二极管、光敏三极管、硅光电池等。
(1)光电导效应若光照射到某些半导体材料上时,透过到材料内部的光子能量足够大,某些电子吸收光子的能量,从原来的束缚态变成导电的自由态,这时在外电场的作用下,流过半导体的电流会增大,即半导体的电导会增大,这种现象叫光电导效应。
它是一种内光电效应。
光电导效应可分为本征型和杂质型两类。
前者是指能量足够大的光子使电子离开价带跃入导带,价带中由于电子离开而产生空穴,在外电场作用下,电子和空穴参与电导,使电导增加。
杂质型光电导效应则是能量足够大的光子使施主能级中的电子或受主能级中的空穴跃迁到导带或价带,从而使电导增加。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
DH-SJ3光电传感器物理设计性实验装置(实验指导书)实验讲义请勿带走杭州大华科教仪器研究所杭州大华仪器制造有限公司DH-SJ3光电传感器物理设计性实验装置光敏传感器是将光信号转换为电信号的传感器,也称为光电式传感器,它可用于检测直接引起光强度变化的非电量,如光强、光照度、辐射测温、气体成分分析等;也可用来检测能转换成光量变化的其它非电量,如零件直径、表面粗糙度、位移、速度、加速度及物体形状、工作状态识别等。
光敏传感器具有非接触、响应快、性能可靠等特点,因而在工业自动控制及智能机器人中得到广泛应用。
光敏传感器的物理基础是光电效应,即光敏材料的电学特性都因受到光的照射而发生变化。
光电效应通常分为外光电效应和内光电效应两大类。
外光电效应是指在光照射下,电子逸出物体表面的外发射的现象,也称光电发射效应,基于这种效应的光电器件有光电管、光电倍增管等。
内光电效应是指入射的光强改变物质导电率的物理现象,称为光电导效应。
大多数光电控制应用的传感器,如光敏电阻、光敏二极管、光敏三极管、硅光电池等都是内光电效应类传感器。
当然近年来新的光敏器件不断涌现,如:具有高速响应和放大功能的APD雪崩式光电二极管,半导体光敏传感器、光电闸流晶体管、光导摄像管、CCD图像传感器等,为光电传感器的应用开创了新的一页。
本实验主要是研究光敏电阻、硅光电池、光敏二极管、光敏三极管四种光敏传感器的基本特性以及光纤传感器基本特性和光纤通讯基本原理。
一、实验目的1、了解光敏电阻的基本特性,测出它的伏安特性曲线和光照特性曲线。
2、了解光敏二极管的基本特性,测出它的伏安特性和光照特性曲线。
3、了解硅光电池的基本特性,测出它的伏安特性曲线和光照特性曲线。
4、了解光敏三极管的基本特性,测出它的伏安特性和光照特性曲线。
5、了解光纤传感器基本特性和光纤通讯基本原理。
二、光敏传感器的基本特性及实验原理1、伏安特性光敏传感器在一定的入射光强照度下,光敏元件的电流I与所加电压U之间的关系称为光敏器件的伏安特性。
改变照度则可以得到一组伏安特性曲线,它是传感器应用设计时选择电参数的重要依据。
某种光敏电阻、硅光电池、光敏二极管、光敏三极管的伏安特性曲线如图1、图2、图3、图4所示。
图1光敏电阻的伏安特性曲线图2硅光电池的伏安特性曲线图3光敏二极管的伏安特性曲线图4光敏三极管的伏安特性曲线从上述四种光敏器件的伏安特性可以看出,光敏电阻类似一个纯电阻,其伏安特性线性良好,在一定照度下,电压越大光电流越大,但必须考虑光敏电阻的最大耗散功率,超过额定电压和最大电流都可能导致光敏电阻的永久性损坏。
光敏二极管的伏安特性和光敏三极管的伏安特性类似,但光敏三极管的光电流比同类型的光敏二极管大好几十倍,零偏压时,光敏二极管有光电流输出,而光敏三极管则无光电流输出。
在一定光照度下硅光电池的伏安特性呈非线性。
2、光照特性光敏传感器的光谱灵敏度与入射光强之间的关系称为光照特性,有时光敏传感器的输出电压或电流与入射光强之间的关系也称为光照特性,它也是光敏传感器应用设计时选择参数的重要依据之一。
某种光敏电阻、硅光电池、光敏二极管、光敏三极管的光照特性如图5、图6、图7、图8所示。
图5光敏电阻的光照特性曲线图6硅光电池的光照特性曲线图7光敏二极管的光照特性曲线图8光敏三极管的光照特性曲线从上述四种光敏器件的光照特性可以看出光敏电阻、光敏三极管的光照特性呈非线性,一般不适合作线性检测元件,硅光电池的开路电压也呈非线性且有饱和现象,但硅光电池的短路电流呈良好的线性,故以硅光电池作测量元件应用时,应该利用短路电流与光照度的良好线性关系。
所谓短路电流是指外接负载电阻远小于硅光电池内阻时的电流,一般负载在20Ω以下时,其短路电流与光照度呈良好的线性,且负载越小,线性关系越好、线性范围越宽。
光敏二极管的光照特性亦呈良好线性,而光敏三极管在大电流时有饱和现象,故一般在作线性检测元件时,可选择光敏二极管而不能用光敏三极管。
三、实验仪器DH-SJ3光电传感器设计实验仪由下列部分组成:光敏电阻板、硅光电池板、光敏二极管板、光敏三极管板、红光发射管LED3、接受管(包括PHD 101光电二极管和PHT 101光电三极管)、Ф2.2和Ф2光纤、光纤座、测试架、DH-VC3直流恒压源、九孔板、万用表、电阻元件盒以及转接盒等组成。
实验时,测试架中的光源电源插孔以及传感器插孔均通过转接盒与九孔板相连,其它连接都在九孔板中实现;测试架中可以更换传感器板。
图9 DH-VC3直流恒压源面板图图10-1 转接盒图10-2 发射管图10-3 接收管图10-4 接收管图10-5 电阻盒1kΩ图10-6 电阻盒1kΩ图10-7 电阻盒470Ω图10-8 电阻盒10Ω图10-9 电阻盒4.7KΩ图10-10 电阻盒47Ω图10-11 电容盒1uF图10-12 喇叭盒图10-13 NPN三极管盒图10-14 Ф2.2光纤座图10-15Ф2光纤座图10-16 Ф2.2光纤图10-17Ф2光纤座图10-18 光敏电阻板图10-19硅光电池板图10-20光敏二极管板图10-21光敏三极管板图10-22 九孔板图10 实验元件图图11 测试架四、实验内容实验中对应的光照强度均为相对光强,可以通过改变点光源电压或改变点光源到光敏电阻之间的距离来调节相对光强。
光源电压的调节范围在0~12V ,光源和传感器之间的距离调节有效范围为:0~200mm ,实际距离为50~250mm 。
1、光敏电阻特性实验1.1、光敏电阻伏安特性测试实验(1)按原理图12接好实验线路,将光源用的标准钨丝灯和光敏电阻板置测试架中,电阻盒以及转接盒插在九孔板中,电源由DH -VC3直流恒压源提供。
(2)通过改变光源电压或调节光源到光敏电阻之间的距离以提供一定的光强,每次在一定的光照条件下,测出加在光敏电阻上电压U 为+2V 、+ 4V 、+6V 、+8V 、+10V 时5个光电流数据,即Ω=K U I R ph 00.1,同时算出此时光敏电阻的阻值phR p I U U R -=。
以后逐步调大相对光强重复上述实验,进行5~6次不同光强实验数据测量。
(3)根据实验数据画出光敏电阻的一组伏安特性曲线。
图12 光敏电阻伏安特性测试电路1.2、光敏电阻的光照特性测试实验(1)按原理图12接好实验线路,将光源用标准钨丝灯和检测用光敏电阻置测试架中,电阻盒以及转接盒插在九孔板中,电源由DH -VC3直流恒压源提供。
(2)从U=0开始到U =12V ,每次在一定的外加电压下测出光敏电阻在相对 光照强度从“弱光”到逐步增强的光电流数据,即:Ω=K U I R ph 00.1,同时算出此 时光敏电阻的阻值,即:phR p I U U R -=。
(3)根据实验数据画出光敏电阻的一组光照特性曲线。
2、硅光电池的特性实验2.1、硅光电池的伏安特性实验(1)将硅光电池板置测试架中、电阻盒置于九孔插板中,电源由DH -VC3直流恒压源提供,R X 接到暗箱边的插孔中以便于同外部电阻箱相连。
按图13连接好实验线路,开关K 指向“1”时,电压表测量开路电压U oc ,开关指向“2”时,R X 短路,电压表测量R 电压U R 。
光源用钨丝灯,光源电压0~12V (可调),串接好电阻箱(0~10000Ω可调)。
(2)先将可调光源调至相对光强为“弱光”位置,每次在一定的照度下,测出硅光电池的光电流I ph 与光电压U SC 在不同的负载条件下的关系(0~10000Ω)数据,其中Ω=00.10R ph U I 。
(10.00为取样电阻R ),以后逐步调大相对光强(5~6次),重复上述实验。
(3)根据实验数据画出硅光电池的一组伏安特性曲线。
图13 硅光电池特性测试电路2.2、硅光电池的光照度特性实验(1)实验线路见图13,电阻箱调到0Ω。
(2)先将可调光源调至相对光强为“弱光”位置,每次在一定的照度下,测出硅光电池的开路电压U oc 和短路电流I S ,其中短路电流为Ω=00.10R S U I (取样电阻R 为10.00Ω),以后逐步调大相对光强(5~6次),重复上述实验。
(3)根据实验数据画出硅光电池的光照特性曲线。
3、光敏二极管的特性实验 3.1、光敏二极管伏安特性实验图14 光敏二极管特性测试电路(1)按原理图14接好实验线路,将光电二极管板置测试架中、电阻盒置于九孔插板中,电源由DH -VC3直流恒压源提供,光源电压0~12V (可调)。
(2)先将可调光源调至相对光强为“弱光”位置,每次在一定的照度下,测出加在光敏二极管上的反偏电压与产生的光电流的关系数据,其中光电流:Ω=K U I R ph 00.1(l.00KΩ为取样电阻R ),以后逐步调大相对光强(5~6次),重复上述实验。
(3)根据实验数据画出光敏二极管的一组伏安特性曲线。
3.2、光敏二极管的光照度特性实验(1)按原理图14接好实验线路。
(2)反偏压从U=0开始到U=+l2V ,每次在一定的反偏电压下测出光敏二极管在相对光照度为“弱光”到逐步增强的光电流数据,其中光电流Ω=K U I R ph 00.1 (l.00KΩ为取样电阻R )。
(3)根据实验数据画出光敏二极管的一组光照特性曲线。
4、光敏三极管特性实验4.1、光敏三极管的伏安特性实验图15 光敏三极管特性测试实验(1)按原理图15接好实验线路,将光敏三极管板置测试架中、电阻盒置于九孔插板中,电源由DH -VC3直流恒压源提供,光源电压0~12V (可调)。
(2)先将可调光源调至相对光强为“弱光”位置,每次在一定光照条件下,测出加在光敏三极管的偏置电压U CE 与产生的光电流I C 的关系数据。
其中光电流Ω=K U I R C 00.1(l.00KΩ为取样电阻R )。
(3)根据实验数据画出光敏三极管的一组伏安特性曲线。
4.2、光敏三极管的光照度特性实验(1)实验线路如图15所示。
(2)偏置电压U C :从0开始到+12V ,每次在一定的偏置电压下测出光敏三极管在相对光照度为“弱光”到逐步增强的光电流I C 的数据,其中光电流Ω=K U I R C 00.1 (l.00KΩ为取样电阻R )。
(3)根据实验数据画出光敏三极管的一组光照特性曲线。
5、光纤传感器原理及其应用5.1、光纤传感器基本特性研究图16和图17分别是用光电三极管和光电二极管构成的光纤传感器原理图。
图中LED3为红光发射管,提供光纤光源;光通过光纤传输后由光电三极管或光电二极管接受。
LED3、PHT 101、PHD 101上面的插座用于插光纤座和光纤。
①通过改变红光发射管供电电流的大小来改变光强,分别测量通过光纤传输后,光电三极管和光电二极管上产生的光电流,得出它们之间的函数关系。