运筹学复习题及答案
运筹学期末考试题及答案

运筹学期末考试题及答案一、单项选择题(每题2分,共20分)1. 线性规划问题的标准形式是:A. 所有变量都是非负的B. 目标函数是最大化C. 所有约束条件都是等式D. 所有变量都是正的答案:A2. 单纯形法中,如果某变量的检验数大于0,则该变量:A. 可以增加B. 可以减少C. 不能增加也不能减少D. 可以增加也可以减少答案:A3. 在对偶理论中,如果原问题的最优解是无界的,则对偶问题的:A. 无解B. 有唯一最优解C. 有无穷多解D. 无界答案:A4. 动态规划中,状态转移方程的作用是:A. 确定最优解B. 描述系统状态的变化C. 计算最优值D. 确定初始状态答案:B5. 网络流问题中,增广路径是指:A. 从源点到汇点的路径B. 从汇点到源点的路径C. 流量可以增加的路径D. 流量可以减少的路径答案:C6. 整数规划问题中,分支定界法的基本思想是:A. 将整数变量分解为两个二元变量B. 将问题分解为多个子问题C. 通过松弛变量将问题转化为线性规划问题D. 通过增加约束条件来缩小解空间答案:B7. 排队论中,M/M/1队列的平均等待时间是:A. 1/μ - λ/μ^2B. λ/μ - 1/μC. λ/μ^2 - 1/μD. 1/μ - λ/μ^2答案:A8. 敏感性分析的目的是:A. 确定最优解B. 确定最优解的稳定性C. 确定目标函数系数的变化范围D. 确定约束条件的变化范围答案:B9. 决策树分析中,期望值的计算是基于:A. 每个分支的概率B. 每个分支的收益C. 每个分支的概率和收益D. 每个分支的成本答案:C10. 博弈论中,纳什均衡是指:A. 每个玩家都有最优策略B. 每个玩家的策略都是最优的C. 没有玩家可以通过单方面改变策略来提高自己的收益D. 所有玩家的策略都是固定的答案:C二、计算题(每题10分,共30分)1. 给定线性规划问题的标准形式,求解最优解。
Max Z = 3x1 + 2x2s.t.x1 + 2x2 ≤ 102x1 + x2 ≤ 8x1, x2 ≥ 02. 使用单纯形法求解以下线性规划问题的最优解。
《运筹学》试题及答案大全

《运筹学》试题及参考答案一、填空题(每空2分,共10分)1、在线性规划问题中,称满足所有约束条件方程和非负限制的解为可行解。
2、在线性规划问题中,图解法适合用于处理变量为两个的线性规划问题。
3、求解不平衡的运输问题的基本思想是设立虚供地或虚需求点,化为供求平衡的标准形式。
4、在图论中,称无圈的连通图为树。
5、运输问题中求初始基本可行解的方法通常有最小费用法、西北角法两种方法。
二、(每小题5分,共10分)用图解法求解下列线性规划问题:1)max z =6x 1+4x 2⎪⎪⎩⎪⎪⎨⎧≥≤≤+≤+0781022122121x x x x x x x ,解:此题在“《运筹学》复习参考资料.doc ”中已有,不再重复。
2)min z =-3x 1+2x 2⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≤-≤-≤+-≤+0,137210422422121212121x x x x x x x x x x 解:可行解域为abcda ,最优解为b 点。
⑴⑵⑶⑷⑸⑹、⑺由方程组⎩⎨⎧==+02242221x x x 解出x 1=11,x 2=0∴X *=⎪⎪⎭⎫⎝⎛21x x =(11,0)T∴min z =-3×11+2×0=-33三、(15分)某厂生产甲、乙两种产品,这两种产品均需要A 、B 、C 三种资源,每种产品的资源消耗量及单位产品销售后所能获得的利润值以及这三种资源的储备如下表所示:AB C 甲94370乙46101203602003001)建立使得该厂能获得最大利润的生产计划的线性规划模型;(5分)2)用单纯形法求该问题的最优解。
(10分)解:1)建立线性规划数学模型:设甲、乙产品的生产数量应为x 1、x 2,则x 1、x 2≥0,设z 是产品售后的总利润,则max z =70x 1+120x 2s.t.⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤+0300103200643604921212121x x x x x x x x ,2)用单纯形法求最优解:加入松弛变量x 3,x 4,x 5,得到等效的标准模型:max z =70x 1+120x 2+0x 3+0x 4+0x 5s.t.⎪⎪⎩⎪⎪⎨⎧=≥=++=++=++5,...,2,1,03001032006436049521421321j x x x x x x x x x x j 列表计算如下:四、(10分)用大M 法或对偶单纯形法求解如下线性规划模型:min z =5x 1+2x 2+4x 3⎪⎩⎪⎨⎧≥≥++≥++0,,10536423321321321x x x x x x x x x 解:用大M 法,先化为等效的标准模型:max z /=-5x 1-2x 2-4x 3s.t.⎪⎩⎪⎨⎧=≥=-++=-++5,...,2,1,010********214321j y x x x x x x x x j增加人工变量x 6、x 7,得到:max z /=-5x 1-2x 2-4x 3-M x 6-M x 7s.t⎪⎩⎪⎨⎧=≥=+-++=+-++7,...,2,1,010*********2164321j x x x x x x x x x x x j大M 法单纯形表求解过程如下:五、(15分)给定下列运输问题:(表中数据为产地A i 到销地B j 的单位运费)B 1B 2B 3B 4s iA 1A 2A 312348765910119108015d j82212181)用最小费用法求初始运输方案,并写出相应的总运费;(5分)2)用1)得到的基本可行解,继续迭代求该问题的最优解。
运筹学复习题及参考答案

《运筹学》一、判断题:在下列各题中,你认为题中描述的内容为正确者,在题尾括号内写“T”,错误者写“F”。
1. T2. F3. T4.T5.T6.T7. F8. T9. F10.T 11. F 12. F 13.T 14. T 15. F1. 线性规划问题的每一个基本可行解对应可行域的一个顶点。
( T )2. 用单纯形法求解一般线性规划时,当目标函数求最小值时,若所有的检验数C j-Z j≤0,则问题达到最优。
( F )3. 若线性规划的可行域非空有界,则其顶点中必存在最优解。
( T )4. 满足线性规划问题所有约束条件的解称为可行解。
( T )5. 在线性规划问题的求解过程中,基变量和非机变量的个数是固定的。
( T )6. 对偶问题的对偶是原问题。
( T )7. 在可行解的状态下,原问题与对偶问题的目标函数值是相等的。
( F )8. 运输问题的可行解中基变量的个数不一定遵循m+n-1的规则。
( T )9. 指派问题的解中基变量的个数为m+n。
( F )10. 网络最短路径是指从网络起点至终点的一条权和最小的路线。
( T )11. 网络最大流量是网络起点至终点的一条增流链上的最大流量。
( F)12. 工程计划网络中的关键路线上事项的最早时间和最迟时间往往是不相等。
( F )13. 在确定性存贮模型中不许缺货的条件下,当费用项目相同时,生产模型的间隔时间比订购模型的间隔时间长。
(T )14. 单目标决策时,用不同方法确定的最佳方案往往是不一致的。
( T )15. 动态规则中运用图解法的顺推方法和网络最短路径的标号法上是一致的。
( F )二、单项选择题1.A2.B3.D4.B5.A6.C7.B8.C9. D 10.B11.A 12.D 13.C 14.C 15.B1、对于线性规划问题标准型:maxZ=CX, AX=b, X≥0, 利用单纯形法求解时,每作一次迭代,都能保证它相应的目标函数值Z必为( A )。
运筹学复习题答案

运筹学复习题答案1. 线性规划问题的标准形式包括哪些条件?- 所有变量非负- 目标函数和约束条件均为线性- 约束条件为等式或不等式2. 请简述单纯形法的基本原理。
- 从一个初始可行解出发- 通过迭代选择进入基变量和离开基变量- 每次迭代都改进目标函数值- 直到找到最优解或确定问题无界3. 什么是敏感性分析?- 分析目标函数或约束条件参数变化对最优解的影响 - 确定哪些参数变化会导致最优解改变- 评估问题解的稳定性4. 整数线性规划与线性规划的主要区别是什么?- 整数线性规划要求至少一个变量为整数- 整数线性规划可能没有最优解或解的求解过程更复杂5. 请解释对偶理论在线性规划中的应用。
- 每个线性规划问题都有一个对偶问题- 对偶问题提供了原问题解的下界- 对偶问题可以用来检验原问题解的最优性6. 什么是运输问题,它有何特点?- 运输问题是一种特殊的线性规划问题- 涉及货物从多个供应点到多个需求点的分配- 目标是最小化总运输成本7. 请描述网络流问题的基本类型及其应用。
- 最大流问题:确定网络中的最大流量- 最小费用流问题:在满足流量约束的同时最小化费用- 应用包括物流、通信网络和交通规划8. 什么是动态规划,它与线性规划有何不同?- 动态规划是解决多阶段决策问题的算法- 它通过将问题分解为更小的子问题来求解- 与线性规划不同,动态规划问题通常涉及时间序列和决策过程9. 请简述排队论的基本概念及其在实际中的应用。
- 排队论研究等待服务的队列系统- 包括到达过程、服务过程和服务台数量等参数- 应用于银行、医院、电话系统等的效率分析10. 什么是库存管理,它在运筹学中的重要性是什么?- 库存管理涉及对存货的控制和优化- 目标是最小化库存成本和满足需求- 在供应链管理中起着核心作用,影响企业的整体效率和成本11. 请解释博弈论的基本概念及其在决策中的应用。
- 博弈论研究具有冲突和合作特征的决策者之间的策略互动- 包括零和博弈和非零和博弈- 应用于经济、政治、军事等领域的策略制定12. 什么是多目标优化问题,它与单目标优化有何不同?- 多目标优化问题需要同时考虑多个目标函数- 目标之间可能存在冲突,需要权衡和折中- 与单目标优化不同,多目标优化寻求的是一组最优解集,而非单个最优解13. 请简述遗传算法的工作原理及其在优化问题中的应用。
数学:运筹学试题及答案

数学:运筹学试题及答案1、判断题求最小值问题的目标函数值是各分支函数值的下界。
正确答案:对2、填空题动态规划大体上可以分为()、()、()、()四大类。
正确答案:离散确定型;离散随机型;连续确定型;连续随机(江南博哥)型3、多选系统模型按照抽象模型形式可以分为()A.数学模型B.图象模型C.模糊性模型D.逻辑模型E.仿真模型正确答案:A, B, D, E4、单选线性规划一般模型中,自由变量可以代换为两个非负变量的()A.和B.差C.积D.商正确答案:B5、填空题运筹学的目的在于针所研究的系统求得一个合理应用人才,物力和财力的最佳方案。
发挥和提高系统的(),最终达到系统的()。
正确答案:效能及效益;最优目标6、填空题采用人工变量法时,若基变量中出现了()的人工变量,表示在原问题有解。
正确答案:非零7、填空题满足()的基本解称为基本可行解。
正确答案:非负条件8、填空题在箭线式网络图中从始点出发,由各个关键活动连续相接,直到终点的费时最长的线路称为()。
正确答案:关键线路9、单选在求解运输问题的过程中可运用到下列哪些方法()。
A.西北角法B.位势法C.闭回路法D.以上都是正确答案:D10、问答题请简要回答一般系统模型的三个特征。
正确答案:①它是现实世界一部分的抽象和模仿;②它由那些与分析的问题有关的要素所构成;③它表明了系统有关要素间的逻辑关系或定量关系。
11、名词解释初始基本可行解正确答案:多个基本可行解中一个,一般情况下在求最大时取最小的基本可行解,求最小时取最大的基本可行解。
12、名词解释不确定条件下的决策正确答案:指在需要决策的问题中,只估测到可能出现的状态,但状态发生的概率,由于缺乏资源和经验而全部未知。
它属于不确定情况下的决策.13、名词解释时间优化正确答案:时间优化是在人力材料设备资金等资源基本上有保证的条件下寻求最短的工程周期14、填空题企业在采购时,供应方根据批发量的大小定出不同的优惠价格,这种价格上的优惠称为()正确答案:数量折扣15、填空题常用的两种时差是工作总时差和工作()正确答案:自由时差16、多选根据对偶理论,在求解线性规划的原问题时,可以得到以下结论()A.对偶问题的解B.市场上的稀缺情况C.影子价格D.资源的购销决策E.资源的市场价格正确答案:A, C, D17、问答题运用单纯形法求解线性规划问题的步骤是什么?正确答案:(1)确定初始基可行解(2)检验初始基可行解是否最优(3)无解检验(4)进行基变换(5)进行旋转运算,之后回到步骤2,循环直到完成整个问题的求解18、单选设一个线性规划问题(P)的对偶问题为(D),则关于它们之间的关系的陈述不正确的是()。
运筹学试题及详细答案

运筹学试题及详细答案
一、选择题
1、Nash均衡的定义是:
A、每位参与者的行为均达到最佳利益的状态
B、每位参与者的行为均达到得到最大胜利的状态
C、每位参与者的行为均达到合作的最佳状态
D、每位参与者的行为均达到合作的最大胜利的状态
答案:A
2、决策就是参与者用来实现选择的:
A、计划
B、机构
C、程序
D、工具
答案:D
3、运筹学可以分为:
A、组合数学
B、运动学
C、博弈论
D、概率论
答案:A、B、C、D
4、非线性规划有:
A、分支定界法
B、梯度下降法
C、基于格法的解法
D、对偶法
答案:A、B、C、D
5、关于迭代法,下列表述正确的有:
A、可以求解非凸优化问题
B、单次迭代过程简单
C、收敛性较好
D、用于非线性规划
答案:A、B、C
二、填空题:
1、博弈论是研究__参与者之间的__的科学。
答案:多,竞争。
运筹学复习题目加答案

一、单选题1.目标函数取极小(minZ )的线性规划问题可以转化为目标函数取极大的线性规划问题求解,原问题的目标函数值等于( )。
A. maxZB. max(-Z)C. –max(-Z)D.-maxZ2. 下列说法中正确的是( )。
A .基本解一定是可行解B .基本可行解的每个分量一定非负C .若B 是基,则B 一定是可逆D .非基变量的系数列向量一定是线性相关的3.在线性规划模型中,没有非负约束的变量称为 ( )A.多余变量 B .松弛变量 C .人工变量 D .自由变量4. 当满足最优解,且检验数为零的变量的个数大于基变量的个数时,可求得( )。
A .多重解B .无解C .正则解D .退化解 5.对偶单纯型法与标准单纯型法的主要区别是每次迭代的基变量都满足最优检验但不完全满足 ( )。
A .等式约束B .“≤”型约束C .“≥”约束D .非负约束6. 原问题的第i个约束方程是“=”型,则对偶问题的变量i y 是( )。
A .多余变量B .自由变量C .松弛变量D .非负变量7.在运输方案中出现退化现象,是指数字格的数目( )。
A.等于m+nB.大于m+n-1C.小于m+n-1D.等于m+n-1二、判断题1.线性规划问题的一般模型中不能有等式约束。
2.对偶问题的对偶一定是原问题。
3.产地数与销地数相等的运输问题是产销平衡运输问题。
4.对于一个动态规划问题,应用顺推或逆解法可能会得出不同的最优解。
5.线性规划问题的每一个基本可行解对应可行域上的一个顶点。
6.线性规划问题的基本解就是基本可行解。
三、填空题1.如果某一整数规划:MaxZ=X 1+X 2 X 1+9/14X 2≤51/14 -2X 1+X 2≤1/3X 1,X 2≥0且均为整数所对应的线性规划(松弛问题)的最优解为X 1=3/2,X 2=10/3,MaxZ=6/29,我们现在要对X 1进行分枝,应该分为 和 。
2.如希望I 的2 倍产量21x 恰好等于II 的产量2x ,用目标规划约束可表为:3. 线性规划解的情形有4. 求解指派问题的方法是 。
运筹学试题及答案

运筹学试题及答案大家不妨来看看小编推送的运筹学试题及答案,希望给大家带来帮助!《运筹学》复习试题及答案(一)一、填空题1、线性规划问题是求一个线性目标函数_在一组线性约束条件下的极值问题。
2、图解法适用于含有两个变量的线性规划问题。
3、线性规划问题的可行解是指满足所有约束条件的解。
4、在线性规划问题的基本解中,所有的非基变量等于零。
5、在线性规划问题中,基可行解的非零分量所对应的列向量线性无关6、若线性规划问题有最优解,则最优解一定可以在可行域的顶点(极点)达到。
7、线性规划问题有可行解,则必有基可行解。
8、如果线性规划问题存在目标函数为有限值的最优解,求解时只需在其基可行解_的集合中进行搜索即可得到最优解。
9、满足非负条件的基本解称为基本可行解。
10、在将线性规划问题的一般形式转化为标准形式时,引入的松驰数量在目标函数中的系数为零。
11、将线性规划模型化成标准形式时,“≤”的约束条件要在不等式左_端加入松弛变量。
12、线性规划模型包括决策(可控)变量,约束条件,目标函数三个要素。
13、线性规划问题可分为目标函数求极大值和极小_值两类。
14、线性规划问题的标准形式中,约束条件取等式,目标函数求极大值,而所有变量必须非负。
15、线性规划问题的基可行解与可行域顶点的关系是顶点多于基可行解16、在用图解法求解线性规划问题时,如果取得极值的等值线与可行域的一段边界重合,则这段边界上的一切点都是最优解。
17、求解线性规划问题可能的结果有无解,有唯一最优解,有无穷多个最优解。
18、19、如果某个变量Xj为自由变量,则应引进两个非负变量Xj , Xj,同时令Xj=Xj- Xj。
20、表达线性规划的简式中目标函数为ijij21、、(2、1 P5))线性规划一般表达式中,aij表示该元素位置在二、单选题1、如果一个线性规划问题有n个变量,m个约束方程(m<n),系数矩阵的数为m,则基可行解的个数最为_C_。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四、把下列线性规划问题化成标准形式:
2、minZ=2x1-x2+2x3
五、按各题要求。
建立线性规划数学模型
1、某工厂生产A、B、C三种产品,每种产品的原材料消耗量、机械台时消耗量以及这些资源的限量,单位产品的利润如下表所示:
根据客户订货,三种产品的最低月需要量分别为200,250和100件,最大月销售量分别为250,280和120件。
月销售分别为250,280和120件。
问如何安排生产计划,使总利润最大。
2、某建筑工地有一批长度为10米的相同型号的钢筋,今要截成长度为3米的钢筋90根,长度为4米的钢筋60根,问怎样下料,才能使所使用的原材料最省?
1.某运输公司在春运期间需要24小时昼夜加班工作,需要的人员数量如下表所示:
起运时间服务员数
2—6 6—10 10一14 14—18 18—22 22—2 4 8 10 7 12 4
每个工作人员连续工作八小时,且在时段开始时上班,问如何安排,使得既满足以上要求,又使上班人数最少?
五、分别用图解法和单纯形法求解下列线性规划问题.并对照指出单纯形迭代的每一步相当
于图解法可行域中的哪一个顶点。
六、用单纯形法求解下列线性规划问题:
七、用大M法求解下列线性规划问题。
并指出问题的解属于哪一类。
八、下表为用单纯形法计算时某一步的表格。
已知该线性规划的目标函数为maxZ=5x1+3x2,约束形式为“≤”,X3,X4为松驰变量.表中解代入目标函数后得Z=10
X l X2X3X4
—10 b -1 f g
X3 2 C O 1 1/5
X l a d e 0 1
(1)求表中a~g的值 (2)表中给出的解是否为最优解?
(1)a=2 b=0 c=0 d=1 e=4/5 f=0 g=-5 (2)表中给出的解为最优解
第四章线性规划的对偶理论
五、写出下列线性规划问题的对偶问题
1.minZ=2x1+2x2+4x3
六、已知线性规划问题
应用对偶理论证明该问题最优解的目标函数值不大于25
七、已知线性规划问题
maxZ=2x1+x2+5x3+6x4
其对偶问题的最优解为Y l﹡=4,Y2﹡=1,试应用对偶问题的性质求原问题的最优解。
七、用对偶单纯形法求解下列线性规划问题:
八、已知线性规划问题
(1) 写出其对偶问题 (2)已知原问题最优解为X ﹡=(2,2,4,0)T
,试根据对偶理论,直接求出对偶问题
的最优解。
W* = 16
第七章 整数规划
一、填空题 1.用分枝定界法求极大化的整数规划问题时,任何一个可行解的目标函数值是该问题目标函数值的下界。
2.在分枝定界法中,若选X r =4/3进行分支,则构造的约束条件应为X 1≤1,X 1≥2。
3.已知整数规划问题P 0,其相应的松驰问题记为P 0’,若问题P 0’无可行解,则问题P 。
无可行解。
4.在0 - 1整数规划中变量的取值可能是_0或1。
5.对于一个有n 项任务需要有n 个人去完成的分配问题,其 解中取值为1的变量数为n 个。
6.分枝定界法和割平面法的基础都是用_线性规划方法求解整数规划。
7.若在对某整数规划问题的松驰问题进行求解时,得到最优单纯形表中,由X 。
所在行得X 1+1/7x 3+2
/7x 5=13/7,则以X 1行为源行的割平面方程为_76-71X 3-72
X 5≤0_。
8.在用割平面法求解整数规划问题时,要求全部变量必须都为整数。
9.用割平面法求解整数规划问题时,若某个约束条件中有不为整数的系数,则需在该约束两端扩大适当倍数,将全部系数化为整数。
10.求解纯整数规划的方法是割平面法。
求解混合整数规划的方法是分枝定界法_。
11.求解0—1整数规划的方法是隐枚举法。
求解分配问题的专门方法是匈牙利法。
12.在应用匈牙利法求解分配问题时,最终求得的分配元应是独立零元素_。
13.分枝定界法一般每次分枝数量为2个. 二、单选题
1.整数规划问题中,变量的取值可能是D 。
A .整数
B .0或1
C .大于零的非整数
D .以上三种都可能
2.在下列整数规划问题中,分枝定界法和割平面法都可以采用的是A 。
A .纯整数规划
B .混合整数规划
C .0—1规划
D .线性规划 3.下列方法中用于求解分配问题的是D _。
A .单纯形表
B .分枝定界法
C .表上作业法
D .匈牙利法 三、多项选择
1.下列说明不正确的是ABC 。
A .求解整数规划可以采用求解其相应的松驰问题,然后对其非整数值的解四舍五入的方法得到整数解。
B .用分枝定界法求解一个极大化的整数规划问题,当得到多于一个可行解时,通常任取其中一个作为下界。
C .用割平面法求解整数规划时,构造的割平面可能割去一些不属于最优解的整数解。
D .用割平面法求解整数规划问题时,必须首先将原问题的非整数的约束系数及右端常数化为整数。
2.在求解整数规划问题时,可能出现的是ABC 。
A .唯一最优解
B .无可行解
C .多重最佳解
D .无穷多个最优解 3.关于分配问题的下列说法正确的是_ ABD 。
A .分配问题是一个高度退化的运输问题
B .可以用表上作业法求解分配问题
C .从分配问题的效益矩阵中逐行取其最小元素,可得到最优分配方案
D .匈牙利法所能求解的分配问题,要求规定一个人只能完成一件工作,同时一件工作也只给一个人做。
4.整数规划类型包括( CD
E )
A 线性规划
B 非线性规划
C 纯整数规划
D 混合整数规划
E 0—1规划 5.对于某一整数规划可能涉及到的解题内容为( ABCDE )
A 求其松弛问题
B 在其松弛问题中增加一个约束方程
C 应用单形或图解法
D 割去部分非整数解
E 多次切割
三、名词
1、纯整数规划:如果要求所有的决策变量都取整数,这样的问题成为纯整数规划问题。
2、0—1规划问题:在线性规划问题中,如果要求所有的决策变量只能取0或1,这样的问题称为0—1规划。
3、混合整数规划:在线性规划问题中,如果要求部分决策变量取整数,则称该问题为混合整数规划。
四、用分枝定界法求解下列整数规划问题:(提示:可采用图解法) maxZ=40x 1+90x 2 五、用割平面法求解 六、下列整数规划问题
说明能否用先求解相应的线性规划问题然后四舍五入的办法来求得该整数规划的一个可行解。
答:不考虑整数约束,求解相应线性规划得最优解为 x 1=10/3,x 2=x 3=0,用四舍五人法时,令x 1=3,x 2=x 3=0,其中第2个约束无法满足,故不可行。
七、若某钻井队要从以下10个可供选择的井位中确定5个钻井探油。
使总的钻探费用为最小。
若10个井位的代号为S 1,S 2.…,S 10相应的钻探费用为C 1 ,C 2 ,… C 10,并且井位选择要满足下列限制条件:
(1)在s 1,s 2,S 4中至多只能选择两个; (2)在S 5,s 6中至少选择一个;(3)在s 3,s 6,S 7,S 8中至少选择两个; 试建立这个问题的整数规划模型
八、有四项工作要甲、乙、丙、丁四个人去完成.每项工作只允许一人去完成。
每个人只完成其中一项工作,已知每个人完成各项工作的时间如下表。
问应指派每个人完成哪项工作,使总的消耗时间最少?
第二章 线性规划问题的基本概念 3、本章典型例题分析
例: 211520m ax x x Z += 用单纯形法求解 解:先化为标准形式:211520m ax x x Z += 把标准形的系数列成一个表 基 S X 1 X 2 X 3 X 4 解 S 1 -20 -15 0 0 0 X 3 0 2 3 1 0 600 X 4
2
1
1
400
第一次迭代:调入x 1,调出x 4 基
S
X 1
X 2
X 3
X 4
解
S 1 0 -5 0 10 4000 X 3 0 0 2 1 -1 200 X 1
1
1/2
1/2
200
第二次迭代:调入x 2,调出x 3 基 S X 1 X 2 X 3 X 4 解 S 1 0 0 5/2 15/2 4500 X 2 0 0 1 1/2 -1/2 100 X 1
1
-1/4
3/4
150
4、本章作业
见本章练习题 3、本章典型例题分析
例:写出下列线性规划问题的对偶问题
解:其对偶问题为:
4、本章作业
见本章练习题
二、写出下列线性规划问题的对偶问题:
(1) 432132m ax x x x x Z +++= (2)
321422x x x Z ++=
一、 20分) MaxZ=2X 1+3X 2 1+ 2X 2+X 3=12 X 1+2X 2 +X 4=8
4X 1 +X 5=16 4X 2 +X 6=12
Xj≥0(j=1,2,…6)
2)当b3=4时,求新的最优解
3)当增加一个约束条件2X1+X2≤12,问最优解是否发生变化,如果发生变化求新解?
解当C2=5时
σ
=-5/2
4。