重力加速度的测定实验报告
重力加速度的测定实验报告

重力加速度的测定一,实验目的1,学习秒表、米尺的正确使用2,理解单摆法和落球法测量重力加速度的原理。
3,研究单摆振动的周期与摆长、摆角的关系。
4,学习系统误差的修正及在实验中减小不确定度的方法。
二,实验器材单摆装置,停表(精度为0.01s),钢卷尺(精度为1mm),游标卡尺(精度为0.02mm)三,实验原理单摆是由一根不能伸长的轻质细线和悬在此线下端体积很小的重球所构成。
在摆长远大于球的直径,摆球质量远大于线的质量的条件下,将悬挂的小球自平衡位置拉至一边(很小距离,摆角小于5°),然后释放,摆球即在平衡位置左右作周期性的往返摆动,如图2-1所示。
θ单摆原理图摆球所受的力f 是重力和绳子张力的合力,f 指向平衡位置。
当摆角很小时(θ<5°),圆弧可近似地看成直线,f 也可近似地看作沿着这一直线。
设摆长为L ,小球位移为x ,质量为m ,则Lx=θsin f=θsin F =-L x mg- =-m Lgx 由f=ma ,可知a=-Lgx 式中负号表示f 与位移x 方向相反。
单摆在摆角很小时的运动,可近似为简谐振动,比较谐振动公式:a =mf =-ω2x 可得ω=lg ,即0222=+x dt x d ω,解得)cos(0ϕω+=t A x ,0A 为振幅,ϕ为初相。
应有[])2cos())((cos )cos(000ϕπωϕωϕω++=++=+=t A T t A t A x于是得单摆运动周期为:T =ωπ2=2πg L 即 T 2=g24πL 或 g=4π22T L又由于细线不是完全没有质量,他在外力作用下也不可能完成伸长,所以,单摆的重力加速度公式修正为22214TdL g +=π 四,实验步骤 1,数据采集 (1)测量摆长L用米尺测量摆球支点和摆球顶点或最低点的间距l ,用游标卡尺测量小球的直径d,则摆长d l L 21+=(2)测量摆动周期用手把摆球拉至偏离平衡位置约︒5放开,让其在一个铅直面内自由摆动,当小球通过平衡位置的瞬间,开始计时,连续默数100次全振动时间为t ,再除以100,得到周期T 。
重力加速度的测定实验报告

重力加速度的测定实验报告一、实验目的1、学习和掌握自由落体运动的规律。
2、学会使用相关实验仪器测量重力加速度。
3、培养实验操作能力和数据处理能力。
二、实验原理自由落体运动是初速度为 0 的匀加速直线运动。
根据匀加速直线运动的规律,下落高度 h 与下落时间 t 之间的关系可以表示为:\h =\frac{1}{2}gt^2\其中,g 为重力加速度。
通过测量下落高度 h 和下落时间 t,就可以计算出重力加速度 g 的值:\g =\frac{2h}{t^2}\三、实验仪器1、电磁打点计时器2、纸带3、重锤4、铁架台5、直尺6、交流电源四、实验步骤1、将电磁打点计时器固定在铁架台上,使纸带穿过计时器的限位孔,把重锤通过纸带与电磁打点计时器连接好。
2、接通交流电源,让重锤自由下落,同时打点计时器在纸带上打下一系列的点。
3、取下纸带,选择点迹清晰且间距较大的一段纸带,标上计数点0、1、2、3、4、5……相邻两个计数点间的时间间隔为 002 秒。
4、用直尺测量出各计数点到起始点 0 的距离 h1、h2、h3、h4、h5……5、根据测量的数据,计算出各计数点对应的下落时间 t1、t2、t3、t4、t5……6、利用公式\g =\frac{2h}{t^2}\分别计算出各计数点对应的重力加速度 g1、g2、g3、g4、g5……7、求出重力加速度的平均值,作为实验测量的最终结果。
五、实验数据记录与处理以下是实验中测量得到的数据:|计数点|下落高度 h(cm)|下落时间 t(s)||::|::|::||0|000|000||1|190|004||2|780|008||3|1770|012||4|3160|016||5|4950|020|根据上述数据,计算各计数点对应的重力加速度:\g1 =\frac{2×190×10^{-2}}{(004)^2} = 950 \,m/s^2\\g2 =\frac{2×780×10^{-2}}{(008)^2} = 975 \,m/s^2\\g3 =\frac{2×1770×10^{-2}}{(012)^2} = 986 \,m/s^2\\g4 =\frac{2×3160×10^{-2}}{(016)^2} = 988 \,m/s^2\\g5 =\frac{2×4950×10^{-2}}{(020)^2} = 988 \,m/s^2\重力加速度的平均值为:\g =\frac{950 + 975 + 986 + 988 + 988}{5} = 978 \,m/s^2\六、实验误差分析1、打点计时器的打点频率不稳定,可能导致测量的时间间隔存在误差。
单摆法测重力加速度实验报告

单摆法测重力加速度实验报告一、实验目的1、学会用单摆法测量重力加速度。
2、研究单摆运动规律,加深对简谐运动的理解。
3、掌握数据处理和误差分析的方法。
二、实验原理单摆是由一根不可伸长、质量不计的细线,一端固定,另一端系一质量为 m 的小球,在重力作用下,小球在竖直平面内做小角度摆动,其运动可近似为简谐运动。
当摆角小于 5°时,单摆的振动周期 T 与摆长 L 和重力加速度 g 的关系为:\T = 2\pi\sqrt{\frac{L}{g}}\由此可得:\g =\frac{4\pi^2 L}{T^2}\通过测量单摆的摆长 L 和周期 T,即可计算出重力加速度 g 的值。
三、实验器材1、单摆装置(包括细线、小球、铁架台)2、米尺3、秒表4、游标卡尺四、实验步骤1、组装单摆将细线一端系在铁架台上,另一端系上小球,调整细线长度,使小球自然下垂时,摆线与竖直方向的夹角小于 5°。
用游标卡尺测量小球的直径 d,多次测量取平均值。
2、测量摆长 L用米尺测量细线长度 l,注意从固定点到小球中心的距离。
摆长 L = l + d/23、测量周期 T将单摆拉离平衡位置一个小角度(小于 5°),释放小球,使其做简谐运动。
用秒表测量单摆完成 30 次全振动所用的时间 t,重复测量 3 次,计算周期 T = t/30 。
4、改变摆长,重复上述步骤,进行多次测量。
五、实验数据记录与处理|实验次数|摆长 L (m) |小球直径 d (m) | 30 次全振动时间t (s) |周期 T (s) |||||||| 1 |_____ |_____ |_____ |_____ || 2 |_____ |_____ |_____ |_____ || 3 |_____ |_____ |_____ |_____ |根据实验数据,计算每次测量的重力加速度 g,计算公式为:\g=\frac{4\pi^2 L}{T^2}\计算重力加速度的平均值:\g_{平均} =\frac{g_1 + g_2 + g_3}{3}\六、误差分析1、系统误差摆线质量不可忽略,会导致摆长测量值偏小,从而使重力加速度测量值偏大。
(完整版)重力加速度的测定实验报告

重力加速度的测定一,实验目的1,学习秒表、米尺的正确使用2,理解单摆法和落球法测量重力加速度的原理。
3,研究单摆振动的周期与摆长、摆角的关系。
4,学习系统误差的修正及在实验中减小不确定度的方法。
二,实验器材单摆装置,停表(精度为0.01s),钢卷尺(精度为1mm),游标卡尺(精度为0.02mm)三,实验原理单摆是由一根不能伸长的轻质细线和悬在此线下端体积很小的重球所构成。
在摆长远大于球的直径,摆球质量远大于线的质量的条件下,将悬挂的小球自平衡位置拉至一边(很小距离,摆角小于5°),然后释放,摆球即在平衡位置左右作周期性的往返摆动,如图2-1所示。
θ单摆原理图摆球所受的力f 是重力和绳子张力的合力,f 指向平衡位置。
当摆角很小时(θ<5°),圆弧可近似地看成直线,f 也可近似地看作沿着这一直线。
设摆长为L ,小球位移为x ,质量为m ,则Lx=θsin f=θsin F =-L x mg- =-m Lgx 由f=ma ,可知a=-Lgx 式中负号表示f 与位移x 方向相反。
单摆在摆角很小时的运动,可近似为简谐振动,比较谐振动公式:a =mf =-ω2x 可得ω=lg ,即0222=+x dt x d ω,解得)cos(0ϕω+=t A x ,0A 为振幅,ϕ为初相。
应有[])2cos())((cos )cos(000ϕπωϕωϕω++=++=+=t A T t A t A x于是得单摆运动周期为:T =ωπ2=2πg L 即 T 2=g24πL 或 g=4π22T L又由于细线不是完全没有质量,他在外力作用下也不可能完成伸长,所以,单摆的重力加速度公式修正为22214TdL g +=π 四,实验步骤 1,数据采集 (1)测量摆长L用米尺测量摆球支点和摆球顶点或最低点的间距l ,用游标卡尺测量小球的直径d,则摆长d l L 21+=(2)测量摆动周期用手把摆球拉至偏离平衡位置约︒5放开,让其在一个铅直面内自由摆动,当小球通过平衡位置的瞬间,开始计时,连续默数100次全振动时间为t ,再除以100,得到周期T 。
自由落体测重力加速度实验报告

自由落体测重力加速度实验报告实验一自由落体重力加速度的测定实验一自由落体重力加速度的测定一、实验目的1. 通过测定重力加速度,加深对匀加速运动规律的理解:2. 学习用光电法计时;3. 学习用落体法测定重力加速度.二、仪器组成YJ-LG-3自由落体重力加速度测定仪、YJ-LG-3自由落体重力加速度测定仪专用毫秒计、钢球、卷尺等三、仪器结构1. YJ-LG-3自由落体重力加速度测定仪专用毫秒计面板如图l所示2. 自由落体测定仪如图2所示四、实验原理在重力作用下,物体的下落运动是匀加速直线运动.可用下列方程来描述:式中s是在时间t内物体下落的距离.g是重力加速度.如果物体下落的初速度为0,即Vo=0时,可见若能测得物体在最初t秒内通过的距离S,就可以估算出g的值,在实验中要严格保证初速度为零有一定的困难.,故常采用下列方法:实验时,让物体从静止开始自由下落.如图3所示,设它到达A点的速度为V0.从A点开始,经过时间t1到达B点,令A、B两点的距离为S1.,则若保持上述的初始条件不变,则从A点起,经过时间t2后.物体到达C点.令A、C两点的距离为S2.则由式3和式4得:以上两式相减,得:那么就有这里不再出现初速度值,式中的各值均可用自由落体测定仪测量得到.五、实验步骤1.调节自由落体仪垂直.将重锤装置安装好,调整底座上的调节螺旋,使重锤悬线与落体仪两立柱平行.2.将第一光电门放在立柱A处.如离顶端20cm处,调第二光电门于B处.如两光电门相距90cm处,将实验装置上的激光器、接收器与YJ-LG-3自由落体重力加速度测定仪专用毫秒计连接,打开电源,可看见激光器发出红光.3.调节上、下两个激光器。
使激光束平行地对准重锤线后,取下重锤装置.4.保持上、下两个激光器位置不变,调节上、下两个接收器分别与对应的激光器对准(使激光束垂直射入接收器入射孔),直至用手指通过上、下两光电门时,专用毫秒计能正常计时.5.按动YJ-LG-3自由落体重力加速度测定仪专用毫秒计功能键(使用方法见附录),选择计时精度为0.0001s,(测完一组数据后,按动复位键归零).6.用手指托住钢球至落球定位孔,迅速松开手指,记录钢球自由下落通过上、下两光电门的时间t1。
重力加速度的测量实验报告

重力加速度的测量实验报告一、实验目的咱们这次做实验,目标可不简单,咱要亲手测一测这个地球上的“无形之力”——重力加速度!就是大家常说的“重力”,其实也就是物体在地球表面由于地球吸引力的作用产生的加速度。
想想看,咱地球上每个人都在受它的“照顾”,这不,站起来都不费劲嘛。
重力加速度大概是9.8 m/s²,大家都听过吧?我们这次就是想亲自通过实验验证一下,看看这个数字到底准不准。
说白了,就是找找地球对咱们的“吸引力”是不是像老师说的那么准确。
二、实验原理重力加速度的原理大家平时也听过。
想象一下,你从高处扔个小石子,那石子下落的速度是越来越快的,对吧?这就是加速度。
简单来说,物体在自由下落的时候,每秒钟都会增加一个恒定的速度。
这种加速度就是重力加速度。
不过呢,大家也都知道,不同的地点、不同的条件,重力加速度值可能会有一些微小的变化。
所以我们这次做的实验,就是想看看这个“9.8”到底能不能在我们自己动手测量的时候站得住脚。
三、实验器材说到实验器材嘛,说白了就是咱们做实验的“武器”。
为了测量重力加速度,我们得准备几个必不可少的东西。
得有一个小球,最好是圆的,别给它找点奇怪的形状,不然掉下来的时候可能跑偏了。
然后,咱需要一个计时器,就是用来测量小球下落的时间,最好是精确一点的,这样能减少误差。
再有就是一个刻度尺,量一下小球下落的距离。
光有这些东西当然不够,还得有点耐心,毕竟科学实验嘛,不是急功近利的活儿。
每一步都得小心谨慎,不然结果就不准确了。
四、实验步骤准备工作都齐全了,接下来的事情就好办了。
咱得把小球从某一高度上面放下。
然后,眼疾手快地按下计时器,开始计算小球下落所需的时间。
至于高度嘛,一般来说,选择1米左右的高度比较好。
这个高度不会太低,误差小,又足够让小球下落的时间能被准确地计时。
下落的时候要注意,尽量避免其他外力干扰,比如风啊、抖动啊之类的,不然下来的速度不准,实验就不成功了。
你可别小看了这一步,任何小小的疏忽都会影响结果哦!数好小球下落的时间,记得要精确到毫秒!如果能重复实验几次,最好是三次以上,这样计算出的平均值更靠谱。
测量重力加速度实验报告

一、复摆法测重力加速度一.实验目的1. 了解复摆的物理特性,用复摆测定重力加速度,2. 学会用作图法研究问题及处理数据。
二.实验原理复摆实验通常用于研究周期与摆轴位置的关系,并测定重力加速度。
复摆是一刚体绕固定水平轴在重力作用下作微小摆动的动力运动体系。
如图1,刚体绕固定轴O在竖直平面内作左右摆动,G是该物体的质心,与轴O的距离为h,θ为其摆动角度。
若规定右转角为正,此时刚体所受力矩与角位移方向相反,则有θM-=, (1)sinmgh又据转动定律,该复摆又有θ IM=,(2) (I为该物体转动惯量) 由(1)和(2)可得θωθsin 2-= , (3) 其中Imgh=2ω。
若θ很小时(θ在5°以内)近似有 θωθ2-= , (4) 此方程说明该复摆在小角度下作简谐振动,该复摆振动周期为mghIT π=2 , (5) 设G I 为转轴过质心且与O 轴平行时的转动惯量,那么根据平行轴定律可知2mh I I G += , (6)代入上式得mghmh I T G 22+=π, (7)设(6)式中的2mk I G =,代入(7)式,得ghh k mgh mh mk T 222222+=+=ππ, (11) k 为复摆对G (质心)轴的回转半径,h 为质心到转轴的距离。
对(11)式平方则有2222244h gk g h T ππ+=, (12)设22,h x h T y ==,则(12)式改写成x gk g y 22244ππ+=, (13)(13)式为直线方程,实验中(实验前摆锤A 和B 已经取下) 测出n 组(x,y)值,用作图法求直线的截距A 和斜率B ,由于gB k g A 2224,4ππ==,所以 ,4,422BAAgk Bg ===ππ (14) 由(14)式可求得重力加速度g 和回转半径k 。
三.实验所用仪器复摆装置、秒表。
四.实验内容1. 将复摆悬挂于支架刀口上,调节复摆底座的两个旋钮,使复摆与立柱对正且平行,以使圆孔上沿能与支架上的刀口密合。
大学物理重力加速度的测定实验报告范文实验报告

大学物理重力加速度的测定实验报告实验目的本实验旨在通过测定自由落体运动的时间和位移数据,计算出地球上的重力加速度,并了解测量误差的处理方法。
实验原理自由落体运动是指物体在没有任何外力作用下,从静止开始自由运动的情况。
在实验中,我们会利用自由落体运动的情况来测定重力加速度。
自由落体运动的路程与时间之间的关系可以用以下公式表示:$d=\\frac{1}{2}gt^2$其中,d代表物体下落的位移,g代表重力加速度,t代表下落的时间。
通过测量下落的时间和位移,我们可以计算出重力加速度g。
实验材料和设备•自由落体实验器•计时器•尺子或直尺实验步骤1.在实验室内设置自由落体实验器,保证垂直下落的物体不受任何干扰,并且与测量尺子垂直。
2.调整实验器,使得下落物体从计时器的触发器处开始运动。
3.用计时器测量下落物体的时间,并记录数据。
4.用尺子或直尺测量下落物体的位移,并记录数据。
5.根据测量数据计算出重力加速度g。
6.重复以上步骤多次,取平均值作为最终结果。
实验数据及结果以下是三次测量的时间和位移数据:时间(s)位移(m)0.463 1.110.472 1.150.455 1.08根据上表数据可以计算出平均重力加速度:$g=\\frac{2d}{t^2}=9.83m/s^2$实验误差分析和处理实验中可能会出现一些误差,如气流扰动、实验器调整不好、计时误差等。
这些误差都会影响实验结果的准确性和精度。
为了降低误差,我们可以采取以下措施:1.尽可能减小气流的扰动,将实验器摆放在通风较好的地方。
2.调整实验器,使其最大限度地减小位移误差。
3.多次测量,并计算平均值。
根据实验数据的误差分析,我们可以得出结论:在本次实验中,测定的重力加速度为9.83m/s2,该值与实际值9.81m/s2比较接近,实验结果较为准确。
结论通过本次实验,我们了解了物理实验中的基本原理、方法和步骤,掌握了重力加速度的计算方法,并学会了处理实验误差的方法,这些对于我们进行物理实验和科学研究都是非常重要的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
重力加速度的测定
一,实验目的
1,学习秒表、米尺的正确使用
2,理解单摆法和落球法测量重力加速度的原理。
3,研究单摆振动的周期与摆长、摆角的关系。
4,学习系统误差的修正及在实验中减小不确定度的方法。
二,实验器材
单摆装置,停表(精度为),钢卷尺(精度为1mm),游标卡尺(精度为
三,实验原理
单摆是由一根不能伸长的轻质细线和悬在此线下端体积很小的重球所构成。
在摆长远大于球的直径,摆球质量远大于线的质量的条件下,将悬挂的小球自平衡位置拉至一边(很小距离,摆角小于5°),然后释放,摆球即在平衡位置左右作周期性的往返摆动,如图2-1所示。
θ
单摆原理图
摆球所受的力f 是重力和绳子张力的合力,f 指向平衡位置。
当摆角很小时(θ<5°),圆弧可近似地看成直线,f 也可近似地看作沿着这一直线。
设摆长为L ,小球位移为x ,质量为m ,则
L
x
=
θsin f=θsin F =-L
x mg
- =-m L g
x
由f=ma ,可知a=-
L
g
x 式中负号表示f 与位移x 方向相反。
单摆在摆角很小时的运动,可近似为简谐振动,比较谐振动公式:a =
m
f =-ω2
x 可得ω=l
g ,即02
22=+x dt x d ω,解得)cos(0ϕω+=t A x ,0A 为振幅,ϕ为初相。
应有[])2cos())((cos )cos(000ϕπωϕωϕω++=++=+=t A T t A t A x
于是得单摆运动周期为:T =ωπ
2=2πg L 即 T 2=g
2
4πL 或 g=4π2
2
T L
又由于细线不是完全没有质量,他在外力作用下也不可能完成伸长,所以,单摆的重力加速度公式修正为
22
21
4T
d
L g +=π 四,实验步骤 1,数据采集 (1)测量摆长L
用米尺测量摆球支点和摆球顶点或最低点的间距l ,用游标卡尺测量小球的直径d,则摆长
d l L 2
1+=
(2)测量摆动周期
用手把摆球拉至偏离平衡位置约︒
5放开,让其在一个铅直面内自由摆动,当小球通过平衡位置的瞬间,开始计时,连续默数100次全振动时间为t ,再除以100,得到周期T 。
(3)将所测数据列于下表中,并计算出摆长、周期及重力加速度。
2,实验数据处理
对g =4π
2
22
22
/87.903586
.22029628
.002104.142
/s m T
d L =+
⨯=+π 根据不确定度的相对式有:
2
222221)ln ()ln ()ln (
T d n g T
g d g l g g σσσμ∂∂+∂∂+∂∂= 其中:
1ln l g ∂∂=
L
d L 1
2/11=-
L
d L d g 212/21ln 1-=--
=∂∂
T
T g 2
ln -=∂∂
003.0)2(
)2(
)(2
22=++=T
L
L
g T d
L
g σσσμ 五,注意事项
1,摆长的测定中,摆长约为1米,钢卷尺与悬线尽量平行,尽量接近,眼睛与摆球最低点平行,视线与尺垂直,以避免误差。
2,测定周期T 时,要从摆球摆至最低点时开始计时,并从最低点停止计时。
这样可以把反应延迟时间前后抵消,并减少人为的判断位置产生的误差。
3,钢卷尺使用时要小心收放 4,秒表轻拿轻放,切勿摔碰。
六,实验问题
1.从误差分析角度说明为什么不直接测量单摆往返一次的时间。
答:多次测量取平均值的方法可以减小误差
2.摆球从平衡位置移开几分之一摆长时,θ≈5度。
答:L x =
θsin ,当o 5=θ时,08716.05sin =o
,所以大约为摆长的47
.111 3.单摆摆动时受到空气阻力作用,摆幅越来越小,它的周期有什么变化?如用木球代替铁球有何不同。
答:周期不变,只与摆线长和重力加速度有关,与振幅和小球质量无关
用木球代替会增大空气阻力,导致可测量的周期少,数据没有用铁球时准确。