高中物理微积分应用(完美)(可编辑修改word版)
高中物理微积分应用(完美)

高中物理中微积分思想伟大的科学家牛顿,有很多伟大的成就,建立了经典物理理论,比如:牛顿三大定律,万有引力定律等;另外,在数学上也有伟大的成就,创立了微积分。
微积分(Calculus )是研究函数的微分、积分以及有关概念和应用的数学分支。
微积分是建立在实数、函数和极限的基础上的。
微积分最重要的思想就是用"微元"与"无限逼近",好像一个事物始终在变化你很难研究,但通过微元分割成一小块一小块,那就可以认为是常量处理,最终加起来就行。
微积分学是微分学和积分学的总称。
它是一种数学思想,‘无限细分’就是微分,‘无限求和’就是积分。
无限就是极限,极限的思想是微积分的基础,它是用一种运动的思想看待问题。
微积分堪称是人类智慧最伟大的成就之一。
在高中物理中,微积分思想多次发挥了作用。
1、解决变速直线运动位移问题匀速直线运动,位移和速度之间的关系x=vt ;但变速直线运动,那么物体的位移如何求解呢?例1、汽车以10m/s 的速度行驶,到某处需要减速停车,设汽车以等减速2m/s 2刹车,问从开始刹车到停车,汽车走了多少公里?【解析】 现在我们知道,根据匀减速直线运动速度位移公式at v v +=0 2021at t v x +=就可以求得汽车走了0.025公里。
但是,高中所谓的的匀变速直线运动的位移公式是怎么来的,其实就是应用了微积分思想:把物体运动的时间无限细分。
在每一份时间微元内,速度的变化量很小,可以忽略这种微小变化,认为物体在做匀速直线运动,因此根据已有知识位移可求;接下来把所有时间内的位移相加,即“无限求和”,则总的位移就可以知道。
现在我们明白,物体在变速直线运动时候的位移等于速度时间图像与时间轴所围图形的“面积”,即2021at t v x +=。
【微积分解】汽车在减速运动这段时间内速度随时间变化的关系t at v v 2100-=+=,从开始刹车到停车的时间t=5s ,所以汽车由刹车到停车行驶的位移kmt t t a t v dt at v dt t v x 025.0)10()2()()(50252050050=-=+=+==⎰⎰小结:此题是一个简单的匀变速直线运动求位移问题。
(完整word版)微积分在物理学上的应用

微积分在物理学上的应用1 引言微积分是数学的一个基本学科,内容包括微分学,积分学,极限及其应用,其中微分学包括导数的运算,因此使速度,加速度等物理元素可以使用一套通用的符号来进行讨论。
而在大学物理中,使用微积分去解决问题是及其普遍的.对于大学物理问题,可是使其化整为零,将其分成许多在较小的时间或空间里的局部问题来进行分析.只要这些局部问题分的足够小,足以使用简单,可研究的方法来解决,再把这些局部问题的结果整合起来啊,就可以得到问题的结果。
而这种将问题无限的分割下去,局部问题无限的小下去的方法,即称为微分,而把这些无限个微分元中的结果进行求和的方法,即是积分。
这种解决物理问题的思想和方法即是微积分的思想和方法。
2 微积分的基本概念及微分的物理含义微积分是一种数学思想,其建立在函数,实数和极限的基础上,其主要探讨的就是连续变量。
在运用微积分去解决物理问题时,可以将我们所需要得出的结果看成是一个整体,再将这个整体先微分,即将其分成足够小的个体,我们可以将这个个体的变量看成衡量,得出个体结果后,再将其积分,即把个体的结果累积起来进行求和.例如,在我们研究匀变速直线运动时,我们就可以在其运动过程中选取一个微小的时间dt,而这一时间内的位移为dt,在每一段时间内速度的变化量非常小,可以近似忽略,那么我们就可以将这段时间内的运动近似看成匀速直线运动,再把每段时间内的位移相加,无限求和,就可以得出总的位移。
在物理学中,每个物理公式都是某些物理现象和规律的数学表示,因此,我们在使用这些公式时,面对物理量和公式的微分形式我们不能仅仅从数学方面去考虑,更要从物理含义上去考虑.在我们使用微分符号时,不能只从数学角度去理解其为无限小,更要结合具体的物理量和角度去判断他的正确含义。
例:如图所示,一通有交流电流i=的长直导线旁有一共面的单匝矩形线圈ABCD,试求线圈中的感应电动势大小。
解:设在某个时刻,长直导线电流产生的磁场为B=在图中做一个微元面dS,dS=ldx,则该面元上的磁场可以近似于均匀磁场,微元面dS上的磁通量为d线圈围成的面上通过的磁通量为线圈中的感应电动势为在这个例题中,微元面dS的磁通量与线圈的感应电动势都有,但他们的物理含义却是不一样的,前者的表示微元面dS上的磁通量,是一个微小量,而后者的表示的是微笑时间内的磁通量变化量,是一个微小变化量。
(完整word版)微积分在物理竞赛中的应用

VdV (L1 L2 ) 2x g,
dx
L1 L2
V
VdV
x (L1 L2 ) 2x gdx
0
0 L1 L2
V
2g L1 L2
(L1 L2 )x x2 .
令 x L2 , 可以求得链条滑离钉子时的速度大小
V 2L1L2 g L1 L2
再由V dx , 得到 dt
dx dt
。
小球 A 相对地的加速度
aA
a
A
aB
,取如图二所示的坐标系,
则有
a Ax
aA
cos
aB
sin 2 2(1 sin 2 )
g,
a Ay
aA sin
2sin 2 (1 sin 2 )
g.
旋转液体的液面
以等角速度 ω 旋转的液体,液面的形状如何求得? 解答:
假设它的剖面是一条曲线,Y 轴是转轴,旋转面以 Y 轴为对称轴,此时在
y
m k
(V0
sin 0
mg k
)(1
kt
em
)
mg k
t.
由(3)(4)两式消去 t,得到有阻力时的轨道方程
(4)
y
(tg 0
mg kV0 cos0
)x
m2g k2
ln(1
mV0
k c os 0
)x
m2g k2
ln(1
k mV0 cos
x).
显然由于空气阻力的作用,抛体的轨道不再是简单的抛物线了,实际轨道将比理想轨
2g L1 L2
(L1 L2 )x x2
x
dx
t
0 (L1 L2)x x 2 0
积分,得到
微积分在高中物理中的应用

121微积分在高中物理中的应用邓圭恩微积分是高等数学中研究函数的微分、积分以及有关概念和应用的数学分支。
它是数学的一个基础学科。
微积分是指求函数曲线的切线斜率、求函数图形的面积、求图形的体积的一种方法和过程,在高中物理概念、物理定律都包涵微积分的思想。
本文分析了微积分在高中物理的一些具体应用,目的是理解微积分思想的同时也能熟练地运用微积分来解决物理中的问题。
数学作为物理学中的重要工具,它即能准确而又简洁地表达物理概念和规律,也能为物理提供思维语言和方法。
运用数学方法解决物理问题是高中阶段学习目标之一,高中生掌握求导和积分的思想及方法,是为物理学习提供了即方便实用又强大的工具。
1微积分在高中动力学中的应用 1.1利用微积分解决变速运动问题在高中阶段,变速运动问题往往是许多同学的难点,很多变速运动问题的模型都很难建立,对许多同学甚至是教师的思维能力都是一个很大的考验。
但微积分知识和思想能帮助大家用更简洁普适的模型来解决这方面的问题,比如对于下面这一道题:例2:狐狸沿半径R 的圆轨道以恒定速率v 奔跑,在狐狸出发的同时,猎犬从圆心O 出发以相同的速率v 追击过程中,圆心、猎犬和狐狸始终连成一直线。
(1)建立相应坐标系,求出猎犬运动的轨道方程,并画出轨道曲线。
(2)判断猎犬能否追上狐狸。
这道题是一道经典的物理竞赛题,现在也是被选入许多高校的自招理论试题,其经典解法有很多,但绝大多数都复杂冗长,很多同学并不能很好的理解。
而如果我们选用微积分的方法,就会得到很容易为大家所接受,也较容易的解法了。
取圆心O 为坐标原点,从O 到狐狸的初始位置设置极轴,建立极坐标系。
我们先得到猎犬切向、径向加速度、速度与猎犬所在的r、θ的关系狐狸的圆运动角速度为:Rv dt d ==ωθ当狐狸在θ角位置时,圆心O、猎犬D 及狐狸F 共线,如图所示故猎犬的横向速度为猎犬的径向与切向速度为:r Rv dt d rv ==θθ,vRr v v v r 22221-=-=θ 径向与切向加速度为:R r R v v dtd r dt d dt dr r a 122222-⋅==+⋅=ωθθθv r a R r dt dr dr dv r dt dv dt d r d r d r r r 22222222)(-=-⋅=-=-=ωωθθ 由r R v v r d dr r22-==θθ积分:⎰⎰=-θθθ022d r R dr r 可得猎犬的轨道方程为: θ=Rr arcsin 即θsin R r =猎犬的轨道曲线如图中虚线所示。
(完整word版)微积分作业(应用题6题)

应用题:1.设生产某种产品x 个单位时的成本函数为C(x)=100+0.25x 2 +6x (万元)求:(1)当x=10时的总成本、平均成本和边际成本;(2)当生量x 为多少时,平均成本最小?解:(1)因为总成本、平均成本和边际成本分别为:C (X )=100+0.25X 2+6X c (X)=X100 +0.25X+6,,C ' (X)=0.5X+6 所以C(10)=100+0.25×102+6×10=185c (10)= 10100+0.25×10+6=18.5C '(10)=0.5×10+6=11 (2)令'C =-2100X +0.25=0,得X=20(X=-20舍去) 因为X=20是其在定义域内唯一驻点,且该问题确实存在最小值,所以当X=20时,平均成本最小.2.某厂生产一批产品,其固定成本为2000元,每生产一吨产品的成本为60元,对这种产品的市场需求规律为q=1000-10p(q 为需求量,p 为价格).试求:(1)成本函数,收入函数; (2)产量为多少吨时利润最大?解:(1)成本函数C (q )=60q+2000因为q=1000-10p,即p=100-101q 所以收入函数R (q )=p ×q=(100-101q)q=100q -101 q2 (2)因为利润函数L(q)=R(q) -C(q)=(100q -101 q 2-(60q+2000) =40q -101 q 2-2000 且'L (q)=(40q -101 q 2-2000)’=40-0.2q 令'L (q)=0, 即40-0.2q=0,得q=2000,它是L(q)是在其定义域内的唯一驻点.所以,q=200是利润函数L (q )的最大值点,即当产量为200吨时利润最大。
3.设某工厂生产某产品的固定成本为50000元,每生产一个单位产品,成本增加100元.又已知需求函数q=2000-4p,其中p 为价格,q 为产量,这种产品在市场上是畅销的试求:(1)价格为多少时利润最大? (2)最大利润是多少?1、 解:(1)C (p )=50000+100q=50000+100(2000-4p)=250000-400pR(p)=pq=p(2000-4p)=2000p -4p 2利润函数L (p )=R(p) -C(p)=2400P -4p 2-250000,且令'L (p)=2400-8p=0得p=300,即该问题确实存在最大值,所以,当价格为p=300元时,利润最大。
微积分在物理_中的简单应用(DOC)

求解在立体斜面上滑动的物体的速度一物体放在斜面上,物体与斜面间的摩擦因数今使物体获得一水平速度 V 0而滑动,如图一, 求:物体在轨道上任意一点的速度V 与■-的关系,设 '为速度与水平线的夹角。
解:物体在某一位置所受的力有:重力G ,f=」mgcos :二 tg^mgcos : = mg si n r重力在斜面上的分力为 G 1,如图二,将G 1 分解为两个分力:G 「是G i 沿轨迹切线方向的分 力,G^G 1sin= mg sin : sin ; G ;是沿轨 迹 法 向 的 分 力,G ; = G ; cos 二 mg sin 二 cos ,如图三。
根据牛顿运动定律,得运动方程为G ; - f = ma ( 1)G ;=ma n( 2)由( 1),图三1a(mgsi n : sin - mgs in :)二 g sin : (si n -1) m而a 二亚,得到 * dtdV = gsin : (sin -1)dt,弹力N 以及摩擦力f 。
摩擦力f 总是与运动速度V 的方向相反,其数值」恰好满足-tg 「,:•为斜面的倾角。
图一(3)式中••是t 的函数,但是这个函数是个未知函数, 因此还不能对上式积分,要设法在-与t 中消去一个变量,才能积分,注意到ds而.表示曲线在该点的曲率半径根据(2)式,dmgsin : cos = m V (5)由式(3)( 4)(5),可得到dV 二(tg _sec )d ,VdV=0 (tg -sec )d ,积分,得到In / 二—In cos -1n(sectg ) = —In(1 sin ),V 1 sin运用积分法求解链条的速度及其时间图_一条匀质的金属链条,质量为m 挂在一个光滑的钉子上, 一边长度为L !,另一边长度为L 2,而且0 :::L 2 :::,如图一。
试求:链条从静止开始滑离钉子时的速度和所需要的时间。
解:设金属链条的线密度为m一.当一边长度为L 1 +L 2L ! x ,另一边长度为L 2 -X 时受力如图二所示,则根据牛 顿运动定律,得出运动方程(L i x ) g -T =馆 x ) a,d^d ^1 dS dV V d *T - (L 2 - x)..g = (L 2 - x)./.a.因为 a = dV =dVdx =VdV ,所以dt dx dt dx令x : L 2,可以求得链条滑离钉子时的速度大小 对应的式子。
微积分在物理学中的应用

微积分在物理学中的应用微积分是数学的一个重要分支,它研究函数的变化率和积分。
在物理学中,微积分是一种强大的工具,被广泛应用于解决各种物理问题。
本文将介绍微积分在物理学中的应用,并探讨其重要性和影响。
1. 运动学运动学是物理学的一个重要分支,研究物体的运动规律。
微积分在运动学中起着至关重要的作用。
通过微积分,我们可以求解物体的速度、加速度和位移等运动参数。
例如,当我们知道一个物体的位移随时间的变化规律时,可以通过微积分求解出其速度和加速度。
这些参数对于研究物体的运动规律和描述力学系统非常重要。
2. 力学力学是物理学的基础,研究物体受力和运动规律之间的关系。
微积分在力学中有广泛的应用。
通过微积分,我们可以求解物体受力后的运动轨迹和速度变化。
例如,在牛顿第二定律中,通过对加速度随时间的变化进行积分,可以求解出物体的速度和位移。
这些结果对于研究物体的运动和力学系统的稳定性具有重要意义。
3. 电磁学电磁学是物理学的一个重要分支,研究电荷和电磁场之间的相互作用。
微积分在电磁学中也有广泛的应用。
例如,在电场和磁场的计算中,我们需要对电荷分布和电流密度进行积分。
通过微积分,我们可以求解出电场和磁场在空间中的分布情况。
这些结果对于理解电磁现象和设计电子设备非常重要。
4. 热力学热力学是物理学的一个重要分支,研究能量转化和系统的宏观性质。
微积分在热力学中也有重要的应用。
例如,在理想气体状态方程中,通过对压强和体积随温度的变化进行积分,可以求解出气体的内能和焓等参数。
这些参数对于研究能量转化和系统平衡具有重要意义。
5. 光学光学是物理学的一个重要分支,研究光的传播和相互作用。
微积分在光学中也有广泛的应用。
例如,在光的传播和折射中,我们需要对光线的路径进行积分。
通过微积分,我们可以求解出光线在介质中的传播路径和折射角度。
这些结果对于研究光学现象和设计光学器件非常重要。
6. 量子力学量子力学是物理学的一个重要分支,研究微观粒子的行为和相互作用。
微积分在物理学中的应用

微积分在物理学中的应用微积分是数学的一个重要分支,它在物理学中有着广泛的应用。
物理学研究的是自然界中的各种现象和规律,而微积分则为我们提供了一种强大的工具,帮助我们理解和描述这些现象和规律。
本文将探讨微积分在物理学中的应用,并且通过几个具体例子来说明其重要性。
首先,微积分在物理学中的一个重要应用是对物体的运动进行描述和分析。
牛顿运动定律是经典力学的基础,而微积分则是对运动进行建模和求解的数学工具。
例如,当我们研究一个物体在一维直线上的运动时,我们可以通过微积分的方法求解物体的位移、速度和加速度之间的关系。
通过对位移-时间曲线进行微分,我们可以得到速度-时间曲线;通过对速度-时间曲线进行微分,我们可以得到加速度-时间曲线。
这样,我们就可以通过微积分来分析物体在不同时间点的位置、速度和加速度等信息。
其次,微积分在物理学中的另一个重要应用是对物体的力学性质进行研究。
力学是物理学的一个分支,研究物体的运动和相互作用。
微积分可以帮助我们理解和描述物体受力的变化和作用力的大小。
例如,当我们研究一个物体在重力场中的运动时,我们可以通过微积分的方法求解物体所受的重力和空气阻力之间的平衡关系。
通过对受力-时间曲线进行积分,我们可以得到物体的动能和势能之间的关系。
这样,我们就可以通过微积分来分析物体在不同位置和时间点的受力情况。
此外,微积分还在热力学和电磁学等领域中有着重要的应用。
热力学研究的是热能的传递和转化,而微积分可以帮助我们理解和描述热能的变化和流动。
例如,当我们研究一个物体的温度随时间的变化时,我们可以通过微积分的方法求解物体所受的热量和热容之间的关系。
通过对温度-时间曲线进行积分,我们可以得到物体的热能和热功之间的关系。
这样,我们就可以通过微积分来分析物体在不同温度和时间点的热力学性质。
在电磁学中,微积分也起着重要的作用。
电磁学研究的是电荷和电磁场之间的相互作用,而微积分可以帮助我们理解和描述电荷和电场的变化和分布。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y.B∆ NB mg xON A A mgL (弧长)=α(弧度)x r(半径) (弧度制)5 52高中物理中微积分思想伟大的科学家牛顿,有很多伟大的成就,建立了经典物理理论,比如:牛顿三大定律,万有引力定律等;另外,在数学上也有伟大的成就,创立了微积分。
微积分(Calculus )是研究函数的微分、积分以及有关概念和应用的数学分支。
微积分是建立在实数、函数和极限的基础上的。
微积分最重要的思想就是用"微元"与"无限逼近",好像一个事物始终在变化你很难研究,但通过微元分割成一小块一小块,那就可以认为是常量处理,最终加起来就行。
微积分学是微分学和积分学的总称。
它是一种数学思想,‘无限细分’就是微分,‘无限求和’就是积分。
无限就是极限,极限的思想是微积分的基础,它是用一种运动的思想看待问题。
微积分堪称是人类智慧最伟大的成就之一。
在高中物理中,微积分思想多次发挥了作用。
1、解决变速直线运动位移问题匀速直线运动,位移和速度之间的关系 x=vt ;但变速直线运动,那么物体的位移如何求解呢? 例 1、汽车以 10m/s 的速度行驶,到某处需要减速停车,设汽车以等减速 2m/s 2 刹车,问从开始刹车到停车, 汽车走了多少公里?【解析】 现在我们知道,根据匀减速直线运动速度位移公式v = v 0 走了 0.025 公里。
+ at x = v t + 1 at 2 就可以求得汽车0 2但是,高中所谓的的匀变速直线运动的位移公式是怎么来的,其实就是应用了微积分思想:把物体运动的时间无限细分。
在每一份时间微元内,速度的变化量很小,可以忽略这种微小变化,认为物体在做匀速直线运动,因此根据已有知识位移可求;接下来把所有时间内的位移相加,即“无限求和”,则总的位移就可以知道。
现在我们明白,物体在变速直线运动时候的位移等于速度时间图像与时间轴所围图形的“面 积”,即 x = v t + 1 at 2 。
2【微积分解】汽车在减速运动这段时间内速度随时间变化的关系v = v 0 + at = 10 - 2t ,从开始刹车到停车的时间 t=5s , 所以汽车由刹车到停车行驶的位移5 a 5 x = v (t )dt = (v + at )dt = (v t + t 2 ) = (10t - t 2 ) = 0.025km⎰⎰小结:此题是一个简单的匀变速直线运动求位移问题。
对一般的变速直线运动,只要结合物理知识求速度关于时间的函数,画出 v -t 图像,找“面积”就可以。
或者,利用定积分就可解决.2、解决变力做功问题恒力做功,我们可以利用公式直接求出W = Fs ;但对于变力做功,我们如何求解 呢?例 2:如图所示,质量为 m 的物体以恒定速率 v 沿半径为 R 的竖直圆轨道运动,已知物体与竖直圆轨道间的摩擦因数为,求物体从轨道最低点运动到最高点的过程中,摩擦力做了多少功。
【解析】物体沿竖直圆轨道从最低点匀速率运动到最高点的过程中,在不同位置与圆环间的正压力不同, 可由圆轨道的对称性,在圆轨道水平直径上、下各取两对称位置 A 和 B , 设 OA 、OB 与水平直径的夹角为θ。
在∆S = R ∆的足够短圆弧上,△S 可看作直线,且摩擦力可视为恒力,则在A 、B 两点附近的△S 内,摩擦力所做的功之和可表示为:∆W f = -N A R ∆+ (-N B R ∆)va=-2m/s 20 f 一场源点荷为 Q,在距 Q 为r 的A 点有一点电荷为 q,此 A 处电势φ=kQ/r 又因为车在 A 、B 两点以速率 v 作圆周运动,所以:mv 2N A - m g s in=N B + m g s in=R mv 2 R综合以上各式得: ∆W f = -2mv 2∆故摩擦力对车所做的功:W f = ∑ ∆W f = ∑ -2mv 2∆= -2mv 2 ∑ ∆= -mv 2【微积分解】物体在轨道上受到的摩擦力 F f =N ,从最低点运动到最高点摩擦力所做的功为W = ⎰ (-N A R - N B R )d = ⎰2 - 2mv 2d = -mv 2小结:这题是一个复杂的变力做功问题,利用公式直接求功是难以办到的。
利用微积分思想,把物体的运动无限细分,在每一份位移微元内,力的变化量很小,可以忽略这种微小变化,认为物体在恒力作用下的运动;接下来把所有位移内的功相加,即“无限求和”,则总的功就可以知道。
在高中物理中还有很多例子,比如我们讲过的瞬时速度,瞬时加速度、感应电动势、引力势能等都用到了微积分思想,所有这些例子都有它的共性。
作为大学知识在高中的应用,虽然微积分高中不要求,但他的思想无不贯穿整个高中物理。
“微积分思想”丰富了我们处理问题的手段,拓展了我们的思维。
我们在学习的时候,要学会这种研究问题的思想方法,只有这样,在紧张的学习中,我们才能做到事半功倍。
【例】问均匀带电的立方体角上一点的电势是中心的几倍。
分析:①根据对称性,可知立方体的八个角点电势相等;将原立方体等分为八个等大的小立方体,原立方体的中心正位于八个小立方体角点位置;而根据电势叠加原理,其电势即为八个小立方体角点位置的电势之和,即 U 1=8U 2 ; ②立方体角点的电势与什么有关呢?电荷密度ρ;二立方体的边长 a ;三立方体的形状;K Q根据点电荷的电势公式 U= 及量纲知识,可猜想边长为 a 的立方体角点电势为rCKQ U= =Ckρa 2;其中 C 为常数,只与形状(立方体)及位置(角点)有关,Q 是总电量,ρ是电荷密度; a 其中 Q=ρa 3a CKρa 2③ 大立方体的角点电势:U 0= Ckρa 2;小立方体的角点电势:U 2= Ckρ( )2=2 41 大立方体的中心点电势:U 1=8U 2=2 Ckρa 2;即 U 0= U 12【小结】我们发现,对于一个物理问题,其所求的物理量总是与其他已知物理量相关联,或者用数学语言来说,所求的物理量就是其他物理量(或者说是变量)的函数。
如果我们能够把这个函数关系写出来,或者将其函数图像画出来,那么定量或定性地理解物理量的变化情况,帮助我们解决物理问题。
F= mv 2R圆周运动向心力公式导数㈠ 物理量的变化率我们经常对物理量函数关系的图像处理,比如 v-t 图像,求其斜率可以得出加速度 a ,求其面积可以得出位移 s 而,斜率和面积是几何意义上的微积分我。
们知道过,v-t 图像中△ v某个点作出切线其,斜率即 a= .△ t下面我们从代数上考察物理量的变化率:【例】若某质点做直线运动,其位移与时间的函数关系为上 s=3t+2t 2,试求其t 时刻的速度的表达式。
(所有物理量都用国际制单位,以下同)△ s分析:我们知道,公式 v= 一般是求△t 时间内的平均速度,当△t 取很小很小,才可近似处理成瞬时△ t 速度。
s(t)=3t+2t 2 s(t+△t)=3(t+△t)+2(t+△t) 2△s=s(t+△t)-s(t)=3(t+△t)+2(t+△t) 2-3t-2t 2=3△t+4t△t+2△t 2△ s 3 △ t + 4t △ t + 2 △ t 2 v= = =3+4t+2△t△ t △ t当△t 取很小,小到跟 3+4t 相比忽略不计时,v=3+4t 即为 t 时刻的瞬时速度。
【练】假设一个闭合线圈匝数为 100 匝,其磁通量为φ=3t+4t 3,求感应电动势随时间 t 的函数关系。
【小结】回顾我们求物理量 y=f(t)的变化率瞬时值 z 的步骤:①写出 t 时刻 y 0=f(t)的函数表达式;②写出 t+△t 时刻 y 1=f(t+△t)的函数表达式; ③求出△y=y 1- y 0=f(t+△t)- f(t);△ y f(t + △ t) - f(t)④求出 z= = ;△ t △ t⑤注意△t 取很小,小到与有限值相比可以忽略不计。
㈡ 无穷小△ s △ Q N △ φ当△t 取很小时,可以用 V= 求瞬时速度,也可用 i= 求瞬时电流,用ε= 求瞬时感应 △ t 电动势。
下面,我们来理解△t:△ t △ t△t 是很小的不为零的正数,它小到什么程度呢?可以说,对于我们任意给定一个不为零的正数ε, 都比△t 大,即:ε>△t 。
或者从动态的角度来看,给定一段时间 t ,我们进行如下操作:t第一次,我们把时间段平均分为 2 段,每段时间△t= ;2 t第二次,我们把时间段平均分为 3 段,每段时间△t= ;3 t第三次,我们把时间段平均分为 4 段,每段时间△t= ;4…………t第 N 次,我们把时间段平均分为 N+1 段,每段时间△t= ;N + 1…………一直这样进行下去,我们知道,△t 越来越小,虽然它不为零,但永远逼近零,我们称它为无穷小,记为△t→0。
或者,用数学形式表示为lim △t=0。
其中“ lim ”表示极限,意思是△t 的极限值为 0。
常规计算:∆t →0∆t →0在简谐振动中,在单位时间内物体完成全振动的次数叫频率,用 f 表示,频率的 2π倍叫角频率,即ω =2πf ① lim (△t+C)=C② lim C ·△t=0③ lim f(△t)=f(0)∆t →0④ lim ∆t →0∆t →0f(t+△t)=f(t) ⑤ lim∆t →0sin( △ t)△ t∆t →0= 1『附录』常用等价无穷小关系( x → 0 )① sin x = x ㈢ 导 数;② tan x = x ;③1- cos x = 1x 22;④ ln (1+ x ) = x ;⑤ e x -1 = x前面我们用了极限“ lim ”的表示方法,那么物理量 y 的变化率的瞬时值 z 可以写成:∆t →0△ y dyz= lim,并简记为 z= ,称为物理量 y 函数对时间变量 t 的导数。
物理上经常用某物理量的变化∆t →0 △ t d t dx dv dq dФdW F dU率来定义或求解另一物理量,如 v= 、a= 、i= 、ε=N 等,甚至不限于对时间求导,如 F= 、E x = 、ρ=d t d t d t d t dm 等。
dld x dx这个 dt (也可以是 dx 、dv 、dm 等)其实相当于微元法中的时间微元△t,当然每次这样用 lim 来求物∆t →0理量变化率的瞬时值太繁琐了,毕竟微元法只是草创时期的微积分。
如果能把常见导数计算的基本规律弄懂,那么我们可以简单快速地求解物理量变化率的瞬时值(导数) 了。
同学们可以课后推导以下公式: ⑴ 导数的四则运算d(u ± v) du dv d() ·v - u· ① = ±③ = d t d t d t d(u·v) du dv u d t v 2② = ·v + u·d t d t d t v ⑵ 常见函数的导数 dCd cos t① =0(C 为常数); ④ =-sint ;dtdt n dt de t ② =nt n-1(n 为实数); ⑤ =e t; dt dtd sin t ③ dt=cost ; ⑶ 复合函数的导数在数学上,把 u=u(v(t))称为复合函数,即以函数 v(t)为 u(x)的自变量。