供热管道的应力计算

合集下载

供热管道应力验算

供热管道应力验算

供热管道应力验算1 一般规定1.1 管道的应力验算应采用应力分类法,并应符合下列规定:1 一次应力的当量应力不应大于钢材的许用应力;2 一次应力和二次应力的当量应力变化范围不应大于3倍钢材的许用应力;3 局部应力集中部位的一次应力、二次应力和峰值应力的当量应力变化幅度不应大于3倍钢材的许用应力。

1.2 进行管道应力计算时,计算参数应按下列规定取值:1 计算压力应取管道设计压力;2 工作循环最高温度应取供热管网设计供水温度;3 工作循环最低温度,对于全年运行的管道应取30℃,对于只在采暖期运行的管道应取10℃;4 计算安装温度应取安装时的最低温度;5 计算应力变化范围范围时,计算温差应采用工作循环最高温度与工作循环最低温度之差;6 计算轴向力时,计算温差应采用工作循环最高温度与计算安装温度之差。

1.3 保温管与土壤之间的单位长度摩擦力应按下式计算:⎪⎭⎫⎝⎛⨯⨯-+⨯⨯+=g D G D K F ρπσπμ2c v c 0421 (5.1.3-1)ϕsin 10-=K (5.1.3-2)式中:F ——单位长度摩擦力(N/m );μ——摩擦系数;c D ——外护管外径(m );v σ——管道中心线处土壤应力(Pa );G ——包括介质在内的保温管单位长度自重(N/m ); ρ——土壤密度(kg/m 3),可取1800 kg/m 3; g ——重力加速度(m/s 2); 0K ——土壤静压力系数;ϕ——回填土内摩擦角(°),砂土可取30°。

1.4 土壤应力应按下列公式计算:1 当管道中心线位于地下水位以上时的土壤应力:H g ⨯⨯=ρσv (5.1.4-1)式中:v σ——管道中心线处土壤应力(Pa )ρ——土壤密度(kg/m 3),可取1800 kg/m 3; g ——重力加速度(m/s 2);H ——管道中心线覆土深度(m ); 2 当管道中心线位于地下水位以下时的土壤应力:()w sw w v H H g H g -⨯+⨯⨯=ρρσ (5.1.4-2)式中:sw ρ——地下水位线以下的土壤有效密度(kg/m 3),可取1000 kg/m 3;w H ——地下水位线深度(m )。

管道常用计算公式

管道常用计算公式

=124.46MPa
答:所求管线的环向应力为124.46MPa。
管线轴向应力的计算
管线轴向应力计算公式:
a Ea(t

a
0
t 1 )
n
——管线的轴向应力(正值为拉应力,负值为压应力),MPa;
n
E ——钢材的弹性模量:2 . 06 10 5 , MPa ; a——钢材的线性膨胀系数: . 2 10 5 ,℃ 1
答:这段管的总膨胀量为0.96m.
第五节
线自然补偿(L型)的计算
在管道安装时,必须考虑热应力过高带来的危害。如果限制因温差导 致的变形量,则管子本身会产生巨大的内应力,这种应第五节 线自 然补偿(L型)的计算
力称热应力,它会与内部流体压力一起联合作用加大管子的破坏和支 承的破坏。因此必须采取应对措施,这些措施包括采用活动管托,管 夹、采用热补偿。热补偿又分自然补偿和补偿器补偿。所谓自然补偿 就是利用管线某一弯曲管段的弹性变形,来吸收另一管段的变形量的 方法。其弯曲部位就称自然补偿器。利用自然补偿器补偿管线长短变 化,称线自然补偿。常见的自然补偿器有L型、Z型、U型及混合型,但 其基本型是L型。(见图一)。所以我们先掌握好L型线自然补偿的计 算。
三、查表计算:有关手册和所有管工教材附表都有钢管规格表,各 种规格每米质量(原称重量)都在表中列出。 G = L.每米质量 L—管长,m。 例如1000m公称直径40mm的加厚管的质量是多少? 查表知该规格管壁厚4.25、每米4.58kg,那么总质量为: 4.58×1000=4580kg=4.58吨。(未计接头焊道高处质量)
但不能用在6.4MPa的输气管线上。
式中p—流体压力,MPa;(上173、下42页

供热管道穿跨越城区景观河设计与应力验算

供热管道穿跨越城区景观河设计与应力验算

供热管道穿跨越城区景观河设计与应力验算李宏俊;郑萌;李响;郑炳健【摘要】在某供热工程中,供热管道(供回水管道规格为DN 1 200 mm)沿城区主干路机动车道敷设,沿途多处需穿跨越城区景观河.针对供热管道穿跨越河面宽度为25 m景观河(过河桥采用暗桥方式),对设计方案进行筛选,对供热管道进行应力验算与位移计算.在比较3种穿跨越设计方案(河底开挖直埋穿越、河底非开挖顶管穿越、河面架空跨越)的施工难度、工程造价、对城区景观影响的基础上,最终选取河底开挖直埋穿越设计方案.在穿越景观河时,供热管道倾斜向下至景观河暗桥以外区域进行直埋敷设(埋深要求为稳定河床下1 m).采用START Prof软件对供热管道进行应力验算与位移计算.各节点均满足应力验算要求.供热管道倾斜向下位置的弯头位移较大,为防止运行时保温层出现挤压变形而失去保温作用,可在弯头出现位移一侧设置柔性泡沫垫,吸收部分位移.【期刊名称】《煤气与热力》【年(卷),期】2018(038)005【总页数】5页(P6-10)【关键词】供热管道;城区景观河;穿跨越;应力验算;位移【作者】李宏俊;郑萌;李响;郑炳健【作者单位】中国市政工程华北设计研究总院有限公司第六设计研究院,天津300381;中国市政工程华北设计研究总院有限公司第六设计研究院,天津300381;天津市华安消防工程有限公司,天津300182;中国市政工程华北设计研究总院有限公司第六设计研究院,天津300381【正文语种】中文【中图分类】TU995.3在洛阳市某供热工程中,供热管道(供回水管道规格为DN 1 200 mm)沿城区主干路自西向东敷设,按规划要求布置在机动车道下,沿途存在多处与道路垂直交叉的景观河(指在城市、社区、公园等地区为了增加整体美观、创造悠闲和谐的人文景观而专门设计的人工河道),供热管道穿越景观河成为重要的设计内容。

本文结合供热管道穿越河面宽度为25 m景观河(过河桥采用暗桥方式)的工程,对供热管道穿越城区景观河的设计方案进行筛选,对供热管道进行应力验算与位移计算。

供热工程论述题

供热工程论述题
1)闭式热水供热系统的网路补水量少。在运行中,闭式热水供热系统容易监测网路系统的严密程度。
开式系统失水量大,补水的测量不能说明系统的坚固性,所以供热系统的严密程度监测复杂;
2)在闭式热水供热系统中,网路循环水通过表面式热交换器将城市上水加热,热水供应用水的水质与自来水水质相同且稳定。开式供热系统因为与回水管中水的变流量有关,热网水力工况很不稳定,循环水水质不稳定,卫生监测困难;
答:间壁式换热器在供热系统中因高低温两种热媒互不掺混,一、二级网具有不同的压力而运行管理方便,可靠性好,技术经济性高等优点而被城市集中供热系统普遍采用。
20、换热器的选择原则有哪些?p377
答:
1)换热器的容量和台数应根据热负荷调节并按照最不利工况进行选择,一般不设备用。但一台换热器停用时,其余的应满足60~75%热负荷的需要。
答:
1).闭式热力网补水泵的流量不应小于系统循环流量的2%;事故补水量不应小于供热系统循环流量的4%。
2).开式热力网补水量,不应小于生活热水最大设计流量和供热系统泄漏流量之和。
3).补水泵扬程的选择计算与补水点和定压点(压力控制点)的相对位置有关。补水点和定压点在同一位置时,补水压力不小于补水点管道压力加30-50KPa;旁通管或供水管定压时满足静压所需压力加30-50KPa;
12、热水网路压力状况的技术要求有哪些?
答:热水供热系统在运行或停止运行时,系统内热媒的压力必须满足下列基本技术要求:
1)不超压,在与热水网路直接连接的用户系统中,压力不应超过用户系统用热设备及管道构件的承压能力;
2)不汽化,在高温水网路和用户系统内,水温超过100℃的地点,热媒压力不低于该水温下的汽化压力,同时还应留有30-50kPa的富裕压力;
5、试述钢制散热器与铸铁散热器相比的优缺点。

DB37 T5021-2014 Ⅱ型耐热聚乙烯(PE-RTⅡ)低温直埋供热管道设计与施工规范

DB37 T5021-2014 Ⅱ型耐热聚乙烯(PE-RTⅡ)低温直埋供热管道设计与施工规范

3


前 言 ................................................................................................................................................................... 3 1 2 总 则 .......................................................................................................................................................... 1 术语与符号 .................................................................................................................................................. 2 2.1 术语 ........................................................................................................................................................ 2 2.2 符号 ....................................................................................................................................

供热管道的应力计算

供热管道的应力计算

三、应力分类



1.一次应力 其特点是无自限性,始终随内压力或外载增 加而增大。当超过某一限度时,将使管道变形增加直至破 坏。内压力或外载力产生的应力属一次应力。 2.二次应力 由于变形受约束或结构各部分间变形协调而 引起的应力。主要特征是部分材料产生小变形或进入屈服 后,变形协调即得到满足,变形不再继续发展,应力不再 增加,即它具有自限性。管道由热胀、冷缩和其它位移作 用产生的应力认为属二次应力。 3.峰值应力 由结构形状的局部突变而引起的局部应力集 中。其基本特征是不引起任何显著变形,但它是材料疲劳 破坏的主要原因。
2.管道内压力作用在环形端面上产生的推力


管道内压力作用在波纹管环面上产生的推力Ph, 可近似按下式计算: Ph=P.A N (14-13) 式中 P-管道内压力,Pa; ’ . . A-有效面积,m2,近似以波纹半波高为直径计算出的 圆面积,同样可从产品样本中查出。 为使轴向波纹管补偿器严格地按管线轴线热胀或 冷缩,补偿器应靠近一个固定支座(架)设置,并设置 导向支座。导向支座宜采用整体箍住管子的型式,以 控制横向位移。
(2)弹性力的计算方法

“弹性中心法”对方型补偿器进行应力验算时的弹性力:

Pty=0 E-管道钢材20℃时的弹性模数,N/m2; I-管道断面的惯性矩,m4; · Ixo-折算管段对x0轴的线惯性矩,m3. 弹性中心坐标(x0 y0) X0=0, y0=(l2+2R)(l2+l3+3.14RKr)/Lzh
二、活动支座间距的确定

在确保安全运行前提下,应尽可能扩大动支座的间距,
以节约供热管线的投资费用。允许间距按强度条件和刚度 条件两中情况考虑

管道应力计算

管道应力计算
作用在单位长度管道上的垂直分布荷载
G1
2
G2
3
G3
判断
1.7E+09
固定墩设计 1 固定墩后背土压力折减系数 2 被动土压力 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 综合抵消系数 推力系数
固定墩底面与土壤产生的摩擦力 固定墩侧面与土壤产生的摩擦力 固定墩顶面与土壤产生的摩擦力
K Ep f1 f2 f3 Ea T Kp
与土壤特性和管道刚度有关的参数
Ip Ib C К Cm Z 按4.1.6选取 (DcC/(4EIp106))0.25 l1≥2.3/К 1/(1+KК Rcφ (Ip/Ib)) Atg (φ /2)/(2К 3Ip(1+Cm)) [α E(t1-t2)-ν σ t]A10 (Z2+(2Z/Fmin)Na)0.5-Z
给定
0.6
主动土压力
供热管道对固定墩作用力
抗滑移系数
(KEp+f1+f2+f3)/(Ea+T)
1.4
满足要求
Kp≥1.3 判断 等径等壁厚管道各种布置方式的固定墩推力 l1 长管长度 给定 短管长度 过渡段最大长度 过渡段最小长度 l2 Lmax Lmin ψ η 给定 [α E(t1-t0)-ν σ t]A10 /Fmin [α E(t1-t0)-ν σ t]A106/Fmax l1/l2 按l1/l2查图E.0.3-1 l1/Lmin 按l1/Lmin查图E.0.3-2 1.l1≥l2≥Lmax,0.1·Na
n ν Di
t
给定 钢材 D0-2t PdDi/(2δ ) 按计算温度查表B.0.2 按计算温度查表B.0.2 按计算温度查表B.0.1 [nσ s-(1-ν )σ t]/(α E) 热网计算工作温度 安装时当地的最低温度 t1-t0 π /4(D02-Di2) π ρ gμ max(H+Dc/2)Dc π ρ gμ

《供热工程》供热管道的应力计算与作用力计算

《供热工程》供热管道的应力计算与作用力计算
对于运行温度在85~150oC 的直埋管道,直管段只能设置补 偿装置,或进行预热,或设置一次性补偿器
安定性分析方法
该理论进行应力分类,温度应力的强度条件为不出现循环塑 性变形的安定性条件
反映了钢材塑性变形和破坏的关系,充分利用了钢材的潜力 对于运行温度在85~150oC 的直埋管道,直管段一般可不设 置补偿器,也不预热
当固定支座设置在两个不同管径间的不平衡轴向力:
Pch PF1 F2
N
当固定支座设置计 对在波算有纹截管面堵补积板偿,的器对端,于头F套为筒、波补或纹偿有管器补弯,偿F器为的以有套效筒面补积偿,
管以及阀门的管器 近段外 似,套 以管 波内的 纹压内 半产径 波生为 高的直 为径 直轴计 径向算 计力的算:圆出面的积圆Pn面积PF
管道中因温度变化产生热胀变形,热胀变形不能完全释放, 产生了较大的轴向力和轴向应力,属于二次应力 如果二次应力超过了极限状态,管道只会产生有限的塑性交 形,但会造成钢管内部结构一定程度的损伤;循环往复的塑 性变形会使管道发生破损
15.3.2 直埋热水管道的荷载
土壤轴向摩擦力
轴向摩擦力的计算
F 管道g单位土H长土壤度壤密轴摩度D2向擦管,k 摩系顶kDg擦数覆/k力,土管m,与深道3N管度保/道,m护N保m层/护的m层外材径质,和m回填土类型有关
15.3.2 直埋热水管道的荷载
温度
管道工作循环最高温度(T1)取用室外供暖计算温度下的热网 计算供水温度
管道工作循环最低温度(T2),对于全年运行的管网取30oC ; 对于只在供暖期运行的管网,取10 oC
计算安装温度(T0),对于冷安装取安装时当地可能出现的最 低温度;对于预热安装取预热温度
L
L1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、应力分类
1.一次应力 其特点是无自限性,始终随内压力或外载增 加而增大。当超过某一限度时,将使管道变形增加直至破 坏。内压力或外载力产生的应力属一次应力。
2.二次应力 由于变形受约束或结构各部分间变形协调而 引起的应力。主要特征是部分材料产生小变形或进入屈服 后,变形协调即得到满足,变形不再继续发展,应力不再 增加,即它具有自限性。管道由热胀、冷缩和其它位移作 用产生的应力认为属二次应力。
(14-1)
P-流体压力,MPa;
[σ]-基本(额定)许用应力,MPa;(详见附录14-1)
η-纵向焊缝减弱系数,对无缝钢管η=1.0,对单面
焊接的螺旋缝焊接钢管, η=0.8,对纵缝焊接钢管,按附
录14-2选取。
2. 计算壁厚
Sj=SL+C mm
C-管子壁厚附加值,mm。对无缝钢管C=A1SL,其中 A1称作管子壁厚负偏差系数。根据管子产品技术条件 中规定的壁厚允许负偏差百分数值,按表14-1取用。 对焊接钢管,壁厚为5.5mm及以下时,C=0·5mm; 6-7
Lmax
15[ ]W
q
m (14-3)
Lmax-供热管道活动支座的允许间距,m,
[σ]-管材的许用外载综合应力,MPa,按附录14-3确定。
W-管子断面抗弯矩,cm3,按附录14-3确定。
-管子横向焊缝系数,见表14-2, q-外载负荷作用下的管子单位长度的计算重量, N/m。见附录14-3
一、方形补偿器
方形补偿器选择计算内容 1.方形补偿器所补偿的伸长量∆x; 2.选择方形补偿器的形式和几何尺寸;
B=2H
B=H
B偿器的形式和几何尺寸
3.根据方形补偿器的几何尺寸和热伸长量,进行应力验算。 验算最不利断面上的应力不超过规定的许用应力范围,并计 算方形补偿器的弹性力,从而确定对固定支座产生的水平推 力的大小。
管子横向焊缝系数值
表14-2
焊接方式
手工电弧焊 有垫环对焊 无垫环对焊

0.7 0.9 0.7
焊接方式
手工双面加强焊 自动双面焊 自动单面焊

0.95 1.0 0.8
(二)按刚度条件确定活动支座的允许间距
根据对挠度的限制而确定活动支座的允许间距,称为按 刚度条件确定的支座允许间距。
1.不允许有反坡时
3.峰值应力 由结构形状的局部突变而引起的局部应力集 中。其基本特征是不引起任何显著变形,但它是材料疲劳 破坏的主要原因。
14-2 管壁厚度及活动支座间距的确定
一、管壁厚度的确定
供热管道的内压力为一次应力,理论计算璧厚与内压力有关 1.管道的理论壁厚
SL
PDW
2[ ]
P
mm
式中 SL-管子理论计算壁厚,mm;
2-管线按允许最大挠度ymax条件下 的变形线
曲面的距离,m EI-管子的刚度,N·m2;
ymax-最大允许挠度=(O.02~O.1)DN。
根据式(14-5)和(14-6),用试算法求解,直到L1=L2为止。
附录14-4给出按不同条件计算的管道活动支座最大允许间距表。
14-3 管道的热伸长及其补偿
依均布荷载的连续梁的角变方程式
得出:
Lmax
53
iEI q
m
式中 i-管道的坡度;
(14-4) 图14-1活动支座间供热管道变形示意图
1-按最大角度不大于管线坡度条件下的变形线 2-管线按允许最大挠度ymzx条件下的变形线
I-管道断面惯性矩,m 4。见附录14-3;
E-管道材料的弹性模数,N/m2。见附录14-3;
管道受热的自由伸长量,可按下式计算:
∆x=α(t1-t2)L
m
式中 ∆x-管道的热伸长量,m;
α-管道的线膨胀系数(见附录14—1),
一般可取α=12×10-6m/m·℃;
t1-管壁最高温度,可取热媒的最高温度,℃;
t2-管道安装时的温度,在温度不能确定时,可取
为最冷月平均温度,℃,
L-计算管段的长度,m。
mm时,取C=0.6mm;8-25mm时,取C=0·8mm。
任何情况下管子壁厚附加值C不得小于O·5mm。
表14-1
管子壁厚允许偏差 0
-5
-8
-9
-10 -11 -12.5 -15
A1
0.05 0.105 0.141 0.154 0.167 0.18 0.20 0.235
3.选用壁厚
S≥SJ
4.应力验算
如已知管壁厚度,进行应力验算时,由内压力产生的折算 应力σZS不得大于钢材在计算温度下的基本许用应力。
σZS≤[σ] 内压力产生的折算应力由下式计算:
ZS
P[DW (S C1 )]
2(S C1)
式中、Dw管子外径,mm
MPa (14-2)
C1-验算时的管子壁厚附加值,对无缝钢管和产品
q-外载负荷作用下管子的单位长度的计算重量,N/m。
2.允许反坡、控制管道的最大允许挠度
L
L1
24EI qx 3
( ymax
ix ) 2
x
(14-5)
L L2 2x
x2
24EI q
y max x2
(14-6)
1-管线按最大角度不大于管线坡度 条件下的变形线;
式中 L1、L2-活动支座的允许间距, x-管道活动支座到管子最大挠
技术条件提供有壁厚允许负偏差百分数的焊接钢管,按
C1=SA1/(1+A1)计算,A1值按表14-1取用。对未提供壁厚 允许负偏差值的焊接钢管,C1=C。
二、活动支座间距的确定
在确保安全运行前提下,应尽可能扩大活动支座的间距,
以节约供热管线的投资费用。允许间距按强度条件和刚度
条件两中情况考虑
(一)按强度条件确定活动支座的允许间距 依据均匀荷载的多跨粱弯曲应力公式以及许用外载应力值
σf-热胀二次应力,取补偿器危险断面的应力值,MPa。
(1)弯管的柔性系数
方型补偿器的弹性力计算推荐采用弹性中心法。
方形补偿器的弯管部分受热变形而被弯曲时,由圆形变 为椭圆形。此时管子的刚度将降低,弯管刚度降低的系 数称为减刚系数Kg,弯管减刚系数Kg的倒数称为弯管柔性 系数Kr,弯管的柔性系数表示弯管相对于直管在承受弯 矩时柔性增大的程度。
根据《技术规定》,管道由热胀、冷缩和其它位移受约束而 产生的热胀二次应力σf、不得大于按下式计算的许用应力 值。
σf≤1.2[σ]20j+0.2[σ]tj=1.4[σ]20j Mpa (14-7)
式中 [σ]20j钢材在20℃时的基本许用应力(附录14-1),MPa;
[σ]tj钢材在计算温度下的基本许用应力(附录14-1),MPa;
相关文档
最新文档