卧式液氨储罐设计
液氨储罐的设计

燕京理工学院Yanching Institute of Technology(2018)届本科生化工设备机械基础大作业题目:液氨储罐的设计学院:化工与材料工程学院专业:应用化学学号: 140140023 姓名:游超杰指导教师:周莉莉2017年6月30日目录1、设计任务书12、前言33.设计方案43.1设计依据及原则43.2、设计要求5技术特性表54、设计计算74.1、圆筒厚度设计74.2、封头壁厚设计84.3、水压试验及强度校核95、选择人孔并核算开孔补强105.1、人孔参数确定105.2、开孔补强的计算116、接口管设计146.1、进料管146.2、出料管146.3、液位计接口管146.4、放空阀接口管156.5、安全阀接口管156.6、排污管156.7、压力表接口157、鞍座负载设计15首先粗略计算鞍座负荷157.1、罐体质量m1167.2、封头质量m2167.3、液氨质量m3167.4、附件质量m4178、设计汇总181、设计任务书课题:液氨储罐的设计(家乡XX)设计内容:根据既定的工艺参数设计一台液氨储罐已知工艺参数:最高使用温度T=40℃罐体容积V=12mm3此时氨的饱和蒸汽压P=1.55MPa具体的内容包括:1.筒体材料选择2.罐的结构及尺寸(内径、长度)形状(卧式、球形、立式),罐体厚度,封头形状及厚度,支座的选择,人孔及接管,开孔补强下达时间:2017年6月16日完成时间:2017年6月30日2、前言本次课程设计是化工与材料工程学院,应用化学专业对化工设备机械基础这门课程进行的。
课设题目为液氨储罐的课程设计。
液氨,又称为无水氨,是一种无色液体。
氨作为一种重要的化工原料,应用广泛,为运输及储存便利,通常将气态的氨气通过加压或冷却得到液态氨。
液氨在工业上应用广泛,而且具有腐蚀性,且容易挥发,所以其化学事故发生率相当高。
NH3气氨相对密度(空气=1):0.59,分子量为17.04.液氨的密度是0.562871Kg/L(50℃) 。
液氨卧式储罐设计

前言本说明书为《31m3液氨储罐设计说明书》。
本文采用分析设计方法,综合考虑环境条件、液体性质等因素并参考相关标准,按工艺设计、设备结构设计、设备强度计算的设计顺序,分别对储罐的筒体、封头、鞍座、人孔、接管进行设计,然后采用1SW6-1998对其进行强度校核,最后形成合理的设计方案。
目录附:设计任务书 (2)第一章绪论 (3)(一)设计任务 (3)(二)设计思想 (3)(三)设计特点 (3)第二章材料及结构的选择与论证 (3)(一)材料选择 (3)(二)结构选择与论证 (3)第三章设计计算 (5)(一)计算筒体的壁厚 (5)(二)计算封头的壁厚 (6)(三)水压试验及强度校核 (6)(四)选择人孔并核算开孔补强 (7)(五)核算承载能力并选择鞍座 (9)(六)选择液面计 (9)(七)选择压力计 (10)(八)选配工艺接管 (10)第四章设计汇总 (11)第五章结束语 (12)第六章参考文献 (13)第一章绪论(一)设计任务:针对化工厂中常见的液氨储罐,完成主体设备的工艺设计和附属设备的选型设计,绘制总装配图和零件图,并编写设计说明书。
(二)设计思想:综合运用所学的机械基础课程知识,本着认真负责的态度,对储罐进行设计。
在设计过程中综合考虑了经济性,实用性,安全可靠性。
各项设计参数都正确参考了行业使用标准或国家标准,这样让设计有章可循,并考虑到结构方面的要求,合理地进行设计。
(三)设计特点:容器的设计一般由筒体、封头、法兰、支座、接口管及人孔等组成。
常、低压化工设备通用零部件大都有标准,设计时可直接选用。
本设计书主要介绍了液罐的的筒体、封头的设计计算,低压通用零部件的选用。
各项设计参数都正确参考了行业使用标准或国家标准,这样让设计有章可循,并考虑到结构方面的要求,合理地进行设计。
第二章材料及结构的选择与论证(一)材料选择:纯液氨腐蚀性小,贮罐可选用一般钢材,但由于压力较大,可以考虑20R、16MnR这两种钢种。
1.6Mpa卧式液氨储罐机械设计

目录第一章概述 (2)1.1设计背景意义 (2)1.2主要工作 (2)第二章工艺设计 (2)2.1设计内容 (2)2.2设计数据 (2)2.3设计压力 (3)2.4主要元件材料的选择 (3)2.5工艺规程 (3)2.6 工艺主要选材及规格 (4)第三章机械设计 (6)3.1结构设计 (6)3.1.1总体结构 (6)3.1.2补强结构 (6)3.1.3焊缝接头结构设计 (6)3.2容器计算及校核 (6)3.2.1罐体壁厚计算 (6)3.2.1封头壁厚计算及校核 (7)3.2.2鞍座计算 (7)3.2.3人孔补强确定 (8)3.3压力试验 (8)第四章零部件选型 (9)4.1鞍座选型 (9)4.2支座选型 (9)4.3人孔选型 (9)4.4其他零部件选型 (10)第五章总结 (10)第六章参考文献 (10)第一章概述1.1设计背景意义本组液氨储罐设计是针对《化工设备机械基础》这门课程的一次总结,是综合运用所学的知识,查阅相关书籍,经过多次老师指导和同学交流完成。
典型化工设备机械设计是对课程内容的应用性训练环节,是学生应用所学知识进行阶段性的单体设备或单元设计方面的专业训练过程,也是对理论教学效果的检验。
通过这一环节使学生在查阅资料、理论计算、工程制图、调查研究、数据处理等方面得到基本训练,培养学生综合运用理论知识分析、解决实际问题的能力。
1.2主要工作设计一个液氨储罐属于化工常见的储运设备,一般可分解为筒体,封头,法兰,人孔,手孔,支座及管口等几种元件。
储罐的工艺尺寸可通过工艺计算及生产经验决定。
液氨储罐是合成氨工业中必不可少的储存容器,所以本设计过程的内容包括容器的材质的选取、容器筒体的性状及厚度、封头的性状及厚度、确定支座,人孔及接管、开孔补强的情况以及其他接管的设计与选取。
第二章工艺设计2.1设计内容设计一卧式液氨储罐。
工艺参数为储罐内径D i=2600mm耀体(不包括圭寸头)长度L=4800mm。
卧式液氨储罐课程设计

目录一、前言 (3)二、摘要 (4)三、绪论 (5)3.1 设计任务: (5)3.2设计思想: (5)3.3 设计特点: (5)四、设备材料及结构的选择 (6)4.1材料选择 (6)4.2结构选择 (6)4.2.1 封头的选择 (6)4.2.2容器支座的选择 (6)4.3法兰型式 (6)4.4液面计的选择 (7)4.4.1 (7)4.4.2 (7)4.4.3 (7)五、结构计算 (8)5.1罐体壁厚设计 (8)5.2封头厚度设计 (9)5.2.1计算封头厚度 (9)5.2.2校核罐体与封头水压实验强度 (9)5.3选择人孔并核算开孔补强 (10)5.4储罐零部件的选取 (12)5.4.1储罐支座 (12)5.4.2罐体质量 (12)5.4.3封头质量 (12)5.4.4液氨质量 (13)5.4.5附件质量 (13)六、接管的选取 (14)6.1液氨进料管 (14)6.1.1接管的计算厚度为: (14)6.1.2开孔有效补强宽度B,有效补强高度的确定 (14)6.1.3需要补强的金属面积和可以作为补强的金属面积的计算 (14)6.2 平衡口管 (14)6.3 液位指示口管 (15)6.4 放空口管 (15)6.5 液体进口管 (15)6.6 液体出口管 (15)七、压力计选择 (16)八、符号说明 (17)九、致谢 (18)十、参考文献 (19)一、前言压力容器是一种密闭的承压容器,通常是由板、壳组合而成的焊接结构。
其应用广泛且用量大,但又比较容易发生事故且事故往往是严重的。
压力容器的设计一般有筒体、封头、密封装置、支座、接口管、人孔及安全附件等组成。
与任何工程设计一样,压力容器的设计目标也是对新的或该进的工程系统和装置进行创新和优化,以满足人们的愿望与需要。
具体来说,压力容器的设计人员应根据设计任务的特定要求,遵循设计工作的基本规则或规范,以及材料控制﹑结构细节﹑制造工艺﹑检验及质量管理等方面的规则,并尽可能地采用标准。
立方米卧式液氨储罐的设计

2.8m3卧式液氨储罐的设计一、题目来源题目来源:实际生产二、研究的目的和意义储罐是一种用于储存液体或气体的密封容器,主要用于存储或盛装气体、液体、液化气体等介质的设备,在化工、石油、能源、冶金、消防、轻工、环保、制药、食品、城市燃气等行业得到了广泛的应用,储存介质涵盖了(丙烷、丁烷、丙烯、乙烯、液化石油气、液氨等)液化气体、氧气、氮气、天然气和城市煤气等气体,在国民经济发展中起着不可替代的作用。
其种类很多,大体上有:滚塑储罐,玻璃钢储罐,陶瓷储罐、橡胶储罐、焊接塑料储罐等。
就储罐的性价比来讲,现在以滚塑储罐最为优越,滚塑储罐又可以分钢衬塑储罐,全塑储罐两大系,分别包括立式,卧式,运输,搅拌等多个品种。
而卧式液化气储罐是目前中、小型液化气站储存和运输液化气的主要容器之一,在石油化工行业中应用广泛并占有相当大的比例。
卧式储罐的容积一般都小于100m3,通常用于生产环节或加油站。
年来随着制造工艺的提高其容积有逐渐增大的趋势。
随着容积的增大,储罐在设计和使用中的安全可靠性就变得极为重要。
然而我国卧式储罐设计制造技术的还远落后于世界先进水平,制造较困难,加工费用高,且焊接、检验技术要求高。
所以研究卧式储罐设计及其焊接工艺对我国石油化工等行业有着极其重要的意义。
三、阅读的主要参考文献及资料名称[1]吕宜涛,压力容器制造质量控制的研究,天津大学学位论文,1997年9月.[2]马自勤,孙丽,王秀伦等:产品结构树在CAPP信息管理中的应用,大连铁道学院学报,2001年9月,第22卷,第3期.[3]王锦,张振明,黄乃康:集成环境下面向产品的 CAPP系统,计算机工程与应用,2000年4月.[4]肖凌,姚建初:集成环境下的计算机辅助工艺设计系统,机械设计与制造工程,2000年7月,第29卷,第4期.[5]赵丽萍,陈鸿:面向CAPP的工作流程管理研究与应用,计算机工程与应用,2001年第17期.[6]高清,马云辉,马玉林:先进制造系统中的质量保证,高技术通讯,1995年5月.[7]张曙,张为民:新一代CAPP系统,组合机床与自动化加工技术,1996年第10期.[8]汤善甫,朱思明主编:化工设备机械基础,第2版,华东理工出版社,2004年12月[9] 陈祝年,焊接工程师手册。
卧式储罐设计

1.1材料选择纯液氨腐蚀性小,贮罐可选用一般钢材,但由于压力较大,可以考虑20R、16MnR.这两种钢种。
如果纯粹从技术角度看,建议选用20R类的低碳钢板, 16MnR 钢板的价格虽比20R贵,但在制造费用方面,同等重量设备的计价,16MnR钢板为比较经济。
所以在此选择16MnR钢板作为制造筒体和封头材料。
1.2结构选择与论证1.2.1 封头的选择从受力与制造方面分析来看,球形封头是最理想的结构形式。
但缺点是深度大,冲压较为困难;椭圆封头浓度比半球形封头小得多,易于冲压成型,是目前中低压容器中应用较多的封头之一。
平板封头因直径各厚度都较大,加工与焊接方面都要遇到不少困难。
从钢材耗用量来年:球形封头用材最少,比椭圆开封头节约,平板封头用材最多。
因此,从强度、结构和制造方面综合考虑,采用椭圆形封头最为合理。
1.2.2容器支座的选择容器支座有鞍座,圈座和支腿三种,用来支撑容器的重量。
鞍式支座是应用最广泛的一种卧式支座。
从应力分析看,承受同样载且具有同样截面几何形状和尺寸的梁采用多个支承比采用两个支承优越,因为多支承在粱内产生的应力较小。
所以,从理论上说卧式容器的支座数目越多越好。
但在是实际上卧式容器应尽可能设计成双支座,这是因为当支点多于两个时,各支承平面的影响如容器简体的弯曲度和局部不圆度、支座的水平度、各支座基础下沉的不均匀性、容器不同部位抗局部交形的相对刚性等等,均会影响支座反力的分市。
因此采用多支座不仅体现不出理论上的优越论反而会造成容器受力不均匀程度的增加,给容器的运行安全带来不利的影响。
所以一台卧式容器支座一般情况不宜多于二个。
圈座一般对于大直径薄壁容器和真空操作的容器。
腿式支座简称支腿,因这种支座在与容器壳壁连接处会造成严重的局部应力,故只适合用于小型设备(DN≤1600,L≤≤5m)。
综上考虑在此选择双个鞍式支座作为储罐的支座。
1.3法兰型式法兰连接主要优点是密封可靠、强度足够及应用广泛。
卧式液氨储罐设计说明书

十六组液氨储罐设计说明书(化工设备机械基础课程设计)指导教师:张永强韩晓星完成时间:2012.11设计任务书设计课题:液氨储罐工艺参数:最高使用温度:T=40℃公称直径:Di=2400mm筒体长度(不含封头):L0=4500mm 设计内容:1.罐体材料的选择2.罐体的规格3.罐体的形状4.罐体的厚度5.封头形状及厚度6.支座的选择7.人孔及接管选择8.开孔补强9.核算校验10.设备装备图(A2)设计人:下达时间:2012年11月完成时间:2012年11月前言液氨,又称为无水氨,是一种无色液体。
氨作为一种重要的化工原料,应用广泛,为运输及储存便利,通常将气态的氨气通过加压或冷却得到液态氨。
液氨在工业上应用广泛,而且具有腐蚀性,且容易挥发,所以其化学事故发生率相当高。
无色气体,有刺激性恶臭味。
分子式NH3。
分子量17.03。
相对密度0.7714g/L。
熔点-77.7℃。
沸点-33.35℃。
自燃点651.11℃。
蒸汽压1013.08kPa(25.7℃)。
蒸汽与空气混合物爆炸极限16~25%(最易引燃浓度17%)。
氨在20℃水中溶解度34%,25℃时,在无水乙醇中溶解度10%,在甲醇中溶解度16%,溶于氯仿、乙醚,它是许多元素和化合物的良好溶剂。
水溶液呈碱性。
液态氨将侵蚀某些塑料制品,橡胶和涂层。
遇热、明火,难以点燃而危险性较低; 但氨和空气混合物达到上述浓度范围遇明火会燃烧和爆炸,如有油类或其它可燃性物质存在,则危险性更高。
与硫酸或其它强无机酸反应放热,混合物可达到沸腾。
不能与下列物质共存:乙醛、丙烯醛、硼、卤素、环氧乙烷、次氯酸、硝酸、汞、氯化银、硫、锑、双氧水等。
本次课程设计将根据液氨的性质,结合所学知识设计一个液氨贮罐。
由于时间仓促,如有不足之处,欢迎指正。
编者2012年11月目录1. 液氨储罐设计参数的确定 ............ 错误!未定义书签。
1.1.设计温度与设计压力的确定.......... 错误!未定义书签。
卧式液氨储罐课程设计装配图

12
进液口
1
无缝钢管
11
出液口
1
无缝钢管
10
排污口
1
0Cr18Ni9Ti
9
气相口
1
20
8
安全阀口
2
20
通用件
7
放散口
1
20
6
补强圈
1
16MnR
5
人孔
1
16MnR
MFM-S35CM(W·B-0)2A42819-2.5
4
螺栓
12
Q234-A
3
法兰
1
16MnR
2 标准椭圆封头 2
0Cr18Ni9Ti
1
卧式鞍座
项 目 指数
设计压力 MPa 1.705 容器类别 第三类
最高压力MPa 1.80 受压元件材质 16MnR
设计温度 C° -20~50
3
全容积 m
31
工作介质 液氨 腐蚀余量 mm 2.0
技术要求
、本产品的制作及验收执行GB150-1998。 、人孔处进行补强。 、使用时应在规定环境下使用以免造成不必要的损失。 、回转筒体与封头的焊接接头采用全焊透对接焊缝接头的形式。 、接管与筒体的焊接接头坡口为45°~55°。 、人孔处接管以及补强圈的焊接采用角焊,坡口为48°~52°。
2
Q235-B
Dg2008AJB/T4712-1992
序号 名 称 数量 材 料
备
注
制图
赵利君 2019年6月10日 比例 1:16
图纸
审核
富利清 2019年6月15日
山西大同大学
16 材料一班
卧式液氨储罐
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
?t
?
pc
?Di
?
?e
?
?
141.19 MPa
?
??
?t ?
?
157 ? 1.0
?
157 MPa
2? e
式中 ? e ——有效厚度,? e ? ? n ? C,㎜; ?n ——名义厚度,㎜;
C ——厚度附加量,㎜;
? t ——设计温度下圆筒的计算应力,MPa。
满足强度条件。
圆筒的最大允许工作压力?pw ?为
? 大学本科的学习生活即将结束。在此,感谢所 有曾经教导过我的老师和关心过我的同学,他 们在我成长过程中给予了我很大的帮助。
图2-1 常见容器凸形封头的形式
2.2 材料及结构的选择与论证
? 2.2.3 容器支座的选择 压力容器靠支座支承并固定在基础上 ,鞍式支
座是应用最广泛的一种卧式支座,鞍式支座普遍使 用双鞍座支承。
图2-2 鞍式支座总体图
3 设计计算
? 3.1 确定罐体的内径及长度 ? 3.2 筒体厚度设计 ? 3.3 封头壁厚设计 ? 3.4 水压试验及强度校核 ? 3.5 核算承载能力并选择鞍座
卧式液氨储罐设计
LOGO
论文框架
1. 前 言 2. 设计总论 3. 设计计算 4. 总 结
LOGO
1前言
本设计为一个在常温中压条件下的卧式液氨 储罐。液氨储罐是合成氨工业中必不可少的储 存容器,所以本设计主要内容包括容器材质选 取、罐体结构及壁厚设计、封头壁厚设计及支 座设计选取。在设计过程中综合考虑经济性、 实用性和安全可靠性。设备的选择大都有相应 的执行标准,各项设计参数都正确参考了行业 使用标准或国家标准,并考虑到结构方面的要 求,合理地进行设计。
每个鞍座所受负荷约994.95KN<1332KN,选用包角为120°的 鞍座,轻型带垫板焊制。即:
JB/T4712-92鞍座 A3800—F h=250 JB/T4712-92鞍座 A3800—S h=250
4总结
本次毕业设计是对所学知识的一个综合运用, 是在老师的悉心指导下严格按照毕业设计的格式要 求完成的。
0.9? s? ? 0.9? 305 ? 1.0 ? 274.5MPa
由于? T ? 0.9? s? ,故筒体满足水压试验时的强度要求。
3.5 核算承载能力并选择鞍座
? 3.5.1 承载核算
(1)罐体质量m1 (2)封头质量m2 (3)充水质量m3 (4)附件质量m4 设备总重量
m=m1+m2+m3+m4=201610.45kg=1989.90KN ? 3.5.2 鞍座的选择
3.1 确定罐体的内径及长度
根据工艺要求,本设计罐身为圆筒形,两端均用 标准椭圆形封头。根据《化工设备标准手册》标准 GB 9019-88 ,试选用筒体内经 Di=3800mm,罐身的长 度L=12000mm 。
对容积的核算: 筒体体积V1:V1=11.340 ×12=136.08m3 封头体积V2:经查表得到 V2=7.75m3 总体积: V=V1+2V2=151.58m3>150m3 所以取筒体: Di=3800mm L=12000mm
?] ? ]t
? 3.313 MPa
?? PT ? Pc ? 0.10 ? 2.75MPa
选取两者中压力较大值作为水压试验压力,即取 PT ? 3.313MPa 计算水压试验时应力
?T ?
pT
?Di
?
?e
?
?
176.51MPa
2? e?
16MnR钢板的钢材屈服极限 ? s ? 305MPa 在常温水压试验时的许用应力为:
2 设计总论
? 2.1 设计任务 ? 2.2 材料及结构的选择与论证
? 2.2.1 材料的选择 ? 2.2.2 封头的选择 ? 2.2.3 容器支座的选择
2.1 设计任务
表2-1 设计数据表
序号
项目
1
名称
2
用途
3 最高工作压力
4 最高工作温度
5
全容积
6 装料系数
7 工作介质名称
数值
单位
备注
卧式液氨储罐
? —焊缝街头系数;
Di —筒体内径,㎜。 在《钢制压力容器》中,只考虑钢板平面腐余量取C2=2㎜。
? d ? ? ? C2 ? 32.34 ? 2 ? 34.34㎜
式中 ?d ——设计厚度,㎜。 根据钢板厚度规格,圆整后确定名义厚度?n ? 38㎜。
3.2 筒体厚度设计
现已知圆筒Di、?n ,需对圆筒进行强度校核。校核如下:
3.2 筒体厚度设计
由于 pc ? 1.06 p=2.65MPa ? 0.4?? ?t ? ? 62.8MPa
所以
?
?
pcDi
2 ?? ?t ? ?
pc
?
32 .34 ㎜
式中 ? —筒体计算厚度, ㎜;
pc—计算压力,通常可取最高工作压力的1.05~1.10倍,MPa;
?? ?t—许用应力,MPa;
液氨储藏
2.5
MPa
55
℃
150
M3
0.25
T/m3
液氨
2.2 材料及结构的选择与论证
? 2.2.1 材料及结构的选择 根据贮罐的工作压力、工作温度和介质,选用
16MnR制作罐体和封头。 筒体结构设计为圆筒形。
? 2.2.2 封头的选择 压力容器封头的种类较多,常见容器凸形封头形
式如图 2-1示。采用标准椭圆形封头。
因为是初次接触实际工程设计,并且是一个虚 拟的设计,参数选取没有实际工作经验,所以设计 结果是否可行,还需在以后的工作当中去验证。由 于本人知识储备有限,所做出的设计存在许多缺点 和不足,请老师们做出批评和指正。
谢辞
? 本文能够顺利完成,要感谢我的指导老师对我 的悉心教导,感谢系里的老师对我的关心和帮 助,感谢同学们给我的建议和帮助。
考虑钢板厚度规格,圆整后确定名义厚度? n ? 38㎜。
椭圆形封头的最大允许工作压力按下式确定
?pw ??
2?e ?? ?t ?
? Di ? 0.5? e
?
2.96 MPa
?
2.5MPa
所以封头也符合设计条件。
3.4 水压试验及强度校核
先按公式确定水压试验时的压力 pT为:
[ ?? [ ?
PT
? 1.25 Pc
?pw ??
2? e ?? ?t ?
Di ? ? e
?
2.95MPa
?
2.5MPa
式中 ?pw?——圆筒的最大允许工作压力,MPa。
满足设计条件。
3.3 封头壁厚设计
采用标准椭圆形封头,各参数与筒体相同。
计算厚度
?
?
2??
pc Di
?t ? ? 0.5 pc
?
32 .21㎜
设计厚度
? d ? ? ? C 2 ? 32 .21 ? 2 ? 34 .21 ㎜