红外光学玻璃与红外晶体材料光学特性

合集下载

光学原材料

光学原材料

光学原材料光学的原材料主要包括:1. 光学玻璃:包括有色光学玻璃、激光玻璃、石英光学玻璃、抗辐射玻璃、紫外红外光学玻璃、纤维光学玻璃、声光玻璃、磁光玻璃和光变色玻璃等。

2. 光学晶体:卤化物单晶,如氟化物单晶,溴、氯、碘的化合物单晶,铊的卤化物单晶等。

还有氧化物单晶,如蓝宝石(Al2O3)、水晶(SiO2)、氧化镁(MgO)和金红石(TiO2)等。

此外,制作透镜等光学元件的原材料包括石英、钠玻璃和钛酸锶等。

其中,石英透镜的优点在于防腐性强,可用于制作紫外线光学仪器。

钠玻璃透镜价格较低,适用于制作低成本光学仪器。

钛酸锶透镜的优点在于色散极小。

分析:光学原材料是制造各种光学元件的基础,其质量和性能直接影响到光学元件的质量和性能。

这些原材料包括各种玻璃、晶体、涂层材料等,下面将分别介绍它们的特点和作用。

首先是光学玻璃,它是制造各种透镜、棱镜、窗口等元件的主要材料。

光学玻璃具有高透明度、高折射率、低色散等特点,能够有效地传输和聚焦光线,使得光学元件能够发挥出最佳的性能。

此外,光学玻璃还具有优异的机械性能和化学稳定性,能够承受各种恶劣环境的影响,长期保持稳定的光学性能。

其次是光学晶体,它是制造激光器、光放大器、光调制器等元件的关键材料。

光学晶体具有优异的激光性能和光学性能,能够实现高效的光学放大和调制,是光通信、光存储、光谱分析等领域的重要原材料。

此外,光学晶体还具有优异的热学性能和机械性能,能够承受高功率激光的照射和机械应力的影响,保持长期稳定的性能。

最后是涂层材料,它是制造各种光学薄膜、滤光片、反射镜等元件的重要材料。

涂层材料具有不同的光学性质和物理性质,能够实现反射、透射、吸收、偏振等各种光学效果,扩展了光学元件的应用范围。

同时,涂层材料还具有优异的附着力和耐久性,能够长期保持稳定的性能。

综上所述,光学原材料是制造各种光学元件的关键基础,其质量和性能对光学元件的质量和性能有着至关重要的影响。

随着科技的不断发展,对光学原材料的要求也越来越高,需要不断研究和开发新的材料和技术,以满足不断增长的市场需求。

红外光学玻璃与红外晶体材料光学特性

红外光学玻璃与红外晶体材料光学特性

、红外光学玻璃与红外晶体材料光学特性:1■晶体材料晶体材料包括离子晶体与半导体晶体离子晶体包括碱卤化合物晶体,碱土一卤族化合物晶体及氧化物及某些无机盐晶体。

半导体晶体包括W族单元素晶体、川〜V族化合物和n〜w族化合物晶体等。

离子型晶体通常具有较高的透过率,同时有较低的折射率,因而反射损失小,一般不需镀增透膜,同时离子型晶体光学性能受温度影响也小于非离子型晶体。

半导体晶体属于共价晶体或某种离子耦合的共价键晶体。

晶体的特点是其物理和化学特性及使用特性的多样性。

晶体的折射率及色散度变化范围比其它类型材料丰富得多。

可以满足不同应用的需要,有一些晶体还具备光电、磁光、声光等效应,可以用作探测器材料。

[1]按内部晶体结构晶体材料可分为单晶体和多晶体①单晶体材料表1.1 几种常用红外晶体材料[1]名称化学组成透射长波限/卩m 折射率/4.3卩m硬度/克氏密度/(g・cm3)溶解度/(g - L-3)H2O金刚石 C 30 2.4 8820 3.51 不溶锗Ge 25 4.02 800 5.33 不溶硅Si 15 3.42 1150 2.33 不溶石英晶体SiQ 4.5 1.46 740 2.2 不溶兰宝石AI2O3 5.5 1.68 1370 3.98 不溶氟化锂LiF 8.0 1.34 110 2.60 0.27 氟化镁MgF 8.0 1.35 576 3.18 不溶氟化钡BaF 13.5 1.45 82 4.89 0.17 氟化钙CaF 10.0 1.41 158 3.18 0.002 溴化铊TLBr 34 2.35 12 7.56 0.05 金红石TQ2 6.0 2.45 880 4.26 不溶砷化镓GaAs 18 3.34(8(im) 750 5.31 不溶氯化钠NaCl 25 1.52 17 2.16 35硒化锌ZnSe 22 2.4 150 5.27 不溶锑化铟InSb 16 3.99 223 5.78 不溶硫化锌ZnS 15 2.25 354 4.09 不溶KRS-5 TLBr-TLI 45 2.38 40 7.37 0.02 KRS-6 TLBr-TLCl 30 2.19 35 7.19 0.01表1.2红外多晶材料[1]材料透射范围/(1 m 折射率/5 i m 硬度/克氏熔点/ c密度/(g • m3)在水中溶解度-9.5 1.34 576 1396 3.18 不溶MgF 0.45-ZnS 0.57-15.0 2.25 354 1020 4.088 不溶--10.0 1.7 640 2800 3.58 不溶MgO 0.39-CaF2 0.2〜12.0 1.37 200 1403 3.18 微溶ZnSe 0.48 〜22 2.4 150 5.27 不溶CdTe 2〜30 2.7 40 1045 5.85 不溶常用的红外单晶材料包括Ge Si、金红石、蓝宝石、石英晶体、ZnS GaAs、MgF、NaCI、TIBr、KHS-6(TIBr-TICI) 和KHS-5(TIBr-TII) 等,具有熔点高、热稳定性好、硬度高、折射率和色散化范围大等优点,但晶体尺寸受限、成本相对较高。

常用红外光学材料及其加工技术

常用红外光学材料及其加工技术

常用红外光学材料及其加工技术申卫江【期刊名称】《《科技视界》》【年(卷),期】2019(000)015【总页数】3页(P147-149)【关键词】红外光学材料; 特性; 晶体; 光学元件; 加工【作者】申卫江【作者单位】云南国防工业职业技术学院云南昆明 650500【正文语种】中文【中图分类】TJ765.3310 引言红外技术的研究及其应用,已成为现代光学技术发展的一个重要方向,而其发展的水平主要取决于红外光学材料和红外探测器的水平。

红外光学材料是指在红外热成像仪、红外导引头等红外光学仪器中用于制造透镜、棱镜、窗口、滤光片、整流罩等光学元件的一类材料,这些材料具备满足需要的光学性能和理化性质,即具有良好的红外透明性与较宽的透明波段,并具有良好的加工性能,可方便制作成形状各异、精度较高的光学元件。

红外光学材料不可能在整个红外波段0.76~750μm均具有良好的透过率,它只能在某一红外波段内,具有一定的透过能力。

另外,由于红外光线在大气中传播时,在1~3μm、3~5μm和8~14μm波段的衰减最小,所以,这三个波段也被称为红外光线的“大气窗口”。

目前国内外红外光学材料发展的重点也主要是适用于这三个“窗口”的光学材料。

针对不同红外光学材料的物理、化学性质,以及所要加工的光学元件的形状、要求等,选择适合的加工方法,具有非常重要的意义。

目前红外光学材料的加工方法主要有古典法、单点金刚石切削法、数控研抛法等,这些加工方法各有其特点和适用范围。

本文将结合现行生产和技术状况,就目前常用红外光学材料的基本性质,及其相应的加工方法作一简要介绍,以达到抛砖引玉的作用。

1 红外光学材料的分类红外光学材料主要分为玻璃、塑料和晶体三大类。

1.1 红外光学玻璃传统的红外光学玻璃有光学石英玻璃、铝酸钙玻璃和高硅氧玻璃三种。

他们具有较高的光学均匀性,能满足大尺寸高精度零件的要求,机械强度较高,化学稳定性好,熔炼和加工容易,成本低,在近红外和中红外波段得到一定程度的应用。

红外物理特性及应用实验

红外物理特性及应用实验

红外物理特性及应用实验波长范围在0.75~1000微米的电磁波称为红外波,对红外频谱的研究历来是基础研究的重要组成部分。

对原子与分子的红外光谱研究,帮助我们洞察它们的电子,振动,旋转的能级结构,并成为材料分析的重要工具。

对红外材料的性质,如吸收、发射、反射率、折射率、电光系数等参数的研究,为它们在各个领域的应用研究奠定了基础。

【实验目的】1、 了解红外通信的原理及基本特性。

2、 了解部分材料的红外特性。

3、 了解红外发射管的伏安特性,电光转换特性。

4、 了解红外发射管的角度特性。

5、 了解红外接收管的伏安特性。

【实验原理】 1、红外通信在现代通信技术中,为了避免信号互相干扰,提高通信质量与通信容量,通常用信号对载波进行调制,用载波传输信号,在接收端再将需要的信号解调还原出来。

不管用什么方式调制,调制后的载波要占用一定的频带宽度,如音频信号要占用几千赫兹的带宽,模拟电视信号要占用8兆赫兹的带宽。

载波的频率间隔若小于信号带宽,则不同信号间要互相干扰。

能够用作无线电通信的频率资源非常有限,国际国内都对通信频率进行统一规划和管理,仍难以满足日益增长的信息需求。

通信容量与所用载波频率成正比,与波长成反比,目前微波波长能做到厘米量级,在开发应用毫米波和亚毫米波时遇到了困难。

红外波长比微波短得多,用红外波作载波,其潜在的通信容量是微波通信无法比拟的,红外通信就是用红外波作载波的通信方式。

红外传输的介质可以是光纤或空间,本实验采用空间传输。

2、红外材料光在光学介质中传播时,由于材料的吸收,散射,会使光波在传播过程中逐渐衰减,对于确定的介质,光的衰减dI 与材料的衰减系数α ,光强I ,传播距离dx 成正比:dI Idx α=- (1)对上式积分,可得:Lo I I e α-= (2)上式中L 为材料的厚度。

材料的衰减系数是由材料本身的结构及性质决定的,不同的波长衰减系数不同。

普通的光学材料由于在红外波段衰减较大,通常并不适用于红外波段。

能作为色散型红外光谱仪的色散元件材料

能作为色散型红外光谱仪的色散元件材料

能作为色散型红外光谱仪的色散元件材料全文共四篇示例,供读者参考第一篇示例:色散型红外光谱仪是一种用于分析物质分子结构和化学成分的重要仪器,而其中的色散元件材料对光谱仪的性能和分析能力起着决定性的作用。

色散元件是将进入光学系统的不同波长的光分散开来,从而实现不同波长的光谱数据的采集和分析。

选择合适的色散元件材料对于红外光谱仪的性能和应用广度至关重要。

在色散型红外光谱仪中,常用的色散元件材料包括晶体、玻璃、金属等不同类别。

不同的材料具有不同的色散特性和适用范围,因此在选择色散元件材料时需要根据具体的实验要求和应用场景进行合理的选择。

常用的色散元件材料之一是晶体材料。

晶体具有很好的色散性能和传输性能,广泛应用于红外光谱仪中的光学系统。

常见的晶体材料包括硫化锌、硫化钠、硫化钾等,它们具有良好的透射性能和高的光学质量,可以有效地实现红外光谱数据的采集和分析。

第二篇示例:色散型红外光谱仪是用于分析样品中不同分子的存在与浓度的一种仪器。

在红外光谱技术中,色散元件是必不可少的组件,它能够将进入光谱仪的光按照波长进行分离,从而实现对样品的分析。

色散元件的材料对于光谱仪的性能起着至关重要的作用,下面我们将介绍几种能够作为色散型红外光谱仪色散元件的材料。

1. 硅:硅是一种常用的色散元件材料,其优点是价格低廉、制作工艺简单、光学性能优秀。

硅具有较宽的透射波长范围,适合用于制作红外光谱仪中的色散元件。

硅具有较高的折射率和色散性能,能够有效地分离不同波长的光线。

2. 硒化锌:硒化锌是另一种常用的色散元件材料,它具有较高的透射率和折射率,在红外光谱仪中被广泛应用。

硒化锌的光学性能稳定,可以精确控制光学波长和色散性能,满足不同样品的分析需求。

3. 红外玻璃:红外玻璃是一种专用的色散元件材料,其特点是在红外波段具有良好的透射性能和色散性能。

红外玻璃可以根据需要调节光学参数,制备出符合要求的色散元件。

红外玻璃的制作工艺复杂,但在红外光谱仪中有着重要的应用价值。

材料的光学性能

材料的光学性能
图4-23 方解石晶体旳光轴
一般地说
属于四角晶系、三角晶系和六角晶系旳晶 体为单轴晶体,如红宝石、电气石、石英、 冰等;而属于正交晶系、单斜晶系和三斜晶 系旳晶体为双轴晶体,如云母、蓝宝石、硫 磺等。 具有立方构造旳晶体无双折射性质。
利用晶体材料旳双折射性质能够制成特殊旳光学元件,在光 学仪器和光学技术中有广泛应用。例如利用晶体旳双折射,
至几十 旳细丝(称为纤芯),在纤芯外面覆盖直径
旳包层,包层旳折射率比纤芯略低约 ,两层之间形成良好旳光学
界面。当光线从一端以合适旳角度射入纤维内部时,将在内外两层
图光在光导纤维中旳传播之间产生屡次全反射而传播到另一端,
一束平行光照射均质旳材料时,除了可能发生反射和折射而变 化其传播方向之外,进入材料之后还会发生两种变化。一是伴 随光束旳进一步,一部分光旳能量被材料所吸收,其强度将被 减弱;二是介质中光旳传播速度比真空中小,且随波长而变化, 这种现象称为光旳色散。
不同介质旳临界角大小不同,例如一般玻璃对空气旳临界角为 ,
水对空气旳临界角为 ,而钻石因折射率很大
,故临界角
很小,轻易发生全反射。切割钻石时,经过特殊旳角度选择,可使进
入旳光线全反射并经色散后向其顶部射出,看起来就会显得光彩夺
目。
利用光旳全反射原理,能够制作一种新型光学元件——光导纤维,简
称光纤。光纤是由光学玻璃、光学石英或塑料制成旳直径为几
(1)正常色散
我们已经了解光在介质中旳传播速度低于真空中旳光速,其关系为y=c/n,据此
能够解释光在经过不同介质界面时发生旳折射现象。若将一束白光斜射到两 种均匀介质旳分界面上,就能够看到折射光束分散成按红、橙、黄、绿、青、 蓝、紫旳顺序排列而成旳彩色光带,这是在介质中不同波长旳光有不同旳速度 旳直接成果。所以,介质中光速或折射率随波长变化旳现象称为色散现象。研

63红外物理特性及应用实验讲义

63红外物理特性及应用实验讲义

红外物理特性及应用实验波长范围在~1000微米的电磁波称为红外波,对红外频谱的研究历来是基础研究的重要组成部分。

对原子与分子的红外光谱研究,帮助我们洞察它们的电子,振动,旋转的能级结构,并成为材料分析的重要工具。

对红外材料的性质,如吸收、发射、反射率、折射率、电光系数等参数的研究,为它们在各个领域的应用研究奠定了基础。

【实验目的】1、 了解红外通信的原理及基本特性。

2、 了解部分材料的红外特性。

3、 了解红外发射管的伏安特性,电光转换特性。

4、 了解红外发射管的角度特性。

5、 了解红外接收管的伏安特性。

【实验原理】 1、红外通信在现代通信技术中,为了避免信号互相干扰,提高通信质量与通信容量,通常用信号对载波进行调制,用载波传输信号,在接收端再将需要的信号解调还原出来。

不管用什么方式调制,调制后的载波要占用一定的频带宽度,如音频信号要占用几千赫兹的带宽,模拟电视信号要占用8兆赫兹的带宽。

载波的频率间隔若小于信号带宽,则不同信号间要互相干扰。

能够用作无线电通信的频率资源非常有限,国际国内都对通信频率进行统一规划和管理,仍难以满足日益增长的信息需求。

通信容量与所用载波频率成正比,与波长成反比,目前微波波长能做到厘米量级,在开发应用毫米波和亚毫米波时遇到了困难。

红外波长比微波短得多,用红外波作载波,其潜在的通信容量是微波通信无法比拟的,红外通信就是用红外波作载波的通信方式。

红外传输的介质可以是光纤或空间,本实验采用空间传输。

2、红外材料光在光学介质中传播时,由于材料的吸收,散射,会使光波在传播过程中逐渐衰减,对于确定的介质,光的衰减dI 与材料的衰减系数α ,光强I ,传播距离dx 成正比:dI Idx α=- (1)对上式积分,可得:Lo I I e α-= (2)上式中L 为材料的厚度。

材料的衰减系数是由材料本身的结构及性质决定的,不同的波长衰减系数不同。

普通的光学材料由于在红外波段衰减较大,通常并不适用于红外波段。

光学材料复习概要

光学材料复习概要

光学玻璃的色散
n2 ()
1
B1 2 2 C1
B2 2 2 C2
B3 2 2 C3
对于大多数无色光学玻璃而 言,色散来源于紫外与红外 波段的两个吸收带
Sellmeier 模型
n2 () A0 A1 2 A2 2 A3 4 A4 6 A5 8
Cauthy模型
光学玻璃的折射率与成分之间的关系
密度:对原子价相同的的氧 化物来说,其阳离子半径越 大,玻璃分子体积就越大, 密度越小。
分子折射度:原子价相同的 阳离子其半径越大(原子核 对外层电子吸引力越弱)则 离子极化率越高。
离子极化率还受其周围离子 极化的影响,当阳离子半径 增加时不仅其本身极化率上 升也提高了氧离子的极化率, 因而促使玻璃分子折射度迅 速上升。
激光玻璃:稀土离子
激活离子一般是发光谱带窄,色纯度高,转换效率高,荧光寿命跨度大, 具有四能级(或三能级系统)的稀土元素或离子。
基质玻璃是具有优良光学性能、机械性能以及热性能的硅酸盐玻璃,硼酸 盐及硼硅酸盐玻璃,磷酸盐玻璃和氟磷酸盐玻璃。
Nd 3+离子的4F3/2→4I11/2的跃迁 :1.064μm,室温
哑下标尽可能地靠近
T' ij
aik a Tjl kl
奇数阶的张量在具有反演中心i的晶体中是不存在的
晶体中具有物理意义的二阶张量都是对称张量:如应变张量不是 位移对位置的偏导eij,而是其中的对称部分。
张量的定义
张量的示性面:二阶张量的示性面是椭球或双曲面,其中椭球上 任意一点的径矢与法矢分别表示该二阶张量所跨居的作用矢量及 感生矢量。
在硅酸盐玻璃中逐渐增加氧化硼的含量,其性质变化曲线往往会出现极大 或极小值,称为“硼反常”,合理地应用这一反常现象可以改善玻璃的某 些物理化学性质,制得化学稳定性好,热膨胀系数小,折射率高而色散小 的玻璃。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、红外光学玻璃与红外晶体材料光学特性:1.晶体材料晶体材料包括离子晶体与半导体晶体离子晶体包括碱卤化合物晶体, 碱土—卤族化合物晶体及氧化物及某些无机盐晶体。

半导体晶体包括Ⅳ族单元素晶体、Ⅲ~Ⅴ族化合物和Ⅱ~Ⅵ族化合物晶体等。

离子型晶体通常具有较高的透过率, 同时有较低的折射率, 因而反射损失小, 一般不需镀增透膜, 同时离子型晶体光学性能受温度影响也小于非离子型晶体。

半导体晶体属于共价晶体或某种离子耦合的共价键晶体。

晶体的特点是其物理和化学特性及使用特性的多样性。

晶体的折射率及色散度变化范围比其它类型材料丰富得多。

可以满足不同应用的需要, 有一些晶体还具备光电、磁光、声光等效应, 可以用作探测器材料。

[1]按内部晶体结构晶体材料可分为单晶体和多晶体①单晶体材料表1.1 几种常用红外晶体材料[1]名称化学组成透射长波限/μm 折射率/4.3μm硬度/克氏密度/(g·cm-3)溶解度/(g·L-3)H2O金刚石C30 2.48820 3.51不溶锗Ge25 4.02800 5.33不溶硅Si15 3.421150 2.33不溶石英晶体SiO2 4.5 1.46740 2.2不溶兰宝石Al2O3 5.5 1.681370 3.98不溶氟化锂LiF8.0 1.34110 2.600.27氟化镁MgF28.0 1.35576 3.18不溶氟化钡BaF213.5 1.4582 4.890.17氟化钙CaF210.0 1.41158 3.180.002溴化铊TLBr34 2.35127.560.05金红石TiO2 6.0 2.45880 4.26不溶砷化镓GaAs18 3.34(8μm)750 5.31不溶氯化钠NaCl25 1.5217 2.1635硒化锌ZnSe22 2.4150 5.27不溶锑化铟InSb16 3.99223 5.78不溶硫化锌ZnS15 2.25354 4.09不溶KRS-5TLBr-TLI45 2.38407.370.02 KRS-6TLBr-TLCl30 2.19357.190.01②多晶体材料表1.2红外多晶材料[1]材料透射范围/μm折射率/5μm硬度/克氏熔点/℃密度/(g·m-3)在水中溶解度MgF20.45~9.5 1.345761396 3.18不溶ZnS0.57~15.0 2.253541020 4.088不溶MgO0.39~10.0 1.76402800 3.58不溶CaF20.2~12.0 1.372001403 3.18微溶ZnSe0.48~22 2.4150 5.27不溶CdTe2~30 2.7401045 5.85不溶常用的红外单晶材料包括Ge、Si、金红石、蓝宝石、石英晶体、ZnS、GaAs、MgF2、NaCl、TlBr、KHS-6(TlBr-TlCl) 和KHS-5(TlBr-TlI) 等,具有熔点高、热稳定性好、硬度高、折射率和色散化范围大等优点,但晶体尺寸受限、成本相对较高。

常用的红外多晶包括MgO、ZnS、ZnSe 和CdTe、MgF2多晶和CaF2等,具有成本低、可制备大尺寸及复杂形状的优点。

适用于中红波段的玻璃光学元件主要包括铝酸盐玻璃、锗酸盐玻璃和锑酸盐玻璃等体系,光学均匀性好、易于制成不同尺寸与形状,但其红外波段透射范围较窄、抗热冲击和机械冲击性能较差。

塑料在近红外和远红外具有良好的透过率,但在中红外波段透过率较低;已实现实用化的塑料包括丙烯酸脂和聚四氟乙烯,前者在常温下用于红外发光二极管等的封装材料,后者用作2~7μm 波段保护膜和小型民用红外激光器窗口材料等。

[1]表1.3 常用红外光学材料的热学力学光学性质材料金刚石硒化锌硫化锌单晶锗硅氟化镁折射系数 2.38 2.40 2.19 4.00 3.42 1.35透过率/%7171724754-吸收系数/cm-10.1~0.30.0050.20.020.35-禁带宽度/eV 5.48 2.7 3.90.664 1.11-熔点/℃37701520183093714171261弹性模量/GPa105070.974.5103130115显微硬度/90001052508501150640(kg/mm2)20~220.190.270.59 1.630.16热传导率/﹝W/(cm·K)﹞1.07.0 6.8 6.02.611.0热膨胀系数/(10-6/K)0.5~220.4~12 1.8~25 1.1~5.80.45~9.5透过波段/m 3.0~5.0,8.0~14.02.红外光学玻璃中波红外光学玻璃:根据成分不同,中波红外光学玻璃主要包括氟化物玻璃、氧化物玻璃(主要铝酸钙玻璃、锗酸盐玻璃、镓酸盐玻璃和碲酸盐玻璃等)以及氧氟化物玻璃。

表2.1常见中波红外光学玻璃材料特性[12]长波红外光学玻璃:根据成分不同,长波红外玻璃主要包括硫系玻璃、卤系玻璃和硫卤系玻璃等。

表2.2常用长波红外玻璃材料的基本性能[3]基本性能硫系玻璃卤系玻璃硫卤玻璃转变温度Tg(℃)180~50075~320110~360,折射率,2~3.51.5~2.01.8~3.0本征损耗(dB/km)102~10410-1~10-310-1~10-3,化学稳定性稳定极易潮解潮解透过波长(μm)0.9~180.25~200.25~20透过率(%)60~7080~9070~80表2.3硫系玻璃材料的性能[3]组成(摩尔分数,%)特征温度(℃)折射率n本征损耗(dB/km)透过波长(μm)As2S3Tg=1802.352×104(5.5μm)0.15~12Ge25As15S60Tf=4202.22-0.6~11Ge-STg=3702.113.6×102(2.4μm)0.15~11As2Se3Tg=1842.7210(6.5μm)0.8~17.8Ge30As15Se55Tf=3952.56102(1.05μm)0.8~16Ge-As-SeTf=267~4102.56~2.70-0.8~15Ge-Sb-SeTg=2002.62-1~15Ge25As25Te50Tf=2053.40-2~18Ge18Se10Te72--1.5(10.6μm)2~18Ge18Te82---2~19二、红外光学玻璃应用现状:1.元件类型中波红外光学玻璃:根据成分不同,中波红外光学玻璃主要包括氟化物玻璃、氧化物玻璃(主要铝酸钙玻璃、锗酸盐玻璃、镓酸盐玻璃和碲酸盐玻璃等)以及氧氟化物玻璃。

[12]长波红外光学玻璃:根据成分不同,长波红外玻璃主要包括硫系玻璃、卤系玻璃和硫卤系玻璃等。

[3]2.应用对象中波红外玻璃(3~5μm波段高透的)在民用和军用领域有十分重要的应用,比如红外对抗(IRCM)、化学物遥感、红外制导、红外侦查、高能激光武器、热像仪、夜视仪、火焰气体探测器、环境监测、空间通信等多个领域。

新一代以精确制导为主要特征的光电系统, 如导弹、光雷达、机舰载红外搜索与跟踪系统(IRST)、分布式孔径系统(DAS)等,已逐步向多波段复合、宽视角、远距离和高分辨率方向发展。

长波红外玻璃具有较宽的红外透过范围,随玻璃组成变化,其透过从0.25μm扩展到14~20μm,可用于能量控制、热点探测、电路检测、温度监视以及夜视等。

硫系玻璃的主要应用领域是探测物体和人在环境温度下所发生的辐射(在10μm处最为灵敏)、热成像以及8~13μm透过窗口等,硒锑红外玻璃透过范围非常适合这一区域的热成像;卤系玻璃则主要用于传输CO2激光器激光,以满足医疗、材料精加工等方面的需要。

3.加工方法熔融-淬冷法由于硫系玻璃熔体在高温下极易氧化,故在玻璃制备过程中,应将原材料置于真空密封的石英管中熔制。

样品的制备经过原料预处理、石英管预处理、称重、配料、石英管抽真空、封装、熔制、淬冷、退火、切割、研磨、抛光等过程。

[14]精密模压成型从结构上分析, 硫系玻璃与晶体红外材料的一个重要差别在于前者为非晶态而后者为晶体.晶体材料在加热至熔点时直接由固态转变为液态, 因此不存在模压的可能性.而非晶态材料与塑料相似,在加热过程中粘度逐渐降低, 直至进入能按照模具提供的形状通过压制而精确成型的最佳粘度范围.换言之, 硫系玻璃适用于精密模压成型工艺, 该工艺的成本显然要比用于晶体加工的单点金刚石车削工艺低得多, 由此为红外夜视仪的商业应用奠定了基础.与晶体类红外材料相比,玻璃类材料的最大优势就是成型工艺简单,可利用精密模压成型工艺直接加工包括球面、非球面和非球面射棱镜在内的多种玻璃红外光学元件,使加工成本较晶体材料显著降低。

与传统的氧化物光学玻璃相比,硫系玻璃制备具有很强的工艺特殊性,它一般需要在无氧真空气氛的圆柱形密闭石英安瓿中进行高温(800~1 000 ℃)摇摆熔制,无法进行机械搅拌。

硫系玻璃生产制备工艺主要包括原料提纯、高均匀性玻璃熔制、脱模、退火四大环节。

微晶化处理从热力学观点分析,玻璃态是一种高能状态,有自发的析晶趋势,玻璃处于介稳状态。

室温下,玻璃的稳定态应为晶态,然而却未能析晶,这可能是因为随着温度的降低,粘度快速增加而有效地阻止了晶体的形成。

微晶玻璃是通过控制玻璃的晶化而制备的多晶固体。

晶化是通过把适当的玻璃经过仔细制定的微晶化制度使玻璃中成核及结晶生长。

由于本课题研究的硫系玻璃将用于红外光学系统,为了不影响其在红外区域的透过性能,微晶化后的硫系玻璃内部析出晶粒的尺寸应控制在红外最小波长以下,即740nm,所以实验中只需要在硫系玻璃中形成尽可能多的小晶核,不需要晶粒长大,这样才可以获得力学性能、热稳定性及光学性能均优良的硫系玻璃。

热处理通过适当热处理氧化物玻璃可以制得热力学性能极大提高的微晶玻璃, 因此, 人们试图通过同样的方法制备硫系微晶玻璃并进行了广泛的尝试.与氧化物玻璃不同的是, 在硫系玻璃的微晶化过程中要严格控制晶粒的尺寸, 避免晶粒过大造成的散射影响红外透过率, 因此实际的热处理工艺只研究成核阶段, 尽可能在玻璃基体上均匀析出大量的纳米晶, 故最优的成核温度和最佳的成核保温时间是生产微晶玻璃的关键.4.镀膜现状三、红外光学玻璃目前在应用中存在的主要问题:目前硫属化合物玻璃一般采用真空熔铸法和压铸法制备, 容易产生偏折及气泡等缺陷, 同时在制备过程中因氧化可导致红外性能劣化, 硫属化合物组份元素大多带有毒性和易爆性, 加之融熔和淬火方面的困难, 使得制备大型高质量硫属化合物玻璃材料成品率较低。

制备在8~14μm 或更长波段以及温度≥500 ℃下使用的玻璃材料, 在理论上遇到了困难, 因为如要使玻璃透射向长波延伸, 要求用原子量大且原子间相互作用较弱的元素, 而由这种元素组份制备的材料必然导致低的玻璃转变温度和软化点, 使材料不可能实用化.(1)硫系玻璃对杂质非常敏感,对原料、设备和制备技术提出了较高的控制要求。

相关文档
最新文档