红外光学玻璃与红外晶体材料光学特性

合集下载

二次光学材料

二次光学材料

二次光学材料二次光学材料是指在制造光学元件或系统时使用的各种材料。

这些材料在光学系统中扮演着关键角色,具有特定的物理和光学特性。

本文将详细介绍二次光学材料的主要类别,包括光学玻璃、光学塑料、光学晶体、光学薄膜、光学纤维、光学胶粘剂、光学涂料和光学复合材料。

1.光学玻璃光学玻璃是制造光学元件的主要材料之一,具有高透明度、高折射率、低色散等特性。

它广泛用于制造透镜、棱镜、反射镜等光学元件。

根据不同的应用需求,光学玻璃可以定制不同的物理和光学特性,如硬度、韧性、透光范围等。

2.光学塑料光学塑料是一种轻质、易加工的材料,具有高透明度、低成本等优点。

它广泛应用于制造透镜、棱镜、反射镜等光学元件。

光学塑料还可以通过注射成型、压延成型等方法进行大规模生产,满足大规模光学元件的需求。

3.光学晶体光学晶体是一种具有特殊晶体结构和光学特性的材料,具有高折射率、低色散等优点。

它广泛应用于制造各种高精度光学元件,如分束器、波片、偏振器等。

常见的光学晶体有石英、硅酸铅等。

4.光学薄膜光学薄膜是一种在光学元件表面沉积的超薄材料层,具有高透光性、高反射性等特性。

它广泛应用于改善光学元件的性能,如增透膜、反射膜、偏振膜等。

光学薄膜可以通过真空镀膜、化学气相沉积等方法进行制备。

5.光学纤维光学纤维是一种用于传输光信号的材料,具有传输容量大、抗干扰能力强等优点。

它广泛应用于光纤通信、光纤传感等领域。

根据不同的应用需求,光学纤维可以定制不同的物理和光学特性,如传输波长、传输速率等。

6.光学胶粘剂光学胶粘剂是一种用于粘接光学元件的材料,具有高透光性、高粘接强度等特性。

它广泛应用于粘接透镜、棱镜、反射镜等光学元件。

光学胶粘剂的选取应根据应用场景的不同而有所不同,需要考虑粘接强度、耐候性、稳定性等因素。

7.光学涂料光学涂料是一种用于涂覆在光学元件表面的材料,具有高透光性、高耐磨性等特性。

它广泛应用于涂覆透镜、棱镜、反射镜等光学元件。

光学涂料可以根据应用场景的不同而定制不同的物理和化学特性,如耐磨性、耐候性、稳定性等。

光学透镜常用光学材料性能说明及选用方法

光学透镜常用光学材料性能说明及选用方法

光学透镜常用光学材料性能说明及选用方法K9:K9(H-K9L,N-BK7)是最常用的光学材料,从可见到近红外(350-2000nm)具有优异的透过率,在望远镜、激光等领域有广泛应用。

H-K9L(N-BK7)是制备高质量光学元件最常用的光学玻璃,当不需要紫外熔融石英的额外优点(在紫外波段具有很好的透过率和较低的热膨胀系数)时,一般会选择H-K9L。

紫外熔融石英:紫外熔融石英(JGS1,F_SILICA)从紫外到近红外波段(185-2100nm)都有很高的透过率,在深紫外区域具有很高透过率,使其广泛应用于紫外激光中。

此外,与H-K9L(N-BK7)相比,紫外级熔融石英具有更好的均匀性和更低的热膨胀系数,使其特别适合应用于紫外到近红外波段,高功率激光和成像领域。

氟化钙:由于氟化钙(CaF2)在波长180nm-8um之内的透射率很高(尤其在350nm-7um波段透过率超过90%),折射率低(对于180 nm到8.0um的工作波长范围,其折射率变化范围为1.35到1.51)因此即使不镀膜也有较高的透射。

它经常被用做分光计的窗口片以及镜头上,也可用在热成像系统中。

另外,由于它有较高的激光损伤阈值,在准分子激光器中有很好的应用。

氟化钙与氟化钡、氟化镁等同类物质相比具有更高的硬度。

氟化钡:氟化钡材料从200nm-11um区域内透射率很高。

尽管此特性与氟化钙相似,但氟化钡在10.0um 以后仍有更好的透过,而氟化钙却是直线下降的;而且氟化钡能耐更强的高能辐射。

然而,氟化钡缺点是抗水性能较差。

当接触到水后,在500℃时性能发生明显退化,但在干燥的环境中,它可用于高达800℃的应用。

同时氟化钡有着优良的闪烁性能,可以制成红外和紫外等各类光学元件。

应当注意:当操作由氟化钡制作的光学元件时,必须始终佩戴手套,并在处理完以后彻底清洗双手。

氟化镁:氟化镁在许多紫外和红外应用中备受欢迎,是200nm-6um波长范围内应用的理想选择。

常用红外光学材料及其加工技术

常用红外光学材料及其加工技术

常用红外光学材料及其加工技术申卫江【期刊名称】《《科技视界》》【年(卷),期】2019(000)015【总页数】3页(P147-149)【关键词】红外光学材料; 特性; 晶体; 光学元件; 加工【作者】申卫江【作者单位】云南国防工业职业技术学院云南昆明 650500【正文语种】中文【中图分类】TJ765.3310 引言红外技术的研究及其应用,已成为现代光学技术发展的一个重要方向,而其发展的水平主要取决于红外光学材料和红外探测器的水平。

红外光学材料是指在红外热成像仪、红外导引头等红外光学仪器中用于制造透镜、棱镜、窗口、滤光片、整流罩等光学元件的一类材料,这些材料具备满足需要的光学性能和理化性质,即具有良好的红外透明性与较宽的透明波段,并具有良好的加工性能,可方便制作成形状各异、精度较高的光学元件。

红外光学材料不可能在整个红外波段0.76~750μm均具有良好的透过率,它只能在某一红外波段内,具有一定的透过能力。

另外,由于红外光线在大气中传播时,在1~3μm、3~5μm和8~14μm波段的衰减最小,所以,这三个波段也被称为红外光线的“大气窗口”。

目前国内外红外光学材料发展的重点也主要是适用于这三个“窗口”的光学材料。

针对不同红外光学材料的物理、化学性质,以及所要加工的光学元件的形状、要求等,选择适合的加工方法,具有非常重要的意义。

目前红外光学材料的加工方法主要有古典法、单点金刚石切削法、数控研抛法等,这些加工方法各有其特点和适用范围。

本文将结合现行生产和技术状况,就目前常用红外光学材料的基本性质,及其相应的加工方法作一简要介绍,以达到抛砖引玉的作用。

1 红外光学材料的分类红外光学材料主要分为玻璃、塑料和晶体三大类。

1.1 红外光学玻璃传统的红外光学玻璃有光学石英玻璃、铝酸钙玻璃和高硅氧玻璃三种。

他们具有较高的光学均匀性,能满足大尺寸高精度零件的要求,机械强度较高,化学稳定性好,熔炼和加工容易,成本低,在近红外和中红外波段得到一定程度的应用。

红外物理特性及应用实验

红外物理特性及应用实验

红外物理特性及应用实验波长范围在0.75~1000微米的电磁波称为红外波,对红外频谱的研究历来是基础研究的重要组成部分。

对原子与分子的红外光谱研究,帮助我们洞察它们的电子,振动,旋转的能级结构,并成为材料分析的重要工具。

对红外材料的性质,如吸收、发射、反射率、折射率、电光系数等参数的研究,为它们在各个领域的应用研究奠定了基础。

【实验目的】1、 了解红外通信的原理及基本特性。

2、 了解部分材料的红外特性。

3、 了解红外发射管的伏安特性,电光转换特性。

4、 了解红外发射管的角度特性。

5、 了解红外接收管的伏安特性。

【实验原理】 1、红外通信在现代通信技术中,为了避免信号互相干扰,提高通信质量与通信容量,通常用信号对载波进行调制,用载波传输信号,在接收端再将需要的信号解调还原出来。

不管用什么方式调制,调制后的载波要占用一定的频带宽度,如音频信号要占用几千赫兹的带宽,模拟电视信号要占用8兆赫兹的带宽。

载波的频率间隔若小于信号带宽,则不同信号间要互相干扰。

能够用作无线电通信的频率资源非常有限,国际国内都对通信频率进行统一规划和管理,仍难以满足日益增长的信息需求。

通信容量与所用载波频率成正比,与波长成反比,目前微波波长能做到厘米量级,在开发应用毫米波和亚毫米波时遇到了困难。

红外波长比微波短得多,用红外波作载波,其潜在的通信容量是微波通信无法比拟的,红外通信就是用红外波作载波的通信方式。

红外传输的介质可以是光纤或空间,本实验采用空间传输。

2、红外材料光在光学介质中传播时,由于材料的吸收,散射,会使光波在传播过程中逐渐衰减,对于确定的介质,光的衰减dI 与材料的衰减系数α ,光强I ,传播距离dx 成正比:dI Idx α=- (1)对上式积分,可得:Lo I I e α-= (2)上式中L 为材料的厚度。

材料的衰减系数是由材料本身的结构及性质决定的,不同的波长衰减系数不同。

普通的光学材料由于在红外波段衰减较大,通常并不适用于红外波段。

材料的光机特性

材料的光机特性

影响折射率的因素
温度:
光学材料的折射率随温度而变化 温度变化1℃引起的折射率值变化,会使小数点第 六位有微小改变
天然原因或加工过程的残留:
空间折射率发生细微变化
应力:双折射
思考
测量玻璃透过率:
3.1.3 色散
色散:折射率随波长的变化
3.1.3 色散
1. 折射率随波长的增加而减小 2. 在短波长的末端,折射率的变化最大 3. 在给定波长处最高折射率材料曲线的
光学机械设计
材料的光机特性
概述
光学仪器原材料的主要种类:
玻璃,塑料,晶体,半导体, 陶瓷,金属,上述各种材料的薄膜, 复合材料,粘接剂,密封材料,专用 表面精饰材料。
3.1 折射光学材料
折射光学材料参数:
透过率 折射率 色散 机械性能
3.1.1 透过率
折射材料,例如玻璃,最显著的特征 ,是能够透过紫外到红外波段的电磁波。
3.2 反射光学元件材料
反射镜组成
1、反射面: 单层薄膜、多层介质膜、金属薄膜 2、刚性基板 机械上保证反射表面的正确位置以及正确 的面型。对于第二表面反射的反射镜来说 ,辐射要透过基板,例如化妆镜。
3.2 反射光学元件材料
反射镜基板材料重要性质: 1. 平滑度 2. 稳定性 3. 硬度
平滑度
3.4.1 光学胶
光学胶种类
光学胶种类
光学表面的胶合
思考:胶合可能产生哪一种误差?
3.4.2 结构粘合剂
3.5 密封胶
光学仪器中常用的两类密封胶
光学仪器中常用的两类密封胶
3.6 光机材料专用膜层
3.6.1 保护膜
保护膜种类
3.6.2 表面发黑
3.6.3 改进表面平滑度

材料的光学性能

材料的光学性能
图4-23 方解石晶体旳光轴
一般地说
属于四角晶系、三角晶系和六角晶系旳晶 体为单轴晶体,如红宝石、电气石、石英、 冰等;而属于正交晶系、单斜晶系和三斜晶 系旳晶体为双轴晶体,如云母、蓝宝石、硫 磺等。 具有立方构造旳晶体无双折射性质。
利用晶体材料旳双折射性质能够制成特殊旳光学元件,在光 学仪器和光学技术中有广泛应用。例如利用晶体旳双折射,
至几十 旳细丝(称为纤芯),在纤芯外面覆盖直径
旳包层,包层旳折射率比纤芯略低约 ,两层之间形成良好旳光学
界面。当光线从一端以合适旳角度射入纤维内部时,将在内外两层
图光在光导纤维中旳传播之间产生屡次全反射而传播到另一端,
一束平行光照射均质旳材料时,除了可能发生反射和折射而变 化其传播方向之外,进入材料之后还会发生两种变化。一是伴 随光束旳进一步,一部分光旳能量被材料所吸收,其强度将被 减弱;二是介质中光旳传播速度比真空中小,且随波长而变化, 这种现象称为光旳色散。
不同介质旳临界角大小不同,例如一般玻璃对空气旳临界角为 ,
水对空气旳临界角为 ,而钻石因折射率很大
,故临界角
很小,轻易发生全反射。切割钻石时,经过特殊旳角度选择,可使进
入旳光线全反射并经色散后向其顶部射出,看起来就会显得光彩夺
目。
利用光旳全反射原理,能够制作一种新型光学元件——光导纤维,简
称光纤。光纤是由光学玻璃、光学石英或塑料制成旳直径为几
(1)正常色散
我们已经了解光在介质中旳传播速度低于真空中旳光速,其关系为y=c/n,据此
能够解释光在经过不同介质界面时发生旳折射现象。若将一束白光斜射到两 种均匀介质旳分界面上,就能够看到折射光束分散成按红、橙、黄、绿、青、 蓝、紫旳顺序排列而成旳彩色光带,这是在介质中不同波长旳光有不同旳速度 旳直接成果。所以,介质中光速或折射率随波长变化旳现象称为色散现象。研

63红外物理特性及应用实验讲义

63红外物理特性及应用实验讲义

红外物理特性及应用实验波长范围在~1000微米的电磁波称为红外波,对红外频谱的研究历来是基础研究的重要组成部分。

对原子与分子的红外光谱研究,帮助我们洞察它们的电子,振动,旋转的能级结构,并成为材料分析的重要工具。

对红外材料的性质,如吸收、发射、反射率、折射率、电光系数等参数的研究,为它们在各个领域的应用研究奠定了基础。

【实验目的】1、 了解红外通信的原理及基本特性。

2、 了解部分材料的红外特性。

3、 了解红外发射管的伏安特性,电光转换特性。

4、 了解红外发射管的角度特性。

5、 了解红外接收管的伏安特性。

【实验原理】 1、红外通信在现代通信技术中,为了避免信号互相干扰,提高通信质量与通信容量,通常用信号对载波进行调制,用载波传输信号,在接收端再将需要的信号解调还原出来。

不管用什么方式调制,调制后的载波要占用一定的频带宽度,如音频信号要占用几千赫兹的带宽,模拟电视信号要占用8兆赫兹的带宽。

载波的频率间隔若小于信号带宽,则不同信号间要互相干扰。

能够用作无线电通信的频率资源非常有限,国际国内都对通信频率进行统一规划和管理,仍难以满足日益增长的信息需求。

通信容量与所用载波频率成正比,与波长成反比,目前微波波长能做到厘米量级,在开发应用毫米波和亚毫米波时遇到了困难。

红外波长比微波短得多,用红外波作载波,其潜在的通信容量是微波通信无法比拟的,红外通信就是用红外波作载波的通信方式。

红外传输的介质可以是光纤或空间,本实验采用空间传输。

2、红外材料光在光学介质中传播时,由于材料的吸收,散射,会使光波在传播过程中逐渐衰减,对于确定的介质,光的衰减dI 与材料的衰减系数α ,光强I ,传播距离dx 成正比:dI Idx α=- (1)对上式积分,可得:Lo I I e α-= (2)上式中L 为材料的厚度。

材料的衰减系数是由材料本身的结构及性质决定的,不同的波长衰减系数不同。

普通的光学材料由于在红外波段衰减较大,通常并不适用于红外波段。

红外光学玻璃 屈服强度

红外光学玻璃 屈服强度

红外光学玻璃屈服强度
红外光学玻璃是一种专门用于红外光学系统的材料,具有优异的透射性能和热学特性。

关于红外光学玻璃的屈服强度,我们需要从多个角度来进行讨论。

首先,屈服强度是指材料在受到外部力作用下产生塑性变形或破坏的能力。

对于红外光学玻璃这样的材料,其屈服强度通常取决于材料的制备工艺、化学成分和晶体结构等因素。

一般来说,红外光学玻璃的屈服强度相对较高,能够承受一定程度的外部力作用而不发生塑性变形或破坏。

其次,红外光学玻璃的屈服强度还受到温度的影响。

由于红外光学系统通常在高温环境下工作,因此材料的热学性能对其屈服强度至关重要。

在高温下,材料的屈服强度可能会发生变化,这需要在实际应用中进行充分考虑。

此外,红外光学玻璃的屈服强度还可能受到表面处理和加工工艺的影响。

例如,材料的抛光质量、表面处理方式以及加工工艺对其屈服强度都会产生一定的影响。

因此,在制备和加工红外光学玻璃的过程中,需要采取合适的措施来保证材料的屈服强度达到预期
的要求。

综上所述,红外光学玻璃的屈服强度是一个综合性能指标,受
到多种因素的影响。

在实际应用中,需要综合考虑材料的制备工艺、化学成分、热学特性、表面处理和加工工艺等因素,以确保其在红
外光学系统中能够发挥良好的性能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、红外光学玻璃与红外晶体材料光学特性:1.晶体材料晶体材料包括离子晶体与半导体晶体离子晶体包括碱卤化合物晶体, 碱土—卤族化合物晶体及氧化物及某些无机盐晶体。

半导体晶体包括Ⅳ族单元素晶体、Ⅲ~Ⅴ族化合物和Ⅱ~Ⅵ族化合物晶体等。

离子型晶体通常具有较高的透过率, 同时有较低的折射率, 因而反射损失小, 一般不需镀增透膜, 同时离子型晶体光学性能受温度影响也小于非离子型晶体。

半导体晶体属于共价晶体或某种离子耦合的共价键晶体。

晶体的特点是其物理和化学特性及使用特性的多样性。

晶体的折射率及色散度变化围比其它类型材料丰富得多。

可以满足不同应用的需要, 有一些晶体还具备光电、磁光、声光等效应, 可以用作探测器材料。

[1] 按部晶体结构晶体材料可分为单晶体和多晶体①单晶体材料表1.1 几种常用红外晶体材料[1]名称化学组成透射长波限/μm 折射率/4.3μm硬度/克氏密度/(g·cm-3)溶解度/(g·L-3)H2O金刚石C30 2.48820 3.51不溶锗Ge25 4.02800 5.33不溶硅Si15 3.421150 2.33不溶石英晶体SiO2 4.5 1.46740 2.2不溶兰宝石Al2O3 5.5 1.681370 3.98不溶氟化锂LiF8.0 1.34110 2.600.27氟化镁MgF28.0 1.35576 3.18不溶氟化钡BaF213.5 1.4582 4.890.17氟化钙CaF210.0 1.41158 3.180.002溴化铊TLBr34 2.35127.560.05金红石TiO2 6.0 2.45880 4.26不溶砷化镓GaAs18 3.34(8μm)750 5.31不溶氯化钠NaCl25 1.5217 2.1635硒化锌ZnSe22 2.4150 5.27不溶锑化铟InSb16 3.99223 5.78不溶硫化锌ZnS15 2.25354 4.09不溶KRS-5TLBr-TLI45 2.38407.370.02 KRS-6TLBr-TLCl30 2.19357.190.01②多晶体材料表1.2红外多晶材料[1]材料透射围/μm折射率/5μm硬度/克氏熔点/℃密度/(g·m-3)在水中溶解度MgF20.45~9.5 1.345761396 3.18不溶ZnS0.57~15.0 2.253541020 4.088不溶MgO0.39~10.0 1.76402800 3.58不溶CaF20.2~12.0 1.372001403 3.18微溶ZnSe0.48~22 2.4150 5.27不溶CdTe2~30 2.7401045 5.85不溶常用的红外单晶材料包括Ge、Si、金红石、蓝宝石、石英晶体、ZnS、GaAs、MgF2、NaCl、TlBr、KHS-6(TlBr-TlCl) 和KHS-5(TlBr-TlI) 等,具有熔点高、热稳定性好、硬度高、折射率和色散化围大等优点,但晶体尺寸受限、成本相对较高。

常用的红外多晶包括MgO、ZnS、ZnSe 和CdTe、MgF2多晶和CaF2等,具有成本低、可制备大尺寸及复杂形状的优点。

适用于中红波段的玻璃光学元件主要包括铝酸盐玻璃、锗酸盐玻璃和锑酸盐玻璃等体系,光学均匀性好、易于制成不同尺寸与形状,但其红外波段透射围较窄、抗热冲击和机械冲击性能较差。

塑料在近红外和远红外具有良好的透过率,但在中红外波段透过率较低;已实现实用化的塑料包括丙烯酸脂和聚四氟乙烯,前者在常温下用于红外发光二极管等的封装材料,后者用作2~7μm 波段保护膜和小型民用红外激光器窗口材料等。

[1]表1.3 常用红外光学材料的热学力学光学性质材料金刚石硒化锌硫化锌单晶锗硅氟化镁折射系数 2.38 2.40 2.19 4.00 3.42 1.35透过率/%7171724754-0.1~0.30.0050.20.020.35-吸收系数/cm-1禁带宽度/eV 5.48 2.7 3.90.664 1.11-熔点/℃37701520183093714171261弹性模量105070.974.5103130115/GPa90001052508501150640显微硬度/(kg/mm2)20~220.190.270.59 1.630.16热传导率/﹝W/(cm·K)﹞热膨胀系数/1.07.0 6.8 6.02.611.0(10-6/K)0.5~220.4~12 1.8~25 1.1~5.80.45~9.5透过波段/m 3.0~5.0,8.0~14.02.红外光学玻璃中波红外光学玻璃:根据成分不同,中波红外光学玻璃主要包括氟化物玻璃、氧化物玻璃(主要铝酸钙玻璃、锗酸盐玻璃、镓酸盐玻璃和碲酸盐玻璃等)以及氧氟化物玻璃。

表2.1常见中波红外光学玻璃材料特性[12]长波红外光学玻璃:根据成分不同,长波红外玻璃主要包括硫系玻璃、卤系玻璃和硫卤系玻璃等。

表2.2常用长波红外玻璃材料的基本性能[3]基本性能硫系玻璃卤系玻璃硫卤玻璃转变温度Tg(℃)180~50075~320110~360,折射率,2~3.51.5~2.01.8~3.0本征损耗(dB/km)102~10410-1~10-310-1~10-3,化学稳定性稳定极易潮解潮解透过波长(μm)0.9~180.25~200.25~20透过率(%)60~7080~9070~80表2.3硫系玻璃材料的性能[3]m)0.15~12As2S3Tg=1802.352×104(5.5μm)Ge25As15S60Tf=4202.22-0.6~110.15~11Ge-STg=3702.113.6×102(2.4μm)As2Se3Tg=1842.7210(6.5μm)0.8~17.8Tf=3952.56102(1.05μm)0.8~16Ge30As15Se552.56~2.70-0.8~15Ge-As-SeTf=267~410Ge-Sb-SeTg=2002.62-1~15Tf=2053.40-2~18Ge25As25Te50--1.5(10.6μm)2~18Ge18Se10Te72Ge18Te82---2~19表2.4卤系玻璃材料的性能[3]表2.5硫卤玻璃材料的性能[3]二、红外光学玻璃应用现状:1.元件类型中波红外光学玻璃:根据成分不同,中波红外光学玻璃主要包括氟化物玻璃、氧化物玻璃(主要铝酸钙玻璃、锗酸盐玻璃、镓酸盐玻璃和碲酸盐玻璃等)以及氧氟化物玻璃。

[12]长波红外光学玻璃:根据成分不同,长波红外玻璃主要包括硫系玻璃、卤系玻璃和硫卤系玻璃等。

[3]2.应用对象中波红外玻璃(3~5μm波段高透的)在民用和军用领域有十分重要的应用,比如红外对抗(IRCM)、化学物遥感、红外制导、红外侦查、高能激光武器、热像仪、夜视仪、火焰气体探测器、环境监测、空间通信等多个领域。

新一代以精确制导为主要特征的光电系统, 如导弹、光雷达、机舰载红外搜索与跟踪系统(IRST)、分布式孔径系统(DAS)等,已逐步向多波段复合、宽视角、远距离和高分辨率方向发展。

长波红外玻璃具有较宽的红外透过围,随玻璃组成变化,其透过从0.25μm扩展到14~20μm,可用于能量控制、热点探测、电路检测、温度监视以及夜视等。

硫系玻璃的主要应用领域是探测物体和人在环境温度下所发生的辐射(在10μm处最为灵敏)、热成像以及8~13μm透过窗口等,硒锑红外玻璃透过围非常适合这一区域的热成像;卤系玻璃则主要用于传输CO2激光器激光,以满足医疗、材料精加工等方面的需要。

3.加工方法熔融-淬冷法由于硫系玻璃熔体在高温下极易氧化,故在玻璃制备过程中,应将原材料置于真空密封的石英管中熔制。

样品的制备经过原料预处理、石英管预处理、称重、配料、石英管抽真空、封装、熔制、淬冷、退火、切割、研磨、抛光等过程。

[14]精密模压成型从结构上分析, 硫系玻璃与晶体红外材料的一个重要差别在于前者为非晶态而后者为晶体.晶体材料在加热至熔点时直接由固态转变为液态, 因此不存在模压的可能性.而非晶态材料与塑料相似,在加热过程中粘度逐渐降低, 直至进入能按照模具提供的形状通过压制而精确成型的最佳粘度围.换言之, 硫系玻璃适用于精密模压成型工艺, 该工艺的成本显然要比用于晶体加工的单点金刚石车削工艺低得多, 由此为红外夜视仪的商业应用奠定了基础.与晶体类红外材料相比,玻璃类材料的最大优势就是成型工艺简单,可利用精密模压成型工艺直接加工包括球面、非球面和非球面射棱镜在的多种玻璃红外光学元件,使加工成本较晶体材料显著降低。

与传统的氧化物光学玻璃相比,硫系玻璃制备具有很强的工艺特殊性,它一般需要在无氧真空气氛的圆柱形密闭石英安瓿中进行高温(800~1 000 ℃)摇摆熔制,无法进行机械搅拌。

硫系玻璃生产制备工艺主要包括原料提纯、高均匀性玻璃熔制、脱模、退火四大环节。

微晶化处理从热力学观点分析,玻璃态是一种高能状态,有自发的析晶趋势,玻璃处于介稳状态。

室温下,玻璃的稳定态应为晶态,然而却未能析晶,这可能是因为随着温度的降低,粘度快速增加而有效地阻止了晶体的形成。

微晶玻璃是通过控制玻璃的晶化而制备的多晶固体。

晶化是通过把适当的玻璃经过仔细制定的微晶化制度使玻璃中成核及结晶生长。

由于本课题研究的硫系玻璃将用于红外光学系统,为了不影响其在红外区域的透过性能,微晶化后的硫系玻璃部析出晶粒的尺寸应控制在红外最小波长以下,即740nm,所以实验中只需要在硫系玻璃中形成尽可能多的小晶核,不需要晶粒长大,这样才可以获得力学性能、热稳定性及光学性能均优良的硫系玻璃。

热处理通过适当热处理氧化物玻璃可以制得热力学性能极大提高的微晶玻璃, 因此, 人们试图通过同样的方法制备硫系微晶玻璃并进行了广泛的尝试.与氧化物玻璃不同的是, 在硫系玻璃的微晶化过程中要严格控制晶粒的尺寸, 避免晶粒过大造成的散射影响红外透过率, 因此实际的热处理工艺只研究成核阶段, 尽可能在玻璃基体上均匀析出大量的纳米晶, 故最优的成核温度和最佳的成核保温时间是生产微晶玻璃的关键.4.镀膜现状三、红外光学玻璃目前在应用中存在的主要问题:目前硫属化合物玻璃一般采用真空熔铸法和压铸法制备, 容易产生偏折及气泡等缺陷, 同时在制备过程中因氧化可导致红外性能劣化, 硫属化合物组份元素大多带有毒性和易爆性, 加之融熔和淬火方面的困难, 使得制备大型高质量硫属化合物玻璃材料成品率较低。

制备在8~14μm 或更长波段以及温度≥500 ℃下使用的玻璃材料, 在理论上遇到了困难, 因为如要使玻璃透射向长波延伸, 要求用原子量大且原子间相互作用较弱的元素, 而由这种元素组份制备的材料必然导致低的玻璃转变温度和软化点, 使材料不可能实用化.(1)硫系玻璃对杂质非常敏感,对原料、设备和制备技术提出了较高的控制要求。

相关文档
最新文档