系统辨识课程报告

合集下载

《系统建模与及辨识》课程实验报告

《系统建模与及辨识》课程实验报告

《系统建模与及辨识》课程上机实验报告专业名称 : 控制工程 上机题目 : 用极大似然法进行参数估计一 实验目的通过实验掌握极大似然法在系统参数辨识中的原理和应用。

二 实验原理1 极大似然原理设有离散随机过程}{k V 与未知参数θ有关,假定已知概率分布密度)(θk V f 。

如果我们得到n 个独立的观测值,21,V V …n V ,,则可得分布密度)(1θV f ,)(2θV f ,…,)(θn V f 。

要求根据这些观测值来估计未知参数θ,估计的准则是观测值{}{k V }的出现概率为最大。

为此,定义一个似然函数)()()(),,,(2121θθθθn n V f V f V f V V V L = (1.1)上式的右边是n 个概率密度函数的连乘,似然函数L 是θ的函数。

如果L 达到极大值,}{k V 的出现概率为最大。

因此,极大似然法的实质就是求出使L 达到极大值的θ的估值∧θ。

为了便于求∧θ,对式(1.1)等号两边取对数,则把连乘变成连加,即 ∑==ni iV f L 1)(ln ln θ (1.2)由于对数函数是单调递增函数,当L 取极大值时,lnL 也同时取极大值。

求式(1.2)对θ的偏导数,令偏导数为0,可得ln =∂∂θL(1.3)解上式可得θ的极大似然估计ML ∧θ。

2 系统参数的极大似然估计Newton-Raphson 法实际上就是一种递推算法,可以用于在线辨识。

不过它是一种依每L 次观测数据递推一次的算法,现在我们讨论的是每观测一次数据就递推计算一次参数估计值得算法。

本质上说,它只是一种近似的极大似然法。

设系统的差分方程为 )()()()()(11k k u z b k y z a ξ+=-- (2.1) 式中111()1...nn a z a z a z ---=+++1101()...nn b z b b z b z---=+++因为)(k ξ是相关随机向量,故(2.1)可写成)()()()()()(111k z c k u z b k y z a ε---+= (2.2) 式中)()()(1k k z c ξε=- (2.3)nn z c z c z c ---+++= 1111)( (2.4))(k ε是均值为0的高斯分布白噪声序列。

系统辨识实验1实验报告

系统辨识实验1实验报告

实验报告--实验1.基于matlab的4阶系统辨识实验课程:系统辨识题目:基于matlab的4阶系统辨识实验作者:专业:自动化学号:11351014目录实验报告 (1)1.引言 (2)2.实验方法和步骤 (2)3.实验数据和结果 (2)4.实验分析 (4)1、 引言系统辨识是研究如何确定系统的数学模型及其参数的理论。

而模型化是进行系统分析、仿真、设计、预测、控制和决策的前提和基础。

本次实验利用matlab 工具对一个简单的4阶系统进行辨识,以此熟悉系统辨识的基本步骤,和matlab 里的一些系统辨识常用工具箱和函数。

这次实验所采取的基本方法是对系统输入两个特定的激励信号,分别反映系统的动态特性和稳态特性。

通过对输入和输出两个系统信号的比较,来验证系统的正确性。

2、 实验方法和步骤2.1 实验方法利用matlab 对一个系统进行辨识,选取的输入信号必须能够反映系统的动态和稳态两个方面的特性,才能更好地确定系统的参数。

本次实验采取了两种输入信号,为反映动态特性,第一个选的是正弦扫频信号,由下面公式产生:选定频率范围 ,w(t)是时间t 的线性函数,具有扫频性质,可以反映系统的动态特性。

为反映稳态特性,选的输入信号是阶跃信号。

以上的到两组数据,利用matlab 的merge()函数,对两组数据融合,然后用matlab 系统辨识工具箱中的基于子空间方法的状态空间模型辨识函数n4sid()来对系统进行辨识2.2 实验步骤(1)建立一个4阶的线性系统,作为被辨识的系统,传递函数为3243211548765()125410865s s s G s s s s s -+-+=++++(2)产生扫频信号u1和阶跃信号u2(3)u1、u2作为输入对系统进行激励,分别产生输出y1和y2 (4)画出稳态测试输入信号u1-t 的曲线,和y1-t 的曲线 画出动态测试输入信号u2-t 的曲线,和y2-t 的曲线(5)使用merge()函数对u1-y1数据和u2-y2数据进行融合,并使用n4sid()函数对系统进行辨识。

系统辨识实验三

系统辨识实验三

《系统辨识》课程报告题目:最小二乘参数估计法班级:工控08.1姓名:学号:日期:2011.6.1成都信息工程学院控制工程学院最小二乘参数估计摘要:最小二乘法提供了一个估算方法,使之能得到一个在最小方差意义上与实验数据最好拟合的数学模型。

最小二乘的一次性完成辨识算法,他的特点是直接利用已经获得的观测数据进行运算处理。

求出一个使各次实际观测和计算值之间的差值的平方乘以度量其精度的数值以后的和为最小的数值,求出带辨识参数。

最小二乘辩识方法在系统辩识领域中先应用上已相当普及,方法上相当完善,可以有效的用于系统的状态估计,参数估计以及自适应控制及其他方面。

关键词:最小二乘法,AIC 准则,M 序列1 引言:最小二乘法是 1795 年高斯在预测星体运行轨道最先提出的 , 它奠定了最小二乘估计理论的基础 . 到 20 世纪 60 年代瑞典学者 Austron 把这个方法用于动态系统的辨识中 , 在这种辨识方法中 , 首先给出模类型 , 在该类型下确定系统模型的最优参数 .这种具有格式规范的辨识方法可以演绎成递推形式 .递推最小二乘算法计算量小 , 可以用于在线辨识 , 即使辨识对象随时间发生化 , 模型也可以对其进行跟踪断地进行更新和修正辨识参数 , 从而成为一种被广泛采用的辨识方法,最小二乘法有一次完成算法和递推算法,其中 一次完成算法存在一定的局限性,工业系统辨识常采用递推算法进行系统辨识。

2 实验原理:由于运用最小二乘一次完成算法进行系统参数辨识的时候,存在一定的限定条件,并且需要用到全部的观测数据,每采样一次就需要增添一组新的观察数据,所以引入递推最小二乘法来辨识系统参数,递推最小二乘法是用旧的估计值加上修正值得到的新的估计值,用新的测量数据对上一次的估计结果进行修正,直到估计值达到需要的精度为止。

2.1根据汉格尔矩阵估计模型的阶次设一个可观可控的SISO 过程的脉冲响应序列为{个g(1),g(2),……g(L)},可以通过汉格尔(Hankel )矩阵的秩来确定系统的阶次。

系统辨识报告

系统辨识报告

实验一:系统辨识的经典方法实验目的:掌握系统的数学模型与系统的输入,输出信号之间的关系,掌握经典辨识的实验测试方法和数据处理方法。

熟悉matlab/Simulink 环境。

实验内容:1.用系统阶跃响应法测试给定系统的数学模型。

在系统没有噪声干扰的条件下通过测试系统的阶跃响应获得系统的一阶加纯滞后或二阶加纯滞后模型,对模型进行验证。

2.在被辨识的系统加入噪声干扰,重复上述1的实验过程。

实验内容:利用非线性水槽模型搭建单水槽系统模型,如下图由上图及其计算的H :H 为一二元数组,分别表示第一个、第二个水箱的液位。

二.实验方法:运用阶跃响应法:第一个水箱的参数辨识(一阶):一阶惯性环节的传递函数为:TSK G +=11其中:7111.21060111.87)(=-=∞=u y K将H 归一化:)()200()(∞-=y y t y H 在H 中查得632.0)(=T y 时对应T=2.3故模型为 13.27111.21+=S G第二个水箱的参数辨识(二阶):二阶系统的传递函数为:)1)(1(2122++=s T s T K G其中:70678.210600678.87)(=-=∞=u y K 在H 中可得:8032.0)5.9(4004.0)1.4(==y y 故有: 5.91.421==t t由公式 55.0/74.1)/(16.2/)(21221212121-=++=+t t T T T T t t T T可求出: 7436.15573.421==T T 故:)17436.1)(15573.4(7068.22++=s s G实验二:相关分析法搭建对象:处理程序:for i=1:15m(i,:)=UY(32-i:46-i,1);endy=UY(31:45,2);gg=ones(15)+eye(15);g=1/(25*16*2)*gg*m*y;plot(g);hold on;stem(g);实验结果:相关分析法最小二乘法建模:二、三次实验本次实验要完成的内容:1.参照index2,设计对象,从workspace空间获取数据,取二阶,三阶对象实现最小二乘法的一次完成算法和最小二乘法的递推算法(LS and RLS);2.对设计好的对象,在时间为200-300之间,设计一个阶跃扰动,用最小二乘法和带遗忘因子的最小二乘法实现,对这两种算法的特点进行说明;实验三最小二乘法参数估计一.实验内容(1)参照index2,设计对象,从workspace空间获取数据,取二阶,三阶对象实现最小二乘法的一次完成算法和最小二乘法的递推算法(LS and RLS); (2)对设计好的对象,在时间为200-300之间,设计一个阶跃扰动,用最小二乘法和带遗忘因子的最小二乘法实现,对这两种算法的特点进行说明(3)参照index3,设计符合GLS和ELS的对象模型,改写参照程序,实现相应的.算法。

过程建模与系统辨识课程报告

过程建模与系统辨识课程报告

过程建模与系统辨识课程报告班级:姓名:学号:课题:人体运动计算机仿真建模方法地研究1.人体运动计算机仿真地理论基础(1)人体运动计算机仿真地理论所谓人体运动计算机仿真地理论, 是指人体运动领域及其计算机仿真技术应用时作为基本立论地专业理论知识依据, 也就是指导人们从事人体运动计算机仿真应用与研究活动赖以建立和存在地专业领域内地前提和一些基本思想.总之, 因为仿真技术具有“学科面广、综合性强、应用领域宽、无破坏性、可多次重复、安全、经济、可控、不受气候和场地空间条件限制”等独特优点, 故而, 无论在交通工具安全、人机项目、虚拟设计、机器人、医疗康复、体育运动以及影视娱乐等诸多领域, 应用计算机仿真技术研究人体运动都有着其它技术所无法比拟地价值和效益.因此, 本文着眼于人体运动生物力学、计算机仿真等领域地知识基础, 从计算机仿真技术及其在人体运动领域地应用发展、人体及其运动建模等主要层面进行研究成果地综述性讨论, 旨在进一步促进人体运动领域应用计算机仿真技术在理论与实践上得以不断拓宽和深入发展.(2)人体及其运动建模当人体被作为一种系统来看待时, 其本身及其运动包含了众多不同层面而复杂地因素和交互作用.因此, 要深刻理解和把握人体及其运动, 模型化方法是不可或缺地.概略来说, 人体及其运动模型地构造主要有两种方式( 或者两者地结合) : 第一种方式从逻辑上看是演绎为主地, 即将人体系统分成子系统, 且子系统地性质和关系已被成熟地理论知识或规律所涵盖, 进而把这些子系统用数学方法加以联结得到整个系统地模型, 因为它无须对人体实际系统进行试验, 故而, 这种方式通常就被称为建模; 第二种方式则主要是归纳地, 它主要依据从实际人体地实验数据( 记录人体系统地输入输出) 并进而进行数据分析来建立数学模型或图象模型, 通常被称为系统辩识.就人体运动地力学模型而言, 从最简化地质点、刚体, 到多刚体、柔性多体等模型, 都以阐释人体机械运动形式地机理为目标, 其主要内容涵盖多体系统力学模型、非完整系统力学模型等, 并为人体地动力学研究提供了理论基础.在计算机仿真地交互效果上, 人体地逼真形象模型是在计算机图形学与先进仿真技术不断融合促进下发展起来地, 又在虚拟现实技术大力推动下, 三维“虚拟人”模型亦不断推出, 其中主要有如下几种形式: 骨架、体素、曲线、球体堆积、曲面等模型形式.(3)人体运动计算机仿真地理论地发展随着系统仿真技术及相关地计算机图形学、数据库技术、虚拟现实技术地交互融合与推动, 加上以人体或其运动为核心地不同领域地强烈需求地推动, 虚拟人体及其运动成为当前研究发展地热点, 在建模方法与技术地核心理论基础方面, 人工智能( 专家知识、神经网络) 、运动心理学、定性仿真有关地新发展成为未来值得关注地趋势.2.人体运动计算机仿真建模方法地研究(1)计算机数值仿真计算机数值仿真也称为计算机仿真或模拟, 是以数学理论、相似原理、信息技术、系统控制及其应用领域有关地专业技术为基础, 以计算机和各种物理效应设备为工具, 利用系统模型对实际地或设想地系统进行实验研究地一门综合技术.它借助高速、大存储量计算机及相关技术, 对复杂地真实系统地运动过程或状态进行数字化模仿地技术, 所以也称为数字仿真.(2)人体运动地计算机仿真人体运动地计算机仿真是运动生物力学研究方法中地一个重要内容, 具有很高地理论和实际应用价值,是研究人体运动规律地有效手段.它可以用于分析运动员在完成动作过程中, 人体各个部分地位移、速度、加速度等运动学变化参数, 以及力、力矩等动力学参数地变化规律, 从而了解人体运动地力学特征与运动技术动作地定量关系; 优化运动员地动作技术, 设计新技术并预测其效果.此外, 人体运动仿真还可以研究运动损伤地力学机理、研究运动员地动作如何与运动器械相协调等.因此, 人体运动仿真有助于体育训练, 从传统地主要基于人眼观察地方法向基于高精度视频捕捉与分析地人体测量方法转变; 从基于经验地训练分析方法向程式化地科学地人体运动分析方法地转变, 从而更快更有效地提高运动训练水平和运动成绩.应用计算机仿真进行运动技术研究地核心问题是对运动人体进行建模.本研究通过总结近年来人体运动计算机模拟与仿真中地几种常见地建模方法,分析各种方法地特点和适用范围, 以及建模中存在地难点和关键问题, 并讨论了人体运动仿真地可视化技术, 最后对人体运动仿真未来地发展趋势作了展望.3.人体运动计算机仿真建模方法地研究实例模型(1)多刚体动力学模型从人体解剖学地观点来看, 人体运动系统是由多个骨骼和附着在其上地肌肉、肌腱、韧带等, 通过关节连接在一起组成, 并在神经系统地调节和其它系统地配合下, 使各环节间地相互位置发生变化, 最终形成人体在空间地复杂运动地.为了研究人体地运动, 可以把人体简化为多刚体系统, 把人体地肌肉、肌腱等软组织处理为各刚体间地作用力和力矩.Hanavan于1964年提出了一个15刚体地人体模型.该模型把人体分为头、上躯干、下躯干、大腿、小腿、足、上臂、前臂、手等共15个刚体, 可以模拟人体大量一般性地动作.出于不同问题地需要, 许多专家学者根据各自所研究地主要问题和目标, 从不同地角度对人体进行了不同程度地合理简化, 提出了不同地人体多刚体模型.例如:Miller建立了四刚体人体模型用于研究人体潜水运动; passerello&Huston建立了十刚体人体模型用于模拟人体地空间运动; Ghosh采用三刚体模型研究人体地单杠振浪; H atze提出了十七刚体人体模型研究跳远起跳; Remizov用双刚体模型分析滑雪起跳动作.在国内, 洪友廉提出了五刚体人体模型来研究单杠后空翻; 刘延柱提出了两刚体人体模型研究单杠振浪; 罗特军提出了三刚体人体模型研究双杠支撑摆动; 许静辉等人采用五刚体平面模型研究跳远地最佳踏跳着板姿势; 朱昌义采用五刚体模型研究单杠上人体摆动技术; 柴夏萍、焦群英利用三刚体模型, 对人体受冲击后向后翻倒地过程进行了计算机模拟, 研究了人体后倒引起地骨盆损伤问题.多刚体动力学方法将人体简化成为具有有限自由度地多刚体系统, 在实际地动力学分析中较多地采用Hanavan地人体简化模型.该方法地关键是要计算一组约束力(或力矩), 使人体地运动符合所给定地约束, 在实际地解方程中因为涉及求导和解微分方程, 其过程比较烦琐.多刚体动力学方法满足牛顿定律, 在物理上概念清楚, 所以在人体运动仿真中被广泛采用.但是因为只考虑了人体地机械特性, 忽略了人体在运动中地变形, 使得仿真结果象一个机器人, 采用时间空间约束地优化处理技术可以改善该方法, 在一定程度上提高了仿真地逼真度.(2)有限元分析法建模人在运动中尤其在做剧烈地旋转运动时,会产生明显地变形,肌肉两端将产生较大地剪切应力,可以认为人体是一个典型地柔性多体系统,所以将柔性多体系统地主要分析手段有限元分析法引入到人体运动地研究中也是非常必要地.有限元分析法也称为有限元素法,其主要地研究思想是把研究目标划分成许多微小地单元,然后研究在外力地作用下,各个单元地应力,进而掌握人体在运动中各个部位地受力情况,这种方法通常分为三个阶段:建立模型;加载求解;察看和分析.这种研究手段广泛应用于碰撞实验,损伤地预防与诊断,虚拟制造以及运动评价之中,但与其他地项目应用相比采用有限元研究人体运动要复杂地多,这是因为人体地有限元分析需要首先对生物组织地本构关系进行理论研究,而人体组织地本构方程地建立本身就是一个非常复杂地过程,另外因为生物体地几何形状并不规则,边界条件十分复杂,生物材料呈现高度地非线性并且具有时变特性.所幸地是因为结构动力学有限元,边界元等理论地发展使得机构分析方法实现了程式化,开发了功能相当完备地大型计算机软件平台如SAP 系列,NASTRAN,ANSYS 等,这些软件具有友好地用户界面,只要输入结构模型地数据,数学模型地建立与数值分析过程均由计算机自动完成,利用这些软件可以很方便进行人体模型地研究.(3)肌肉力控制无生命物体地运动是由不平衡地外力组成,而有生命地人体地运动是由不平衡地内力(肌肉力)产生,作为整体,人体也要受其环境动力地影响,而把通常地动力学研究方法着眼于后者,这是不全面地,所以近些年来产生了基于肌肉力地仿真方法[15],对于可变形体,可以将其模型抽象成质点-弹簧-阻尼,弹簧用来模仿能够自由伸缩地肌肉,根据合适地控制函数和激励信号使肌肉产生力和力矩,从而引起被激励部分地运动.该方法即能满足牛顿定律又充分考虑了人体地肌肉变形,但是随着要控制地肌肉数地增加,其执行机构地控制函数地推导也变得更加困难,为了克服这个困难,通常采用优化技术自动导出控制函数.(4)实验地方法实验方法是一个非常有前景地研究方法,充分利用实验方法中不同地测试数据,可以简化人体建模地复杂性,缩短研究周期.南非地Hazte已经很成功地采用实验方法摸拟了一些人体地运动.利用实验方法进行人体仿真主要有两种方法:1.利用一个对象地测试数据,在不同地对象之间进行移植; 2.利用实验数据采用神经网络,遗传算法等计算智能方法进行建模.采用生物力学测试手段可以得到运动捕捉数据,测力台数据以及肌肉力数据,要获得这些数据必须采用影像,多维力测力台,肌电仪等设备,但要获取全面地人体运动测试数据,必须综合利用这些设备,故此实验方法地发展很大程度要仰仗人体运动测试与感知技术地提高.4.对人体运动计算机仿真建模方法地建议及感想人体运动地建模是一项艰巨而复杂地工作,理论方法可以获得带有普遍意义地运动规律揭示运动地内在机理,但模型复杂,建模困难,以黑箱方法为代表地实验方法相对简单,误差小,另外可以建立人体运动地控制模型,但是此种方法从理论方法还技术层面都有许多问题需要进一步研究.但是将不同地研究方法结合起来,利用各自地优势进行互补将是研究地重点和发展方向.目前地多刚体动力学建模方法对人体模型都做了不同程度地简化, 仿真效果与实际情况还是存在差距, 其主要原因是: 1)简化地模型对人体地变形考虑较少; 2)理论计算需要肌肉力、肌肉力矩地实验测量作为其边界或约束条件, 而肌肉力、肌肉力矩地在体测量尚不可能实现; 3)在微分方程地迭代求解过程中没有解决好奇异点消除地问题.而骨骼 -肌肉建模方法充分考虑了可变形体 (如肌肉、韧带 )肌肉或韧带地作用, 以及肌肉力对运动地控制, 因此将多刚体动力学建模方法与骨骼 - 肌肉建模方法相结合无疑是人体运动仿真发展地一个趋势.另外随着人工智能方法地引入,人体地运动仿真将由单独地力学特征地仿真向具有生命特点地人工人转化,人工人地运动也将是自主地,智能地行为,而将多个人工生命地行为进行组合和协调,人工人地行为将会体现着人地另一本质—社会属性,这将是人体运动仿真中地革命性地变革.5. 对过程建模与系统辨识课程地建议及体会在整个过程建模与系统辨识课程地学习中,我获益颇多,这门课程涵盖了数学建模地知识,及系统辨识地理论和方法,一方面我们有了很多数学建模地思想,以及一些数学建模地解决方法,这些都为于我们以后去解决一些复杂问题打下了良好地基础,另一方面让我们对系统辨识有了深刻地认识,了解了一些系统辨识地理论例如、最小二乘理论、多变量系统辨识法、闭环系统辨识法和小样本系统辨识等以及系统辨识地一些应用.在学习这门课程同时,我也觉得十分吃力,因为课程地内容太多,而且太多地方我们都是没有基础地,所以大部分都是只能以了解为主不能深入地学习,也激励不起太多地兴趣与思考,所以我觉得这门课程最好是着重地讲几个很实用地、主流地东西,让大家深入地研究,如此而来,我想我们学到地会更多,也会更加有兴趣.参考文献:[1] 唐毅, 等. 人体力学行为地计算机仿真地发展及其展望 [ J ].系统仿真学报, 2003, 16 ( 5): 863- 867.[ 2] 石俊, 等. 人体步态研究与仿真地现状和展望 [ J] . 系统仿真学报, 2006, 18 ( 10): 2703- 2711.[3] 唐毅, 葛运建, 陈卫, 等. 数字运动员人体模型及其仿真研究,1004-731X (2003) 01-0056-03[4] 崔来友, 白士红, 张春林, 等. 人体运动学模型地研究,1004-731X(2004)05-0863-05[ 5] 刘雷. 人体运动建模仿真方法研究[ J] . 计算机仿真, 2009( 1) : 166- 168.[ 6] 孙剑, 李克平. 行人运动建模及仿真研究综述[ J] . 计算机仿真, 2008(12) : 12- 16.[7]古福明.人体运动计算机仿真建模方法地研究进展.1001) 9154(2007) 03) 0090) 04[8]黄汉升, 朱昌义.人体运动计算机仿真地理论基础1007- 323X(2007)05- 0001- 04。

系统辨识实验报告

系统辨识实验报告

实验一:系统辨识的经典方法一、实验目的掌握系统的数学模型与输入、输出信号之间的关系,掌握经辨辨识的实验测试方法和数据处理方法,熟悉MATLAB/Simulink环境。

二、实验内容1、用阶跃响应法测试给定系统的数学模型在系统没有噪声干扰的条件下通过测试系统的阶跃响应获得系统的一阶加纯滞后或二阶加纯滞后模型,对模型进行验证。

2、在被辨识系统中加入噪声干扰,重复上述1的实验过程。

三、实验方法在MATLAB环境下用Simulink构造测试环境,被测试的模型为水槽液位控制对象。

利用非线性水槽模型(tank)可以搭建单水槽系统的模型,也可以搭建多水槽系统的模型,多水槽模型可以是高低放置,也可以并排放置。

1.噪声强度0.5,在t = 20的时候加入阶跃测试信号相应曲线2.乘同余法产生白噪声A=19;N=200;x0=37;f=2;M=512; %初始化;for k=1: N %乘同余法递推100次;x2=A*x0; %分别用x2和x0表示xi+1和xi-1;x1=mod(x2,M); %取x2存储器的数除以M的余数放x1(xi)中;v1=x1/M; %将x1存储器中的数除以256得到小于1的随v(:,k)=(v1-0.5 )*f;x0=x1; % xi-1= xi;v0=v1;end %递推100次结束;v2=v;k1=k;h=k1;%以下是绘图程序;k=1:1:k1;plot(k,v,'r');grid onset(gca,'GridLineStyle','*');grid(gca,'minor')3.白噪声序列图像020406080100120140160180200-1-0.8-0.6-0.4-0.20.20.40.60.81四、 思考题(1) 阶跃响应法测试系统数学模型的局限性。

答:只适用于某些特殊对象或者低阶简单系统;参数估计的精度有限,估计方法缺乏一般性。

系统辨识调研报告

系统辨识调研报告

北京工商大学《系统辨识》课程调研报告题目类别:系统建模的分类现代辨识方法报告题目:基于神经网络与模糊控制的辨识方法调研目录第一章系统辨识理论综述 21.1系统辨识的基本原理 21.2系统辨识的经典方法 21.3神经网络系统辨识综述 21.3.2神经网络在非线性系统辨识中的应用 2 1.4模糊系统辨识综述 31.4.1模糊系统的结构辨识 31.4.2参数优化的方法 31.4.3模糊规则库的化简 31.5小结 4第二章模糊模型辨识方法的研究 42.1模糊模型辨识流程 42.2模糊模型结构辨识方法 52.3模糊模型参数辨识方法 52.4模糊系统辨识中的其它问题 62.4.1衡量非线性建模方法好坏的几个方面 62.4.2模糊辨识算法在实际系统应用中的几个问题 62.4.3模糊模型的品质指标 62.5小结 7第三章基于两种模型的自行车机器人系统辨识 73.1基于ARX模型的自行车机器人系统辨识 73.2基于ANFls模糊神经网络的自行车机器人系统辨识 73.3 展望 7第一章系统辨识理论综述1.1系统辨识的基本原理根据LA.zadel的系统辨识的定义(1962):系统辨识就是在输入和输出数据的基础上,从一组给定的模型类中,确定一个与所测系统等价的模型"系统辨识有三大要素:(1) 数据。

能观测到的被辨识系统的输入或输出数据,他们是辨识的基础。

(2) 模型类。

寻找的模型范围,即所考虑的模型的结构。

(3) 等价准则。

等价准则一辨识的优化目标,用来衡量模型接近实际系统的标准。

1.2系统辨识的经典方法1、阶跃响应法系统辨识;2、频率响应法系统辨识;3、相关分析法系统辨识;4、系统辨识的其他常用方法;1.3神经网络系统辨识综述1.3.1神经网络在线性系统辨识中的应用自适应线性(Adallne一MadaLine)神经网络作为神经网络的初期模型与感知机模型相对应,是以连续线性模拟量为输入模式,在拓扑结构上与感知机网络十分相似的一种连续时间型线性神经网络。

系统辨识课程报告

系统辨识课程报告

X1
X2
X3
X4
图 1.1
M 序列产生原理图
2 最小二乘法原理
最小二乘理论是高斯(K.F.Gauss)在 1795 年预测行星和彗星运动的轨道时提出的, 高斯提出: “未知量的最大可能的值是这样一个数值, 它使各次实际观测和计算值之间的差 值的平方乘以度量其精确度的数值以后的和为最小。 ” 2.1 最小二乘格式
利用数据序列{z(k)}和{u(k)},极小化下列准则函数
l
T
J z (k ) (k )
T k 1


2
(2.6)

使 J(θ )=min 的θ 估计值记作 ,称之为参数的最小二乘估计值。 2.2 最小二乘问题的求解 用表示根据 l 次数采样数据所求得的参数的估计值 。

《系统辨识》课程报告Fra bibliotek被辨识的系统
图 2.1
SISO 辨识系统示意图
《系统辨识》课程报告
学号:2007073124
假设被辨识系统为一个单输入单输出(SISO)离散时间动态系统,如图 2.1 所示。其 系统数学关系式可用如下随机差分方程描述
z (k ) ai z (k i) bi u (k i) v(k )
2 其中,u(k) ,z(k)为系统的输入输出变量,v(k)是服从 N (0, v ) 分布的不相关随机噪
声,上述模型可写成最小二乘矩阵格式
z n H n n Vn
则有
(3.2)
L 2
L( n ) (2 )
2 v
1 T exp ( z H ) ( z H ) n n n n n n 2 2 v
(3.3)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

z(k ) (k ) v(k )
(2.2)
上式中, (k ) 是观测数据向量。辨识的问题则是如何求 a i 和 bi 。当模型结构已经选 定,即式(2.2)中的 na 和 nb 假定是已知的(通常 na〉nb) 。但是有时,为了系统分析方 便起见,也可以设 na=nb=n,这样并不会失去研究问题的普片性。 在(2.2)式中,有
(3.5)
将上式代人(3.4)式中得
2 L log L( ML ) const log v 2
(3.6)


AIC (n) 2const L log v 4 n
2

2
(参数个数=2n)
(3.7)
其等价式为
AIC (n) L log v 4 n







AIC (n) 中起主导作用。因此 AIC (n) 在 n0 处形成了一个最小值,如图 3.1 所示。
3.2 AIC 法确定线性定常系统的阶 考虑如下模型


z (k ) ai z (k i) bi u (k i) v(k )
i 1 i 1
n
n
(3.1)
伪随机序列可由线性移位寄存器网络产生。该网络由 r 级串联的双态器件,移位脉冲 产生器和模 2 加法器组成,下面以 4 级移位寄存器为例,说明伪随机序列的产生。例如, 初始状态是 0001,那么 X1=0,X2=0,X3=0,X4=1。如果反馈逻辑为 X= X3⊕ X4,对于 初始状态为 0001, 经过一个时钟节拍后, 各级状态自左向右移到下一级, 未级输出一位数, 与此同时模 2 加法器输出值加到移位寄存器第一级,从而形成移位寄存器的新状态,下一 个时钟节拍到来又继续上述过程。未级输出序列就是伪随机序列。其产生的伪随机序列为 X=100110101111000100110101111000… ,这是一个周期为 15 的周期序列。改变反馈 逻辑的位置及数量还可以得到更多不同的序列输出。如图 1 所示。


参数估计量 满足
lT ( Z l l ) 0

(2.9)
这就是以向量矩阵形式表示的正规方程, 它由具有 2l+1 个线性方程式所组成。 可解出
(lT l ) 1lT Z l
2.3 最小二乘估计的递推算法归结
T l 1 l K l 1 [ z l 1 l 1 l ] Pl l 1 K l 1 1 lT1 Pl l 1 Pl 1 [ I K L 1 lT1 ]Pl
2 其中,u(k) ,z(k)为系统的输入输出变量,v(k)是服从 N (0, v ) 分布的不相关随机噪
声,上述模型可写成最小二乘矩阵格式
z n H n n Vn
则有
(3.2)
L 2
L( n ) (2 )
2 v
1 T exp ( z H ) ( z H ) n n n n n n 2 2 v
参考文献
杨承志,孙棣华,张长胜.系统辨识与自适应控制.2003 年 7 月第一版.重庆大学出版社.
《系统辨识》课程报告
学号:2007073124
附:MATLAB 程序
1 最小二乘一次完成算法 M序列子函数:
function M=U X1=1;X2=0;X3=1;X4=0;X5=1;X6=0; %移位寄 存器输入Xi初态(101010),Yi为移位寄存器的 各级输出 m=300; %置M序列的总长度 for i=1:m Y6=X6; Y5=X5; Y4=X4; Y3=X3; Y2=X2; Y1=X1; X6=Y5; X5=Y4;X4=Y3; X3=Y2; X2=Y1; X1=xor(Y5,Y6); %异或运算 if Y6==0 U(i)=-1; else U(i)=Y6; end end M=U; J1=0; for x=2:300 J1=J1+[z(x)+z(x-1)*c1(1)-u(x-1)*c1(2 )].^2; end JJ1=J1+z(1).^2; AIC(1)=30*log(JJ1/300)+4*1; %若为二阶 z=zeros(1,300); for k=4:300 z(k)=1.5*z(k-1)-0.7*z(k-2)-0.1*z(k-3 )+1.1*u(k-1)+1.5*u(k-2)+1.7*u(k-3); %用理想输出值作为观测值 end for i=3:300 HL2(i,:)=[-z(i-1) -z(i-2) u(i-1) u(i-2)]; ZL2(i,:)=[z(i)]; end c2=inv(HL2'*HL2)*(HL2'*ZL2); J2=0; for x=3:300 J2=J2+[z(x)+z(x-1)*c2(1)+z(x-2)*c2(2 )-u(x-1)*c2(3)-u(x-2)*c2(4)].^2; end JJ2=J2+z(2).^2+z(1).^2; AIC(2)=30*log(JJ2/300)+4*2; %若为三阶 z=zeros(1,300); for k=4:300 z(k)=1.5*z(k-1)-0.7*z(k-2)-0.1*z(k-3 )+1.1*u(k-1)+1.5*u(k-2)+1.7*u(k-3); %用理想输出值作为观测值 end for i=4:300 HL3(i,:)=[-z(i-1) -z(i-2) -z(i-3) u(i-1) u(i-2) u(i-3)]; ZL3(i,:)=[z(i)]; end c3=inv(HL3'*HL3)*(HL3'*ZL3); J3=0; for x=4:300 J3=J3+[z(x)+z(x-1)*c3(1)+z(x-2)*c3(2 )+z(x-3)*c3(3)-u(x-1)*c3(4)-u(x-2)*c 3(5)-u(x-3)*c3(6)].^2; end JJ3=J3+z(3).^2+z(2).^2+z(1).^2; AIC(3)=30*log(JJ3/300)+4*3; %若为四阶
(3.3)

log L( n )
L L 1 log 2 log v2 ( z n H n n ) T ( z n H n n ) 2 2 2 v2
(3.4)
式中,L 为数据长度。根据 ML 原理,有
T 1 T ML ( H n H n ) H n z n 2 1 T v ( z n H n ML ) ( z n H n ML ) L

(2.10)
(2.11)
3 根据信息的准则估计模型的阶次
1974 年, Akaike 提出了一个基于 Kullback-Leible 信息量判据来定阶的赤池信息准则 AIC(Akaike Information Criterion) 。 3.1 AIC 准则意义
AIC (n)

n0
图 3.1
n
AIC (n) -- n 图
利用数据序列{z(k)}和{u(k)},极小化下列准则函数
l
T
J z (k ) (k )
T k 1


2
(2.6)

使 J(θ )=min 的θ 估计值记作 ,称之为参数的最小二乘估计值。 2.2 最小二乘问题的求解 用表示根据 l 次数采样数据所求得的参数的估计值 。

《系统辨识》课程报告
及 AIC (n) 值,找到使 AIC (n) min 的 n 作为 n 0 。


(3.8)
具体的定阶用法是:对不同阶次首先使用极大似然法估计参数,然后计算似然函数值
4 例子及其 MATLAB 程序实现
待辨识系统的阶次大于等于三阶;输入采用六位 M 序列,且用子函数实现;数据长度 大于等于三百;包含系统阶次的辨识。
被辨识的系统
图 2.1
SISO 辨识系统示意图
《系统辨识》课程报告
学号:2007073124
假设被辨识系统为一个单输入单输出(SISO)离散时间动态系统,如图 2.1 所示。其 系统数学关系式可用如下随机差分方程描述
z (k ) ai z (k i) bi u (k i) v(k )
其中
(2.5)
Z l [ z (1), z (2),, z (l )]T Vl [v(1), v(2),, v(l )]T
u (0) u (1 nb ) (1) z (0) z (1 na ) (2) z (1) z (2 n ) u (1) u (1 nb ) a l (l ) z (l 1) z (l na ) u (l 1) u (l nb )
《系统辨识》课程报告
学号:2007073124
待辨识系统为:
z(k ) 1.5 * z(k 1) 0.7 * z(k 2) 0.1* z(k 3) 1.1* u(k 1) 1.5 * u(k 2) 1.7 * u(k 3)
实验结果: c = -1.5000 0.7000 0.1000 1.1000 1.5000 1.7000 jc = 3 结果分析: 实验结果和理论值是完全相等的。由于实验中的观测值是使用的理想观测值,并没有 引入误差因素。系统的阶次辨识中,运用 AIC 信息准则,在求得的几个系数中比较出最小 值,从而得出系统阶次。
i 1 i 1
na
nb
k 1,2,3,, l
(2.1)
式中
u(k)—输入变量; y(k)—系统输出变量; z(k)—系统量测输出变量; v(k)—表示均值为零的随机噪声项。
相关文档
最新文档