化工原理塔设计
化工原理课程设计任务书精馏塔

化工原理课程设计任务书精馏塔本篇文档主要介绍化工原理课程设计任务书中关于精馏塔的要求和内容。
一、设计任务设计一座丙酮-甲醇精馏塔,要求:1. 产品:A级丙酮、B级丙酮、水、甲醇2. 输入流量:1000kg/h,A级丙酮50%,B级丙酮50%3. 操作压力:常压4. 输出流量:1000kg/h,A级丙酮90%,B级丙酮10%5. 设计基准:精馏32个板层二、设计步骤1. 精馏塔的结构设计(1) 塔的类型:管式塔(2) 塔的高度:设定32个板层,按传质条件设计最小高度(3) 填料类型:采用网格填料(4) 塔的直径:根据输入流量、精馏塔高度和填料设计(5) 塔的材质:不锈钢(6) 填料厚度:1.5cm2. 精馏塔的操作参数及控制(1) 操作压力:常压(2) 丙酮的重心温度:58℃(3) 甲醇的重心温度:52℃(4) 塔顶压力:1atm(5) 塔底压力:1atm(6) 板间压力降:0.015atm(7) 蒸汽进口管直径:50mm(8) 汽液分离器直径:100mm(9) 泵的扬程:15m3. 精馏塔的热力学计算(1) 设定板层数:32(2) 输入流量:1000kg/h,A级丙酮50%,B级丙酮50%(3) 设定塔顶压力:1atm(4) 设定塔底压力:1atm(5) 设定塔板温度,参考数值文献或软件计算(6) 根据塔板温度确定物质的蒸汽压(7) 根据物质的蒸汽压计算物质的分馏、回流比等参数4. 精馏塔的动力学模拟(1) 建立模型:使用MATLAB或其他模拟软件建立动力学模型(2) 确定控制方案:根据设定的输出要求,确定控制方案(3) 模拟仿真:进行塔的动态仿真,查找可能的故障及出现的问题(4) 评价:对模拟结果进行评价,并应对出现的问题进行处理三、设计成果1. 绘制精馏塔的结构图:包含填料、板层、进口出口等2. 绘制精馏塔的液相、气相平衡图3. 计算精馏塔流程图:包括输入和输出物质流量、温度、压力等参数4. 编写精馏塔的操作说明:包括操作控制、参数设定、操作步骤等5. 输出精馏塔的动态模拟成果:包括MATLAB或其他模拟软件的代码和仿真结果以上是化工原理课程设计的精馏塔任务书的要求和内容,本文档中介绍了设计步骤和要求,设计成果等部分,可以为读者提供一定帮助,同时也展示了精馏塔设计工作的一般流程和方法。
化工原理课程设计苯与甲苯精馏塔

化工原理课程设计苯与甲苯精馏塔本文将针对化工原理课程设计,探讨苯与甲苯精馏塔的工艺设计。
一、工艺流程苯与甲苯精馏塔的工艺流程如下:苯与甲苯混合物在进入塔后,首先通过反应塔抽收制冷剂进行冷却,从而达到冷却效果,然后通过塔顶进入预分离器进行处理,将其中的气相成分与液相成分分离,剩余的液相通过进料口进入塔体,反复上升和下降,与上部的气相进行平衡沸腾,不断提高纯度,最后在顶部凝结出高纯度的甲苯。
二、设计考虑因素1.塔型塔型应根据生产规模和成本考虑。
一般而言,小型的塔型适合处理小流量、高品质的混合物,而大型的塔型则适合处理大流量、低品质的混合物。
2.动力学参数在设计苯与甲苯精馏塔时,要考虑动力学参数,如液相和气相的流速、物料的热量传递效应等等。
这些参数将直接影响塔的效率和产品品质。
3.填料和操作条件由于苯与甲苯混合物具有一定的粘度和密度差异,因此应在填料和操作条件上进行制约,以避免不同成分之间发生混合或分离出现问题。
三、设计基础1.填料设计填料是苯与甲苯精馏塔的重要组成部分,是决定塔效率和塔高的关键因素。
填料材料应具有良好的性能,如高效的传质、良好的气体液体接触、稳定的抗攻击性等等。
常见的填料材料有氧化铝、陶瓷、合金等。
2.除塔器设计除塔器是苯与甲苯精馏塔的一个重要设计组成部分。
它的主要作用是在塔底处收集返回的液相,防止溢出和保持塔内的可控性。
除塔器的设计应根据填料类型、流量、操作温度和压力等多个因素进行综合考虑,以确保塔的正常运行。
3.塔底设计塔底是苯与甲苯精馏塔的重要组成部分,主要用于收集精馏出的液态产品。
由于反应塔存在高温、高压等因素,因此需要考虑塔底的材料和设计。
常见的材料有碳钢、不锈钢、合金等。
此外,塔底还应配备可靠的排放和泄压装置,以确保塔的安全性。
四、结论苯与甲苯精馏塔是一种常见的化工装置,其设计应考虑多种因素,如塔型、填料、动力学参数等等。
从而确保塔的高效、稳定和可靠性。
化工原理课程设计(氨气填料吸收塔设计)

化工原理课程设计(氨气填料吸收塔设计)1000字氨气填料吸收塔是一种常见的化工工艺设备,用于从氨气等气体中去除二氧化碳等有害成分。
在这篇课程设计中,我们将重点讨论氨气填料吸收塔的设计原理和实现方法。
一、设计原理氨气填料吸收塔的设计原理基于物理吸收法,它通过填充物(如泡沫塑料、陶瓷、金属等)将气相物质传递到液相解吸剂中,以达到去除气体中有害成分的目的。
其中,填充物的种类、形状和大小会影响到吸收效率和压力损失。
塔顶设置进口气流分布器,塔底设置液体分布器,使操作稳定,保证吸收效果。
二、实现方法1. 确定设计参数氨气填料吸收塔的设计需要涉及到多项因素,包括:(1)吸收剂的化学性质:吸收剂的化学性质会影响到塔内化学反应的速率和吸收效率。
因此,需要选择合适的吸收剂,并对其进行物性参数测定。
(2)气体流量:气体流量会影响到塔内的混合程度和扩散速率。
因此,需要确定气体流量范围和变化规律。
(3)操作温度和压力:操作温度和压力会直接影响到化学反应的速率和吸收效率。
因此,需要选择合适的操作温度和压力,并对其进行测定。
(4)塔体高度和直径:塔体高度和直径会影响到填充物的分布、气液流动情况和压降。
因此,需要按照实际需要确定塔的高度和直径。
(5)填充物种类和数量:填充物的种类和数量对吸收效率和压力损失有较大影响。
因此,需要选择合适的填充物,并确定填充层数和填充物粒径。
2. 填充物选型填充物的种类是影响氨气填料吸收塔吸收效率和压力损失的一个关键因素。
选用填充物时需要考虑以下方面:(1)物理性能:填充物的物理性能直接影响其在吸收塔内的分布、气液流动情况和压降。
因此,需要选择合适的物理性能(如比表面积、孔隙率、容重等)的填充物。
(2)化学特性:填充物的化学特性对气液反应速率和吸收效率有较大影响。
因此,需要选择符合需要的化学特性的填充物。
(3)成本和耐久性:填充物的成本和耐久性也是选型时需要考虑的因素,以确保经济可行和长期稳定运行。
化工原理板式塔设计

化⼯原理板式塔设计⽬录第⼀章板式精馏塔的设计1.1概述 (1)1.2板式精馏塔的设计原则与步骤 (1)1.3理论塔板数的确定 (3)1.4塔板效率和实际塔板数 (7)1.5板式精馏塔的结构设计 (8)1.6 板式精馏塔⾼度及其辅助设备 (27)1.7 板式精馏塔的计算机设计 (31)第⼆章板式精馏塔设计举例2.1苯-甲苯板式精馏塔设计 (33)2.2⼄醇—⽔板式精馏塔设计 (47)2.3 甲醇—⽔板式精馏塔设计 (66)第三章塔设备的机械计算3.1 塔体及裙座的强度计算 (86)3.2 塔盘板及其⽀撑梁的强度、挠度计算 (104)3.3 塔盘技术条件 (105)3.4 塔盘⽀撑件的尺⼨公差 (109)附录 (111)第⼀章板式精馏塔的设计1.1概述蒸馏是利⽤液体混合物中各组分挥发度的不同并借助于多次部分汽化和部分冷凝达到轻重组分分离的⽅法。
蒸馏操作在化⼯、⽯油化⼯、轻⼯等⼯业⽣产中中占有重要的地位。
为此,掌握⽓液相平衡关系,熟悉各种塔型的操作特性,对选择、设计和分析分离过程中的各种参数是⾮常重要的。
蒸馏过程按操作⽅式可分为间歇蒸馏和连续蒸馏。
间歇蒸馏是⼀种不稳态操作,主要应⽤于批量⽣产或某些有特殊要求的场合;连续蒸馏为稳态的连续过程,是化⼯⽣产常⽤的⽅法。
蒸馏过程按蒸馏⽅式可分为简单蒸馏、平衡蒸馏、精馏和特殊精馏等。
简单蒸馏是⼀种单级蒸馏操作,常以间歇⽅式进⾏。
平衡蒸馏⼜称闪蒸,也是⼀种单级蒸馏操作,常以连续⽅式进⾏。
简单蒸馏和平衡蒸馏⼀般⽤于较易分离的体系或分离要求不⾼的体系。
对于较难分离的体系可采⽤精馏,⽤普通精馏不能分离体系则可采⽤特殊精馏。
特殊精馏是在物系中加⼊第三组分,改变被分离组分的活度系数,增⼤组分间的相对挥发度,达到有效分离的⽬的。
特殊精馏有萃取精馏、恒沸精馏和盐溶精馏等。
精馏过程按操作压强可分为常压精馏、加压精馏和减压精馏。
⼀般说来,当总压强增⼤时,平衡时⽓相浓度与液相浓度接近,对分离不利,但对在常压下为⽓态的混合物,可采⽤加压精馏;沸点⾼⼜是热敏性的混合液,可采⽤减压精馏。
合成塔的设计 化工原理

化工原理课程设计一、塔设备简介塔设备是炼油、化工、石油化工、生物化工与制药等生产中广泛应用的气液传质设备。
根据塔内气液接触的部件的结构形式,可分为板式塔和填料塔两大类。
板式塔内置一定数量的塔板,气体以鼓泡或喷射形式穿过板上液层进行质、热传递,气液相组成呈阶梯变化,属逐级接触逆流操作过程。
填料塔内装有一定高度的填料层,液体自塔顶沿填料表面下流,气体逆流向上与液体接触进行质热传递,气液相组成沿塔高连续变化,属微分接触操作过程。
二、板式精馏塔的设计板式塔种类很多,但其设计原则基本相同,通常按如下的步骤进行设计:(1)根据设计任务和工艺要求,确定设计方案;(2)确定塔高,塔径等工艺尺寸;(3)确定塔板类型,设计塔板工艺尺寸(溢流装置,塔板布置,升气道排列等);(4)进行流体力学验算,绘制负荷性能图;(5)附属设备及管道的计算与选型。
三、设计题目:酒精生产过程精馏塔的设计四、原始数据及条件生产能力:年处理量乙醇—水混合液18500吨(按7200小时计算)原料:乙醇含量为55%(质量分数,下同)的常温液体分离要求:塔顶乙醇含量不低于91.5%塔底乙醇含量不高于1%化工原理设计过程一、精馏塔全塔物料衡算: 原料组成(摩尔分数,下同)F: 进料量(kmol/s)D: 塔顶产品流量(kmol/s)W:塔底残夜流量(kmol/s)原料乙醇组成:塔顶组成:塔底组成:=3600)=0.02638 物料衡算式:F=D+WF =D +W联立解得W=0.01590(kmol/s)D=0.01048(kmol/s)二、常压下乙醇-水气液平衡组成(摩尔)与温度关系1、温度利用表中数据由插入法可求得、=解得=81.4℃=解得℃=解得℃2、密度已知:混合液的密度:=+(为平均相对分子质量)混合气体密度:①塔顶温度℃气相组成=解得=82.54%②进料温度=81.4℃气相组成= 解得=58.45%③(1)精馏段液相组成:==0.5658气相组成:==70.50%所以=46kg/kmol=46kg/kmol(2)提馏段液相组成: = =16.37%kg/kmol气相组成:= =31.49%所以kg/kmol=46kg/kmol由不同温度下乙醇和水的密度可求得、的乙醇和水的密度(单位:kg/)塔顶温度℃=733.6=970.90+=824.26塔顶温度℃W=736.79=972.78+=952.30=717.01p ww=959.27+p w=956.04因为===888.28===890.15======33.85kg/kmol===22.59kg/kmol==45kg/kmol====37.33kg/kmol==26.41kg/kmol==1.33==1.85==0.751V ρ==1.592V ρ==1.043、 混合液体的表面张力二元有机物-水溶液表面张力可用下列公式计算以下公式中,下角标w,0,s 分别代表水,有机物及表面积部分;w x 、0x 指主体部分的分子数,w v 、0v 指主体部分的分子体积;w σ、0σ为纯水、有机物的表面张力;对乙醇q=2.cDccD m V ρ===62.43cWccW m V ρ===64.15ml==cFccF m Vρ=62.70ml==wFwwF m Vρ=18.54ml==wWwwW m Vρ=18.76ml由不同温度下的乙醇和水的表面张力,求得wF Dt t t ,,下的乙醇和水的便面张力(单位:N/m )乙醇表面张力=cFσ=17.02=cD σ=17.29=cW σ=15.33(1)水的表面张力=wF σ=62.33= wD σ=62.88=wW σ=59.04(2)塔顶表面张力cD D wD D cD D wD D V x V x V x V x +--=)1[(])1[(cD2wD ϕϕ==4.626)log(cD2wD ϕϕ=B =log (4.626) =-2.3348])[(441.03/23/2wDwD cDcD V qV Tq Q σσ-⨯==0.441[-62.88]=- 0.7622Q B A +==-2.3348- 0.7622=-3.0970联立方程组),log(cD2wD ϕϕ=A 1scD swD =+ϕϕ解得=scDϕ0.9721,swD ϕ=0.02794/1Dσ=0.0279+0.9721=2.0608 D σ=18.0369(3)原料表面张力cF2wF ϕϕ=cFF wF F cF F wF F V x V x V x V x +--)1[(])1[(==0.2363)log(cF2wF ϕϕ=B =log (0.2363)=-0.6265])[(441.03/23/2wFwF cFcF V qV Tq Q σσ-⨯==0.441[-62.33]=-0.7520Q B A +==-0.6265-0.7520=-1.3786联立方程组)log(scF2swF ϕϕ=A ,1scF swF =+ϕϕ解得swF ϕ=0.1847sc Fϕ=0.81534/1Fσ=0.1847+0.8153=2.1750 F σ=22.3788(4)塔底表面张力:scW2swW ϕϕ=cWW wW W cW W wW W V x V x V x V x +--)1[(])1[(==73.0007cW2wW log(ϕϕ=B )=l og (73.0007) =1.8633])[(441.03/23/2wWwWcWcW V qV Tq Q σσ-⨯==0.441[-59.04]= -0.6973Q B A +==1.8633 -0.6973=1.1660联立方程组 1),log(scW swW ScW2SwW =+=ϕϕϕϕA解得swWϕ=0.9397 scW ϕ=0.060264/1wσ=0.9397+0.=2.724w σ=55.0590(一) 精馏段的平均表面张力1σ==20.7079(二) 提馏段的平均表面张力2σ==38.71894、 混合物的黏度1t =79.89查表水μ=0. 3556mPa.s 醇μ=1.11mPa.s2t =90.07查表45.90 .31480==’’醇水μμ 精馏段黏度:=+=)-1111x x (水醇μμμ1.11mPa.s提馏段的黏度:=+=)-1''222x x (水醇μμμ0.9450.4180mPa.s5、 相对挥发度由F x =0.3235,F y =0.5845得F α==2.9418由D x =0.8081,D y =0.8254D α==1.1226由Wx =0.003937 , W y =0.04539W α===12.0297精馏段的平均相对挥发度: 1α==2.0322提馏段的平均相对挥发度: 2α==7.48586、 气液相体积流量计算根据x-y图查图计算或由解析法求得=0.5352min R =1.15取R=2min R =2.30精馏段 L=RD=2.30=0.02410kmol/s V=(R+1)D=(2.30+1)=0.03458kmol/s 已知1L M =33.85kg/kmol,=37.33kg/kmol1L ρ =888.28kg/,1V ρ=1.59 kg/则质量流:L1=∙L=33.84×0.02410=0.8155 kg/sV1=∙V=0.37.74×0.03458=1.3050 kg/s体积流量:LS1=L1/PL1=0.8155/888.28=9.1807×10-4 m3/sVs1=V1/Pv1=1.3050/1.59=0.8208 m3/s(1) 提馏段,因本设计为饱点液体进料 q=1L ’=L+qF=0.02410+1×0.02638=0.05048 kmol/s V’=V+(q-1)F=0.03458 kmol/s已知:=22.59kg/kmol,=26.41kg/kmo,=890.15 kg/,ρ v 2 =1.04 kg/则质量流:L2=∙L’=22.59×0.05408=1.1403 kg/sV2=∙V ’=26.41×0.03458=0.9133/s体积流量:LS2=L2/PL2=1.1403/890.15=1.281×10-3 m3/sVs2=V2/Pv2=0.9133/1.04=0.8782 m3/s三、 理论塔板的计算理论板:指离开此板的气液相平衡,而且塔板上液相组成均匀。
化工化工原理课程设计塔体设计

选该种
混相
ห้องสมุดไป่ตู้
U允 eUv
U
v
e
— 汽相流速 — 汽化分率
10
接管设计
3、接管型式
进料管示意图 11
12
13
接管设计
回流管示意图
14
塔盘结构
对>φ1000的塔板给出一些具体尺寸:
塔径
φ800-1400 φ1600-2000
支持圈截面 50×10 50×10
支持板截面 50×10
50×10
28
29
30
31
32
33
降液管板厚
4
6
受液盘板厚
4
6
塔板厚度
3
3
* 采用倾斜固定式降液管。
* 最后一个受液盘 深度≥100mm。
16
18
19
制图要求
制图要求
1. 视图的绘制
1)椭圆形封头的画法
2)简化与夸大
人孔
单纹
法兰
简化画
塔盘
塔中画单纹
螺栓
画中心线,十字线
制图要求
a) 重复部分
高塔采用断开画法,用平行点划线断开
塔体设计
接管设计
1、塔体上的接管
塔顶蒸汽出口管、回流管、进料管、侧线抽出管、塔底出
料管 2、接管直径
dv
4Vs
U s
按表6 - 2 选Uv dv
重力自流
UR=0.2~0.5m/s
泵
UR=1.5~2.5m/s
dR
4Vs
U R
液相重泵力自流
Uf 0.4 ~ 0.8 m/s Uf 1.5 ~ 2.5 m/s
化工原理课程设计精馏塔

化工原理课程设计精馏塔
在化工原理课程设计中,精馏塔是一个非常重要的主题。
精馏塔是化工生产中
用来进行精馏分离的装置,其原理和设计对于化工工程师来说至关重要。
本文将对精馏塔的原理、结构和设计进行详细介绍,希望能对化工原理课程设计有所帮助。
首先,我们来介绍一下精馏塔的原理。
精馏塔利用不同组分的沸点差异来进行
分离,通过在塔内加热并在塔顶冷凝,使得液体沸腾蒸发,然后在塔顶冷凝成液体,从而实现组分的分离。
在精馏塔内,通常会设置填料或塔板,增加塔内表面积,促进传质和传热,提高分离效率。
其次,我们将介绍精馏塔的结构。
精馏塔通常由塔底、塔体和塔顶三部分组成。
塔底主要用来加热液体,使其蒸发;塔体内设置填料或塔板,用来增加接触面积;塔顶则用来冷凝蒸发的液体,使其凝结成液体。
此外,精馏塔还包括进料口、顶部产品出口和底部残液出口等部件。
最后,我们将讨论精馏塔的设计。
精馏塔的设计需要考虑诸多因素,如进料组分、产品要求、操作压力和温度等。
在设计精馏塔时,需要进行热力学计算和传质计算,确定塔板或填料的高度和类型,保证塔内的传热和传质效果。
此外,还需要考虑塔底加热方式、塔顶冷凝方式以及塔内液体分布等问题,确保精馏塔能够稳定、高效地进行分离操作。
总之,精馏塔作为化工生产中常用的分离设备,其原理、结构和设计都是化工
工程师需要掌握的重要知识。
通过本文的介绍,相信读者对精馏塔有了更深入的了解,希望能够对化工原理课程设计有所帮助。
化工原理课程设计《板式塔课程设计》省名师优质课赛课获奖课件市赛课一等奖课件

塔
高
加料口板间距加大,设测试
口;
塔釜空间=1-3m,设人孔、测试口;
裙座=2m,设人孔两个。
绘图
➢物料流程图: 只标设备名称,物料构成、流量。
➢塔板构造图: 塔板分块、孔旳排列、降液管旳尺寸;
➢塔体工艺图: 总高、管口位置、板间距、管口方位、 管口表、技术特征表。
河北科技大学
设计 制图 审核 批准
D圆整 初选塔径 1米下列100
进制
构造参数旳设计
hw , ho ,Ws ,Ws' ,Wc ,do , t
how
hn
溢流强度 i= Lh < 3.5 ~ 4.5
hw
LW
计算hOW
hw 20 ~ 50mm
hw hL - how
ho 20 ~ 25mm hw
hL = 60mm
降液管、受液盘旳构造及尺寸
进料管:泵加料 u= 1-3m/s;高位槽进料u= 0.5-1m/s
回流液管:泵回流 u= 1.5-3m/s;重力回流u= 0.5-1m/s
(3)冷却剂、加热剂用量
Qc Vrc WcC p t2 t1
QB VrB W蒸汽 r蒸汽
t2 400C ~ 450C
冷却剂用量 加热剂用量
将工艺计算成果列表
用途
塔顶蒸汽管 排空管 回流管 进料管
塔底蒸进口管 热电阻接口 压力计接口 液位计接口
塔底液体出口管 人孔
河北科技大学
设计 制图 审核 批准
浮阀精馏塔 工艺条件图
图号
材料 比例
1:50
数量 第 1 页共
重量 1页
5、设计阐明书内容
每项单独一页 正文
每项单独一页
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
做出与液体流量无关的水平漏液线 .
液相负荷下限线
取堰上液层高度 作为液相负荷下限条件,依 的计算式计算出 的下限值,依此做出液相负荷下限线,该线为与气相流量无关的竖直线
取 ,则
由塔板的负荷性能图可以看出:
任务规定的气液负荷下的操作点P(设计点),处在适宜操作区内的适中位置。
塔板的气相负荷上限由雾沫夹带控制,操作下限由漏液控制。
按照固定的液气比,由图可以查出塔板的气相负荷上限
气相负荷下限 ,
项目
数值及说明
备注
塔径
0.8
板间距
0.45
塔板形式
单溢流弓形降液管
分块式塔板
空塔气速
0.717
堰长
0.528
堰高
0.0528
板上液层高度
0.06
降液管底隙高度
0.025
浮阀数
51
等腰三角形叉排
阀孔气速
5.84
阀孔动能因数
10.77
临界阀孔气速
按标准塔径圆整后:D=0.8m
塔的截面积
实际的空塔气速
4
取安全系数为 则空塔气速为
按标准塔径圆整后:
塔的截面积
实际的空塔气速
3.2精馏塔的有效高度:
精馏段的有效高度:
在进料板上方开一个孔高度为0.45m
提馏段的有效高度:
故精馏塔的有效高度为
第
5
D=0.8m 可选用单溢流弓形降液管,采用平形受液盘
5
取
1.
塔有浮阀塔和筛板塔。浮阀塔生产能力大,操作弹性大,在较宽的气速范围内,板效率变化较小,其操作弹性范围较筛板塔大。由于气液接触状态良好,以及气体水平吹出,雾沫夹带量少,因此板效率高。塔板结构简单,容易安装。筛板塔生产能力大,塔板压降低。本设计根据阀孔气速 的值依据手册选择浮阀塔。
1.
塔顶冷凝采用全凝器,用水冷凝
0.001
0.003
0.005
0.007
0.0075
0.379
0.287
0.179
0.048
0.011
液相负荷上限线
液体的最大流量应保证在降液管中停留时间不低于 .依下式
可知液体在降液管内停留时间为
以 作为液体在降液管中停留时间的下限,则
求出上限液体流量
竖直线
漏液线
对于F1型重阀,依 。
又知 以 作为规定气体最小
1.
回流方式可分为重力回流和强制回流。对于小塔型,回流冷凝器一般安装在塔顶,其优点是回流冷凝器无需支承结构,其确定是回流冷凝器回流控制难。如果需要较高的塔处理量或塔板数较多时,回流冷凝器不适合于塔顶安装,且塔顶冷凝器不宜安装、检修和清理。在此情况下,可采用强制回流,塔顶上升蒸汽量采用冷凝器以冷回流流入塔中。本次设计为小塔,故采用重力回流。
精馏段平均温度:
提馏段平均温度:
第三章
3.1
精馏段的平均摩尔质量:
提馏段的平均摩尔质量:
3.2
组份的液相密度
温度/℃
80
90
100
110
120
130
苯
817
805
793
782
770
757
氯苯
1039
1028
1018
1008
997
985
纯组分在任何温度下的密度由下式:
苯: 氯苯
式中:t-温度,℃
精馏段
与气体通过塔板的压强降所相当的液柱高度 :前已算出
液体通过降液管的压头损失:因不设进口堰,
板上液层高度:前已选定板上液层高度
取 ,又选定
雾沫夹带
板上液体流径长度
板上液流面积
苯和氯苯为正常系统,取物性系数 ,查的泛点负荷系数 ,
由 得
由 计算出的泛点率都在 以下,故可知雾沫夹带量能够满足 。
3.塔板负荷性能图
1.2.
进料状况一般有冷夜进料和泡点进料。对于冷夜进料,当组成一定时,流量一定,对分离有利,省加热费用,但其受环境影响较大;而泡点进料时进料温度不受季节、气温变化和前段工序波动的影响,塔的操作比较容易控制。此外,泡点进料时,基于恒摩尔流假定,精馏段和提留段的塔径基本相等,无论是设计计算还是设计加工制造这样的精馏塔都比较容易,
3~7
孔心距
0.075
排间距
0.065
横排的孔心距
液体在降液管内停留时间
26.04
降液管内清液层高
0.113
泛点率
38.9
气相负荷上限
0.396
雾沫夹带控制
气相负荷下限
0.178
漏液控制
操作弹性
2.23
第六章
6
6
进料管
进料管的结构类型很多,有直管进料、弯管进料、T形进料。本设计采用直管进料。
,
则体积流量
则体积流量
取管内流速
则管径
取回流管规格 则管内径
回流管实际流速
塔顶产品出口管
塔顶 ,平均密度
平均摩尔质量
则体积流量
取管内流速
则管径
取回流管规格 则管内径
回流管实际流速
6
塔顶温度
由 查液体比汽化热共线图
又气体流量
塔顶被冷凝量
冷凝的热量
6
塔底温度
由 查液体比汽化热共线图
又气体流量
塔底被汽化量
汽化的热量
第
算到这一步的时候,就需要查阅相关文献,得到苯和氯苯在各温度下的物性参数。求在给定温度下的物性参数的时候,可以通过作图的方法,在origin上读出。
塔板主要工艺尺寸的计算
印象最深的是自己塔型的选取,当时自己也不太懂,首选了筛板塔,最后在算的时候,知道要根据所算的速度 的选择,最后确定为浮阀塔。最最困难的事用CAD画图,因为我用的是等腰三角形叉排,有时候阀孔不够,需要调整线的位置,感觉很费事,不过当自己的开孔率符合的时候自己很自豪。当画负荷性能图的时候,那几条线的确定需要很认真的计算。
6.07963
1419.045
216.633
公式:
设塔顶的温度为
设进料板的温度为
A
B
C
苯
6.927418
2037.582
340.2042
氯苯
6.07963
1419.045
216.633
设塔底的温度为
A
B
C
苯
6.927418
2037.582
340.2042
氯苯
6.07963
1419.045
216.633
苯
0.381
0.308
0.255
0.215
0.184
氯苯
0.515
0.428
0.363
0.313
0.274
精馏段
提馏段
2.3.
2.3.
塔顶的操作压力:
每层操作压力
进料板的压力
塔底的压力
精馏段的平均压力
提馏段的平均压力
精馏段
苯和氯苯的安托因常数
A
B
C
苯
6.060395
1225.188
222.155
氯苯
5
出口堰高
选用平直堰,堰上液层高度
取板上清液层高度
故
故
故
5
由
液体在降液管中停留时间为:
故降液管设计合理
5
取降液管底隙流体流速
5
取阀孔动能因子
每层塔板上的浮阀数,
取边缘区宽度
计算塔板上
浮阀排列方式采用等腰三角形叉排.取同一横排的孔心距 ,排间距为
考虑到塔采用分块式板塔,而各分块板的支承与衔接也要占去一部分鼓泡区面积,因此排间距不宜采用80mm,而应小于此值,故取
板式精馏塔的工艺计算
自己掌握的用作图法理论塔板数,并且能够用origin软件画出具体的塔板。这样比用手画精确了许多,特别是最后一块塔板的确定。并且知道了进料板属于提留段的第一块板。
在确定塔顶和塔底的温度的时候,确实经历了一段艰难时刻,通过查阅相关资料和老师的讲解,最后通过试差法,求出准确温度。
精馏塔的工艺条件及有关物性参数的计算
1.
加热方式分为直接蒸汽加热和间接蒸汽加热,直接蒸汽加热时蒸汽直接由塔底进入塔内加热。但在一定的回流比条件下塔底蒸汽对回流液由稀释作用,使理论塔板数增加。间接蒸汽加热时通过加热器使釜液部分汽化,维持原来的浓度,以减少理论板数,缺点是增加加热装置。本设计采用间接蒸汽加热。
1.
选择再沸器时,首先应满足工艺要求,即在相同的传热面积下要选择体积小的,可以节省费用。本次实验选用U型管式再沸器,因为与其他型式再沸器相比,它的塔和再沸器之间标高差减小,允许气化率高,操作弹性大,而且本身有蒸发空间。
通过这次课程设计我巩固了课本的知识,并查阅了大量的有关文献,懂得设计设备的过程和相关方法。这样在以后的实际生产操作中,自己能够有一个清晰的思路。并且自己对相关的作图软件origin 和CAD有了更深的了解。在以后的科技时代中,自己能够更快捷的完成一些任务。从刚开始的一窍不通,到最后的得心应手,这中间经历和起伏。
夏清,化工原理上册·天津:天津大学出版社,2011
夏清,化工原理下册·天津:天津大学出版社,2011
冯新, 化工热力学· 北京:化学工业出版社,2011
潘国昌,化工设备设计·北京:清华大学出版社,1996
第八
本次课程设计通过给定的生产操作条件自行设计一套苯——氯苯物系的分离的塔板式连续精馏塔设备。通过近一周的团队努力,经过复杂的计算和优化,我们两人终于设计出一套较为完善的塔板式连续精馏塔设备。其各项操作性能指标均达到符合工艺技术要求,而且操作弹性大,生产能力强,达到预期的目的。