高二2-3排列组合练习题及答案

合集下载

(完整版)高二数学选修2-3排列组合测试题.docx

(完整版)高二数学选修2-3排列组合测试题.docx

高二数学选修2-3 排列组合测试题姓名班别学号成绩一、选择题(本大题共10 个小题,每小题 5 分,共 50 分.)1、A n!(n3) ,则A是()3!A 、 C33B、C n n 3C、A n3D、 A n n 32、C33C43C53C153等于:()A 、C154B、 C164 C 、C173D、C1743、 a, b是异面直线; a 上有 6 个点, b 上有 7 个点,这 13 个点可确定平面的个数是:()A 、C61C71B、 C61C71C、 C63C73D、 C1334、将 5 个不同的小球放入二个不同的抽屉里,不同的放法种数()A 、A52B 、C52C、25D、525.假设 200 件产品中有 3 件次品,现在从中任取 5 件,其中至少有 2 件次品的抽法有()A.C32C1983种B.( C32C1973 C 33C1972)种C.(C5200- C1974)种D.(C2005C13C1974 ) 种6.从黄瓜、白菜、油菜、扁豆 4 种蔬菜品种中选出 3 种,分别种在不同土质的三块土地上,其中黄瓜必须种植,不同的种植方法共()A.24 种 B. 18 种C. 12 种D. 6 种7、某食堂每天中午准备 4 种不同的荤菜, 7 种不同的蔬菜,用餐者可以按下述方法之一搭配午餐:(1)任选两种荤菜、两种蔬菜和白米饭;(2)任选一种荤菜、两种蔬菜和蛋炒饭。

则每天不同午餐的搭配方法总数是()A.22B.56C.210D. 4208.下面是高考第一批录取的一份志愿表:志愿学校专业第一志愿1第 1 专业第 2 专业第二志愿2第 1 专业第 2 专业第三志愿3第 1 专业第 2 专业现有 4 所重点院校,每所院校有 3 个专业是你较为满意的选择,如果表格填满且规定学校没有重复,同一学校的专业也没有重复的话,你将有不同的填写方法的种数是()A. 43 ( A32 ) 3B . 43 (C32 ) 3 C . A43 (C32 ) 3 D . A43 (A32 ) 39、体育彩票规定:从 01 至 36 共 36 个号中抽出 7 个号为一注,每注 2 元. 某人想从01 至 10 中选 3 个连续的号,从 11 至 20 中选 2 个连续的号,从 21 至 30 中选1 个号,从 31 至 36 中选 1 个号组成一注,则这人把这种特殊要求的号买全,至少要花()A.3360 元B. 6720 元C. 4320 元D. 8640 元10、设有编号为 1,2,3,4,5 的五个茶杯和编号为1,2, 3,4, 5 的五个杯盖,将五个杯盖盖在五个茶杯上,至少有两个杯盖和茶杯的编号相同的盖法有( ) A.30 种B.31种C.32种D.36种二、填空题(本大题满分 20 分,每小题 5 分 . )11.由数字 1、 2、 3、 4、5 组成没有重复数字,且数字1 与 2 不相邻的五位数有_____ 个.12.一电路图如图所示,从 A 到 B共有条不同的线路可通电 .13、已知 C18k C182k 3,则k=。

高二数学选修2-3-排列组合综合试题

高二数学选修2-3-排列组合综合试题

排列、组合知 识 点 1 分类计数原理:做一件事情,完成它可以有n 类办法,在第一类办法中有1m 种不同的方法, 在第二类办法中有2m 种不同的方法,……,在第n 类办法中有n m 那么完成这件事共有 12n N m m m =+++L 种不同的方法2.分步计数原理:做一件事情,完成它需要分成n 个步骤,做第一步有1m 种不同的方法,做第二 步有2m 种不同的方法,……,做第n 步有n m 种不同的方法,那么完成这件事有 12n N m m m =⨯⨯⨯L 种不同的方法3.排列的概念:从n 个不同元素中,任取m (m n ≤)个元素(这里的被取元素各不相同)按照一. 定的顺序....排成一列,叫做从n 个不同元素中取出m 个元素的一个排列....4.排列数的定义:从n 个不同元素中,任取m (m n ≤)个元素的所有排列的个数叫做从n 个元素 中取出m 元素的排列数,用符号m n A 表示5.排列数公式:(1)(2)(1)m nA n n n n m =---+L (,,m n N m n *∈≤) 6.阶乘:!n 表示正整数1到n 的连乘积,叫做n 的阶乘规定0!1=.7.排列数的另一个计算公式:m n A =!()!n n m - 8.组合的概念:一般地,从n 个不同元素中取出m ()m n ≤个元素并成一组,叫做从n 个不同元素 中取出m 个元素的一个组合9.组合数的概念:从n 个不同元素中取出m ()m n ≤个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数....用符号m n C 表示. 10.组合数公式:(1)(2)(1)!m mn nm m A n n n n m C A m ---+==L )!(!!m n m n -=,,(n m N m n ≤∈*且11组合数的性质(1)m n n m n C C -=.(规定:10=n C ;)(2)m n C 1+=m n C +1-m n C练 习 题1若346n n A C =,则n 的值为( )A 6 B 7 C 8 D 91.将3个不同的小球放入4个盒子中,则不同放法种数有( )A.81B.64C.12D.143.5个人排成一排,其中甲、乙两人至少有一人在两端的排法种数有( ) A 33A B 334A C 523533A A A - D 2311323233A A A A A + 4.,,,,a b c d e 共5个人,从中选1名组长1名副组长,但a 不能当副组长,不同的选法总数是( ) A 20 B 16 C 10 D 67用1,4,5,x 四个不同数字组成四位数,所有这些四位数中的数字的总和为288,则x9.用0、1、2、3、4、5组成没有重复数字的四位数,其中能被6整除的有CA .72个B .60个C .52个D .48个5.现有男、女学生共8人,从男生中选2人,从女生中选1人分别参加数学、物理、化学三科竞赛,共有90种不同方案,那么男、女生人数分别是( )A.男生2人,女生6人B.男生3人,女生5人C.男生5人,女生3人D.男生6人,女生2人1.从7人中选派5人到10个不同的交通岗的5个中参加交通协管工作,则不同的选派方法有( )A .5557105C A A B .5557105A C A C .55107C C D .55710C A 2.某班元旦联欢会原定的5个学生节目已排成节目单,开演前又增加了两个教师节目教师节目插入原节目单中,那么不同插法的种数为A .42B .30C .20D .123.某班分成8个小组,每小组5人,现要从中选出4人进行4个不同的化学实验,且每组至多选一人,则不同的安排方法种数是 ( )A .4484C AB .441845C A C C .444845C AD .44404C A 5 从不同号码的5双鞋中任取4只,其中恰好有1双的取法种数为( ) A 120 B 240 C 280 D 604.学校召开学生代表大会,高二年级的3个班共选6名代表,每班至少1名,代表的名额分配方案种数是()A.64B.20C.18D.105.3名医生和6名护士被分配到3所学校为学生体检,每所学校分配1名医生和2名护士,不同的分配方法共有()A.90B.180C.270D.5406.有两条平行直线a和b,在直线a上取4个点,直线b上取5个点,以这些点为顶点作三角形,这样的三角形共有()A.70B.80C.82D.8410.设集合{123456}I=,,,,,,集合,A B I⊆,若A中含有3个元素,B中至少含有2个元素,且B中所有数均不小于A中最大的数,则满足条件的集合,A B有:BA.33组B.29组C.16组D.7组7.不共面的四个定点到平面α的距离都相等,这样的平面α共有()A3个B4个C6个D7个8.由0,1,2,3,...,9十个数码和一个虚数单位i可以组成虚数的个数为()A100B10C9D901.从甲、乙,……,等6人中选出4名代表,那么,甲、乙二人至少有一人当选,共有种选法2.4名男生,4名女生排成一排,女生不排两端,则有种不同排法7.公共汽车上有4位乘客,汽车沿途停靠6个站,那么这4位乘客不同的下车方式共有种;如果其中任何两人都不在同一站下车,那么这4位乘客不同的下车方式共有种11.高二某班第一小组共有12位同学,现在要调换座位,使其中有3个人都不坐自己原来的座位,其他9人的座位不变,共有种不同的调换方法1.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数字,则每个方格的标号与所填的数字均不同的填法有种?AB3.从0,1,2,3,4,5,6这七个数字中任取三个不同数字作为二次函数2y ax bx c =++的系数,,a b c 则可组成不同的函数__个,其中以y 轴作为该函数的图像的对称轴的函数有____个8.马路上有编号为1,2,3,…,10的十盏路灯,为节约用电又不影响照明,可以把其中3盏灯关掉, 但不可以同时关掉相邻的两盏或三盏,在两端的灯都不能关掉的情况下,有多少种不同的关灯方 法?209.九张卡片分别写着数字0,1,2,…,8,从中取出三张排成一排组成一个三位数,如果6可以 当作9使用,问可以组成多少个三位数?6022.以1239L ,,,这几个数中任取4个数,使它们的和为奇数,则共有 种不同取法 10.赛艇运动员10人,3人会划右舷,2人会划左舷,其余5人两舷都能划,现要从中挑选6人上艇,平均分配在两舷上划桨,共有 种选法11.正六边形的中心和顶点共7个点,以其中三个点为顶点的三角形共有 个12.有10只不同的试验产品,其中有4只次品,6只正品,现每次取一只测试,直到4只次品全测出为止,求最后一只次品正好在第五次测试时被发现的不同情形有多少种?57613.在一次象棋比赛中,进行单循环比赛,其中有2人,他们各赛了3场后,因故退出了比赛,这样,这次比赛共进行了83场,问:比赛开始时参赛者有多少人?1514.在某次数学考试中,学号为(1,2,3,4)i i =的同学的考试成绩(){85,87,88,90,93}f i ∈,且满足 (1)(2)(3)(4)f f f f ≤<<,则这四位同学的考试成绩的所有可能情况有 种15.身高互不相同的7名运动员站成一排,(1)其中甲、乙、丙三人自左向右从高到矮排列的排法有多少种?840(2)其中甲、乙、丙三人自左向右从高到矮排列且互不相邻的排法有多少种?24016.如图是由12个小正方形组成的43⨯矩形网格,一质点沿网格线从点A 到点B 的不同路径之中,最短路径有 条3537=. 15.如图,一个图形分为5个区域,现给图形着色,要求相邻区域不得使用同一颜色.现有4种颜色可供选择,则不同的着色方法共有_____________种。

高中数学 专题强化训练1 排列、组合的综合应用(含解析)新人教A版高二选修2-3数学试题

高中数学 专题强化训练1 排列、组合的综合应用(含解析)新人教A版高二选修2-3数学试题

专题强化训练(一) 排列、组合的综合应用(建议用时:40分钟)一、选择题1.设4名学生报名参加同一时间安排的3项课外活动方案有a 种,这4名学生在运动会上共同争夺100米、跳远、铅球3项比赛的冠军的可能结果有b 种,则(a ,b )为( )A .(34,34)B .(43,34)C .(34,43)D .(A 34,A 34)C [由题意知本题是一个分步乘法问题,首先每名学生报名有3种选择,根据分步乘法计数原理知4名学生共有34种选择,每项冠军有4种可能结果,根据分步乘法计数原理知3项冠军共有43种可能结果.故选C.]2.若C 3n =C 4n ,则n !3!(n -3)!的值为( ) A .1B .20C .35D .7 C [若C 3n =C 4n ,则n (n -1)(n -2)3×2×1=n (n -1)(n -2)(n -3)4×3×2×1,可得n =7, 所以n !3!(n -3)!=7!3!4!=7×6×53×2×1=35.] 3.在100件产品中,有3件是次品,现从中任意抽取5件,其中至少有2件次品的取法种数为( )A .C 23C 397B .C 23C 397+C 33C 297 C .C 5100-C 13C 497D .C 5100-C 597 B [根据题意,“至少有2件次品”可分为“有2件次品”与“有3件次品”两种情况,“有2件次品”的抽取方法有C 23C 397种,“有3件次品”的抽取方法有C 33C 297种,则共有C 23C 397+C 33C 297种不同的抽取方法,故选B.]4.若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有( )A .60种B .63种C .65种D .66种D [和为偶数共有3种情况:取4个数均为偶数有C 44=1种取法;取2奇数2偶数有C 24·C 25=60种取法;取4个数均为奇数有C 45=5种取法,故共有1+60+5=66种不同的取法.]5.登山运动员10人,平均分为两组,其中熟悉道路的有4人,每组都需要2人,那么不同的分配方法种数是( )A .60B .120C .240D .480A [先将4个熟悉道路的人平均分成两组有C 24·C 22A 22种.再将余下的6人平均分成两组有C 36·C 33A 22种.然后这四个组自由搭配还有A 22种,故最终分配方法有12C 24·C 36=60(种).] 二、填空题6.有8名男生和3名女生,从中选出4人分别担任语文、数学、英语、物理学科的课代表,若某女生必须担任语文课代表,则不同的选法共有________种.(用数字作答)720 [由题意知,从剩余10人中选出3人担任3个学科课代表,有A 310=720种.]7.两人进行乒乓球比赛,先赢3局者获胜,决出胜负为止,则所有可能出现的情形(各人输赢局次的不同视为不同情形)共有________种.20 [分三种情况:恰好打3局,有2种情形;恰好打4局(一人前3局中赢2局,输1局,第4局赢),共有2C 23=6种情形;恰好打5局(一人前4局中赢2局,输2局,第5局赢),共有2C 24=12种情形.所有可能出现的情形共有2+6+12=20(种).]8.某地奥运火炬接力传递路线共分6段,传递活动分别由6名火炬手完成.如果第一棒火炬手只能从甲、乙、丙三人中产生,最后一棒火炬手只能从甲、乙两人中产生,则不同的传递方法共有________种.(用数字作答)96 [甲传第一棒,乙传最后一棒,共有A 44种方法.乙传第一棒,甲传最后一棒,共有A 44种方法.丙传第一棒,共有C 12·A 44种方法.由分类计数原理得,共有A 44+A 44+C 12·A 44=96(种)方法.]三、解答题9.现有5名教师要带3个不同的兴趣小组外出学习考察,要求每个兴趣小组的带队教师至多2人,但其中甲教师和乙教师均不能单独带队,求不同的带队方案有多少种?[解] 第一类,把甲、乙看做一个复合元素,和另外的3人分配到3个小组中,有C 23A 33=18(种),第二类,先把另外的3人分配到 3个小组,再把甲、乙分配到其中2个小组,有A 33A 23=36(种),根据分类加法计数原理可得,共有18+36=54(种).10.已知10件不同产品中有4件是次品,现对它们进行一一测试,直至找出所有4件次品为止.(1)若恰在第5次测试,才测试到第一件次品,第10次才找到最后一件次品,则这样的不同测试方法数是多少?(2)若恰在第5次测试后,就找出了所有4件次品,则这样的不同测试方法数是多少?[解](1)先排前4次测试,只能取正品,有A46种不同测试方法,再从4件次品中选2件排在第5和第10的位置上测试,有C24A22=A24种测法,再排余下4件的测试位置,有A44种测法.所以共有不同测试方法A46·A24·A44=103 680种.(2)第5次测试恰为最后一件次品,另3件在前4次中出现,从而前4次有一件正品出现,所以共有不同测试方法C16·C34·A44=576种.1.从0,1,2,3,4,5这六个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数的个数为()A.300B.216 C.180D.162C[分两类:第一类,不取0,即从1,2,3,4,5中任取两个奇数和两个偶数,组成没有重复数字的四位数,根据分步乘法计数原理可知,共有C23·C22·A44=72(个)符合要求的四位数;第二类,取0,此时2和4只能取一个,再取两个奇数,组成没有重复数字的四位数,根据分步乘法计数原理可知,共有C12·C23·(A44-A33)=108(个)符合要求的四位数.根据分类加法计数原理可知,满足题意的四位数共有72+108=180(个),故选C.]2.某班班会准备从甲、乙等7名学生中选派4名学生发言,要求甲、乙两人至少有一人参加,当甲、乙同时参加时,他们两人的发言不能相邻,那么不同发言顺序的排法种数为() A.360 B.520C.600 D.720C[根据题意,可分两种情况讨论:①甲、乙两人中只有一人参加,有C12·C35·A44=480(种)情况;②甲、乙两人都参加,有C22·C25·A44=240(种)情况,其中甲、乙两人的发言相邻的情况有C22·C25·A33·A22=120(种).故不同发言顺序的排法种数为480+240-120=600.] 3.将10个运动员名额分给7个班,每班至少1个,则不同的分配方案的种数为________.84[因为10个名额没有差别,把它们排成一排,相邻名额之间形成9个空隙.在9个空隙中选6个位置插隔板,可把名额分成7份,对应地分给7个班.每一种插板方法对应一种分配方案,则共有C69=C39=9×8×73×2×1=84种分配方案.] 4.某科技小组有六名学生,现从中选出三人去参观展览,至少有一名女生入选的不同选法有16种,则该小组中的女生人数为________.2[设男生人数为x,则女生有(6-x)人.依题意C36-C3x=16,即6×5×4=x(x-1)(x-2)+16×6,所以x(x-1)(x-2)=2×3×4,解得x=4,即女生有2人.]5.有4个不同的球,4个不同的盒子,把球全部放入盒子内.(1)共有几种放法?(2)恰有2个盒子不放球,有几种放法?[解](1)44=256(种).(2)恰有2个盒子不放球,也就是把4个不同的小球只放入2个盒子中,有两类放法;第一类,1个盒子放3个小球,1个盒子放1个小球,先把小球分组,有C34种,再放到2个小盒中有A24种放法,共有C34A24种方法;第二类,2个盒子中各放2个小球有C24C24种放法,故恰有2个盒子不放球的方法共有C34A24+C24C24=84种放法.。

人教新课标版数学高二-2015人教数学(B版)选修2-3练习 排列

人教新课标版数学高二-2015人教数学(B版)选修2-3练习  排列

第一章 1.2 第1课时一、选择题1.有4名司机、4名售票员分配到4辆汽车上,使每辆汽车上有一名司机和一名售票员,则可能的分配方案有()A.A88B.A48C.A44A44D.2A44[答案] C[解析]安排4名司机有A44种方案,安排4名售票员有A44种方案.司机与售票员都安排好,这件事情才算完成,由分步计数原理知共有A44A44种方案.故选C.2.(2014·四川理,6)六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有()A.192种B.216种C.240种D.288种[答案] B[解析]分两类:最左端排甲有A55=120种不同的排法,最左端排乙,由于甲不能排在最右端,所以有A14A44=96种不同的排法,由加法原理可得满足条件的排法共有120+96=216种.3.若A n10-A n9=n!·126(n∈N+),则n等于()A.4 B.5C.6 D.5或6[答案] D[解析]本题不易直接求解,可考虑用代入验证法.故选D.4.6名同学排成一排,其中甲、乙两人必须在一起的不同排法共有()种()A.720 B.360C.240 D.120[答案] C[解析]因甲、乙两人要排在一起,故将甲、乙两人捆在一起视作一人,与其余四人全排列共有A55种排法,但甲、乙两人有A22种排法,由分步计数原理可知:共有A55·A22=240种不同的排法.故选C.5.3名男生和3名女生排成一排,男生不相邻的排法有多少种()A.144 B.90C.260 D.120[答案] A[解析]3名女生先排好,有A33种排法,让3个男生去插空,有A34种方法,故共有A33·A34=144种.故选A.6.六个停车位置,有3辆汽车需要停放,若要使三个空位连在一起,则停放的方法数为()A.A44B.A36C.A46D.A33[答案] A[解析]把3个空位看作一个元素与3辆汽车共4个元素全排列.故选A.7.6个人站成一排,甲、乙、丙3个人不能都站在一起的排法种数为()A.720 B.144C.576 D.684[答案] C[解析]“不能都站在一起”与“都站在一起”是对立事件,由间接法可得A66-A33A44=576.故选C.二、填空题8.四名志愿者和他们帮助的两位老人排成一排照相,要求两位老人必须站在一起,则不同的排列法有____________种。

高二数学选修2-3排列组合测试题2

高二数学选修2-3排列组合测试题2

高二数学选修2-3排列组合测试题2一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同分法的种数为()A.18 B.24 C.30 D.362.A,B,C,D,E五人并排站成一排,如果B必须站在A的右边,(A,B可以不相邻)那么不同的排法有()A.24种B.60种C.90种D.120种3.男女学生共有8人,从男生中选取2人,从女生中选取1人,共有30种不同的选法,其中女生有()A.2人或3人B.3人或4人C.3人D.4人4.从0,1,2,…,9这10个数字中,任取两个不同数字作为平面直角坐标系中点的坐标,能够确定不在x轴上的点的个数是()A.100 B.90 C.81 D.725.某校开设A类选修课3门,B类选修课4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有() A.30种B.35种C.42种D.48种6.(2010·全国Ⅱ理,6)将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中,若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的放法共有( ) A.12种B.18种C.36种D.54种7.某科技小组有6名同学,现从中选出3人去参观展览,至少有1名女生入选的不同选法有16种,则小组中的女生数为() A.2 B.3 C.4 D.58.从0,1,2,3,4,5这六个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数的个数为() A.300 B.216 C.180 D.1629.将7名学生分配到甲、乙两个宿舍中,每个宿舍至少安排2名学生,那么互不相同的分配方案共有() A.252种B.112种C.20种D.56种10.从集合{1,2,3,…,10}中,选出由5个数组成的子集,使得这5个数中任何两个数的和不等于11,则这样的的子集共有() A.10个B.16个C.20个D.32个11.某校开设A类选修课3门,B类选修课4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有( ) A.30种B.35种C.42种D.48种12.已知直线ax+by-1=0(a,b不全为0)与圆x2+y2=50有交点,且交点的横、纵坐标均为整数,那么这样的直线有()二、填空题13.设集合A中有3个元素,集合B中有2个元素,可建立A→B的映射的个数为____8____.14.设椭圆x2m+y2n=1的焦点在y轴上,m∈{1,2,3,4,5},n∈{1,2,3,4,5,6,7},则这样的椭圆个数为________20________.15.已知m∈{3,4,5},n∈{0,2,7,8},r∈{1,8,9},则方程(x-m)2+(y-n)2=r2可以表示不同圆____36____个.16.若把英语单词“good”的字母顺序写错了,则可能出现的错误共有____11____种.三、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤)17、六个人按照下列要求站成一排:(1)甲不站两端;(2)甲、乙必须相邻;(3)甲、乙不相邻;(4)甲、乙相邻,且丙、丁不相邻(5)甲、乙站两端;(6)甲、乙、丙按从左到右,从高到矮的顺序.(7)甲、乙之间恰好间隔两人;(8)甲不站左端、乙不站右端;18、有9本不同的书,按下列方式分配,有多少种不同的分配方式?(1)一人得4本,一人得3本,一人得2本;(2)甲得4本,乙得3本,丙得2本;(3)平均分成三份,每份3本;(4)甲、乙、丙分别得3本;19、用0,1,2,3,4,5这六个数字:(1)可以组成多少个数字不重复的三位数;(2)可以组成多少个数字不重复的四位偶数;(3)可以组成多少个数字不重复的五位奇数;(4)可以组成多少个数字不重复的能被5整除的数;(4)可以组成多少个数字不重复的小于1000的自然数;20、口袋中有10个编号不同的球,其中6个白球,4个红球,规定取到一个白球得1分,取到一个红球得2分,现从袋中任取4个球,欲使总分不少于5分,这样的取法有多少种?21、从7名男生5名女生中选取5人,分别求符合下列条件的选法总数有多少种?(1)甲、乙两人必须当选;(2)甲、乙两人必不当选;(3)甲、乙两人不全当选;(4)至少有2名女生当选;(5)选取3名男生和2名女生分别担任班长、体委等5种不同的工作,但体委必须由男生担任,班长必须由女生担任。

数学选修2-3排列与组合练习题含答案

数学选修2-3排列与组合练习题含答案
A. B. C. D.
3. ( )
A. B. C. D.
4. 件产品中,有 件一等品, 件二等品, 件三等品,现在要从中抽出 件产品来检查,至少有两件一等品的抽取方法是()
A. • B.
C. D. • • •
5.设 为正偶数, ,则 的值为()
A. B. C. D.
6.已知 , , ,下面哪一个等式是恒成立的( )
【考点】
排列、组合及简单计数问题
【解析】
此题暂无解析
【解答】
若取出的数字中含 ,则可以组成 个没有重复数字的四位数;若取出的数字中不含 ,则可以组成 个没有重复数字的四位数.综上所述,一共可以组成 个没有重复数字的四位数.
针对特殊元素合理分类是解题的关键.
本题考查排列组合.
20.
【答案】
【考点】
组合及组合数公式
求这 名学生选修课所有选法的总数;
求恰有 门选修课没有被这 名学生选择的概率;
求 选修课被这 名学生选择的人数 的分布列及数学期望.
28. 年 月以来,湖北省武汉市部分医院陆续发现了多例有华南海鲜市场暴露史的不明原因肺炎病例,现已证实为 新型冠状病毒感染引起的急性呼吸道传染病. 年 月 日,某研究机构首次分析了女性在新型冠状病毒传播中可能存在的特殊性.现将密切接触者 名男士和 名女士进行筛查,得到的无症状者与轻症者情况如下表:
故答案为: .
14.
【答案】
【考点】
组合及组合数公式
【解析】
利用组合数的计算公式可得 , , ,利用 ,化简整理即可得出.
【解答】
解:∵ , , ,
又 ,
∴ ,
化为 ,
解得 , .
∴ .
故答案为: .

高中数学选修2-3排列组合问题题目精选(附答案)

高中数学选修2-3排列组合问题题目精选(附答案)

高中数学选修2-3排列组合问题题目精选(附答案)1. 某班有20名学生,其中有5名男生和15名女生。

从中选出3名学生组成一个小组,求以下概率:- 小组中至少有1名男生的概率是多少?答案:小组中至少有1名男生的概率为1减去小组全为女生的概率。

全为女生的概率可以用排列组合来计算,即从15名女生中选出3名女生组成小组的概率。

因此,小组中至少有1名男生的概率为1减去(C(15, 3) / C(20, 3))。

2. 有6本不同的数学书和4本不同的物理书。

现从这些书中任选2本,求以下概率:- 所选的两本书中至少有1本是数学书的概率是多少?答案:所选的两本书中至少有1本是数学书的概率等于1减去两本书都是物理书的概率。

两本书都是物理书的概率可以用排列组合来计算,即从4本物理书中选出2本物理书的概率。

因此,所选的两本书中至少有1本是数学书的概率为1减去(C(4, 2) / C(10, 2))。

3. 某公司有8名员工,其中有3名男员工和5名女员工。

请问,从这8名员工中选出4名员工组成一个小组,使得小组中至少有1名男员工的概率是多少?答案:小组中至少有1名男员工的概率等于1减去小组全为女员工的概率。

全为女员工的概率可以用排列组合来计算,即从5名女员工中选出4名女员工组成小组的概率。

因此,小组中至少有1名男员工的概率为1减去(C(5, 4) / C(8, 4))。

4. 一批音乐CD包含5张古典音乐CD和7张摇滚音乐CD。

现从这批CD中随机选取3张,求以下概率:- 所选的3张CD中至少有2张是摇滚音乐CD的概率是多少?答案:所选的3张CD中至少有2张是摇滚音乐CD的概率等于1减去3张CD都是古典音乐CD的概率。

3张CD都是古典音乐CD的概率可以用排列组合来计算,即从5张古典音乐CD中选出3张古典音乐CD的概率。

因此,所选的3张CD中至少有2张是摇滚音乐CD的概率为1减去(C(5, 3) / C(12, 3))。

5. 一位学生参加了5项体育比赛,他能获得的奖牌有金牌、银牌和铜牌。

高二2-3排列组合练习题及答案

高二2-3排列组合练习题及答案

排列组合练习题1,从5名男医生、4名女医生中选3名医生组成一个医疗小分队,要求其中男、女医生都有,则不同的组队方案共有 ( )A ,70 种B ,80种C ,100 种D ,140 种2,2010年广州亚运会组委会要从小张、小赵、小李、小罗、小王五名志愿者中选派四人分别从事翻译、导游、礼仪、司机四项不同工作,若其中小张和小赵只能从事前两项工作,其余三人均能从事这四项工作,则不同的选派方案共有 ( )A, 48 种 B ,12种 C ,18种 D36种3,从0,1,2,3,4,5这六个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数的个数为 A,48 B, 12 C ,180 D ,1624,甲组有5名男同学,3名女同学;乙组有6名男同学,2名女同学。

若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有( )A ,150种B ,180种C ,300种D ,345种5,甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中至少有1门不相同的选法共有A ,6B ,12C 30 D366,用0 到9 这10 个 数字,可以组成没有重复数字的三位偶数的个数为 ( )A .324B ,328C ,360D ,6487,从10名大学毕业生中选3人担任村长助理,则甲、乙 至少有1人入选,而丙 没有入选的不同选法的总数为 ( )A ,85B ,56C ,49D ,288,将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同分法的总数为 ( )A ,18B ,24C ,30D ,309.将3个不同的小球放入4个盒子中,则不同放法种数有( )A .81B .64C .12D .1410.,,,,a b c d e 共5个人,从中选1名组长1名副组长,但a 不能当副组长,不同的选法总数是( )A.20 B .16 C .10 D .611.在100件产品中有6件次品,现从中任取3件产品,至少有1件次品的不同取法的种数是( )A .12694C C B. 12699C C C. 3310094C C - D. 3310094A A -12.停车站划出一排12个停车位置,今有8辆不同型号的车需要停放,若要求剩余的4个空车位连在一起,则不同的停车方法有( )种.A .812A 种B .44882A A 种 C.888A 种 D.889A 种 13.某班举行联欢会,原定的五个节目已排出节目单,演出前又增加了两个节目,若将这两个节目插入原节目单中,则不同的插法总数为( )A.42B.36C.30D.1214.某城市的街道如图,某人要从A 地前往B 地,则路程最短的走法有( )A.8种B.10种C.12种D.32种15.n N ∈且55n <,则乘积(55)(56)(69)n n n ---等于 A .5569n n A -- B .1569n A - C .1555n A - D .1469n A -16.从不同号码的5双鞋中任取4只,其中恰好有1双的取法种数为A .120B .240C .280D .6017.从4名男生,3名女生中选出三名代表.(1)不同的选法共有多少种?(2)至少有一名女生的不同的选法共有多少种?(3)代表中男、女生都要有的不同的选法共有多少种?18.用0,1,2,3,4,5这六个数字:(1)可组成多少个无重复数字的自然数?(2)可组成多少个无重复数字的四位偶数?(3)组成无重复数字的四位数中比4023大的数有多少?19. 有5个人站成一排:(l )共有多少种不同的排法?(2)其中甲必须站在中间有多少种不同排法?(3)其中甲、乙两人必须相邻有多少种不同的排法?(4)其中甲、乙两人不相邻有多少种不同的排法?(5)其中甲、乙两人不站排头和排尾有多少种不同的排法?(6)其中甲不站排头,乙不站排尾有多少种不同的排法?练习题1.4名男歌手和2名女歌手联合举行一场音乐会,出场顺序要求两名女歌手之间恰有一名男歌手,共有出场方案的种数是( ) A .6A 33 B .3A 33 C .2A 33 D .A 22A 41A 442.编号为1,2,3,4,5,6的六个人分别去坐编号为1,2,3,4,5,6的六个座位,其中有且只有两个人的编号与座位编号一致的坐法有 ( )A .15种 B.90种 C .135种 D .150种3.从6位男学生和3位女学生中选出4名代表,代表中必须有女学生,则不同的选法有( ) A .168 B .45C .60D .1114.由0,1,2,3这四个数字可以组成没有重复数字且不能被5整除的四位数的个数是( )A .24个B .12个C .6个D .4个5.假设200件产品中有3件次品,现在从中任取5件,其中至少有2件次品的抽法有A .319823C C 种B .(219733319723C C C C +)种 C .)C -(C 41975200种D .)C C C (4197135200-种 6.()n x y -的二项展开式中,第r 项的二项式系数是( )A.r n CB. 1r n C +C. 1r n C -D. 11(1)r r n C ---7.在 的展开式中 的系数是( ) A. –14 B. 14 C. –28 D. 288.设k=1,2,3,4,5,则 的展开式中 的系数不可能是( )A. 10B. 40C. 50D. 809.若n ∈N *,(2+1)n =2a n +b n (a n 、b n ∈Z),则b n 的值( )A.一定是奇数B.一定是偶数C.与b n 的奇偶性相反D.与a 有相同的奇偶性10.下面几种推理是类比推理的是 ( )A .两条直线平行,同旁内角互补,如果A ∠和B ∠是两条平行直线的同旁内角,则 180=∠+∠B AB .某校高二级有20个班,1班有51位团员,2班有53位团员,3班有52位团员,由此可以推测各班都超过50位团员C .一切偶数都能被2整除,1002是偶数,所以1002能被2整除D .由平面向量的运算性质,推测空间向量的运算性质11.某乒乓球队有11名队员,其中2名是种子选手,现在挑选5名队员参加比赛,种子选手都必须在内,那么不同的法选共有________.12.定义复数的一种运算z 1* z 2=|z 1|+| z 2 |2(等式右边为普通运算),若复数z =a +b i ,且正实数a ,b 满足a +b =6,则z *z 的最小值为13.现有5种不同颜色对如图所示的四个部分进行着色,要求有公共边界的两块不能用同一种颜色,则不同的着色方法共有 种。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二2-3排列组合练习题及答案
排列组合练习题
1,从5名男医生、4名女医生中选3名医生组成一个医疗小分队,要求其中男、女医生都有,则不同的组队方案共有()
A,70 种 B,80种 C,100 种 D,140 种
2,2010年广州亚运会组委会要从小张、小赵、小李、小罗、小王五名志愿者中选派四人分别从事翻译、导游、礼仪、司机四项不同工作,若其中小张和小赵只能从事前两项工作,其余三人均能从事这四项工作,则不同的选派方案共有()
A, 48 种 B,12种 C,18种 D36种
3,从0,1,2,3,4,5这六个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数的个数为
A,48 B, 12 C,180 D,162
4,甲组有5名男同学,3名女同学;乙组有6名男同学,2名女同学。

若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有()
A,150种 B,180种 C,300种 D,345种
5,甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中至少有1门不相同的选法共有
A,6 B,12 C 30 D36
6,用0 到9 这10 个数字,可以组成没有重复数字的三位偶数的个数为()
A.324 B,328 C,360 D,648
7,从10名大学毕业生中选3人担任村长助理,则甲、乙至少有1人入选,而丙没有入选的不同选法的总数为()
A,85 B,56 C,49 D,28
8,将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同分法的总数为()
A,18 B,24 C,30 D,30
9.将3个不同的小球放入4个盒子中,则不同放法种数有()
A.81 B.64 C.12 D.14
10.,,,,
a b c d e共5个人,从中选1名组长1名副组长,但a不能当副组长,不同的选法总数是()
A.20 B.16 C.10 D.6
11.在100件产品中有6件次品,现从中任取3件产品,至少有1件次品的不同取法的种数是()
A.
12
694
C C B. 12
699
C C C. 33
10094
C C
- D. 33
10094
A A
-
12.停车站划出一排12个停车位置,今有8辆不同型号的车需要停放,若要求剩余的4个空车位连在一起,则不同的停车方法有()种.
A .8
12A 种 B .44882A A 种 C.888A 种 D.8
89A 种
13.某班举行联欢会,原定的五个节目已排出节目单,演出前又增加了两个节目,若将这两个节目插入原节目单中,则不同的插法总数为( ) A.42 B.36 C.30
D.12
14.某城市的街道如图,某人要从A 地前往B 地,则路程最短的走法有( ) A.8种
B.10种
C.12种
D.32种
15.n N ∈且55n <,则乘积(55)(56)
(69)n n n ---等于
A .5569n
n A -- B .1569n A - C .1555n A - D .1469n A -
16.从不同号码的5双鞋中任取4只,其中恰好有1双的取法种数为
A .120
B .240
C .280
D .60
17.从4名男生,3名女生中选出三名代表. (1)不同的选法共有多少种
(2)至少有一名女生的不同的选法共有多少种
(3)代表中男、女生都要有的不同的选法共有多少种
18.用0,1,2,3,4,5这六个数字: (1)可组成多少个无重复数字的自然数? (2)可组成多少个无重复数字的四位偶数?
(3)组成无重复数字的四位数中比4023大的数有多少
19. 有5个人站成一排: (l )共有多少种不同的排法?
(2)其中甲必须站在中间有多少种不同排法?
(3)其中甲、乙两人必须相邻有多少种不同的排法?
(4)其中甲、乙两人不相邻有多少种不同的排法?
(5)其中甲、乙两人不站排头和排尾有多少种不同的排法?
(6)其中甲不站排头,乙不站排尾有多少种不同的排法?
练习题
1.4名男歌手和2名女歌手联合举行一场音乐会,出场顺序要求两名女歌手之间恰有一名男歌手,共有出场方
案的种数是 ( ) A .6A 33
B .3A 33
C .2A 33
D .A 22A 41A 44
2.编号为1,2,3,4,5,6的六个人分别去坐编号为1,2,3,4,5,6的六个座位,其中有且只有两个人的编号与座位编号一致的坐法有 ( )
A .15种 B.90种 C .135种 D .150种
3.从6位男学生和3位女学生中选出4名代表,代表中必须有女学生,则不同的选法有( ) A .168
B .45
C .60
D .111
4.由0,1,2,3这四个数字可以组成没有重复数字且不能被5整除的四位数的个数是( ) A .24个 B .12个 C .6个 D .4个
5.假设200件产品中有3件次品,现在从中任取5件,其中至少有2件次品的抽法有
A .3
19823
C C 种 B .(2
19733319723C C C C +)种
C .)C -(C 4
1975200种
D .)C C C (4
197135200-种
6.()n x y -的二项展开式中,第r 项的二项式系数是( )
A.r n C
B. 1r n C +
C. 1r n C -
D. 11(1)r r n C ---
7.在
的展开式中
的系数是( )
A. –14
B. 14
C. –28
D. 28 8.设k=1,2,3,4,5,则
的展开式中
的系数不可能是( )
A. 10
B. 40
C. 50
D. 80 9.若n ∈N *
,(2+1)n
=2a n +b n (a n 、b n ∈Z),则b n 的值( )
A.一定是奇数
B.一定是偶数
C.与b n 的奇偶性相反
D.与a 有相同的奇偶性
10.下面几种推理是类比推理的是 ( )
A .两条直线平行,同旁内角互补,如果A ∠和
B ∠是两条平行直线的同旁内角,则 180=∠+∠B A
B .某校高二级有20个班,1班有51位团员,2班有53位团员,3班有52位团员,由此可以推测各班都
超过50位团员
C .一切偶数都能被2整除,1002是偶数,所以1002能被2整除
D .由平面向量的运算性质,推测空间向量的运算性质
11.某乒乓球队有11名队员,其中2名是种子选手,现在挑选5名队员参加比赛,种子选手都必须在内,那么不同的法选共有________.
12.定义复数的一种运算z 1* z 2=
|z 1|+| z 2 |
2
(等式右边为普通运算),若复数z =a +b i ,且正实数a ,b 满足a +b =6,则z *z 的最小值为
13.现有5种不同颜色对如图所示的四个部分进行着色,要求有公共边界的两块不能用同一种颜色,则不同的
着色方法共有 种。

14. 展开式中的常数项是 (用数字作答)
15. (2x+x )4的展开式中x 3的系数是
16.在(x -3)10
的展开式中,x 6
的系数是 .
17.求由抛物线y =x 2
-4与直线y =-x +2所围成图形的面积是 .
18.求二项式(x 2
+x
21)10的展开式中的常数项 .
高手提高题10分。

19.已知二项式(3x -x
32)10
, (1)求其展开式第四项的二项式系数; (2)求其展开式第四项的系数; (3)求其第四项.。

相关文档
最新文档