风荷载对高层建筑物的影响

合集下载

(完整版)高层建筑在风荷载作用下的相关研究

(完整版)高层建筑在风荷载作用下的相关研究

高层建筑在强风作用下由于脉动风的影响将产生振动,这种振动有可能使在高层建筑内生活或工作的人在心理上产生不舒适的感觉,从而影响建筑物的正常使用”由于风是一种经常性的荷载作用,因此有必要将风引起的高层建筑的振动限制在人体舒适的感觉范围之内”重现期的选择也最大风速样本的取法影响着平均风速的数值”如果以口最大风速为样本,则一年有365个样本,平时低风速的口子的风速值占有很大的权,而最大风速那一天的风速只占1/365的权,因而最大风速重要性大大降低了,统计出的平均风速必将大大偏低"如果采用月最大风速,则每年最大风速在整个数列中也只占1/12的权,也降低了最大风速所起的重要性,所得结果也是偏低的"对十工程结构应该能承受一年中任何口子的极大风速,因此取年最大风速为样本”最大风速有它的自然周期,每年季节性地重复一次,因而采用年最大风速作为一个样本,较为合适”世界各国基本上是取年最大风速作为统计样本的”平均风的时距平均风速的数值与时距的取值有很大的关系”如果时距取得很短,例如3秒钟,则必定将记录中最大值附近的较大数据都突出反映在计算中,较低风速在平均风速中的作用难以得到反映,因而平均风速值很高”如果取得很长,例如1天,则必定将1天中大量的小风平均进去,较高风速在该长时距中起不到显著作用,其值一般偏低”一般来说,时距愈短,平均风速愈大,时距愈长,平均风速也就愈小"风速记录表明,阵风的卓越周期约为1min,通常认为10min(约10个周期)至1小时(约60个周期,由于阵风有较长的持续性,衰减较慢)其平均值基本上是一个稳定值,因而我国规范规定以10分钟作为取值标准”一般我们所研究的对象不会出现异常风的气候,称为良态气候"对十这种气候,我们可以认为年最大风速的每一个数据都对极值的概率特性起作用,因此,世界上许多国家把年最大风速作为概率统计的样本,由重现期和风速的概率分布获得该地区的设计最大风速,或者称为基本风速"我国规定基本风速采用极值I型概率分布函数进行统计分析"对于多层建筑和高层建筑的风致响应问题,连续体系,采用随机振动理论进行分析。

高层建筑风载影响

高层建筑风载影响

高层建筑风环境及其影响研究江清源概述随着厦门经济特区的发展,一座座标志性的高层建筑拔地而起,人们自然关心风这个自然因素对这些高层建筑有什么影响?反过来这些高层建筑周围又会形成一个什么样的风环境?它对城市规划建筑设计、施工和人们的生活有什么影响?近年来风工程研究工作者都在对高层建筑的风环境进行研究。

所谓“高层建筑”,联合国教科文组织所属的世界高层建筑委员会在1972年召开的年会上曾建议将高层建筑分为四类:即9~16层最高50米者为第一类;17~25层最高75米者为第二类;26~40层最高100米者为第三类;40层以上高于100米者为第四类高层建筑(超高层建筑)。

我国在上世纪80年代以前,10层以上就称为高层建筑。

但目前的标准已定为:20层左右为中高层建筑;30层,高100米左右为高层建筑;50层,高200米以上为超高层建筑。

国外高层建筑及其群体所造成负面影响——不良风环境问题,甚至风灾,事故频发,不得不引起我们的关注和重视。

国内近几年来建筑物的玻璃幕墙、屋顶搭盖物被大风吹毁的事例也不少。

如上世纪末宁夏回族自治区某宾馆在偶发阵风作用下,一片幕墙玻璃飞落,当场把在宾馆门口迎宾的新娘子砸死。

还有浙江大学逸夫楼在一夜大风劲吹下,所有的幕墙玻璃几乎都被吹毁。

至于台风季节建筑物、结构物、幕墙玻璃及覆盖物等被风吹毁的事例,在沿海城市更是屡见不鲜的事实。

如9914#台风登陆厦门吹倒了厦门会展中心施工塔吊,厦门太古飞机工程公司机库钢板屋面被风掀翻,也是人所共知。

除上述建筑物及其群体在大风中其覆面材料或构件被毁坏的事例外,由于建筑物的体型及其群体布局不当而给行人及地面交通、生活环境等带来的不良风环境影响的事例也更多。

在大风季节时,高层建筑及其群体的布局,可能造成对自身及其周围不良风环境,甚至风灾的课题,已责无旁贷地展现在今日城市规划、建筑设计部门、施工单位的面前。

如同城市中大气污染、噪声污染、光污染、采光权纠纷等环境问题一样,能否在高层建筑的规划与布局伊始,事先就周密地考虑到优化风环境,防范不测风灾,而进行认真的论证和试验,这已成为评估城市建设规划优劣的一个重要衡量指标。

风力影响下高层建筑的稳定性分析

风力影响下高层建筑的稳定性分析

风力影响下高层建筑的稳定性分析在现代城市的天际线中,高层建筑如林立的巨人般拔地而起,它们不仅是城市繁荣的象征,也是人类工程技术的伟大成就。

然而,这些高耸入云的建筑在面对自然力量时,尤其是风力的作用,其稳定性面临着严峻的考验。

风力对于高层建筑的影响是多方面的。

首先,风会在建筑物表面产生压力和吸力。

当风迎面吹向建筑物时,会产生正压力;而当风绕过建筑物时,会在建筑物的背面和侧面产生负压力,也就是吸力。

这种压力和吸力的分布不均匀,会导致建筑物受到扭曲和弯曲的力。

高层建筑的形状和结构特征对其在风力作用下的稳定性起着关键作用。

常见的高层建筑形状有方形、圆形、矩形等。

方形建筑在风的作用下,角落处容易产生较强的气流分离和漩涡,从而导致较大的风荷载。

圆形建筑则相对较为流畅,风的绕流较为均匀,风荷载相对较小。

而矩形建筑的长宽比不同,其风荷载的分布也会有所差异。

此外,高层建筑的高度也是影响风力稳定性的重要因素。

随着高度的增加,风速也会随之增大。

根据气象学的规律,通常在近地面,风速较低,但在几百米甚至更高的高空,风速可能会大幅增加。

这意味着高层建筑顶部所受到的风力要比底部大得多。

而且,由于高度的增加,建筑物的振动幅度也会相应增大,这对结构的强度和刚度提出了更高的要求。

为了评估风力对高层建筑稳定性的影响,工程师们采用了多种方法和技术。

风洞试验是其中一种重要的手段。

在风洞中,可以模拟不同风速和风向条件下建筑物周围的气流情况,通过测量建筑物表面的压力分布和气流速度,来计算风荷载。

数值模拟也是常用的方法之一,借助计算机软件对风与建筑物的相互作用进行模拟分析。

在设计高层建筑时,为了提高其在风力作用下的稳定性,通常会采取一系列的结构措施。

增加结构的刚度是常见的方法之一,例如采用更粗壮的柱子、更厚实的墙体或者加强核心筒的设计。

合理的结构布局也非常重要,通过优化柱子和梁的布置,使力量能够均匀地分布在整个结构中。

另外,使用新型的建筑材料也有助于增强高层建筑的抗风能力。

高层建筑中的风荷载分析与设计

高层建筑中的风荷载分析与设计

高层建筑中的风荷载分析与设计随着现代城市建设的迅猛发展,高层建筑的作用和地位越来越显著。

然而,高层建筑由于其独特的特点,面临着风荷载的挑战。

风荷载是指建筑物在风力作用下所承受的力,其大小以及作用方式直接影响着高层建筑的稳定性和安全性。

因此,高层建筑中的风荷载分析与设计十分重要,本文将从不同角度对该问题展开讨论。

一、风荷载的基本概念风荷载是指由于风力作用产生的力对建筑物产生的压力、吸引力以及剪切力等。

它是建筑物设计中不可忽视的重要因素。

风荷载的大小与建筑物的高度、形状、表面积等因素密切相关。

在高层建筑中,由于其高度较大,表面积较广,因此所受的风荷载也较大。

二、风荷载的分析方法针对高层建筑中的风荷载分析,通常采用风洞试验和数值模拟两种主要方法。

风洞试验是指将建筑物的模型置于风洞中,通过模拟风的作用,测量建筑物所受的风荷载。

这种方法具有直观、真实的优势,能够为分析提供准确的数据。

另外,数值模拟方法是通过计算机技术对风场进行建模,从而预测风荷载。

这种方法可以对不同情况进行模拟,具有较高的灵活性和普适性。

三、风荷载的设计标准为了保证高层建筑的稳定性和安全性,各国都制定了相应的设计标准来规范风荷载的计算与设计。

以中国为例,我国建筑设计规范《建筑抗风设计规范》中规定了不同地区和不同高度的建筑物所应承受的风荷载系数。

设计人员在进行风荷载设计时,需要根据具体情况选择适当的标准,并合理应用。

四、风荷载在结构设计中的应用高层建筑的结构设计是保证其稳定性和安全性的关键环节。

风荷载的大小和作用方式需要被充分考虑和应用于结构设计中。

根据风荷载的特征,可进行结构抗风设计,采用合理的布置形式、减小结构自身的风阻系数,提高结构的抗风能力。

此外,合理的刚度设计和振动控制措施也是保证高层建筑稳定性的重要方法。

五、风荷载分析与设计的案例为了更好地理解高层建筑中的风荷载分析与设计,以下是一个实际案例。

某城市要建设一座100米高的办公楼,设计师需要进行风荷载分析与设计。

高层建筑中的风荷载分析

高层建筑中的风荷载分析

高层建筑中的风荷载分析高层建筑是城市的标志性建筑物,其设计和建造必须考虑到各种外部力的影响,其中风荷载是一个重要的因素。

随着城市化进程的加快,高层建筑的数量不断增加,风荷载分析成为了设计师和工程师必须重视的问题。

首先,在讨论风荷载分析之前,我们需要了解风的基本原理。

风是空气运动的一种形式,具有一定的力量。

当风吹过建筑物时,会产生侧向压力和吸力,这就是风荷载。

这种风荷载对高层建筑的结构和组件会产生不同程度的影响,因此对其进行准确分析是非常重要的。

其次,风荷载分析需要考虑多个因素,如建筑物的高度、形状、表面积和材料等。

不同高度处的风速有所差异,因此需要对高度进行分段计算。

同时,建筑物的形状也会影响风荷载的分布,例如圆柱形和方形建筑物所受到的风荷载分布不同。

此外,表面积和材料的不同也会影响风对建筑物的作用力。

然后,风荷载的分析方法也是多样的,常用的方法包括等效静力法、风洞实验和计算流体力学等。

等效静力法是一种简化的计算方法,通过将复杂的风荷载问题转化为等效的静力荷载问题来进行计算。

风洞实验是一种通过模拟真实风场进行物理实验来获取数据的方法,可以获得更准确的风荷载分布。

计算流体力学是一种基于数值模拟的方法,可以模拟风场的流动情况,更加精确地分析高层建筑中的风荷载。

风荷载分析不仅需要综合考虑建筑物的结构特点,还需要参考相关的国家标准和规范。

在我国,有关高层建筑风荷载的规范主要包括《建筑抗风设计规范》和《高层建筑结构设计细则》等。

这些规范对于不同类型的建筑物,在不同地区的设计和建造中都提供了具体的要求和指导。

最后,风荷载分析需要进行有效的风险评估。

由于高层建筑所受到的风荷载较大,因此在设计和建造过程中必须考虑到不同的荷载组合,以确保建筑物的结构安全和稳定。

通过对风的速度、方向、周期等参数进行分析,可以评估建筑物所面临的风险,并采取相应的安全措施。

综上所述,高层建筑中的风荷载分析是设计和建造过程中必不可少的一步。

高层建筑风荷载对结构设计的影响

高层建筑风荷载对结构设计的影响

高层建筑风荷载对结构设计的影响在现代城市化发展的背景下,高层建筑的建设变得愈发普遍,它们不仅给城市增添了现代化的风貌,更为人们提供了更多的生活空间和商业机会。

然而,随着高层建筑的增多,其与自然环境之间的相互作用也变得愈发重要。

其中,高层建筑风荷载对结构设计的影响是建筑工程领域研究的重要课题之一。

一、风荷载对高层建筑的影响高层建筑所面临的气候环境较低层建筑复杂得多,其中风荷载是一种主要的外部负荷。

风荷载包括两个主要方面:静风荷载和动风荷载。

1. 静风荷载静风荷载是指风对建筑物表面施加的压力,它主要由风速、建筑物高度和建筑物表面积等因素决定。

当风速增加时,静风荷载也会相应增大。

由于高层建筑的特殊性,其高度较大,表面积较大,因而受到的静风荷载较大。

2. 动风荷载动风荷载是指风对建筑物产生的振动力,主要包括风压、风力和风速等因素。

由于建筑物受到风的作用会发生振动,当风速较大时,振动力也相应增大,从而对建筑物结构产生影响。

二、高层建筑风荷载对结构设计具有重要的影响,主要体现在以下几个方面。

1. 结构强度设计高层建筑必须能够抵抗风荷载带来的各种力和压力,因此结构设计必须充分考虑风荷载的作用。

结构强度设计是根据风流场所引起的压力和力的大小来决定结构的尺寸和受力状态,以确保结构的安全性和稳定性。

2. 结构抗风设计高层建筑在面对强风时容易受到振动影响,因此需要进行结构抗风设计。

抗风设计是通过采取增加结构支撑手段来增强结构的抗风能力,减小结构的振动幅度和影响范围。

例如,在设计中可以增加风向对结构的影响系数,提高建筑物的稳定性。

3. 结构疲劳和耐久性设计高层建筑长期受到风荷载的作用,易产生结构疲劳和损坏。

因此,在结构设计中,需要充分考虑结构的疲劳和耐久性。

结构疲劳和耐久性设计是通过选择合适的结构材料、加强连接节点、采取合理的结构设计等方式来提高结构的抗疲劳和耐久性。

三、高层建筑风荷载的研究和应用为了更好地理解高层建筑风荷载对结构设计的影响,建筑工程领域开展了大量的研究工作,并取得了一系列的研究成果。

风力影响下高层建筑的稳定性分析

风力影响下高层建筑的稳定性分析

风力影响下高层建筑的稳定性分析在现代城市的天际线中,高层建筑如林立的巨人,展示着人类建筑技术的伟大成就。

然而,这些高耸入云的建筑在面临风力作用时,其稳定性面临着严峻的考验。

风,这个看似无形却力量强大的自然元素,对高层建筑的影响不容忽视。

首先,我们来了解一下风是如何对高层建筑产生作用的。

当风吹过建筑物时,会在建筑物的表面形成压力差。

这种压力差会导致风荷载的产生,风荷载的大小和方向取决于风速、风向、建筑物的形状和周围环境等因素。

在高层建筑中,由于高度较高,风的流动更加复杂,风荷载的变化也更加剧烈。

高层建筑的形状对其在风力作用下的稳定性有着重要影响。

常见的高层建筑形状有方形、圆形、三角形等。

方形建筑在迎风面和背风面容易产生较大的压力差,从而导致较大的风荷载;圆形建筑则相对较为流畅,风的绕流较为均匀,风荷载相对较小;三角形建筑在某些角度的风向下可能会产生较大的扭矩,影响结构的稳定性。

此外,建筑的立面设计,如凹凸不平的表面、阳台、挑檐等,也会改变风的流动路径,增加风荷载的复杂性。

建筑材料和结构体系也是决定高层建筑在风力下稳定性的关键因素。

高强度的建筑材料能够承受更大的风力作用,保证结构的完整性。

目前,常见的高层建筑结构体系有框架结构、剪力墙结构、框架剪力墙结构和筒体结构等。

框架结构具有较好的灵活性,但抗侧刚度相对较小;剪力墙结构则具有较大的抗侧刚度,能够有效地抵抗风荷载引起的水平位移;框架剪力墙结构结合了两者的优点,能够在满足建筑功能的同时提供较好的结构稳定性;筒体结构,如筒中筒结构和束筒结构,具有非常出色的抗风性能,适用于超高层建筑。

在风力作用下,高层建筑会产生水平位移和振动。

过大的水平位移会影响建筑的使用功能,甚至导致结构的破坏。

为了控制水平位移,通常会在建筑结构中设置水平支撑系统,如钢梁、钢支撑等。

同时,采用减震技术,如阻尼器,可以有效地消耗风荷载输入的能量,减小结构的振动响应。

高层建筑的周围环境也会对其风荷载产生影响。

高层建筑设计中的风荷载分析

高层建筑设计中的风荷载分析

高层建筑设计中的风荷载分析随着科技和建筑技术的不断进步,越来越多的高层建筑如雨后春笋般拔地而起。

在高楼林立的城市中,不仅令人惊叹的是它们的高度和壮丽的外观,更重要的是它们能够承受各种自然力的挑战,其中之一就是风力。

高层建筑设计中的风荷载分析成为了一项关键的工作,本文将讨论风荷载分析的重要性以及如何进行风荷载分析。

高层建筑由于其特殊的结构和高度,容易受到风力的影响。

风力可以引起建筑物的摇摆、倾斜甚至倒塌,给人们的生命财产造成巨大的损失。

因此,风荷载分析在高层建筑设计中至关重要。

通过对风的起伏和速度等因素的研究,工程师能够预测高层建筑的风荷载,从而采取相应的措施来保证其结构的安全性和稳定性。

首先,风荷载分析需要考虑风的速度。

风速是风力大小的重要指标之一。

根据国际标准,不同高度和地区的高楼建筑需要承受不同等级的风速。

通过在高层建筑附近设置风速仪器,可以实时测量风速,并将测得的数据用于计算风荷载。

其次,风荷载分析还需要考虑风的方向。

风可能来自不同的方向,建筑物的结构和外形对于不同方向的风荷载有不同的响应。

因此,在风荷载分析中,需要对风向进行详细研究,并将风向因素纳入设计方案中。

另外,高层建筑设计中的风荷载分析还需要考虑风的湍流效应。

湍流是指在风向的基础上,风的速度和方向可能发生瞬间剧烈变化的现象。

这种湍流可能会导致建筑物出现共振现象,进而引发结构破坏。

因此,在风荷载分析中,需要对风的湍流进行详细的研究,并采取相应的措施来减少湍流的影响。

此外,高层建筑设计中的风荷载分析还需要考虑建筑物的形状和表面粗糙度对风荷载的影响。

建筑物的形状和表面粗糙度对风力的传递有重要影响。

一般来说,光滑表面和低阻力的建筑物对风力响应较弱。

因此,在设计中,需要选择合适的建筑物形状和表面特征,以减小风荷载。

最后,高层建筑设计中的风荷载分析还需要采取相应的安全保护措施。

一旦高层建筑出现风荷载超过设计范围的情况,可能会引发结构破坏。

因此,在设计过程中,需要设置适当的风荷载监测装置,及时监测风荷载,并采取相应的措施来防止结构损坏。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

风荷载对高层建筑物的影响
摘要:随着经济的发展,近年来高层建筑尤其是体型复杂的超高层建筑得到了蓬勃的发展。

一般而言,高层建筑物占地面积少,建筑面积大,造型独特,相对集中。

这一特点使得高层建筑物在人口稠密的大城市迅速发展。

但是高层建筑物上风荷载也越来越大,导致水平荷载不断增大。

因此,高层建筑物需要较大的承载力和刚度来解决水平荷载的问题。

关键词:风载荷高层建筑物影响
风是紊乱的随机现象风对建筑物的作用十分复杂,规范中关于风荷载值的确定适用于大多数体型较规则、高度不太大的单幢高层建筑。

目前还没有有效的预测体型复杂、高柔建筑物风作用的计算方法;摩天大楼可能造成很强的地面风,对行人和商店有很大影响;当附近还有别的高层建筑时,群体效应对建筑物和建筑物之间的通道也会造成危害。

风对建筑物表面的作用力大小,与建筑物体型、高度、建筑物所处位置、结构特性有关。

一、风荷载的形成
风荷载是空气流动形成的,对建筑物的作用是不规则的,风荷载实际上是一种随机时变活荷载,但不同于一般活荷载(楼面和屋面活荷载、吊车荷载、雪荷载)。

为了结构设计方便,迄今为止,世界各国的高层建筑结构设计,都是将风荷载转换为确定性的静力等效风。

风对建筑物的影响不仅仅是风声,主要是风荷载对水平位移的影响。

具体到多少米会有影响,要看当地气候特点、风力状况、场地特征、建筑物体型等等因素。

总风荷载与局部风荷载总风荷载是指建筑物的各个表面所受风荷载的合力,是沿建筑物变化的线荷载,通常按建筑物的主轴方向计算。

局部风荷载是指在建筑物表面某些风压较大的部位,考虑风压对局部某些构建的不利作用时考虑的风荷载,考虑部位一般是建筑物的角隅或阳台雨篷等悬挑构件。

风荷载与楼层高度有关,越高风压越大,但不是简单的正比关系。

对于平坦或稍有起伏的地形,风压高度变化系数应根据地面粗糙度类别按规范取值确定。

对于山区的建筑物,风压高度变化系数还应考虑地形条件的修正。

二、风荷载对高层建筑物的影响
风荷载是超高层建筑的主要控制荷载,气流经过高耸结构物会产生明显的三维风荷载效应,即顺风向、横风向和扭转风荷载,从而引起结构在三个方向上的振动。

高层建筑三维风荷载形成机理复杂,影响因素众多,一直以来都是风工程研究的热点问题。

但目前大多数的研究都集中于矩形等少数规则平面的高层建筑,
而对复杂体型高层建筑的风荷载则较少涉及。

(一)、高层建筑物周围的风环境
高层建筑物周围的风环境状况是由靠近地面的流动风(简称近地风)所决定的,近地风的形态结构如湍流度、旋涡尺寸等以相当复杂的形式依赖于建筑物的尺度、外形、建筑物之间相对位置以及周围的地形地貌等,不同时间、不同空间的风速、风向是不同的。

可见,空气绕过建筑物的流动是一个非常复杂的流体运动现象,其流动特征具有明显的紊乱性、随机性,对行人的舒适程度的影响也不尽相同。

风作用在建筑物上产生风压差。

当风吹到建筑物上时,在迎风面上由于空气流动受阻,速度降低,风的部分动能变为静压,使建筑物迎风面上的压力大于大气压,在迎风面上形成正压区。

在建筑物的背风面、屋顶和两侧,由于在气流曲绕过程中形成空气稀薄现象,因此该处压力将小于大气压,形成负压区,形成涡流。

高大建筑林立会产生“峡谷”效应,带来变幻莫测的“高楼风”。

气流分布与建筑物形状有关。

高层建筑如建筑呈横长形时风速最大区为建筑上方,当建筑呈细高状时,风速最大区为建筑两侧,项目的裙楼建筑为横长形,情况属于前者,塔楼建筑为细长形,情况属于后者。

实际上,某一单体高层建筑物孤立存在的情况是很少的,更常见的是多栋相邻高层建筑物构成的建筑群。

对于高层建筑群,由于各单体建筑之间的相互干扰,使得组成群体的各个建筑的空气动力特征与单个孤立建筑相比有较大的区别,其周围的风环境情况也更加复杂。

影响高层建筑群风环境的主要因素为①建筑群空间密度及布局;②建筑物周围环境相对高度;③风向、风速;④建筑物的尺度、相对高度;⑤局域的地形、地貌等。

对于多个相邻高层建筑物,当间距足够大时,它们之间没有相互作用,相当于多个单体的情形;而当间距很小时,整体上只相当于一个单体建筑;只有当相邻建筑物之间存在一定的距离并相互作用时,其风场状况才不同于单体建筑。

高层建筑群风环境较差的区域为建筑物拐角处和巷道内。

拐角处是角区气流作用较大的区域,其附近风速较高,风力较大,流场分布极不均匀。

巷道是建筑物之间的区域,当气流平行流向巷道时,由此产生渠道效应,风速不断增大,而且巷道两端是建筑物的拐角,角区气流对巷道内产生较高风速也起了一定的作用。

随着巷道纵深长度的增加,两侧建筑物的高度越高,建筑密度越大,渠道效应也越明显,当出现大风天气时,可能发展成为较强风速区,对行人和建筑造成一定危害。

(二)、风荷载对高层建筑结构的要求
在高层建筑中,竖向荷载对结构设计产生重要影响,但水平荷载却起着决定性作用。

因为建筑自重和楼面使用荷载在竖向构件中所引起的轴力和弯矩的
数值,仅与建筑高度的一次方成正比;而水平荷载对结构产生的倾覆力矩、以及由此在竖向构件中所引起的轴力,是与建筑高度的两次方成正比;另一方面,对一定高度建筑来说,竖向荷载大体上是定值,而作为水平荷载的风荷载和地震作用,其数值是随着结构动力性的不同而有较大的变化。

对一些较柔的高层建筑,风荷载是结构设计的控制因素,随着建筑物高度的增高,风荷载的影响越来越大。

高层建筑中除了地震作用的水平力以外,主要的侧向荷载是风荷载,在荷载组合时往往起控制作用。

因此,高层建筑在风荷载作用下的结构分析与设计引起了研究人员和工程师们的重视。

建筑设计应符合抗震概念设计的要求,不应采用严重不规则的设计方案。

高层建筑不应采用严重不规则的结构体系,应符合下列要求:
1、应具有必要的承载能力、刚度和变形能力;
2、应避免因部分结构或构件的破坏而导致整个结构丧失承受重力荷载、风荷载和地震作用的能力;
3、对可能出现的薄弱部位,应采取有效措施予以加强。

高层建筑的结构体系尚宜符合要求:结构的竖向和水平布置宜具有合理的刚度和承载力分布,避免因局部突变和扭转效应而形成薄弱部位。

风荷载是结构的重要设计荷载,特别对于高耸结构(如烟囱、塔架、桅杆等)、高层建筑、大跨度桥梁、冷却塔、屋盖等,有时甚至起到决定性的作用,因而抗风设计是工程结构中的重要课题。

近二十年来,国内外建造了超高层建筑和大跨度结构。

对这些限高层建筑结构风荷载和风震响应的计算分析,确保高层建筑物的质量是十分必要的。

注:文章内的图表、公式请到PDF格式下查看。

相关文档
最新文档