桥梁与隧道工程英文简介
桥梁隧道英汉文翻译

LONG-TERM DETERIORATION OF HIGHDAMPING RUBBER BRIDGE BEARINGIn recent years, high damping rubber (HDR) bridge bearings have become widely used because of the excellent ability to provide high damping as well as flexibility. However, there are few systematic studies on the deterioration problems of HDRs during their service life, and usually the long-term performance was not considered in the design stage. In this research, through accelerated thermal oxidation tests on HDR blocks, the property variations inside the HDR bridge bearing are examined. A deterioration prediction model is developed to estimate the property profiles. Then using a constitutive model and carrying out FEM analysis, the behavior of a HDR bridge bearing during its lifespan is clarified. A design procedure is proposed that takes the long-term performance in the site environment into consideration.Key Words:high damping rubber bearing, thermal oxidation, deterioration, long-term performance1. INTRODUCTIONSince Hyogoken-Nanbu earthquake that occurred on January 17th, 1995, bridge bearings have been widely adopted in Japan as an effective means to weaken the severe damage of steel and concrete piers due to an earthquake1), 2). Rubber is frequently applied in bridge bearings because of its special properties such as high elasticity and large elongation at failure. However, natural rubber cannot afford sufficient damping which is indispensable to a seismic isolation system. Usually rubber bearing is used together with steel bars, lead plugs, or other types of damping devices. In order to add energy dissipation to the flexibility existing in laminated rubber bearings, in the early 1980’s, the development in rubber technology led to new rubber compounds, which were termed high damping rubber (HDR). HDR material possesses both flexibility and high damping properties. The bridge bearings made of HDR can not only extend the natural period of the bridge, but also reduce the displacement response of structures3). Moreover, because of the inherent high damping characteristics of HDR, there is no need of additional devices to achieve the required levels of protection from earthquakes for most applications, so that the seismic isolation system becomes more compact.In the manufacture process of HDR, natural rubber is vulcanized together with carbon black, plasticizer, oil and so on. Consequently HDR possesses specific characteristics such as maximum strain-dependency of stress evolution, energy absorbing properties and hardening properties. Yuan et al.4) experimentally studied the dynamic behaviors of HDR bearing. Yoshida et al.5), 6) developed a mathematical model of HDR materials and proposed a three-dimensional finite element modeling methodology to simulate the behaviors of a HDR bearing numerically. Besides, a series of accelerated exposure tests were performed by Itoh et al.7),8) on various rubber materials including HDR to investigate the degradation effects of differentenvironmental factors. It was found that the thermal oxidation is the most predominant degradation factor affecting theHDR material. Since oxygen is able to permeate into the interior of a thick rubber, in this research the deterioration of HDR bridge bearings is assumed to be mainly caused by the thermal oxidation. For the purpose of clarifying the deterioration characteristics of bridge rubber bearings during their lifespan, some bearings practically in use were recalled and their mechanical properties were tested9)~11). However, because of their scatter nature and the lack of data, the long-term performance of HDR is not very clear. During the design process, usually the behaviors of deteriorated bridge rubber bearings during their lifespan are not considered.In the previous research, Itoh et al. 12), 13) studied the long-term performance of natural rubber (NR) bridge bearings. Through accelerated thermal oxidation tests carried out on NR blocks, the deterioration characteristics of both the outer and the interior regions were examined. Based on the test results, a prediction model was established to estimate the property profiles of the deteriorated NR bridge bearing. Then using the constitutive law proposed by Yoshida5), finite element model was built and the analysis was performed, which enabled the long-term performance of NR bridge bearing to be predicted. The relations among property variation, temperature, aging time and bearing size were also investigated.In this research, through the similar accelerated thermal oxidation tests on HDR blocks, the deterioration characteristics of HDR bridge bearings are studied, and their long-term mechanical performance is investigated by taking the site environment taken into consideration. The HDR specimens are provided by Tokai Rubber Industries, Ltd. It is possible that when suffered by aging, the HDR from other companies may behave differently due to the difference of chemical compound. The deterioration characteristics of the HDR material with other compounding ingredients and additives will be discussed in the future study.2. ACCELERATED THERMAL OXIDATIONTESTSAmong different degradation factors such as oxidation, ultraviolet radiation, ozone, temperature, acid and humidity, it is found that thermal oxidation changes the HDR properties more greatly than other factors5), resulting in an increase of HDR’s stiffness and a decreases of elongation at break as well as tensile strength. Besides, for thick rubbers, it is obvious that the surface is more easily affected by deterioration factors than the interior because of the diffusion-limited oxidation effect14), 15). In order to understand the variation of the material properties inside HDR bearings, accelerated tests were performed using rubber blocks focusing on the most significant degradation factor, thermal oxidation. The test method and results are described as follows.2.1 Accelerated thermal oxidation test methodFifteen HDR blocks were tested. The dimension is 220×150×50mm(length×width×thickness). The specimens were kept in a Thermal Aging Geer Oven. The acceleration test conditions are listed in Table 1. The temperatures were kept at three elevated temperatures, 60℃, 70℃, and 80℃in the oven. For the test at each temperature, the experiment duration were set as 5 stages, with the maximum of 300 days. The similar tests have already been performed on NR10). When the aging test was finished, HDR blocks were sliced into pieces with a thickness of 2mm. From each slice, four specimens with No.3 dumbbell shape were cut out16), as shown in Fig.1. The number of the specimens was 1,500 in total. Then through the tensile tests on these dumbbell specimens, the stress-strain curves were obtained, which represented the rubber properties at the corresponding position.In this research, strain energy was chosen for examination because it can exhibit the effect of thermal oxidation more remarkably than stresses at certain strains. In the following description, U100 stands for the strain energy corresponding to the strain of 100%, UB stands for the strain energy up to the break, and M100 stands for the stress corresponding to the strain of 100%. Similarly, U100 profile stands for the distribution of U100 inside HDR blocks, and property profile means the distribution of the mechanical properties such as stresses corresponding to certain strains, elongation at break (EB) and tensile strength (TS). As for the rubber breakage, EB is focused on. In addition, U0 and EB0 stand for U100 and EB in the initial state, respectively.2.2 Test results and examinationsThe profiles of U100/U0 and EB/EB0 at every test temperature are illustrated in Fig.2 and Fig.3, respectively. The horizontal axis shows the relative position with regard to the thickness of HDR block. The values 0 and 1 on this axis correspond tothe surface of the block. The vertical axis shows the normalized change of U100 with the original value regarded as 1.0 in Fig.2, and shows the normalized change of EB in Fig.3. In these figures, every point represents the mean value of four specimens from the same slice. Because of the scatter nature of rubber materials, at any position four specimens are tested in order to improve the accuracy. Since the oxidized rubber inhibits the ingress of oxygen, and considering the shape of the rubber block, the four specimens are cut out in the area of at least 25mm, a half of the block thickness, away from the around surface. Thus these specimens only reflect the property variations in the thickness direction. The standard deviation of every four-specimen group is quite small and usually less than 5% of the mean value.From Fig.2 and Fig.3, it can be found that at the earliest stage of the test, the material properties at the outside surface change together with the interior regions. The property variation of the interior region soon reaches the equilibrium state and maintains stable. However, the properties near the surface keep changing over the time, and change most greatly at the surface.From the surface to the interior, the properties vary less and less, until to a certain depth,which is called “critical depth”. The critical depth is about 11.5mm from the block surface at 60℃, 8.5mm at 70℃, and 6mm under 80℃. From the results of the same tests on NR blocks12), it is found that generally HDR and NR have a similar tendency of property variation. Both U100 and EB profiles display the features of a diffusion-limited oxidation. Initially the profiles are relatively homogeneous, but strong heterogeneity develops with aging. The properties in the outer region change more than the interior and keep changing over the time. However, unlike the case of NR, the interior region of HDR block experiences a rapid increase and soon reaches the equilibrium state. In contrast, the interior region of NR block does not change at all. In addition, after the same aging time, the property change at the surface of NR block is larger than that of HDR block, which means NR is more vulnerable to thermal oxidation.Fig.4 shows the time-dependency of U100 and EB at the surface and in theinterior of HDR blocks. The horizontal axis shows the deterioration time, and the vertical axis shows the material property variations compared to its initial state. The data of the block surface are taken from the top and the bottom surfaces, while the data of the block interior are taken from two slices close to the middle slice. Therefore, there are 8 points corresponding to every measuring time. From Figs.4(a) and 4(c) it is found that U100 and EB at the block surface change nonlinearly over the time. In Figs.4(b) and 4(d), the properties in the interior region vary in a very short time, and soon become stable. U100 increases by 20~40% and EB decreases by about 20%.Besides the accelerated thermal oxidation test, a HDR block was exposed to the environment of Nagoya, where the yearly average temperature is 15.4℃. The properties of each layer was measured and the profiles were obtained after one year. The normalized change of EB profile is shown in Fig.5. It can be seen that EB decreased by nearly 20% after only one year. This figure offers a good proof of the rapid variation speed in the interior of HDR during the earliest stage. Using the deterioration prediction model that is to be introduced in the following section, the simulation of the deterioration after one year is found to be close to the test results.From the test results, it is clear the deterioration characteristics of HDR block can be observed in two regions, one is in the interior region beyond the critical depth, where the properties only change at the earliest stage, the other is in the outer region from the surface to the critical depth, where the properties continue changing after a rapid initial change. Oxidation cuts the cross-links between chains and accelerates the reformation of molecule structure, however, the latter restricts the ingression of oxygen. It is thought that the equilibrium is reached at the critical depth. The oxidation is a process related to the time, however, the properties in the interior region only vary in a very short time. There should be a factor except for oxidation affecting the interior region of HDR block. Because the property variation in the interior region increases with temperature, it is assumed the reaction is related to temperature. Therefore, it is thought that there are two factors affecting the deterioration of the HDR material, temperature and oxidation. The interior region is mainly affected by temperature, and this reaction finishes in a relatively short time. However, for the outer region near the surface, temperature and oxidation affect HDR simultaneously at first. After the reaction due to temperature reaching the stable state, only the oxidation deterioration continues.3. DETERIORATION PREDICTION MODEL FORHDRBRIDGEBEARING 3.1 Quantification of deterioration characteristicsTo predict the long-term deterioration of HDR bridge bearing, it is necessary to quantify the deterioration characteristics. From the accelerated thermal oxidation test results, the deterioration pattern of the HDR block can be schematically expressed by Fig.6. The vertical axis U/U0 means the relative property variation, which is the ratio of the current material property U comparing to the original value U0. The horizontal axis shows the relative position inside the HDR block. The interior region beyond the critical depth d* is mainly affected by temperature, and the relative property variationis ΔUi. The outer region from surface to the critical depth d* is influenced by both temperature and oxidation, and the property changes most greatly near the block surface. The relative property variation at the bearing surface is represented by the symbol of ΔUs. When pro ceeding into the block, because of the decrease in the amount of oxygen, the oxidation effect becomes weaker, and the property variation also declines. Once exceeding the critical depth, the gradient of the Fig.5 EB/EB0 profile of HDR block in Nagoya (15.4℃)property profile becomes zero.Moreover, from the test results shown in Figs.2 ~5, it can be said that at the lower temperatures, the critical depth becomes larger, however the property variation rate in both the inner and the outer region becomes slower. Hence the property profiles of aged HDR block at different temperatures are expected to be similar to the one shown in Fig.7.3.1.1 Critical depthMuramatsu and Nishikawa17) discovered that the critical depth can be expressed as the exponential function of the reciprocal of the absolute temperature, and the following formula was proposed to express the relationship between the critical depth and the temperature.⎪⎭⎫ ⎝⎛=*T d βαexp (1) where, d* is the critical depth, T is the absolute temperature, and the symbols α and βare coefficients determined by the aging test.The exponential relationship between the critical depth and the temperature is shown in Fig.8. In this fig ure it is found that for HDR, α=0.00012mm, β =3.82×10-3.3.1.2 Property variation of interior regionThe accelerated thermal oxidation test results show that the interior region changes in a relatively very short time, and then keeps stable. The properties change so rapidly that the time-dependency may be neglected. The EB decreases by about 20% and showing no dependency on the temperature. However, the equilibrium state of strain energy is correlated with temperature, as shown in Fig.9. The exact tendency is not clear because of the lack of tests at lower temperatures. In this study, the change of the relative strain energy in the interior region is assumed to be an exponential function of the reciprocal of the absolute temperature as follows:⎪⎭⎫ ⎝⎛=∆T B A U i exp (2) where, ΔUi is the normalized strain energy variation of the interior region, T is the absolute temperature, and the symbols A and B are coefficients.The symbols A and B in Eq.(2) are found to be related to the nominal strain. The strain-dependency of the both coefficients is shown in Fig.10. In this figure, the coefficients A and B versus the strain between 25% and 500% are illustrated. Hence they can be correlated approximately using the following equations.21ln ln b b A +=ε (3a)21ln c c B +=ε (3b)where, εis the nominal strain, the symbols b1, b2, c1, and c2 are the factors determined by the aging test.3.1.3 Property variation at block surfaceThe property variation at the block surface can be deemed as the combined effect of temperature and oxidation. Temperature not only causes the change in HDR properties, but also accelerates the oxidation reaction.Figs.11 (a) and 11(b) show the relative change of U100 and EB at the bearing surface with the propFig.8 Relations between critical depth and temperatureertyvariations due to the temperature eliminated.At a certain temperature, the property of HDR ex-posed to the air depends on time. It is found that the increase of U100 and the decrease of EB are linear with the aging time. For other material properties, the similar relationship is proved. The time-dependency can be expressed by the following equation:1/0+⋅='t k U U s s s(4a ) where, U’s/ Us0 is the relative variation of strain energy at the surface of the rubber bearing due to the oxidation only, ks is coefficient and t is the deterioration time.The relative property variation at the bearing sur-face also depends on strain. The relationship betweenthe coefficient ks and the nominal strain εis shown inFig.12, and the following equation can be obtained.21a a k s +⋅=ε (4b )where, a1 and a2 are the factors determined by the test.Since the normalized property variation at the bearing surfaceΔUs is affected by the deterioration effects due to both temperature and oxidation, the following equation is obtained.()()111-∆+⋅⋅+=∆i s s U t k U (4c)3.1.4 Shape model of property profileA simple equation is necessary to express the property variation in the region from the rubberbearing surface to the critical depth. The property variation U(t)/U0 should be the function of the position x. The boundary conditions are:()S U U t U ∆+=1/0 ()l or x 0= (5a )()i U U t U ∆+=1/0 ()**-≤≤d l x d (5b)()0/=dx t dU ()*=d x (5c)where, U(t) and U0 are the HDR properties at time tand initial state, respectively. ΔUi andΔUs are the relative property changes of the interior region and the bearing surface, respectively. l is the width of the HDR bearing.If the property variation U(t)/U0 is assumed to be a square relation of the position x, the function can be expressed as follows: ()32210/g x g x g U t U ++= (6)Considering the boundary conditions Eq.(6) can be written as:()[]i S s sU w U w U U ∆-+∆+='11/0 (7) ()()()()⎪⎪⎪⎩⎪⎪⎪⎨⎧≤≤-⎪⎪⎭⎫ ⎝⎛---≤≤≤≤⎪⎪⎭⎫ ⎝⎛-=********l x d l d d l x d l x d d x d d x w 200 (8) where, w is the coefficient correlated with the position x, the critical depth d* and the width l of the HDR bearing.Next, if the relationship between U(t)/U0 and x is a 3-order equation, it is expressed by:()432210/g g x g x g U t U +++= (9)Eq.(9) is resolved using the boundary conditions, the following equation is obtained.()()()[]{}i S U w U w d x x g U t U ∆-+∆+-=*1/10 (10)From the test results, it is found that the influence of the first part of Eq.(10) is only about 0.01%~10% of U(t)/U0. For simplicity, in this study the square relation as Eq.(7) is adopted.3.2 Comparison with test resultsUsing Eqs.(1)~(6), the property profiles of the deteriorated HDR blocks can be estimated. Based on the test results, the coefficients in these equations are obtained and listed in Table 2. Through the comparisons between test results and simulations shown in Fig.13, it is found that the simulations of the critical depth, the property variations on the block surface and in the interior region are in good agreement with the test results. Thus the feasibility of the deterioration prediction method is verified. Using this model, the material property can be predicted at any position inside the HDR bearing, at any temperature and at any aging time.3.3 Activation energyIn the thermal oxidation test the temperature applied is much higher than the real environment.This is because high temperature can accelerate the deterioration18). The Arrhenius methodology3) is commonly used to correlate the accelerated aging results with the aging under service conditions. Gerenally the thermal oxidation is assumed to be the 1st order chemical reaction for rubber materials3). Then the aging time in the accelerated exposure tests can be converted into the real time under the service conditions through the following formula:⎪⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛T T R E t t r a r 11ln (11) where, Ea is the activation energy of the rubber, R is the gaseous constant (=8.314[J/mol·K]), Tr indicates the absolute temperature under the service condition, and T is the absolute temperature in the thermal oxidation test. The symbols tr and t are the real time and test time, respectively.Since the rubber surface contacts with the air, the surface is thought completely oxidized. Therefore, the time-dependency of the properties at the surface are used to determine the activation energy, for example, the data in Fig.4(a) and Fig.4(c). The principle of time/temperature superposition by shifting the raw data to a selected reference temperature Tref is employed19). This principle is shown in Fig.14. The reference temperature is chosen as 60℃ so that the curve at 60℃ is the master curve. The shift factors aT are chosen to give the best superposition of the data. If the data adhere to an Arrhenius relation, the set of the shift factors aT will be related to the Arrhenius activation energy Ea by the following expression:⎪⎪⎭⎫ ⎝⎛-=T T R E a ref ar 11exp (12) The activation energy is calculated and listed in Table 3. The average value of Ea is about 9.04×104[J/mol]. Then using the Arrhenius methodology, the property variations of HDR under any service condition may be predicted based on the accelerated thermal oxidation test results.。
桥梁工程专业英语

有限元法
finite element method
有限元法: FInite Element|finite element method
积有限元法:CVFEM线性有限元法: Linear Finite Element Method
等效荷载原理:principle of equivalent loads
等效负载等效荷载等值负载: equivalentload
模型
matrixmodelmouldpattern
承载能力极限状态
承载能力极限状态: ultimate limit states
正常使用极限状态
serviceability limit state
安全系数
safety factor
标准值
standard value标准值:standard value,|reference value
作用标准值: characteristic value of an action重力标准值:gravity standard
设计值
value of calculationdesign value
单墩
单墩: single pier单墩尾水管: single-pier draught tube
单墩肘形尾水管: one-pier elbow draught tube
结构优化设计
结构优化设计: optimal structure designing
扩结构优化设计:Optimal Struc ture Designing
液压机结构优化设计软件包: HYSOP
连续多跨
多跨连续梁: continuous beam on many supports
沉管隧道介绍(英文)

Immersed tunnels are,
• more advantegous as a subaquous solution in soft soils
• increasingly used alternative to traditionally used shield tunnelling, without having the risks associated with pressure chambers and inrush of water.
• also suitable in water deeper than it is possible with the shield method, which essentially is restricted to less than 30 m of water (concerning the maximum air pressure at which workers can safely work).
Immersed Tunnels
Typically, an immersed tunnel is made by • sinking precast concrete boxes into a dredged channel
and joining them up under water.
– Tunnel sections in convenient lengths, usually 90 to 150 meters, are placed into a pre-dredged trench,
• Tides and current effects of the waterway must be evaluated to determine conditions during dredging and tube sinking operations.
道路与桥梁工程中英文对照外文翻译文献

中英文对照外文翻译(文档含英文原文和中文翻译)Bridge research in EuropeA brief outline is given of the development of the European Union, together with the research platform in Europe. The special case of post-tensioned bridges in the UK is discussed. In order to illustrate the type of European research being undertaken, an example is given from the University of Edinburgh portfolio: relating to the identification of voids in post-tensioned concrete bridges using digital impulse radar.IntroductionThe challenge in any research arena is to harness the findings of different research groups to identify a coherent mass of data, which enables research and practice to be better focused. A particular challenge exists with respect to Europe where language barriers are inevitably very significant. The European Community was formed in the 1960s based upon a political will within continental Europe to avoid the European civil wars, which developed into World War 2 from 1939 to 1945. The strong political motivation formed the original community of which Britain was not a member. Many of the continental countries saw Britain’s interest as being purelyeconomic. The 1970s saw Britain joining what was then the European Economic Community (EEC) and the 1990s has seen the widening of the community to a European Union, EU, with certain political goals together with the objective of a common European currency.Notwithstanding these financial and political developments, civil engineering and bridge engineering in particular have found great difficulty in forming any kind of common thread. Indeed the educational systems for University training are quite different between Britain and the European continental countries. The formation of the EU funding schemes —e.g. Socrates, Brite Euram and other programs have helped significantly. The Socrates scheme is based upon the exchange of students between Universities in different member states. The Brite Euram scheme has involved technical research grants given to consortia of academics and industrial partners within a number of the states— a Brite Euram bid would normally be led by an industrialist.In terms of dissemination of knowledge, two quite different strands appear to have emerged. The UK and the USA have concentrated primarily upon disseminating basic research in refereed journal publications: ASCE, ICE and other journals. Whereas the continental Europeans have frequently disseminated basic research at conferences where the circulation of the proceedings is restricted.Additionally, language barriers have proved to be very difficult to break down. In countries where English is a strong second language there has been enthusiastic participation in international conferences based within continental Europe —e.g. Germany, Italy, Belgium, The Netherlands and Switzerland. However, countries where English is not a strong second language have been hesitant participants }—e.g. France.European researchExamples of research relating to bridges in Europe can be divided into three types of structure:Masonry arch bridgesBritain has the largest stock of masonry arch bridges. In certain regions of the UK up to 60% of the road bridges are historic stone masonry arch bridges originally constructed for horse drawn traffic. This is less common in other parts of Europe as many of these bridges were destroyed during World War 2.Concrete bridgesA large stock of concrete bridges was constructed during the 1950s, 1960s and 1970s. At the time, these structures were seen as maintenance free. Europe also has a large number of post-tensioned concrete bridges with steel tendon ducts preventing radar inspection. This is a particular problem in France and the UK.Steel bridgesSteel bridges went out of fashion in the UK due to their need for maintenance as perceived in the 1960s and 1970s. However, they have been used for long span and rail bridges, and they are now returning to fashion for motorway widening schemes in the UK.Research activity in EuropeIt gives an indication certain areas of expertise and work being undertaken in Europe, but is by no means exhaustive.In order to illustrate the type of European research being undertaken, an example is given from the University of Edinburgh portfolio. The example relates to the identification of voids in post-tensioned concrete bridges, using digital impulse radar.Post-tensioned concrete rail bridge analysisOve Arup and Partners carried out an inspection and assessment of the superstructure of a 160 m long post-tensioned, segmental railway bridge in Manchester to determine its load-carrying capacity prior to a transfer of ownership, for use in the Metrolink light rail system..Particular attention was paid to the integrity of its post-tensioned steel elements. Physical inspection, non-destructive radar testing and other exploratory methods were used to investigate for possible weaknesses in the bridge.Since the sudden collapse of Ynys-y-Gwas Bridge in Wales, UK in 1985, there has been concern about the long-term integrity of segmental, post-tensioned concrete bridges which may b e prone to ‘brittle’ failure without warning. The corrosion protection of the post-tensioned steel cables, where they pass through joints between the segments, has been identified as a major factor affecting the long-term durability and consequent strength of this type of bridge. The identification of voids in grouted tendon ducts at vulnerable positions is recognized as an important step in the detection of such corrosion.Description of bridgeGeneral arrangementBesses o’ th’ Barn Bridge is a 160 m long, three span, segmental, post-tensionedconcrete railway bridge built in 1969. The main span of 90 m crosses over both the M62 motorway and A665 Bury to Prestwick Road. Minimum headroom is 5.18 m from the A665 and the M62 is cleared by approx 12.5 m.The superstructure consists of a central hollow trapezoidal concrete box section 6.7 m high and 4 m wide. The majority of the south and central spans are constructed using 1.27 m long pre-cast concrete trapezoidal box units, post-tensioned together. This box section supports the in site concrete transverse cantilever slabs at bottom flange level, which carry the rail tracks and ballast.The center and south span sections are of post-tensioned construction. These post-tensioned sections have five types of pre-stressing:1. Longitudinal tendons in grouted ducts within the top and bottom flanges.2. Longitudinal internal draped tendons located alongside the webs. These are deflected at internal diaphragm positions and are encased in in site concrete.3. Longitudinal macalloy bars in the transverse cantilever slabs in the central span .4. Vertical macalloy bars in the 229 mm wide webs to enhance shear capacity.5. Transverse macalloy bars through the bottom flange to support the transverse cantilever slabs.Segmental constructionThe pre-cast segmental system of construction used for the south and center span sections was an alternative method proposed by the contractor. Current thinking suggests that such a form of construction can lead to ‘brittle’ failure of the ent ire structure without warning due to corrosion of tendons across a construction joint,The original design concept had been for in site concrete construction.Inspection and assessmentInspectionInspection work was undertaken in a number of phases and was linked with the testing required for the structure. The initial inspections recorded a number of visible problems including:Defective waterproofing on the exposed surface of the top flange.Water trapped in the internal space of the hollow box with depths up to 300 mm.Various drainage problems at joints and abutments.Longitudinal cracking of the exposed soffit of the central span.Longitudinal cracking on sides of the top flange of the pre-stressed sections.Widespread sapling on some in site concrete surfaces with exposed rusting reinforcement.AssessmentThe subject of an earlier paper, the objectives of the assessment were:Estimate the present load-carrying capacity.Identify any structural deficiencies in the original design.Determine reasons for existing problems identified by the inspection.Conclusion to the inspection and assessmentFollowing the inspection and the analytical assessment one major element of doubt still existed. This concerned the condition of the embedded pre-stressing wires, strands, cables or bars. For the purpose of structural analysis these elements、had been assumed to be sound. However, due to the very high forces involved,、a risk to the structure, caused by corrosion to these primary elements, was identified.The initial recommendations which completed the first phase of the assessment were:1. Carry out detailed material testing to determine the condition of hidden structural elements, in particularthe grouted post-tensioned steel cables.2. Conduct concrete durability tests.3. Undertake repairs to defective waterproofing and surface defects in concrete.Testing proceduresNon-destructi v e radar testingDuring the first phase investigation at a joint between pre-cast deck segments the observation of a void in a post-tensioned cable duct gave rise to serious concern about corrosion and the integrity of the pre-stress. However, the extent of this problem was extremely difficult to determine. The bridge contains 93 joints with an average of 24 cables passing through each joint, i.e. there were approx. 2200 positions where investigations could be carried out. A typical section through such a joint is that the 24 draped tendons within the spine did not give rise to concern because these were protected by in site concrete poured without joints after the cables had been stressed.As it was clearly impractical to consider physically exposing all tendon/joint intersections, radar was used to investigate a large numbers of tendons and hence locate duct voids within a modest timescale. It was fortunate that the corrugated steel ducts around the tendons were discontinuous through the joints which allowed theradar to detect the tendons and voids. The problem, however, was still highly complex due to the high density of other steel elements which could interfere with the radar signals and the fact that the area of interest was at most 102 mm wide and embedded between 150 mm and 800 mm deep in thick concrete slabs.Trial radar investigations.Three companies were invited to visit the bridge and conduct a trial investigation. One company decided not to proceed. The remaining two were given 2 weeks to mobilize, test and report. Their results were then compared with physical explorations.To make the comparisons, observation holes were drilled vertically downwards into the ducts at a selection of 10 locations which included several where voids were predicted and several where the ducts were predicted to be fully grouted. A 25-mm diameter hole was required in order to facilitate use of the chosen horoscope. The results from the University of Edinburgh yielded an accuracy of around 60%.Main radar sur v ey, horoscope verification of v oids.Having completed a radar survey of the total structure, a baroscopic was then used to investigate all predicted voids and in more than 60% of cases this gave a clear confirmation of the radar findings. In several other cases some evidence of honeycombing in the in site stitch concrete above the duct was found.When viewing voids through the baroscopic, however, it proved impossible to determine their actual size or how far they extended along the tendon ducts although they only appeared to occupy less than the top 25% of the duct diameter. Most of these voids, in fact, were smaller than the diameter of the flexible baroscopic being used (approximately 9 mm) and were seen between the horizontal top surface of the grout and the curved upper limit of the duct. In a very few cases the tops of the pre-stressing strands were visible above the grout but no sign of any trapped water was seen. It was not possible, using the baroscopic, to see whether those cables were corroded.Digital radar testingThe test method involved exciting the joints using radio frequency radar antenna: 1 GHz, 900 MHz and 500 MHz. The highest frequency gives the highest resolution but has shallow depth penetration in the concrete. The lowest frequency gives the greatest depth penetration but yields lower resolution.The data collected on the radar sweeps were recorded on a GSSI SIR System 10.This system involves radar pulsing and recording. The data from the antenna is transformed from an analogue signal to a digital signal using a 16-bit analogue digital converter giving a very high resolution for subsequent data processing. The data is displayed on site on a high-resolution color monitor. Following visual inspection it is then stored digitally on a 2.3-gigabyte tape for subsequent analysis and signal processing. The tape first of all records a ‘header’ noting the digital radar settings together with the trace number prior to recording the actual data. When the data is played back, one is able to clearly identify all the relevant settings —making for accurate and reliable data reproduction.At particular locations along the traces, the trace was marked using a marker switch on the recording unit or the antenna.All the digital records were subsequently downloaded at the University’s NDT laboratory on to a micro-computer.(The raw data prior to processing consumed 35 megabytes of digital data.)Post-processing was undertaken using sophisticated signal processing software. Techniques available for the analysis include changing the color transform and changing the scales from linear to a skewed distribution in order to highlight、突出certain features. Also, the color transforms could be changed to highlight phase changes. In addition to these color transform facilities, sophisticated horizontal and vertical filtering procedures are available. Using a large screen monitor it is possible to display in split screens the raw data and the transformed processed data. Thus one is able to get an accurate indication of the processing which has taken place. The computer screen displays the time domain calibrations of the reflected signals on the vertical axis.A further facility of the software was the ability to display the individual radar pulses as time domain wiggle plots. This was a particularly valuable feature when looking at individual records in the vicinity of the tendons.Interpretation of findingsA full analysis of findings is given elsewhere, Essentially the digitized radar plots were transformed to color line scans and where double phase shifts were identified in the joints, then voiding was diagnosed.Conclusions1. An outline of the bridge research platform in Europe is given.2. The use of impulse radar has contributed considerably to the level of confidence in the assessment of the Besses o’ th’ Barn Rail Bridge.3. The radar investigations revealed extensive voiding within the post-tensioned cable ducts. However, no sign of corrosion on the stressing wires had been found except for the very first investigation.欧洲桥梁研究欧洲联盟共同的研究平台诞生于欧洲联盟。
Lesson 07 Bridge(土木工程专业英语)

在森林区,有粗壮的木材或圆木可利用,桥梁很可能由一 根或几根平行的圆木组成,可能为了更好的行走会在上面铺上 交叉的树枝或草席。
In tropical regions of India, Africa, and South America, fibrous vines were used to build suspension bridges.
constructed by primitive peoples in isolated regions.
人类修建的第一批桥梁可能类似于那些在隔离的地区原 始人还在修建的桥梁。
The tools and building skills of early man, like those of primitive peoples today, were so elementary that he was undoubtedly forced to use easily transportable materials that could be put in p1ace with a minimum of forming and shaping.
barge 游艇
isolated 孤立的t 倾斜 swift 迅速 subsoil 地基;地下
土木工程专业英语
Bridge
Bridge is a structure that spans obstacles, such as rivers and valleys, to
在印度、非洲和南美洲的热带地区,坚韧的藤条被用来修 建悬索桥。
The vines were tied to trees or rocks on each side of the stream or valley to be crossed. One or more vines were used to tread on. Other vines, strung several feet higher, were used for hand holds.
桥梁与隧道-USDepartmentofTransportation

⏹任务描述 确保货物和人员在纽约市所有道路和桥梁上安全有效通行。
⏹交通局负责维护和维修 5 个区 790 座城市所有车行和人行桥梁。
纽约市交通部1865 - 19151915 - 1965现有桥梁桥梁类型数量主干道208系统外(当地)389人行107航道 51可移动 25隧道 6东河 4桥梁与隧道操作各种桥梁类型⏹25 座可移动桥梁竖直旋转式 (12)、水平旋转式 (7)、垂直升降式 (4)、伸缩式 (2)6,500 次开启/年根据需要 24 / 7 全天候开启移动人员操作⏹电动隧道维护与维修泵与通风维护R av = 常量_____________维护成本CM= ?变质率重建维修5/3($450ml./450) + 2/1 ($20ml./150) = 15 ml. ft2 ro--» ro = 0.13工作人员⏹操作 – 100(桥梁操作员 + 电气技师)⏹检查 – 29(检查员和员工)⏹标志 – 15(工程师 + 员工)⏹维护:维修 – 135(工程师 + 熟练工)预防性维护 – 135(工人 + 操作工程师)就业再培训局项目经理 – 18(工程师 + 熟练工)⏹员工总人数: 432⏹桥梁喷漆内部 – 47(喷漆工 + 员工)合同工 - 9(工程师 + 员工)任务影响* 碎屑清除6.1% 清扫5.3% 清洁桥台和支墩 8.1% 清洁开放式格式板 7.0% 清洁膨胀结9.1% 清洗桥板和浪溅区 5.1% 喷漆4.2% 点喷漆 3.7% 任务 影响* 下水道清洁 10.6% 人行道和路缘石维修 2.5% 人行道和裂缝修补 12.2% 清洗底面 15.9% 机械设备维护6.7% 更换磨损表面 3.5%*影响桥梁检定纽约市桥梁预防性维护管理系统——纽约市高等院校土木工程部联盟(1999 年更新) 桥梁维护与维修⏹最佳管理实践通知:美国海岸警卫队;纽约环境保护局;纽约市警察局。
专业英语-隧道施工专业名词

隧道工程相关专业英语词汇隧道 tunnel●隧道工程 tunnel engineering●铁道隧道 railway tunnel●公路隧道 highway tunnel●地铁隧道 subway tunnel ; underground railway tunnel;metro tunnel●人行隧道 pedestrian tunnel●水工隧洞 ;输水隧道 hydraulic tunnel●山岭隧道 mountain tunnel●水下隧道 subaqueous tunnel●海底隧道 ;水下隧道 submarine tunnel;underwater tunnel●土质隧道 earth tunnel●岩石隧道 rock tunnel●浅埋隧道 shallow tunnel;shallow-depth tunnel ;shallow burying tunnel●深埋隧道 deep tunnel;deep-depth tunnel ; deep burying tunnel ●偏压隧道 unsymmetrical loading tunnel●马蹄形隧道 ;拱形隧道 horse-shoe tunnel ; arch tunnel●圆形隧道 circular tunnel●矩形隧道 rectangular section tunnel●大断面隧道 largecross-section tunnel●长隧道 long tunnel●双线隧道 twin-track tunnel ; double track tunnel●曲线隧道 curved tunnel●明洞 open tunnel;open cut tunnel;tunnel without cover;gallery隧道施工方法 tunnel construction method●钻爆法 drilling and blasting method●新奥法 natm;new austrian tunnelling method●盾构法 shield driving method;shield method●顶进法 pipe jacking method ; jack-in method●浅埋暗挖法 sallow buried-tunnelling method●明挖法 cut and cover tunneling;open cut method●地下连续墙法 underground diaphragm wall method;underground wall method●冻结法 freezing method●沉埋法 immersed tube method●管棚法 pipe-shed method隧道勘测 tunnel survey●超前探测 drift boring●工程地质勘测 ;工程地质勘探 engineering geological prospecting●隧道测量 tunnel survey●施工测量 construction survey●断面测量 section survey●隧道设计 tunnel design●隧道断面 tunnel section●安全系数 safety coefficient●隧道力学 tunnel mechanics●隧道结构 tunnel structure ●隧道洞口设施 facilities of tunnel portal●边墙 side wall●拱顶 arch crown●拱圈 tunnel arch●仰拱 inverted arch●底板 base plate;floor●隧道埋深 depth of tunnel●隧道群 tunnel group●隧道施工 tunnel construction●隧道开挖 tunnel excavation●分部开挖 partial excavation●大断面开挖 large cross-section excavation●全断面开挖 full face tunnelling●开挖面 excavated surface围岩压力 ground pressure;●surrounding rock pressure●围岩变形 surrounding rock deformation●围岩破坏 surrounding rock failure●软弱围岩 weak surrounding rock支护 support●锚喷支护 anchor bolt-spray support●锚杆支护 anchor bolt-support;anchor bolt support ●喷射混凝土支护 ;喷射砼支护 shotcrete support;sprayed concrete support●配筋喷射混凝土支护 ;配筋喷射砼支护 reinforced sprayed concrete support●钢架喷射混凝土支护 ;钢架喷射砼支护 rigid-frame shotcrete support●掘进工作面支护 excavation face support●超前支护 advance support●管棚支护 pipe-shed support;pipe roofing support●胶结型锚杆 adhesive anchor bolt●砂浆锚杆 mortar bolt●树脂锚杆 resin anchored bolt●摩擦型锚杆 friction anchor bolt●楔缝式锚杆 slit wedge type rock bolt●涨壳式锚杆 expansion type anchor bolt●机械型锚杆 mechanical anchor bolt●预应力锚杆 prestressed anchor bolt●土层锚杆 soil bolt 岩石锚杆 rock bolt衬砌 lining●整体式衬砌 integral tunnel lining;integral lining●拼装式衬砌 precast lining●组合衬砌 composite lining●挤压混凝土衬砌 shotcrete tunnel lining ;extruding concrete tunnel lining●混凝土衬砌 ;砼衬砌 concrete lining●喷锚衬砌 shotcrete and bolt lining;shotcrete bolt lining隧道通风 tunnel ventilation●施工通风 construction ventilation●运营通风 operation ventilation●机械通风 mechanical ventilation●自然通风 natural ventilation●隧道射流式通风 efflux ventilation for tunnel ;tunnel efflux ventilation;tunnel injector type ventilation●隧道通风帘幕 curtain for tunnel ventilation;ventilation curtain ●通风设备 ventilation equipment隧道照明 tunnel illuminationtunnel lighting照明设备 lighting equipment隧道防水 tunnel waterproofing;waterproofing of tunnel●防水板 waterproofing board;waterproof board;waterproof sheet ●防水材料 waterproof material●隧道排水 tunnel drainage●排水设备 drainage facilites●隧道病害 tunnel defect●衬砌裂损 lining split;●隧道漏水 water leakage of tunnel;tunnel leak●坍方 landslide;slip●地面塌陷 land yielding●涌水 gushing water●隧道养护 tunnel maintenance●堵漏 leaking stoppage●注浆 grouting●化学注浆 chemical grouting●防寒 cold-proof●整治 regulation●限界检查 clearance examination;checking of●clearance;clearance check measurement●隧道管理系统 tunnelling management system●隧道环境 tunnel environment隧道试验 ;隧道实验 tunnel test●试验段 ;实验段 test section●隧道监控量测 ;隧道监控测量 tunnel monitoring measurement ●收敛 convergence●隧道安全 tunnel safety●隧道防火 tunnel fire proofing●火灾 fire hazard●消防 fire fighting●隧道防灾设施 tunnel disaster prevention equipment;tunnel anti-disaster equipment●报警装置 ;报警器 alarming device;warning device●通过隧道 passing tunnel●避车洞 refuge hole●避难洞 ;避车洞 refuge recess;refuge hole电气化铁道工程 ;电气化铁路工程 electrified railway construction●直流电气化铁道 dc electrified railway●交流电气化铁道 ;交流电气化铁路 a.c.electrification railway●低频电气化铁道 low frequency electrified railway●工频电气化铁路 industry frequency electrified railway●电压制 voltage system电流制 current system。
隧道工程英语专业词汇

隧道工程英语专业词汇隧道工程tunnel engineering隧道tunnel铁路隧道railway tunnel公路隧道highway tunnel地铁隧道subway tunnel;underground railway tunnel;metro tunnel 人行隧道pedestrian tunnel水工隧洞hydraulic tunnel输水隧道raulic tunnel山岭隧道mountain tunnel水下隧道subaqueous tunnel海底隧道水下隧道submarinetunnel;underwater tunnel 土质隧道earth tunnel岩石隧道rock tunnel浅埋隧道shallow tunnel;shallow-depthtunnel;s hallow burying tunnel深埋隧道deeptunnel;deep-depthtunnel;dee p burying tunnel偏压隧道unsymmetrical loading tunnel马蹄形隧道拱形隧道horse-shoe tunnel;arch tunnel圆形隧道circular tunnel矩形隧道rectangular section tunnel 大断面隧道largecross-section tunnel长隧道long tunnel双线隧道twin-track tunnel;double track tunnel曲线隧道curved tunnel明洞open tunnel;open cut tunnel;tunnel without cover;gallery隧道勘测tunnel survey超前探测drift boring工程地质勘测工程地质勘探engineering geological prospecting隧道测量tunnel survey施工测量construction survey断面测量section survey隧道设计tunnel design隧道断面tunnel section安全系数safety coefficient隧道力学tunnel mechanics隧道结构tunnel structure隧道洞口设施facilities of tunnel portal 边墙side wall拱顶arch crown拱圈tunnel arch 仰拱inverted arch底板base plate;floor隧道埋深depth of tunnel隧道群tunnel group隧道施工tunnel construction隧道开挖tunnel excavation分部开挖partial excavation大断面开挖large cross-section excavation全断面开挖full face tunnelling开挖面excavated surface隧道施工方法tunnel construction method 钻爆法drilling and blasting method 新奥法natm;newaustriantunnelling method盾构法shield driving method;shield method顶进法pipe jacking method;jack-in method浅埋暗挖法sallow buried-tunnelling method明挖法cut and cover tunneling;open cut method地下连续墙法underground diaphragm wall method;underground wall method冻结法freezing method沉埋法immersed tube method管棚法pipe-shed method综合机械化掘进comprehensive mechanized excavation辅助坑道auxiliary adit;service gallery 平行坑道parallel adit竖井shaft斜井sloping shaft;inclined shaft 导坑heading衬砌工艺lining process喷锚锚喷anchor bolt spray;anchor bolt-spray管段tube section接缝joint地层加固reinforcing of natural ground 弃碴ballast piling施工监控construction monitor control 超挖overbreak欠挖underbreak施工进度construction progress隧道贯通tunnel holing-through工期work period隧道施工机械tunnel construction machinery隧道掘进机tunnellingmachine;tunnelbor ing machine;tbm单臂掘进机single cantilever tunnelling machine全断面掘进机full face tunnel boring machine隧道钻眼爆破机械machine for tunnel drilling and blasting operation装碴运输机械loading-conveying ballast equipment衬砌机械lining mechanism钢模板steel form模板台车formworking jumbo混凝土喷射机砼喷射机concrete sprayer盾构shield泥水盾构slurry shield气压盾构air pressure shield挤压闭胸盾构shotcrete closed shield 土压平衡盾构soil pressure balancing shield 注浆机械grouting machine凿岩机rock drilling machine;air hammer drill凿岩台车drill jumbo;rock drilling jumbo围岩surrounding rock围岩分类surrounding rock classification围岩加固surrounding rock consolidation围岩稳定surrounding rock stability围岩应力surrounding rock stress围岩压力pressure of surrounding rock 山体压力围岩压力ground pressure;surrounding rock pressure围岩变形surrounding rock deformation围岩破坏surrounding rock failure软弱围岩weak surrounding rock支护support锚喷支护anchor bolt-spray support 锚杆支护anchor bolt-support;anchor bolt support喷射混凝土支护喷射砼支护shotcrete support;sprayed concrete support配筋喷射混凝土支护配筋喷射砼支护reinforced sprayed concrete support钢架喷射混凝土支护钢架喷射砼支护rigid-frame shotcrete support掘进工作面支护excavation face support超前支护advance support管棚支护pipe-shed support;pipe roofing support胶结型锚杆adhesive anchor bolt砂浆锚杆mortar bolt树脂锚杆resin anchored bolt摩擦型锚杆friction anchor bolt楔缝式锚杆slit wedge type rock bolt涨壳式锚杆expansion type anchor bolt 机械型锚杆mechanical anchor bolt预应力锚杆prestressed anchor bolt土层锚杆soil bolt岩石锚杆rock bolt衬砌lining整体式衬砌integral tunnel lining;integral lining拼装式衬砌precast lining组合衬砌composite lining挤压混凝土衬砌挤压砼衬砌shotcrete tunnellining;extruding concrete tunnel lining混凝土衬砌砼衬砌concrete lining喷锚衬砌shotcrete and boltlining;shotcrete bolt lining 隧道通风tunnel ventilation施工通风construction ventilation运营通风operation ventilation机械通风mechanical ventilation自然通风natural ventilation隧道射流式通风隧道射流通风efflux ventilation for tunnel;tunnel efflux ventilation;tunnel injector type ventilation隧道通风帘幕curtain for tunnel ventilation;ventilation curtain 通风设备ventilation equipment隧道照明tunnel illumination;tunnel lighting照明设备lighting equipment隧道防水Tunnelwaterproofing;waterpr oofing of tunnel防水板waterproofingboard;waterproofboard;water proof sheet防水材料waterproof material隧道排水tunnel drainage排水设备drainage facilites隧道病害tunnel defect衬砌裂损lining split;lining **ing隧道漏水water leakage of tunnel;tunnel leak坍方landslide;slip地面塌陷land yielding涌水gushing water隧道养护tunnel maintenance堵漏leaking stoppage注浆grouting化学注浆chemical grouting防寒cold-proof整治regulation限界检查clearance examination;checking of clearance;clearance check measurement隧道管理系统tunnelling management system隧道环境tunnel environment隧道试验隧道实验tunnel test试验段实验段test section隧道监控量测隧道监控测量tunnel monitoring measurement收敛convergence隧道安全tunnel safety隧道防火tunnel fire proofing火灾fire hazard消防fire fighting隧道防灾设施tunnel disaster prevention equipment;tunnelanti-disaster equipment 报警装置报警器alarming device;warning device通过隧道passing tunnel避车洞refuge hole避难洞避车洞refuge recess;refuge hole 电气化铁道工程电气化铁路工程electrified railway construction电气化铁道电气化铁路electrified railway直流电气化铁道dc electrified railway交流电气化铁道交流电气化铁路a.c.electrification railway低频电气化铁道low frequency electrified railway工频电气化铁道工频电气化铁路industry frequency electrified railway电压制voltage system电流制current system。