冲击损伤下航空复合材料修复技术研究进展
冲击损伤下航空复合材料修复技术研究进展

度 和剪切 强度 的大 幅下 降 [ 5 . 6 ] 。钝 器 的 冲击 可诱 发 肉眼不可 见 的亚表 面损 伤 , 因此 , 在 目视 检查 中难 以
识别 [ 7 , 。沈真等[ 9 ] 通过研究层合板在冲击载荷下
的损 伤扩展 过程 . 明确定 义 了 四种 损伤 状 态 : 无 损 伤 状态 、 目视 不 可 见损 伤状 态 ( B V I D) 、 目视 可 见 损 伤 状态( V I D) 和穿透 损伤 状态 。 1 . 1 . 1 冲击 损伤 理论 研究
2 0 1 7年 第 l 2期
玻 璃 钢 / 复 合 材 料
91
冲 击 损伤 下航 空复 合材 料 修 复 技术 研 究进 展
王 长越 .邢 素 丽
( 国防科 学技 术大学航 天科 学与工程学院材料科学 与工程 系 , 长沙 4 1 0 0 7 3 )
摘要 :先进 复合 材料在航 空领域 的广泛应 用 , 尤其是在主承 力结构 方面的应用 , 对复合材料 维护 和修 理工作提 出了新 的、 更加 迫切的要 求。复合材料 结构具有各 向异性和 非均质性 的特 点 , 对分层损 伤和层 间断裂十分敏 感 , 此类损伤 会造 成复合材
复合材 料结 构 的各 向异性 和非 均质 性 使其 对 冲
使用量 1 3 益增多 ; ②逐渐向主承力结构过渡 ; ③复杂 曲面 的应用 增多 ; ④ 构件 向整体成 型、 共 固化 方 向
发展 【 。
击 极其 敏感 。复合材 料 结构 冲击 损伤 是 多损 伤耦 合 失 效模 式 , 损 伤机 理 十分 复杂 , 国内外 学 者 提 出 了不 同的损 伤机 理计算 模 型 。 目前 的模 型多 基 于 H a s h i n
航空复合材料的损伤与维修

航空复合材料的损伤与维修在航空领域,复合材料被广泛应用于飞机的结构件和舱内装饰。
复合材料具有重量轻、强度高、耐腐蚀等优点,因此在航空工业中得到了广泛的应用。
与传统金属材料相比,复合材料在使用过程中更容易受到外部环境和操作方式的影响,容易受到损坏,这给航空安全带来了一定的隐患。
对航空复合材料的损伤及维修问题进行深入了解和研究,对确保航空安全和提高飞机使用效率具有重要意义。
飞机在飞行过程中,难免会受到外部环境的影响,比如气流冲击、风刮等各种因素都可能对飞机及其结构件造成损伤。
相比传统金属材料,复合材料在受力过程中表现出不同的特性。
当复合材料遭受冲击或者重载时,可能产生裂纹、破损等各种形式的损伤。
这些损伤可能因为轻微而被忽略,但长期积累下来会对飞机的结构安全性造成威胁。
对航空复合材料的损伤进行及时、有效的诊断十分重要。
针对航空复合材料的损伤检测,目前主要有几种常见的方法。
一种是目视检查法,也就是人工检查,通过人眼观察来判定复合材料是否存在明显的破损或者裂纹。
这种方法直观简便,但存在主观性较强、检测范围有限等问题。
另外一种方法是使用超声波检测技术,这种技术可以有效地检测出复合材料内部的隐伏裂纹。
还有X射线检测、激光扫描等多种检测方法都被应用于航空复合材料的损伤检测工作中。
通过这些方法,可以及时准确地发现复合材料的损伤,并做出相应的维修决策。
当航空复合材料出现损伤时,适时的维修是至关重要的。
在过去,对于复合材料的维修工作主要采用的是传统的金属材料的维修方法,如焊接、铆接等。
这些方法并不适用于复合材料,因为复合材料的特性决定了其在设计、加工、维修等方面需要采用不同的方法。
在航空复合材料的维修中,需要考虑复合材料的特性和工艺技术,选择合适的维修方法,以确保维修后的结构件能够恢复原有的性能,同时保证飞机的使用安全。
近年来,随着复合材料技术的不断发展,针对航空复合材料的维修方法也得到了迅速的发展。
目前,针对不同类型的复合材料损伤,已经出现了多种不同的维修方法。
飞机复合材料无损检测敲击技术的研究和应用

关键词 :民用飞机,敲击法,复合材料,飞机结构,损伤评定
I
飞机复合材料无损检测敲击技术的研究和应用
Abstract
With the development of aviation technology and material science, more and more new-style, advanced materials are widely used in civil aircraft. Damage mechanism, failure form and repair technique of composite material is distinct from metal material structure because of the character such as anisotropy and so on. So the composite material detection, maintenance and airworthiness certification will definitely confront with development and challenge, and how to build a safe, dependable and economical control system has become an urgency problem today. Among these, NDT of composite materials is especially important. So far, there are so many kinds of NDT methods about composite material. But each of them has its scope of application and limitations. Though some of them have high precision, there are many difficulties in the practical application. Though some of them operate conveniently, they can not detect the damage timely and accurately. Now, the test environment become complex gradually and the precision request become more and more strict. This paper set purpose in inventing a kind of NDT system which can adapt to the outdoor environment and giving attention to the precision request. With the character of high automatic facility, prompt and accuracy, this system can be employed in production and maintenance field of civil aircraft composite structure. The foundation of this system is the form and damage mechanism, the whole content include coin-tap technology, sensor technology, hardware circuit, signal processing and so on. At last, with adding the system of damage evaluation and the software, the whole coin-tap NDT system is developed in this paper. The system is experimentally verified by the coin-tap examination and analysis on the damaged composite samples. The result shows the feasibility, validity and advancement of the system, some useful conclusions are also given in this paper.
复合材料蜂窝夹芯板低速冲击损伤研究

复合材料蜂窝夹芯板低速冲击损伤研究复合材料蜂窝夹芯板是一种轻质高强度的材料,广泛应用于航空、航天、汽车、船舶等领域。
然而,在实际使用过程中,复合材料蜂窝夹芯板容易受到低速冲击损伤,影响其使用寿命和安全性能。
因此,对复合材料蜂窝夹芯板的低速冲击损伤进行研究具有重要意义。
复合材料蜂窝夹芯板的低速冲击损伤机理主要包括弯曲、剪切、拉伸和压缩等多种形式。
其中,弯曲和剪切是最常见的损伤形式。
在低速冲击过程中,复合材料蜂窝夹芯板的表面会出现裂纹和凹陷,进而导致板材的强度和刚度下降。
为了研究复合材料蜂窝夹芯板的低速冲击损伤,研究人员采用了多种方法,如数值模拟、实验测试和理论分析等。
其中,数值模拟是一种有效的手段,可以预测复合材料蜂窝夹芯板在低速冲击下的损伤情况。
实验测试则可以验证数值模拟的结果,并提供更加真实的数据。
理论分析则可以深入探究复合材料蜂窝夹芯板的低速冲击损伤机理和规律。
研究表明,复合材料蜂窝夹芯板的低速冲击损伤与多种因素有关,如冲击速度、冲击角度、板材厚度、芯材类型和面板材料等。
其中,板材厚度和芯材类型是影响复合材料蜂窝夹芯板低速冲击损伤的重要因素。
较厚的板材和高强度的芯材可以提高复合材料蜂窝夹芯板的抗冲击性能。
为了提高复合材料蜂窝夹芯板的低速冲击性能,研究人员提出了多种方法,如改变芯材结构、增加面板厚度、加强面板和芯材之间的粘结等。
其中,改变芯材结构是一种有效的方法,可以通过设计不同形状和大小的蜂窝结构来提高复合材料蜂窝夹芯板的抗冲击性能。
总之,复合材料蜂窝夹芯板的低速冲击损伤是一个复杂的问题,需要综合运用数值模拟、实验测试和理论分析等方法进行研究。
通过深入探究其损伤机理和规律,可以为提高复合材料蜂窝夹芯板的低速冲击性能提供理论基础和技术支持。
飞机复合材料修补技术的研究

飞机复合材料修补技术的研究摘要:随着通用飞机复合材料市场需求的扩大,所需的修补技术也日益受到广泛关注。
本文主要介绍了通用飞机复合材料的损伤形式、复合材料修补的原则、修补方法及修补技术在复合材料中典型应用,为后续通用飞机复合材料修补技术奠定了理论基础。
关键词:复合材料;修补原则;修补方法近年随着复合材料技术的成熟以及复合材料质轻、高强、结构功能一体化、设计制造一体化以及易于成大型制品等优点,使其复合材料在通用飞机上的用量也大幅攀升,这已成为通用飞机先进性的重要技术指标之一。
通用飞机用结构复合材料制品尺寸大、成本高,在生产、运输和服役期间难免会产生缺陷或损伤,若不能及时有效的修补,恢复原结构的使用性能,则只能降级使用甚至报废。
因此,探索复合材料的修补技术尤为重要。
一、复合材料的损伤形式复合材料的使用损伤主要是在使用过程中出现的高能量或低能量的冲击损伤。
常见的损伤形式有:(1)表面损伤:这种损伤主要伤及材料的表面或近表面,如擦伤、划伤、凹陷、气泡和分层等。
(2)冲击损伤:冲击损伤又分为高能量冲击和低能量冲击,子弹、发动机碎片、鸟撞等外来物冲击以及雷击等属于高能量冲击,通常产生穿透损伤,这些损伤均目视易检;维护设施的撞击,踩踏,螺钉、轮胎碎片以及冰雹的撞击等属于低能量冲击,这类冲击造成的损伤目视不一定能够检测到。
(3)分层:如层压板分层,面板与蜂窝芯分层等。
(4)脱胶:如胶接面脱胶,层压板脱胶及面板与蜂窝芯之间脱胶等。
(5)慢性长期损伤:如疲劳裂纹等。
(6)渗水、吸潮损伤等。
每个部件按其结构重要性不同分成不同的区域,根据不同区域的应力水平、由结构试验确定的安全系数以及结构的设计类型和几何形状,确定部件损伤的可接受水平:许可损伤、可修补损伤、不可修补损伤。
损伤评估一般按损伤程度确定、损伤结果评估、可接受损伤水平的确定等几个步骤进行。
二、通用飞机用复合材料修补的原则2.1 根据受力及影响飞机安全的严重程度,分析损伤容限及剩余强度,确定是否修补或报废;2.2 修复后零件的完整性达到结构可接受的水平,可满足结构设计和强度设计的要求。
冲击损伤下航空复合材料的修复技术

冲击损伤下航空复合材料的修复技术作者:侯建民来源:《经济技术协作信息》 2018年第25期在强度比、刚度以及性能设计方面先进复合材料占据相当明显的优势,因此在航空航天领域中复合材料的应用范围与前景相当广阔,是航空结构材料的第四种类型。
在航空结构上复合材料使用量的增加,复杂曲面儿的逐步增多以及整体成型与共固化方向的发展也可对其进行直观体现。
但是还会有不同程度的缺陷与损伤存在于复合材料当中,这要求我们必须实现对可靠性强以及重复性高的结构修复技术进行科学寻找与使用。
一、冲击损伤评估航空复合材料结构的持续适航取决于多种因素(例如分层、脱胶、纤维断裂)。
服役期间,结构损伤或由制造缺陷(例如空隙、弱界面结合)引起,或因机械载荷(例如冲击)产生,或因环境条件(例如湿度、温度)导致。
其中,冲击损伤(例如掉落的工具、服役期间的碰撞、飞鸟撞击)往往是结构完整性的致命威胁。
冲击损伤往往导致压缩强度、拉伸强度和剪切强度的大幅下降。
钝器的冲击可诱发肉眼不可见的亚表面损伤,因此,在目视检查中难以识别。
通过研究层合板在冲击载荷下的损伤扩展过程,明确定义了四种损伤状态:无损伤状态、目视不可见损伤状态(BVID)、目视可见损伤状态(VID)和穿透损伤状态。
二、无损检测技术分析l空气耦合超声检测技术优势与特征。
近些年来,空气耦合超声检测技术成为热门领域,简单便携、分辨率较高以及自动化程度较高是空气耦合超声检测技术的明显优势与特征,原位检测是该事项检测技术使用的主要范围。
现阶段航空航天新型复合材料检测工作已经逐步应用空气耦合超声检测技术,波音737机翼后缘蜂窝夹芯材料、A320副翼、波音737尾翼、黑鹰直升机旋翼等构件检测工作,都会在结合实际的同时科学使用空气耦合超声检测技术。
空气耦合超声检测技术面对的主要问题就是如何实现对接收信号强度以及信噪比制约的打破,针对新型换能器以及高效检测系统的不断深化与研究是改善上述现象的重要手段。
从换能器研发角度来说,电容型球面聚焦膜换能器是未来超声换能器发展的主要趋势与方向。
航空结构冲击载荷与损伤识别技术方法

03
冲击载荷对航空结构的影响
02
01
实验研究
通过风洞实验、实物撞击实验等方法,研究冲击载荷对航空结构的动态响应、损伤模式和失效机理。
仿真技术研究
采用有限元分析、有限元-无限元耦合分析、多体动力学等方法,模拟冲击载荷对航空结构的效应,评估其安全性和可靠性。
定期检查和维护
冲击损伤的评估方法
通过肉眼或放大镜对飞机结构进行外观检查,发现表面或隐蔽部位的损伤。
目视检查
无损检测技术
有限元分析
专家评估
采用超声波、射线、磁粉等无损检测技术,对飞机结构进行内部缺陷检测和损伤评估。
利用计算机模拟技术,对飞机结构进行有限元分析,预测和评估结构在冲击载荷下的响应和损伤程度。
通过在航空结构上布置声发射传感器,采集结构在冲击载荷下的声音信号。
基于声发射技术的损伤识别
声发射信号采集
对采集的声发射信号进行频谱分析、时域分析等处理,提取与损伤相关的特征信息。
信号处理与分析
根据提取的特征信息,对损伤的位置和类型进行识别和分类。
损伤定位与分类
信号处理与分析
对采集的振动信号进行频谱分析、时域分析等处理,提取与损伤相关的特征信息。
更换部件
根据不同型号飞机的维修手册,按照指导步骤进行修复工作,确保修复质量和安全性。
维修手册
04
航空结构冲击载荷与损伤识别技术展望
具有高强度、高刚度和耐磨等特性,可用于制造飞机结构件,有效抵御冲击载荷。
复合材料
能够感知外部刺激并作出响应,为飞机提供自适应保护。
智能材料
通过在飞机表面涂覆特殊材料,提高飞机结构的抗冲击性能。
飞机复合材料结构损伤和检测维修方法分析

飞机复合材料结构损伤和检测维修方法分析摘要:随着经济的高速发展,我国民航制造行业已经进入自主研发阶段,航空制造水平持续提升。
在制造飞机的过程中,复合材料的应用极为广泛,应用比例也在不断扩大,这使得其维修工作也越来越重要。
基于此,本文简单讨论飞机复合材料结构常见损伤,深入探讨检测维修方法,具体涉及目视法、敲击法、注射法、涂层法等内容,希望研究内容能够给相关从业人员带来一定启发。
关键词:飞机;复合材料;损伤;检测维修引言:制造飞机所使用的复合材料,具有强度高和比刚度高等特点,能够在一定程度上减轻飞机整体的重量,还拥有破损安全性较高、抗腐蚀等优点。
复合材料在实际使用的过程当中,会出现各种各样的损伤,对其进行维修、检测非常重要,合理的检测维修不仅能够避免出现安全事故,还能满足企业发展需要。
1.飞机复合材料结构常见损伤1.1划伤复合材料结构当中划伤和凿伤是常见的损伤类型,属于线性损伤,需要工作人员对破损的长度和破损深度进行详细的检查,以此来进行有效区分。
其中划伤是因为材料和尖锐物体进行了直接接触,从而造成了一定长度和深度的线性损伤,而划伤相对于划伤来说则更加宽,也可能是相对更深程度的损伤。
1.2刻痕在复合材料结构当中刻痕属于小区域损伤,需要工作人员对损伤处进行仔细检查,从其是否穿透表层来判断是否属于刻痕损伤。
1.3分层分层和脱胶这两种情况相对来说比较相似,需要工作人员检查其复合材料的内部,确定出现损伤的位置来判断属于哪种损伤情况。
其中分层是复合材料的层合板结构当中,各个纤维层之间出现剥离破坏,而脱胶则是复合材料结构当中,蜂窝和纤维层之间出现剥离破坏。
1.4穿孔在损伤问题当中,凹坑和穿孔也是比较相似的损伤情况,需要工作人员对损伤的部位进行检查,确认破坏的深度和穿透复合材料的厚度来区分属于哪种破损情况。
1.5雷击在实际的应用当中,复合材料因受到雷击或者明火从而引起复合材料的烧蚀损伤,对这种损伤问题检查工作比较简单,只需要人工观察材料表面就可以找到损伤的位置和相应的问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
冲击损伤下航空复合材料修复技术研究进展
发表时间:2019-01-02T14:25:47.017Z 来源:《信息技术时代》2018年3期作者:李伟栋董少兵郝伟[导读] 随着科学技术的不断发展,越来越多的新型材料被制造并且应用在各行各业的发展中。
尤其是先进复合材料的出现并且在航天领域中的广泛应用,推动了中国航天事业的进一步发展
(河南省新乡市飞机场,河南新乡 453000)
摘要:随着科学技术的不断发展,越来越多的新型材料被制造并且应用在各行各业的发展中。
尤其是先进复合材料的出现并且在航天领域中的广泛应用,推动了中国航天事业的进一步发展,同时,航天事业也对复合材料的应用提出了新的要求。
在航天器材建造中,所使用的复合材料具有各向异性和非均质性的特点,这种特点使得其对于分层损伤和层间断裂十分敏感,为了减少这种损伤对于航天器材的作用发挥的影响,研究人员开始对于冲击损伤下航空复合材料修复技术进行了研究。
关键词:冲击损伤;航空复合材料;修复技术
一、冲击损伤评估
(一)冲击损伤
航天设备在进行使用的过程中,一般所处的环境都是外太空中,这样的外界环境使得在航天器材发挥作用的过程中,可能会出现众多的不可测因素,这些因素的存在会对航天器作用的正常发挥造成一定的影响,为了减少材料的因素对于航天器材的影响,航天器材制作人员在进行材料选择的过程中,一般都会选择高强度、高刚性的复合材料[1]。
但是复合材料在使用的过程中,难免会在制造、服役、维修的过程中不可避免的出现缺陷或者损伤,因此复合材料修理的难题就受到了业界的广泛关注。
航空复合材料结构损伤产生的原因或是由制造缺陷引起或是由机械载荷引起,或是由于外界环境引起,在结构损伤中,冲击损伤是对航天器材造成影响最大的。
复合材料在进行作用的发挥过程中,由于其各向异性和非均质性对于冲击及其敏感[2]。
并且复合材料冲击损伤的机理较为复杂,因此国内外专家针对复合材料的冲击损伤提出了不同的损伤机理计算模型。
这些模型的出现有助于研究人员对于航空复合材料修复的进一步研究,推动航天事业的发展与进步。
(二)损伤评估
在对复合材料进行修复时应当提前进行损伤评估,在对复合材料进行损伤评估的过程中,需要进行多方面内容的评估,但是确定修理容限是损伤评估中最为重要的核心工程。
在材料修复行业中,所讲的修理容限是指在材料发生故障时观察材料的整体性能是否发生了变化,判断材料是否还存在修理的价值。
世界上的航天部门在对复合材料进行修理的过程中一般都会采用冲击后压缩性能来对复合材料的抗冲击和冲击损伤性能进行表征。
并且将这种冲击后压缩性能作为复合材料修理容限的一种测量值,通过这种测量值对于复合材料的修理价值做出具体的评价,但是在这种评估方法的使用过程中,也有研究人员提出不应当将这种方法作为唯一的评价标准,因为损伤阻抗与损伤容限是两个不同的概念,在进行研究的过程中,不应当将这两种概念进行混淆,在这种概念的影响下,作者提出用典型铺层试样在规定的冲击条件下得到的冲击损伤破坏曲线的门槛值作为表征复合材料体系损伤容限的物理量[3]。
二、修复技术
(一)机械连接修理
机械连接修理主要是指在复合材料发生损伤时将补板材料与母体材料利用专用的铆钉或螺栓进行联合,这样的修理方法在复合材料的修理过程中由于成本较低,因此在修理过程中较为常见。
但是这种修理技术由于在材料修理过程中所使用的铆钉或螺栓密度较高,在修理处易形成二次损伤,导致材料的整体性能下降。
随着中国科技技术的不断发展,在机械连接技术的发展中也在不断融入新型制造技术,使机械连接技术向着高智能化方向进行发展[4]。
在进行修理的过程中,为了能够较为清晰的观察到复合材料的修理状况,一般会采用数据模型与实验数据相结合的方式。
飞机结构在进行连接的过程中一般都是单搭接,所以在进行修理检测的过程中会采用单相静拉伸的方法。
并且在近些年对于修复检测的实验中开始考虑到了螺钉载荷分配问题,因而将智能螺栓测试引用到了机械连接之中。
智能螺栓在进行检测的过程中,应用其内变形片的变形量输出所形成的电信号来确定在变形片上所形成的具体载荷。
(二)胶结修复技术
在航天材料的修理过程中,除了机械修理外,胶接修复技术也是较为常见的一种修复技术。
这种技术在进行应用的过程中,是通过足量的胶粘剂将复合材料补板与母体进行必要的连接,使复合材料的损伤得到修复。
胶接修复技术与机械连接修复技术相比,具有更高的实用价值,胶接技术在使用中所形成的胶接区域受力更加均匀,表面更加光滑,受到二次损伤的可能性较小。
在胶接修复技术中较为常见的就是贴补法,贴补法在进行应用的过程中,将补板贴于复合材料的损伤处,通过粘贴剂使得材料之间能够进行充分的联合,使用这种技术进行修复的航天材料,在进行使用的过程中,性能比例能够得到相应提高。
但是贴补材料在进行使用的过程中易造成修复表面不平滑现象,因此在进行使用的过程中,一般仅仅是在对气动外形要求不高的结构中进行应用。
同时这种贴补技术进行的贴补会因为受到外力的影响,发生贴补脱落的情况,因此在贴补过程中,为了避免这种情况的发生,一般都会采用贴板外张扬的方法。
除了贴补法外,挖补法也是一种修复技术,在进行挖补修复的过程中,会将复合材料的损伤处打磨成锥形再将修补材料连接到损伤区域,但是这种修复技术在使用的过程中需要高温作用以满足性能和外部结构的需求[5]。
结语:
冲击损伤下航空复合材料修复技术随着航空事业的发展,被越来越多的国家所重视,在进行修复技术的研究过程中投入了大量的资金和技术资源。
我国在航天事业的发展上已经取得了重大的成就,但是对于损伤修复技术额研发中依旧存在众多的不足,因此在航天事业的发展过程中,国家航天部应当加大对修复技术的研究力度。
参考文献
[1]韩志杰,刘振宇.航空复合材料薄壁壳体高速冲击损伤特性仿真研究[J].科技与创新,2018(09):19-21.
[2]王长越,邢素丽.冲击损伤下航空复合材料修复技术研究进展[J].玻璃钢/复合材料,2017(12):91-98.
[3]孟宪凯. 激光温喷丸强化航空轻质合金的振动模态及疲劳延寿机理[D].江苏大学,2017.
[4]郑俊. 复材损伤结构胶接修复工艺与评估方法的研究[D].南京航空航天大学,2017.
[5]贾文斌. 复合材料层合板低速冲击与双轴剩余强度分析研究[D].南京航空航天大学,2016。