分布式数据库设计报告
论分布式数据库的设计与实现

论分布式数据库的设计与实现摘要:本文讨论某高校管理信息系统中分布式数据库的设计与实现。
该系统架构设计采用C/S与B/S混合的架构方式。
在全局数据与各院系的数据关系中,采用水平分片的方式;在全局数据与各部门之间,以及数据库服务器与Web数据库服务器的数据关系中,采用垂直分片的方式。
设计过程中采用了基于视图概念的数据库设计方法。
开发过程中在数据集成、测试、分布式数据库部署等方面做了大量的工作。
并使用合并复制的方式有效地解决了分布式数据库中数据同步的问题。
关键词:分布式数据库架构设计应用数据集成合并复制针对某高校管理信息系统的开发,该高校共有三个校区,总校区和两个校区,教务处等校级行政部门在总校区办公,15个院、系分布在两个校区。
在工作中它们处理各自的数据,但也需要彼此之间数据的交换和处理,如何处理分散的数据和集中的管理是一个难题。
学校信息系统中复杂而分散的数据信息之间的交换、相互转换和共享等问题是系统开发要解决的关键性问题,分布式数据库系统技术为解决这个问题提供了可能。
1、系统的架构设计采用分布式的C/S与B/S混合的架构方式。
各院系、部(室)通过局域网直接访问数据库服务器,软件采用C/S架构;其它师生员工通过Internet访问Web 服务器,通过Web服务器再访问数据库服务器,软件采用B/S架构。
学校各部门之间工作时数据交互性较强,采用C/S架构可以使查询和修改的响应速度快;其它师生员工不直接访问数据库服务器,能保证学校数据库的相对安全。
2、数据的分布从全局应用的角度出发,将局部数据库自下而上构成分布式数据库系统,各系部存放本机构的数据,全局数据库则存放所有业务数据,并对数据进行完整性和一致性的检查,这种做法虽然有一定的数据冗余,但在不同场地存储同一数据的多个副本,能提高系统的可靠性和可用性,也提高了局部应用的效率,减少了通讯代价。
将关系分片,有利于按用户需求组织数据的分布,根据不同的数据关系采用了不同的分片方式:(1)在全局数据与各院系的数据关系中,由于各院系的数据是全局数据的子集,采用了水平分片的方式。
基于网络的分布式数据库系统的设计与实现

基于网络的分布式数据库系统的设计与实现一、前言随着互联网的快速发展和信息化的加速推进,分布式数据库系统已经成为了企业级应用的必备工具。
分布式数据库系统的优势在于实现数据库的分布式存储和数据共享,提高了数据存取的效率,并且支持多用户多任务的复杂并发操作。
本文就基于网络的分布式数据库系统的设计与实现进行一次深入探讨。
二、分布式系统的架构分布式数据库系统的架构分为两种,一种是基于同质计算结点的单一计算机系统,另一种是基于异质计算结点的分散计算机系统。
单一计算机系统的问题在于当用户数量较大时,无法保障数据的及时响应和负载均衡,而分散计算机系统搭建和维护较为复杂,需要高度的技术支持。
因此,通常我们采用分层式的架构来实现分布式系统。
1.客户端客户端通常是指通过网络访问数据库系统的用户端。
客户端与服务器之间通过网络进行通信,客户端可以通过消费Web服务或使用编程接口的方式来与服务器通信。
客户端通常要保证数据的安全性和有效性,因此需要身份验证、权限控制、数据加密和数据校验等多种保障。
2.应用服务器应用服务器作为中间层,在客户端和数据库服务器之间起到了桥梁作用。
它接收客户端的请求信息,进行处理并返回结果。
它还可以在向数据库服务器发送请求之前,对数据进行初步过滤和处理,保证数据的有效性。
应用服务器与客户端之间通过Web的方式进行交互,如通过HTTP或SOAP等协议进行交互。
3.数据库服务器数据库服务器是分布式系统中最关键的组成部分。
在分布式系统中,数据库服务器需要集中管理所有的数据处理任务、资源共享和安全控制等。
数据库服务器可以实现数据的备份、恢复和调度管理等功能。
此外,数据库服务器也负责存储管理和数据处理等工作。
4.数据存储数据存储通常是指数据目录、数据结构、数据内容、索引和日志等。
数据存储需要保证数据的安全性、可读性和可扩展性。
数据存储还要支持数据的备份和恢复等高级功能。
三、分布式数据库系统的设计1. 数据分发策略数据分发策略是分布式数据库系统设计中非常关键的一部分,通过该策略可以实现数据的分发和调度。
面向大数据分析的分布式数据库系统设计与性能优化

面向大数据分析的分布式数据库系统设计与性能优化随着大数据时代的到来,传统的关系型数据库已经无法满足对海量数据的高效处理和分析需求。
为了解决这一问题,分布式数据库系统应运而生。
分布式数据库系统采用了分布式存储和计算的方式,将数据分散存储在不同的节点上,并通过网络连接进行通信和协作,从而实现对大数据的高效管理和分析。
本文将探讨面向大数据分析的分布式数据库系统的设计原则及性能优化方法。
一、分布式数据库系统的设计原则1. 数据分布和复制策略:在设计分布式数据库系统时,需要考虑数据的分布和复制策略。
数据的分布方式可以采用水平分区或垂直分区,根据实际需求选择合适的分区键。
同时,为了提高系统的可用性和容错性,数据的复制策略也需要合理设计,可以采用主从复制或多主复制等方式。
2. 数据访问和查询优化:分布式数据库系统需要支持高效的数据访问和查询操作。
在设计系统架构时,需要考虑数据的局部性原则,将经常一起访问的数据放置在同一个节点或分片上,以减少网络通信的开销。
此外,还需要设计高效的查询优化算法,如索引优化、查询重写等,以提高查询效率。
3. 事务管理和一致性保证:分布式数据库系统需要保证事务的一致性和可靠性。
在设计系统架构时,需要采用合适的分布式事务管理协议,如二阶段提交协议或多阶段提交协议,来保证数据的一致性。
同时,还需要合理设计并发控制机制,以避免数据的冲突和不一致问题。
二、分布式数据库性能优化方法1. 并行计算和数据分区:为了提高分布式数据库系统的计算和查询性能,可以采用并行计算和数据分区的方法。
并行计算可以将数据分配到多个节点上进行并行处理,提高计算效率和响应速度;数据分区可以将数据按照某种规则分散存储在不同节点上,减少单个节点的负载压力,提高系统的可扩展性。
2. 缓存和数据预取:分布式数据库系统可以利用缓存和数据预取技术来提高数据的访问性能。
通过缓存热点数据或常用查询结果,可以减少对底层存储系统的访问,加速数据访问速度。
分布式数据库系统设计与实现研究

分布式数据库系统设计与实现研究随着大数据时代的到来,数量庞大、复杂多变的数据需求越来越成为一个问题。
分布式数据库系统技术因此而受到广泛关注和研究。
本文将结合自己的研究经验,从以下几个方面分析分布式数据库系统的设计与实现。
一、分布式数据库系统的概念分布式数据库系统是指将数据分布在多个物理位置上,并且这些位置被连接到一起的系统。
每个物理位置上可能有一个或多个数据库,这些数据库在逻辑上是相互独立的,但在物理上是相互关联的。
分布式数据库系统的目的是实现全局性的数据共享和数据访问。
分布式数据库系统的特点在于它可以分散地存储数据,并利用多个独立的计算机系统处理这些数据。
这种设计能够使数据更加安全、高效地使用和处理,同时具有更高的可用性和可伸缩性。
二、分布式数据库系统的架构设计分布式数据库系统的架构设计应该包括以下几个方面:1.数据分片将数据按照某种规则分散地存储在不同的计算机节点上,可以避免单一节点的数据过于庞大,造成性能问题,同时也可以减轻系统的工作压力。
2.数据共享分布式数据库系统需要实现数据共享,让所有节点都能访问到相同的数据,避免数据的不一致性,这个过程需要确保数据的同步与一致性。
3.系统划分分布式数据库系统需要将系统划分成各个相对独立的子系统,每个子系统可以独立处理数据,这样可以提高系统的可靠性和可维护性。
4.灵活扩展分布式系统需要支持灵活扩展,在需要添加计算机节点时,系统应该能够自动添加并处理新增的节点。
三、实现分布式数据库系统的难点分布式数据库系统的实现有一些困难,其中最大的难点是数据的同步与一致性。
在分布式系统中,不同节点之间的数据可能会发生变化,如何保证数据的相对一致性,并且能够尽快同步,一直是分布式数据库系统需要面对的难题。
此外,在设计分布式数据库系统时,还需要考虑到负载均衡、数据安全等问题,这些都需要一定的技术储备和实践经验。
四、未来的发展方向随着大数据时代的到来,分布式数据库系统将继续得到广泛的应用。
分布式数据库的设计与实现

分布式数据库的设计与实现分布式数据库是一种将数据存储在不同的物理节点上的数据库系统。
它通过将数据分散存储在多个服务器上,以实现高可用性、高性能和横向扩展等优势。
本文将介绍分布式数据库的设计与实现的方法和原则。
一、概述分布式数据库设计的目标是实现数据的分布式存储和访问,同时保证数据的一致性、可靠性和性能。
它通常可以分为两个部分:分布式数据库管理系统(Distributed Database Management System,简称DDMS)和数据分布策略。
二、DDMS设计与实现1. 数据切分在设计分布式数据库时,首先需要将数据按照一定的规则进行切分,将其分散存储在多个节点上。
常见的数据切分方法有垂直切分和水平切分两种。
- 垂直切分:按照业务模块将数据库表进行切分,使得每个节点只存储一部分表的数据。
这样可以减少单一节点的负载,提高系统性能和可用性。
- 水平切分:按照某个列或一组列的数值范围将表的数据划分成多个部分,分别存储在不同的节点上。
这样可以实现数据的负载均衡和横向扩展。
2. 数据复制在分布式数据库中,为了保证数据的可靠性和高可用性,一般会对数据进行复制存储。
常见的数据复制方法有主从复制和多主复制两种。
- 主从复制:一个节点作为主节点负责接收和处理所有的写入请求,其他节点作为从节点负责复制主节点的数据,并处理读取请求。
这样可以提高系统的读取性能和可用性。
- 多主复制:多个节点都可以处理读写请求,并相互之间进行数据同步。
这样可以提高系统的写入性能和可用性。
3. 数据一致性在分布式数据库中,由于数据的复制和分布式存储,会导致数据的一致性问题。
为了解决这个问题,可以采用一致性哈希算法来确定数据存储的位置和复制的节点。
同时,可以使用副本一致性协议来实现数据的一致性。
- 一致性哈希算法:将数据的键值通过哈希函数映射到一个统一的Hash环上,根据节点在环上的位置确定数据的存储节点。
这样可以实现动态添加和删除节点时的数据迁移。
分布式数据库管理实验报告

分布式数据库管理实验报告一、引言随着互联网和大数据技术的迅速发展,传统的集中式数据库管理系统已经无法满足日益增长的数据处理需求。
分布式数据库管理系统应运而生,能够将数据分散存储在不同的节点上,并实现数据的有效管理和处理。
本实验旨在通过对分布式数据库管理系统的实验操作,深入了解其工作原理和应用场景。
二、实验目的1. 了解分布式数据库管理系统的基本概念和特点;2. 掌握分布式数据库管理系统的架构和工作原理;3. 能够使用实际案例进行分布式数据库管理系统的操作。
三、实验内容1. 搭建分布式数据库管理系统的实验环境;2. 创建分布式数据库并进行数据导入;3. 进行跨节点的数据查询和更新操作;4. 测试分布式数据库管理系统的性能和扩展性。
四、实验步骤1. 搭建实验环境在实验室服务器上安装分布式数据库管理系统软件,并配置节点信息,确保各节点之间可以正常通信。
2. 创建分布式数据库使用SQL语句在不同节点上创建分布式数据库,并将数据导入到对应的表中。
3. 数据查询和更新编写SQL查询语句,可以跨节点进行数据查询操作,并测试分布式数据库系统的读写性能。
4. 性能测试模拟大量的数据操作,测试分布式数据库管理系统在高负载情况下的性能表现,并观察系统的负载均衡能力。
五、实验结果分析通过实验操作,我们成功搭建了分布式数据库管理系统的实验环境,并能够灵活操作数据库中的数据。
在性能测试中,我们发现分布式数据库系统能够有效分担数据处理压力,提高系统的稳定性和可靠性。
六、结论分布式数据库管理系统是当前大数据时代的重要组成部分,能够满足高并发、大规模数据处理的要求。
通过本次实验,我们对分布式数据库管理系统有了更深入的了解,可以更好地应用于实际的数据处理工作中。
七、参考文献1. 《分布式数据库管理系统原理与技术》2. 《大规模分布式存储系统设计与实现》3. 《分布式数据库管理系统性能优化与调优》以上是本次分布式数据库管理实验报告的具体内容,希朓能对您有所帮助。
分布式数据库系统研究设计论文

分布式数据库系统研究设计论文分布式数据库系统是一种将数据库分布到多台计算机上的系统,以实现数据的存储、管理和查询的任务。
在现代大规模数据处理和云计算环境下,分布式数据库系统具有很高的可扩展性、高性能和高可用性的特点。
本文将从分布式数据库系统的研究和设计两个方面进行讨论,探索其相关技术和应用。
在分布式数据库系统的研究方面,我们将关注以下几个方面:数据分片和复制、一致性和容错机制、查询优化和分布式协调等。
首先,数据分片和复制是分布式数据库系统中的关键技术,其目的是将数据划分为多个部分,并将其存储在不同的计算机节点上。
这样可以提高系统的可扩展性和负载均衡能力。
同时,通过数据的复制和备份,可以提高系统的容错性和数据的可用性。
其次,在实现分布式数据库系统时,要保证数据的一致性和容错性。
一致性是指在分布式系统中的所有节点之间的数据是同步的。
容错性是指系统能够在一些节点出现故障的情况下继续正常运行。
为了实现一致性和容错性,可以使用一些技术,如复制协议、主从复制、分布式事务和快照机制等。
最后,查询优化和分布式协调是分布式数据库系统中的关键问题。
查询优化是指在分布式环境中,如何将查询作为一个分布式任务进行协调,以提高查询的效率和性能。
分布式协调是指在分布式环境中如何协调不同节点上的查询,并保证数据的一致性和正确性。
为了实现查询优化和分布式协调,可以使用一些技术,如查询优化器、查询重写和分布式锁机制等。
在分布式数据库系统的设计方面,我们将关注以下几个方面:系统架构、存储管理和查询处理等。
首先,系统架构是分布式数据库系统设计的核心,包括系统的整体架构、节点之间的通信机制和任务调度等。
系统架构的设计应考虑到系统的可扩展性和高可用性。
其次,存储管理是指对分布式数据库系统中的数据进行存储和管理的技术和方法。
存储管理的设计应考虑到数据的分片和复制、数据的均衡存储和数据的访问效率等。
为了提高存储管理的效果,可以使用一些技术,如数据压缩、数据索引和数据分区等。
分布式数据库设计与优化

分布式数据库设计与优化随着互联网的发展和数据量的不断增长,传统的单机数据库已经无法满足大规模的数据存储和访问需求。
为了解决这一问题,分布式数据库被广泛采用。
本文将着重介绍分布式数据库的设计和优化策略。
一、分布式数据库设计1. 数据划分在分布式数据库中,数据划分是非常重要的一步。
好的数据划分可以提高系统的并发性能和可伸缩性。
其思路是将数据按照某种规则分散到不同的节点上,实现负载均衡和数据的并行处理。
常见的数据划分策略有两种,即垂直划分和水平划分。
垂直划分指的是将一个表按照列进行拆分,将不同的列存储在不同的节点上。
水平划分则是根据某个条件将表中的数据分散到不同的节点上。
2. 数据复制为了保证分布式数据库的高可用性和容错能力,数据复制是必不可少的。
通过将数据复制到多个节点上,可以避免单点故障,提高系统的可靠性。
数据复制有两种方式,即主备复制和多库复制。
主备复制是将一个节点作为主节点,其他节点作为备节点。
主节点负责处理用户的读写请求,备节点则负责同步主节点的数据。
当主节点发生故障时,可以通过自动切换备节点来保证系统的正常运行。
多库复制是将数据复制到多个节点上,每个节点都可以处理用户的读写请求。
通过多库复制可以提高系统的读取性能,但写入操作需要同步到所有节点,对于写入性能有一定的影响。
3. 数据一致性在分布式数据库中,数据一致性是一个复杂而重要的问题。
由于数据被分散存储在不同的节点上,数据的一致性需要得到保证。
在设计分布式数据库时,需要考虑如何解决数据一致性的问题。
常见的保证数据一致性的方法有两种,即强一致性和最终一致性。
强一致性要求所有节点在同一时刻看到的数据是一致的,但会影响系统的性能和可伸缩性。
最终一致性则允许在一段时间内存在数据不一致的情况,但能够保证最终数据的一致性。
二、分布式数据库优化1. 查询优化查询优化是提高分布式数据库性能的关键。
在设计查询时,应尽量减少数据的传输和节点间的通信开销。
可以通过以下方法来进行查询优化:- 使用索引:在查询中使用索引可以加快数据的查找速度,降低系统的负载。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分布式数据库设计报告
目录
1案例背景 (1)
需求分析 (1)
2 分布式数据库设计 (2)
设计目标 (2)
总体设计目标 (2)
(4)可靠性: (3)
完成方式及周期 (3)
分布式数据库架构图 (4)
物理设计施工 (5)
3 总结 (5)
4所用设备汇总 (7)
5所使用软件 (7)
成品车间分布式数据库设计
1案例背景
随着成品车间信息化程度越来越高,我们的传统集中式数据库系统的缺点逐渐体现出来主要有:
1、所有数据处理、存储集中在一台计算机上完成,一旦机器损坏或系统崩
溃数据数据很难恢复。
2、单台机器写入/查询处理能力不足,一台机器既要读取数据,又要写入数
据,遇到大批量超过单台数据库的处理能力,就会出现卡顿,在生产时
间不敢批量制造/查询数据。
3、硬件性能瓶颈,包括(硬盘、CPU、内存),使用升级硬件的方法效果有限。
4、出现故障没有备用服务器可以替代。
5、当前成品车间存在2种数据库,oracle,sql sever,交叉使用不方便管
理维护,出现问题排查困难。
6、由于数据库初期创建数据库/表比较混乱,现在对数据的统计管理需要在
两台服务器之间交叉进行,统计难度高,效率低。
需求分析
成品车间信息化程度越来越高,各个节点产生的数据量越来越大,对数据系统要求越来越高,我们所使用的传统集中式数据库已经无法从容应对越来越大的数据。
成品车间生产线数据库主要有oracle和sql server两种,分别分布在2台计算机中,柔性线、自动线、三相线交叉使用两种类型数据库,主要出现的问题有;
1、一旦其中一个数据库出现问题,那么就有很大的几率导致三条线体
的某个节点或全部节点失去数据服务,导致停线。
2、数据库出现故障,必须停线,故障修复之后才可以上线使用。
3、数据库处理能力有限,一旦进行数据统计,或者批量导出、写入数
据,数据库响应时间就会延长,严重时会影响到生产线的运行,带
来停线的风险。
4、硬件可拓展能力差,单台服务器使用升级硬件的方式来提高整个数
据库系统性能效果有限,花费高。
这就要求数据库必须变得稳定、快速、灵活,应具备分布式管理数据的能力,节点扩容添加灵活,容灾容错能力,数据安全增加备份服务器,主备数据同步无缝切换主备服务,读写分离功能,数据分片功能,每个节点都是一个独立的数据库,每个独立数据库上都有属于自己的局部业务应用,同时也能够支持全局的业务应用,数据由两台主机互相备份,一台异常宕机后出错另一台无缝提供数据服务,异常处理后可以即时并入系统,不用重启服务。
2 分布式数据库设计
分布式数据库系统是数据库系统与计算机网络相结合的产物,分布式计算是和集中式计算相对立的概念,分布式计算的数据可以分布在很大区域,它具备三方面的特点:一是物理分散性,即数据分散存储在各个不同的场地上;二是逻辑整体性,即分散的数据库在逻辑上是一个整体,在逻辑上就好像是一个集中的数据库系统;三是场地自治性,即各个场地上的数据由本地的DBMS (数据库管理系统)管理,具有高度自治的处理能力,能够独立完成本站点的局部业务应用。
设计目标
总体设计目标
根据分布式数据库设计的总体要求,结合实际现场生产案例的具体业务需求,该案例的总体设计目标如下:
(1)安全性:包括保证网络安全、数据库安全,建立严格的权限管理机制,后端数据库网络独立。
(2)配置方便:整个数据库配置后要实现热加载,不能重启整个系统服务。
(3)可扩充性:该分布式数据库的设计必须保证一定的可扩充性,以满足业务发展的需求,当系统需要扩容时,必须保证系统能够方便的将其加入,而并不需要修改源程序,以保证前端使用方式不变。
(4)可靠性:
1、改善系统的可靠性和可用性是分布式数据库的主要目标.将数据分
布于多个场地,并增加适当的冗余度可以提供更好的可靠性.一些可靠性要求较高的系统,这一点尤其重要.因为一个节点出了故障不会引起整个.因为故障场地的用户可以通过其它场地进入系统.而其它场地的用户可以由系统自动选择存取路径,避开故障场地,利用其它数据副本执行操作,不影响业务的正常运行,针对系统运行时可能遇到的各种软硬件故障,
2、分布式数据库应提供系统恢复机制和数据单节点定时备份功能,使
故障发生时遭受的损失最小。
3、当网络出现故障时,仍然允许对局部数据库的操作,而且一个位置
的故障不影响其他位置的处理工作,只有当访问出现故障位置的数据时,在某种程度上才受影响。
(5)数据一致性:分布式数据库在处理多节点数据时要保证主备数据的一致性、完整性。
完成方式及周期
系统设计目标分4期:
1、一期目标:完成部署4台存储服务器、1台数据路由器、调试(进行
稳定性测试,压力测试,主从切换测试)、完成定时备份功能,上线
提供服务。
2、二期目标:规划柔性线数据库表结构,创建相应的存储规则,完成柔
性线数据转移,替换柔性线应用软件使用的Sql Server数据库。
3、三期目标:
1、规范化SQL语句的使用,以数据库运行效率。
2、为保证前端的高可用,增加数据路由服务器至2台,替
换掉现有一台测试用路由服务器。
(可以是当前办公电脑
联想小机箱) 。
3、加入数据路由服务器负载均衡服务,保证数据路由可靠
性。
4、将4台数据服务器内存升级为64或128GB,数据在内存
中执行效率是最高的。
5、使用独立交换机提供数据交换。
6、重新梳理柔性线数据存储表结构。
7、规划三相数据表存储结构与规则,完成三相线数据转移,
替换三相线应用软件使用的Sql Server数据库。
4、四期目标:与三辉合作,通过升级软件的方式将数据存储至分布式数
据库中,替代现有oracle数据库,实现为整个自动线提供数据服务,
最终建成可靠稳定高效的成品车间大数据系统。
分布式数据库架构图
物理设计施工
数据库性能的好坏很大程度上取决于数据库的物理设计,而不仅仅是关系模式设计的好坏和SQL语句写的好坏。
通常关系数据库物理设计的内容包括:为关系模式选取存取方法,设计关系和索引等数据库文件的物理存储结构。
首先将5台服务器网络配置为(,并安装配置java环境,在4台服务器中分别安装mysql数据库,并配置2个用户,backup(用于主备数据同步),mycat(用于数据路由),使用backup账户配置主从同步,在pc主机中安装mycat数据路由工具,配置相关连接属性与数据分片规则,使mycat账户可以成功接管4台mysql服务。
3 总结
大数据时代,面对海量测试数据量和成品车间不断增加的节点对数据库的需求,分布式数据库具有如下特征,足以从容应对不断增加的节点与数据。
● 高可扩展性:分布式数据库必须具有高可扩展性,能够动态地增添存储节点以实现存储容量的线性扩展。
● 高并发性:分布式数据库必须及时响应大规模用户的读/写请求,能对海量数据进行随机读/写。
● 高可用性:分布式数据库必须提供容错机制,能够实现对数据的冗余备份,保证数据和服务的高度可靠性。
设计理念
从需求分析开始,分别进行概念设计,框架设计,容灾容错设计,物理设计物理设计等一系列设计过程。
该设计过程是系统从无到有的设计与实现过程,是比较适合当前生产模式的分布式数据库设计。
该分布式数据库设计过程基于分布式应用需求,符合分布透明性原则,满足整个数据库系统在物理上分散而逻辑上统一的设计要求,基本能够实现用户的功能需求,改善整体工作效率,解决原来集中式处理的传输瓶颈问题,有效的利用
了局部数据来处理资源,使整个数据库系统实现负载均衡。
当前分布式数据库优点:
处理能力:当前服务器设计处理能力是oracle数据库2倍
容灾容错:采用主备同步方式,单节点定时备份,主机崩溃后,自动切换可用服务,整个数据库后端单节点故障不会影响到整个数据库对外服务。
硬件拓展:分布式数据库优点在于其是一个分布式的数据库集群,处理节点和存储节点都可以线性增加.
开发方式:分布式数据库提供一个统一的前端连接接口,与其他数据库使用方式基本相同。
当前分布式数据库缺点
通信开销较大,例如,在网络通信传输速度不高时,系统的响应速度慢,与通信相关的因素往往导致系统某个节点。
(2)数据的存取结构复杂。
一般来说,在分布时数据库中存取数据,比在集中时数据库中存取数据更复杂,开销更大。
4所用设备汇总
5所使用软件。