简述熔断器发展史

合集下载

熔断器隔离开关负荷开关

熔断器隔离开关负荷开关

2.高压交流熔断器的基础知识 (1)熔体狭颈的形状对时间-电流特性的影响
(2)熔体材料和熔体厚度的应用范围 在高压限流熔断器中,通常采用纯银作为熔体材料。熔 体厚度的选择要从各方面来考虑,如熔体的结构强度、正常 工作下的散热状况和开断短路电流时的突然发热等,但主要 考虑正常工作下的散热。经常用2片熔体并联来替代相同电 流密度的熔体,这样,正常工作下的温升有显著降低。
(3)冶金效应的应用 为了缩短熔断器在过载电流时的 熔化时间,常在熔体上设置软锡焊点 。当熔断器一旦发生过载现象,则在 熔体的软锡点上发生扩散过程,即软 锡焊点处的锡会渗透到纯银熔体材料 中,这种现象称为金属的扩散作用, 也称冶金效应。利用软锡焊点可以降 低纯金属的熔化温度。举例来说,纯 银的熔点为960度,而加入软锡后, 软锡焊点处的熔点可降低到220度左 右, 可以大大缩短过载电流的熔化 时间。
熔断器、隔离开关、负荷开关
一、熔断器
1.概论
熔断器是一种开断电器,由单个或多个专门设计的熔体 的协调的零部件组成,当电流超过给定值到足够时间,就断 开它所插入的电路而分断电流。熔断器承担着保护电气设备 和电网的重要任务,并且限制了不可避免的事故发生和确保 了用户供电。 按照保护对象的不同,分为三种:电力熔断器,电压互感器 保护用熔断器,电容器保护用熔断器
(2)技术参数 ①时间-电流特性:分为弧前时间-电流特性和熔断时 间-电流特性。下图所示为熔断器的时间-电流特性曲线:
1——弧前时间-电流特性 2——熔断时间-电流特性
②额定电压:熔断器长期工作时和分断后能承受的 电压; 额定电流:允许长期通过的电流。 ③额定分断能力:指在规定使用条件(线路电压、 功率因素或时间常数)下,熔断器所能分断的预期电 流(交流为有效值)。 ④截断电流特性:指在规定的使用条件下,表示 截断电流与预期电流的关系特性,截断电流是任何非 对称情况下所能达到的最大值。 ⑤I2t:表示被熔断器所保护的电路中1Ω 电阻所 释放的焦耳能。

第六章--熔断器

第六章--熔断器
第六章 熔断器
第一节 概述 第二节 低压熔断器 第三节 高压熔断 主要用于线路及电力变压器等电气设备的短路 及过载保护。
广泛使用在60kV及以下电压等级的小容量电 气装置中
常用来保护电压互感器。 在3~60kV系统中,还常与负荷开关、重合
器及断路器等其他开关电器配合使用,用来保护 电力线路、变压器以及电容器组。 它常和刀开关电器在一个壳体内组合成负荷 开关或熔断器式刀开关。
第一节 概述
熔断器的保护特性
熔断器熔体的熔断时间与与电流的大小关系, 称为熔断器的安秒特性,也称为熔断器的保护特 性。
熔断器的保护特性为反时 限的保护特性曲线,其规律是 熔断时间与电流的平方成反比, 各类熔断器的保护特性曲线均 不相同,与熔断器的结构型式 有关。
I∞称为最小熔化电流或称临 界电流。熔体的额定电流IRN应小 于I∞, I∞与IRN的比值称作熔化系 数,通常取1.5~2。该系数反映 熔断器在过载时的不同保护特性。
第二节 低压熔断器
型号
R

C-插入式
设 计
L-螺旋式 序 号
M-密闭管式
他额 标定 志电

熔 体 额 定 电
FU
A

S-快速式
A
T-有填料管式
A– 改进型
Z-自复式
第二节 低压熔断器
瓷插式熔断器 (非专职人员使用)
瓷插式熔断器:又名插入式熔断器,由瓷盖、瓷底座、静触点、动
触点和熔体组成。它是一种最常见的结构简单的熔断器,熔体更换 方便、价格低廉。一般用于交流50Hz,额定电压380V,额定电 流200A以下的线路中,作为电气设备的短路保护及一定程度上的 过载保护之用。
例:采用“冶金效应”对某35kV系统的 电压互感器用熔断器的改进

熔断器原理简介

熔断器原理简介

熔断器原理简介1. 熔断器原理熔体与被保护电路串联,当电路为正常负载时,熔体温度较低,如果电路中发生过载或者短路故障时,通过熔体的电流达到规定值,熔体的电阻损耗产生大量的热,使熔体自行熔断,分段故障电流,完成保护任务。

上述熔断器断开电路的过程可以分为四个阶段:(1)熔体温升阶段当电路电流超过规定值一定时间后,熔体中电阻损耗加大,温度逐渐上升到材料的熔点θr,但是,这一阶段熔体仍为固体,这一阶段时间用t1表示,见图1。

(2)熔体汽化阶段熔体继续吸收热量,其部分金属材料开始从固态转变为液态,这段时间用t2表示,由于熔体熔化时需要吸收一部分热量(熔解热),故在t2时间内,熔体温度始终保持为θr。

(3)熔体金属汽化阶段熔化了的金属材料继续吸收热量,达到汽化温度θq,这段时间内用t3表示。

(4)燃弧阶段从熔体断裂、出现间隙,在间隙中产生电弧,直到电弧熄灭为止,这段时间用t4表示。

上述四个阶段实际上是两个连续的过程:未产生电弧时的弧前时期;已产生电弧后的燃弧时期。

图1 熔体熔断的过程2. 弧前时期所有熔断器都有一条或多条熔体,当超过额定值的电流持续时间足够长,熔体熔化、汽化进而产生电弧。

每个熔断器都有一定的电阻,电阻大小与熔体的材料、熔体形状、熔体与端帽的连接、端帽以及连接端子等因素有关系,熔体在通过流体时由于电阻发热要吸收电能。

当流过熔体的电流从某一初始值逐渐或者突然的变化到另一特定值时,熔断器不同部件的温度将发生变化。

当熔断器在交流半周期或者直流某段时间内传递到周围介质及连接的电缆上的热能等同于一段时间内它吸收的电能时,熔体将形成一个温度分布,并保持在平衡状态。

当电流继续增加并且保持在某个特定更高的值时,尽管熔断器不同部位的温度升高,由于它传递出去的热量小于同一时间内吸收的电能,平衡状态将被打破,部分或所有熔体将达到它的熔化温度,部分或者全部熔体将断裂,接着产生电弧。

当电弧熄灭时,电路被切断。

从电流超出某个值的时间开始到熔体熔化、汽化的时间成为“弧前时期”,从电弧产生的瞬间开始到电弧熄灭的时间称为“燃弧时期”。

熔断器详解·

熔断器详解·

熔断器编辑本段简介熔断器是根据电流超过规定值一段时间后,以其自身产生的热量使熔体熔化,从而使电路断开;运用这种原理制成的一种电流保护器。

熔断器广泛应用于高低压配电系统和控制系统以及用电设备中,作为短路和过电流的保护器,是应用最普遍的保护器件之一。

熔断器是一种过电流保护器。

熔断器主要由熔体和熔管以及外加填料等部分组成。

使用时,将熔断器串联于被保护电路中,当被保护电路的电流超过规定值,并经过一定时间后,由熔体自身产生的热量熔断熔体,使电路断开,从而起到保护的作用。

熔断器以金属导体作为熔体而分断电路的电器,串联于电路中,当过载或短路电流通过熔体时,熔体自身将发热而熔断,从而对电力系统、各种电工设备以及家用电器都起到了一定的保护作用。

具有反时延特性,当过载电流小时,熔断时间长;过载电流大时,熔断时间短。

因此,在一定过载电流范围内至电流恢复正常,熔断器不会熔断,可以继续使用。

熔断器主要由熔体、外壳和支座3 部分组成,其中熔体是控制熔断特性的关键元件。

编辑本段工作原理利用金属导体作为熔体串联于电路中,当过载或短路电流通过熔体时,因其自身发热而熔断,从而分断电路的一种电器。

熔断器结构简单,使用方便,广泛用于电力系统、各种电工设备和家用电器中作为保护器件。

特点编辑本段特点熔体额定电流不等于熔断器额定电流,熔体额定电流按被保护设备的负荷电流选择,熔断器额定电流应大于熔体额定电流,与主电器配合确定。

熔断器主要由熔体、外壳和支座 3部分组成,其中熔体是控制熔断特性的关键元件。

熔体的材料、尺寸和形状决定了熔断特性。

熔体材料分为低熔点和高熔点两类。

低熔点材料如铅和铅合金,其熔点低容易熔断,由于其电阻率较大,故制成熔体的截面尺寸较大,熔断时产生的金属蒸气较多,只适用于低分断能力的熔断器。

高熔点材料如铜、银,其熔点高,不容易熔断,但由于其电阻率较低,可制成比低熔点熔体较小的截面尺寸,熔断时产生的金属蒸气少,适用于高分断能力的熔断器。

真空断路器发展历史

真空断路器发展历史

(1)提高了产品的绝缘水平及抗污能力。 (2)小型化,减小了断路器及其配用的开关柜体积。 (3)防止了真空灭弧室易受外界撞击的危险。 (4)增强了主回路的外爬距,提高了灭弧室耐受电压水 平。 (5)灭弧室的免维护,为断路器免维护创造了条件。 固封式真空断路器的电气性能除了决定真空灭 弧室外,极柱的结构设计也至关重要。极柱结构除考 虑绝缘外,还应考虑强度及散热问题。大电流情况下, 甚至要与真空灭弧室一并考虑。从性能、成本上综 合考虑,真空灭弧室亦单独设计成一个系列较为合理。
4、绝缘结构的发展 据有关的历史资料对全国电力系统高压断路器 运行中的事故类型统计分析拒分事故占22.67%;拒 合事故占6.48%;开断关合事故占9.07%;绝缘事故 占35.47%;误动事故占7.02%;截流事故占7.95%; 外力及其他事故占11.439毛,其中以绝缘事故和拒 分事故最为突出,约占全部事故的60%。所以绝缘结 构也是真空断路器的一大要点根据相柱绝缘经历的 变化发展,可基本上划分为三代:空气绝缘方式、复合 绝缘方式、固封极柱绝缘方式。
(3)永磁操动机构 永磁操动机构主要由永久磁铁和分、合闸控制线 圈等部件组成,是用永磁体去实现真空断路器合闸保 持和分闸保持的一种新型的电磁操动机构。当合闸控 制线圈通电时,线圈所产生的磁拉力会使动铁心向下 运动,然后由永久磁铁将动铁心保持在合闸位置;当 分闸线圈通电时,动铁心向反方向运动,同样由永久 磁铁将它保持在分闸位置。由于该机构在控制线圈不 通电流时动铁心有两个稳定工作状态合闸或闸)故也 称为双稳态永磁操动机构。
我国为了使断路器赶上国际先进水平,决定把开发智能化断 路器列为“八五”重点开发项目. 目前国内有的厂正在着手开发4000A、5000A的智能型断 路器
( 4) 低过电压 真空断路器开断小电流容易发生截流,引起过电 压。过电压是人们使用真空断路器最关心的问题。 一般解决方法有两种:第一种是加装过电压吸收装置 (RC回路、ZnO避雷器),但它作为真空断路器的附加 装置,不仅使真空断路器结构复杂化,而且增加成本; 另一种方法也是今后要致力研究的课题,采用低电压 触头材料。研究采用低电压触头材料日本几家公司 走在前列。富士康公司开发了CuCr添加高蒸气材料、 三菱公司开发了CuCrBiα多元触头材料,东芝公司开 发了新型的AgWC触头材料开断短路电流达40KA。

熔断器基础知识培训

熔断器基础知识培训
熔断器熔断器-保险丝基础 知识
I 小型熔断器基本知识
一:小型熔断器的发展历史
19世纪80年代,爱迪生申请了第一个在电路中相当于安全阀门的保险丝 19世纪 年代 世纪80年代, 专利, 专利,开启了熔断器发展的历史 保险丝应用日益广泛,产生了众多的设计, 保险丝应用日益广泛,产生了众多的设计,各行各业对保险丝有不同要 由此产生了依:外形、尺寸、安装形、 材料、结构、规格、特性、 求,由此产生了依:外形、尺寸、安装形、/材料、结构、规格、特性、 应用等各不相同的熔断器品种。 应用等各不相同的熔断器品种。 小型熔断器的发展经历了四次革命性的创新里程. 小型熔断器的发展经历了四次革命性的创新里程. 世界各国行业发展和环境条件的差异, 世界各国行业发展和环境条件的差异,又产生了熔断器在不同使用地 区的许多差异。主要反映在管状电子类小型熔断器产品上的这些差异, 区的许多差异。主要反映在管状电子类小型熔断器产品上的这些差异, 逐渐形成了北美和欧洲两大主要体系.IEC60127逐渐形成了北美和欧洲两大主要体系.IEC60127-4通用模件熔断体试图 把两大体系合而为一,迈出了第一步. 把两大体系合而为一,迈出了第一步. 中国熔断器行业起步于1950年代 开始全部照搬当时的苏联,品种少、 年代, 中国熔断器行业起步于1950年代,开始全部照搬当时的苏联,品种少、 结构陈旧、试验方法落后;70年代末 年代末, 结构陈旧、试验方法落后;70年代末,彩电国产化工作推进了小型熔断 器行业的发展,彩电配套的延时熔断器开始向国际标准靠拢. 器行业的发展,彩电配套的延时熔断器开始向国际标准靠拢. 中国第一个小型熔断器国家标准GB9364.-88等效采用了 等效采用了IEC60127的相 中国第一个小型熔断器国家标准GB9364.-88等效采用了IEC60127的相 应部分,修定后的GB9364-97和最近制定的 和最近制定的GB9364.4则也等同采用了 应部分,修定后的GB9364-97和最近制定的GB9364.4则也等同采用了 IEC60127的相应部分 但该标准的第5,9,10部分至今还没有制定 IEC60127的相应部分,但该标准的第5,9,10部分至今还没有制定. 的相应部分, 部分至今还没有制定.

熔断器的发展史

熔断器的发展史

熔断器的发展史熔断器己生产了100多年.现在世界上很多国家和我国均已大量生产和使用熔断器。

它们承担着保护电气设备和电网的重要任务,并且限制了不可避免的事故发生和确保了用户供电。

自1879年以来,熔断器已在欧洲各国和美国广泛使用。

引起了世界各国有关专家和教授们的重视。

比较典型的例子是英国S. P. Thampson教授,他在当年生产了一种改进型的熔断器,它是由两根铁丝连接到一个金润球上。

这个球是用铅锡合金或其它低熔点的导电材料制成的。

当有足够大的电流在足够长的时间内通过熔断器时,金属球就会熔化而堕落,使得导线分开,电路也就断开了。

后来C. V.Boys和H. H. Cunyngh根据S. P. Thampson教授的熔断器结构,设计了另一种熔断器,在1883年取得了专利。

在他们设计的熔断器中,电流是通过两片内侧焊接在一起的弹簧片。

当电流超过规定值时,焊接处熔化,于是弹簧片各自向不同方向弹开,使电路突然断开。

基于相同的结构原理,其它国家也制作了一些类似形式的熔断器。

1878年英国J. Swan试制成功了白炽灯,几乎在同时,美国的T. A. Edison也研制成功了这种白炽灯。

随即这些白炽灯投入了生产,大大地引起了人们对电灯照明的兴趣。

开始时在英国是由Swan电灯联公司的发电厂向用户供电,并安装了用木制插座的熔断器,这种熔断器当时称作“安全熔断桥”。

几年以后,就是从1881年到1885年这个发电厂向用户供电的各种电气设备在支路上都是用熔断器来保护的。

同时当时灯泡的价格和事故率都比较高,说明采用熔断器是必须的,除了用熔断器外,还没有其它的保护设备可代用。

为了了解熔断器熔体的熔化过程,人们做了大量的工作,一个有意义的有关熔断器的论文就是当时(1886年)由A. C. Cockburn完成的,他研究了热作用是如何从熔断器熔体向两端传导,以及如何传递到和熔断器熔体相连接的电缆上,从而认为热传导可以明显地影响一个熔断器熔化的min电流值。

中国熔断器的发展和技术进步

中国熔断器的发展和技术进步

题目: 中国熔断器的发展与技术进步发言人:何可平西安西联电器有限公司经理www. fuseworld .com 熔断器世界网总编第一部分:中国熔断器产业历程的回顾1. 熔断器对中国而言是一项外来技术,在1980年代以前,经历了30年的全面仿苏生产期,中国的熔断器产业普遍兴起,从无到有的形成了全国布局和系列化产品阵容,但技术标准滞后,生产水平一般,产业基础薄弱。

当时全面参照前苏联GOST制定的机械部“JB 技术条件”是最高标准,低压熔断器的额定电压是380V,最大额定电流600A,分断能力50KA,比IEC269-1标准的要求相差一倍多, 代表性产品是RL1和RTO系列;中高压熔断器的代表性产品是RN1系列。

2. 1980-1995年是15年左右的新旧交替时期。

改革开放后欧美熔断器随国外设备的引进而大量涌入,促动中国熔断器开始了新一轮渐进式改型换代。

以武汉钢铁公司1.7米轧机和中国石化总公司在80年代初大量引进欧美成套设备为转机,国外熔断器备件的国产化替代问题,开始提到上层各方面关注的议事日程上,西安西联电器公司替代进口的各种新型熔断器,就是在化工部和中国石化总公司的投资支持和武钢、太钢等企业的推动促进下,应运而生并迅速发展。

国家机械部在此期间也曾组织熔断器行业,搞出新一代仿欧洲形制的“统一设计产品”方案,准备全面推广以取代仿苏形制的老产品,但后来却不了了之。

与此同时,由上海电器陶瓷厂率先引进德国AEG公司的NT、NGT产品,正式揭开了中国低压熔断器更新换代的序幕。

中高压限流式熔断器则由西安熔断器厂从英国Breshi公司的技术引进开始,在国内通过转让扩散,使欧洲标准结构的中高压限流熔断器逐步成为现在的主流产品。

这一时期国内的熔断器产业呈现出一派“百花齐放”的景象,温州地区涌现出大量的小工厂开始生产各种各样的熔断器,北方的一些定点熔断器厂则因不能适应市场竞争而纷纷下马,整个熔断器产业在市场经济的主导下引发了一次深刻的格局变化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

熔断器的发展史
熔断器已生产了100多年.现在世界上很多国家和我国均已大量生产和使用熔断器。

它们承担着保护电气设备和电网的重要任务,并且限制了不可避免的事故发生和确保了用户供电。

自1879年以来,熔断器已在欧洲各国和美国广泛使用。

引起了世界各国有关专家和教授们的重视。

比较典型的例子是英国S. P. Thampson教授,他在当年生产了一种改进型的熔断器,它是由两根铁丝连接到一个金润球上。

这个球是用铅锡合金或其它低熔点的导电材料制成的。

当有足够大的电流在足够长的时间内通过熔断器时,金属球就会熔化而堕落,使得导线分开,电路也就断开了。

后来C. V.Boys和H. H. Cunyngh根据S. P. Thampson教授的熔断器结构,设计了另一种熔断器,在1883年取得了专利。

在他们设计的熔断器中,电流是通过两片内侧焊接在一起的弹簧片。

当电流超过规定值时,焊接处熔化,于是弹簧片各自向不同方向弹开,使电路突然断开。

基于相同的结构原理,其它国家也制作了一些类似形式的熔断器。

1878年英国J. Swan试制成功了白炽灯,几乎在同时,美国的T. A. Edison 也研制成功了这种白炽灯。

随即这些白炽灯投入了生产,大大地引起了人们对电
灯照明的兴趣。

开始时在英国是由Swan电灯联公司的发电厂向用户供电,并安装了用木制插座的熔断器,这种熔断器当时称作“安全熔断桥”。

几年以后,就是从1881年到1885年这个发电厂向用户供电的各种电气设备在支路上都是用熔断器来保护的。

同时当时灯泡的价格和事故率都比较高,说明采用熔断器是必须的,除了用熔断器外,还没有其它的保护设备可代用。

为了了解熔断器熔体的熔化过程,人们做了大量的工作,一个有意义的有关熔断器的论文就是当时(1886年)由A. C. Cockburn完成的,他研究了热作用是如何从熔断器熔体向两端传导,以及如何传递到和熔断器熔体相连接的电缆上,从而认为热传导可以明显地影响一个熔断器熔化的min电流值。

他还研究了导体的特性,并且考虑了比热、沮度系数和电导率,以及其它一些参数,目的是要选择适合作为熔断器熔体的材料。

他认识到材料如易于氧化就不适合作为熔断器的熔体,因为这样的熔断器,其性能将随着时间增长而发生变化。

尽管熔断器是古老的保护电器,但由于其结构简单、价格低廉和安装、维护、使用方便等优点,深受人们的欢迎,至今还大量生产着。

加上它还具有显著的限流作用和无比的迅速动作,为其它电器所莫及,因此近几年世界各国都十分重视熔断器的理论研究工作,为发展开创新颖熔断器而努力。

赫森电气(无锡)有限公司由加拿大赫森电能研究所参与投资,专注于超快速半导体设备保护与光伏熔断器的研发、制造、销售和服务的专业厂家。

通过不断的研究、开发以及大量的实践,终于在大功率电动汽车电池组与充电、轨道交通、航天器UPS电源、光伏发电等电力系统保护领域获得显著成果。

相关文档
最新文档