2017年安徽省中考数学试卷
2017年中考数学真题试题(含答案)

2017年中考数学试卷一、选择题(本大题共10小题,每小题4分,共40分)1.﹣2017的绝对值是()A.2017 B.﹣2017 C.12017D.﹣12017【答案】A.2.一组数据1,3,4,2,2的众数是()A.1 B.2 C.3 D.4【答案】B.3.单项式32xy的次数是()A.1 B.2 C.3 D.4【答案】D.4.如图,已知直线a∥b,c∥b,∠1=60°,则∠2的度数是()A.30°B.60°C.120°D.61°【答案】B.5.世界文化遗产长城总长约670000米,将数670000用科学记数法可表示为()A.6.7×104B.6.7×105C.6.7×106D.67×104【答案】B.6.如图,△ABC沿着BC方向平移得到△A′B′C′,点P是直线AA′上任意一点,若△ABC,△PB′C′的面积分别为S1,S2,则下列关系正确的是()A.S1>S2B.S1<S2C.S1=S2D.S1=2S2【答案】C.7.一个多边形的每个内角都等于144°,则这个多边形的边数是()A.8 B.9 C.10 D.11【答案】C.8.把不等式组231345xx x+>⎧⎨+≥⎩的解集表示在数轴上如下图,正确的是()A.B.C.D.【答案】B.9.如图,已知点A在反比例函数kyx=上,AC⊥x轴,垂足为点C,且△AOC的面积为4,则此反比例函数的表达式为()A.4yx=B.2yx=C.8yx=D.8yx=-【答案】C.10.观察下列关于自然数的式子:4×12﹣12①4×22﹣32②4×32﹣52③…根据上述规律,则第2017个式子的值是()A.8064 B.8065 C.8066 D.8067 【答案】D.二、填空题(本大题共8小题,每小题4分,共32分)11.5的相反数是 . 【答案】﹣5. 12.一组数据2,3,2,5,4的中位数是 .【答案】3.13.方程1201x x-=-的解为x = . 【答案】2.14.已知一元二次方程230x x k -+=有两个相等的实数根,则k = .【答案】94. 15.已知菱形的两条对角线的长分别是5cm ,6cm ,则菱形的面积是 cm 2.【答案】15.16.如图,身高为1.8米的某学生想测量学校旗杆的高度,当他站在B 处时,他头顶端的影子正好与旗杆顶端的影子重合,并测得AB =2米,BC =18米,则旗杆CD 的高度是 米.【答案】3.42.17.从﹣1,0,1,2这四个数中,任取两个不同的数作为点的坐标,则该点在第一象限的概率为 .【答案】16. 18.如图,在Rt △ABC 中,∠C =90°,点D 是AB 的中点,ED ⊥AB 交AC 于点E .设∠A =α,且tanα=13,则tan2α= .【答案】34.三、解答题19.(1)计算:101()4sin 60(3 1.732)122----+; (2)先化简,再求值:2261213x x x x x +-⋅-++,其中x =2. 【答案】(1)1;(2)21x -,2. 20.如图,已知:∠BAC =∠EAD ,AB =20.4,AC =48,AE =17,AD =40.求证:△ABC ∽△AED .【答案】证明见解析.21.某校为了了解九年级九年级学生体育测试情况,随机抽查了部分学生的体育测试成绩的样本,按A ,B ,C (A 等:成绩大于或等于80分;B 等:成绩大于或等于60分且小于80分;C 等:成绩小于60分)三个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给的信息解答下列问题:(1)请把条形统计图补充完整;(2)扇形统计图中A 等所在的扇形的圆心角等于 度;(3)若九年级有1000名学生,请你用此样本估计体育测试众60分以上(包括60分)的学生人数.【答案】(1)作图见解析;(2)108;(3)800.22.如图,已知点E ,F 分别是平行四边形ABCD 对角线BD 所在直线上的两点,连接AE ,CF ,请你添加一个条件,使得△ABE ≌△CDF ,并证明.【答案】证明见解析.四、解答题23.某商店以20元/千克的单价新进一批商品,经调查发现,在一段时间内,销售量y(千克)与销售单价x(元/千克)之间为一次函数关系,如图所示.(1)求y与x的函数表达式;(2)要使销售利润达到800元,销售单价应定为每千克多少元?【答案】(1)60(020)80(2080)xyx x<<⎧=⎨-+≤≤⎩;(2)40元或60元.五、解答题24.如图,已知在Rt△ABC中,∠ABC=90°,以AB为直径的⊙O与AC交于点D,点E是BC的中点,连接BD,DE.(1)若ADAB=13,求sin C;(2)求证:DE是⊙O的切线.【答案】(1)13;(2)证明见解析. 六、解答题 25.如图,抛物线2y x bx c =++经过点A (﹣1,0),B (0,﹣2),并与x 轴交于点C ,点M 是抛物线对称轴l 上任意一点(点M ,B ,C 三点不在同一直线上).(1)求该抛物线所表示的二次函数的表达式;(2)在抛物线上找出两点P 1,P 2,使得△MP 1P 2与△MCB 全等,并求出点P 1,P 2的坐标;(3)在对称轴上是否存在点Q ,使得∠BQC 为直角,若存在,作出点Q (用尺规作图,保留作图痕迹),并求出点Q 的坐标.【答案】(1)22y x x =--;(2)P 1(﹣1,0),P 2(1,﹣2)或P 1(2,0),P 2(52,74);(3)点Q 的坐标是:(1227-+1227--.。
2017年中考数学真题试题与答案(word版)

XX★ 启用前2017 年中考题数学试卷一、选择题(本大题共 12 小题,每小题 3 分,共 36 分.在每小题给出的四个选项中,只有一个是符合题目要求的,把正确答案的标号填在答题卡内相应的位置上)1、计算2( 1) 的结果是()1B、2C、1D、 22、若∠α的余角是30°,则 cosα的值是()A 、213C、2D、3A 、B 、23223、下列运算正确的是()A 、2a a 1 B、a a2a2C、a a a2 D 、( a)2a24、下列图形是轴对称图形,又是中心对称图形的有()A、4 个B、3 个5、如图,在平行四边形∠1=()C、2 个D、1 个ABCD 中,∠ B=80 °, AE平分∠BAD交 BC于点E, CF∥ AE交 AE于点F,则A、 40°B、 50°C、 60°D、80°6、已知二次函数y ax2的图象开口向上,则直线y ax 1 经过的象限是()A 、第一、二、三象限 B、第二、三、四象限7、如图,你能看出这个倒立的水杯的俯视图是(C、第一、二、四象限)D、第一、三、四象限A B C D8、如图,是我市 5 月份某一周的最高气温统计图,则这组数据(最高气温)的众数与中位数分别是()A 、 28℃, 29℃B 、 28℃, 29.5℃C、 28℃, 30℃D 、 29℃, 29℃9、已知拋物线 y1 x2 2,当 1 x 5 时, y 的最大值是()2 35 7 A 、 2C 、B 、3D 、3 310、小英家的圆形镜子被打碎了,她拿了如图(网格中的每个小正方形边长为 1)的一块碎片到玻璃店,配制成形状、 大小与原来一致的镜面, 则这个镜面的半径是 ( )A 、 2B 、 5C 、22D 、311、如图,是反比例函数yk 1x和 yk 2 x( k 1k 2 )在第一象限的图象,直线AB ∥ x轴,并分别交两条曲线于A 、B 两点,若S AOB2 ,则k 2k 1 的值是()A 、 1B 、 2C 、 4D 、 812、一个容器装有1 升水,按照如下要求把水倒出:第1 次倒出1升水,第2 次倒出的水量是1升的1 ,223第 3 次倒出的水量是1 升的314,第4 次倒出的水量是14升的1 ,⋯按照这种倒水的方法,倒了5 10 次后容器内剩余的水量是()A 、10 升11B 、1 升9C 、110升D 、111升二、填空题(本大题共6 小题,每小题3 分,共 18 分 .把答案填在答题卡中的横线上)13、 2011的相反数是 __________14、近似数 0.618 有__________个有效数字.15、分解因式:a 3= __________16、如图,是某校三个年级学生人数分布扇形统计图,则九年级学生人数所占扇形的圆心角的度数为 __________C 'D 17、如图,等边△ ABC 绕点 B 逆时针旋转30°时,点 C 转到 C ′的位置, 且 BC ′与 AC 交于点 D ,则CD的值为 __________16 题图17 题图18 题图18、如图, AB 是半圆 O 的直径,以 0A 为直径的半圆O ′与弦 AC 交于点 D ,O ′ E ∥ AC ,并交 OC 于点E .则下列四个结论:①点 D 为 AC 的中点;② S O 'OE1S AOC ;③ AC 2AD;④四边形 O'DEO 是菱形.其中正确的结2论是 __________.(把所有正确的结论的序号都填上)三、解答题(本大题共 8 小题,满分共 66 分,解答过程写在答题卡上,解答应写出文字说明,证明过程或演算步骤) .19、计算: (1) 1(5) 034 .220、假日,小强在广场放风筝.如图,小强为了计算风筝离地面的高度,他测得风筝的仰角为 60°,已知风筝线 BC 的长为 10 米,小强的身高 AB 为 1.55 米,请你帮小强画出测量示意图,并计算出风筝离地面的高度.(结果精确到 1 米,参考数据2 ≈ 1.41 , 3≈ 1.73 )21、如图, △ OAB 的底边经过⊙ O 上的点 C ,且 OA=OB ,CA=CB ,⊙O 与 OA 、OB 分别交于 D 、E 两点.( 1)求证: AB 是⊙ O 的切线;( 2)若 D 为 OA 的中点,阴影部分的面积为33,求⊙ O 的半径 r .22、一个不透明的纸盒中装有大小相同的黑、白两种颜色的围棋,其中白色棋子 3 个(分别用白 A 、白 B 、白 C 表示),若从中任意摸出一个棋子,是白色棋子的概率为3 .4( 1)求纸盒中黑色棋子的个数;( 2)第一次任意摸出一个棋子(不放回) ,第二次再摸出一个棋子,请用树状图或列表的方法,求两次摸到相同颜色棋子的概率.23、上个月某超市购进了两批相同品种的水果,第一批用了 2000 元,第二批用了 5500 元,第二批购进水果的重量是第一批的 2.5 倍,且进价比第一批每千克多 1 元.( 1)求两批水果共购进了多少千克?( 2)在这两批水果总重量正常损耗 10%,其余全部售完的情况下,如果这两批水果的售价相同,且总利润率不低于 26%,那么售价至少定为每千克多少元?利润(利润率 =100%)进价AG为边作一个正方形AEFG ,24、如图,点G 是正方形ABCD 对角线 CA 的延长线上任意一点,以线段线段 EB 和 GD 相交于点 H.( 1)求证: EB=GD ;( 2)判断 EB 与 GD 的位置关系,并说明理由;( 3)若AB=2 , AG=2,求EB的长.25、已知抛物线y ax22ax 3a ( a 0) 与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,点 D 为抛物线的顶点.(1)求 A 、 B 的坐标;(2)过点 D 作 DH 丄 y 轴于点 H,若 DH=HC ,求 a 的值和直线 CD 的解析式;(3)在第( 2)小题的条件下,直线 CD 与 x 轴交于点 E,过线段 OB 的中点 N 作 NF 丄 x 轴,并交直线CD 于点 F,则直线 NF 上是否存在点 M ,使得点 M 到直线 CD 的距离等于点 M 到原点 O 的距离?若存在,求出点M 的坐标;若不存在,请说明理由.中考数学试题答案一、选择题题号123456789101112答案B A C C B D B A C B C D二、填空题13. 201114. 315.a(3 a)(3 a)°17.2318.①③④16. 144三、解答题19. 解:原式 =2-1-3+2 ,=0 .故答案为: 0 .20.解:∵一元二次方程 x2-4x+1=0 的两个实数根是 x1、 x2,∴ x1 +x 2=4 , x1?x2=1 ,∴( x1+x 2)2÷()=4 2÷2=4 ÷421.解:在 Rt △ CEB 中,sin60 °=,∴CE=BC?sin60°=10×≈8.65m,∴CD=CE+ED=8.65+1.55=10.≈210m,答:风筝离地面的高度为 10m .22.( 1)证明:连 OC ,如图,∵ OA=OB , CA=CB ,∴OC ⊥AB,∴AB 是⊙ O 的切线;(2)解:∵ D 为 OA 的中点, OD=OC=r ,∴ OA=2OC=2r ,∴∠ A=30°,∠ AOC=60°, AC=r,∴∠ AOB=120°, AB=2r,∴ S 阴影部分 =S △OAB -S 扇形ODE = ?OC?AB-=-,∴?r?2r- r2=-,∴ r=1 ,即⊙ O 的半径 r 为 1 .23. 解:( 1) 3÷-3=1 .答:黑色棋子有 1 个;( 2)共12 种情况,有 6 种情况两次摸到相同颜色棋子,所以概率为.24. 解:( 1)设第一批购进水果x 千克,则第二批购进水果 2.5 千克,依据题意得:,解得 x=200 ,经检验 x=200 是原方程的解,∴x+2.5x=700 ,答:这两批水果功够进 700 千克;( 2)设售价为每千克 a 元,则:,630a≥ 7500× 1.26,∴,∴a≥15,答:售价至少为每千克 15 元.25.( 1 )证明:在△ GAD 和△ EAB 中,∠ GAD=90° +∠ EAD ,∠ EAB=90° +∠ EAD ,∴∠ GAD= ∠ EAB ,又∵ AG=AE , AB=AD ,∴△ GAD ≌△ EAB ,∴EB=GD ;( 2) EB ⊥ GD ,理由如下:连接BD ,由( 1 )得:∠ ADG= ∠ ABE ,则在△ BDH 中,∠DHB=180° - (∠ HDB+ ∠ HBD )=180°-90 °=90°,∴EB⊥GD ;( 3)设BD与AC交于点O,∵ AB=AD=2在 Rt △ABD中, DB=,∴ EB=GD=.26. 解:( 1)由y=0得, ax 2-2ax-3a=0,∵ a≠0,∴ x2 -2x-3=0,解得1=-1,x2=3,∴点 A 的坐标( -1, 0),点 B 的坐标( 3,0);(2)由 y=ax 2 -2ax-3a ,令 x=0 ,得 y=-3a ,∴ C ( 0, -3a ),又∵ y=ax 2 -2ax-3a=a ( x-1 )2-4a ,得 D (1 , -4a ),∴ DH=1 , CH=-4a- ( -3a ) =-a ,∴ -a=1 ,∴ a=-1 ,∴C(0, 3),D(1,4),设直线 CD 的解析式为y=kx+b ,把 C、 D 两点的坐标代入得,,解得,∴直线 CD 的解析式为y=x+3 ;( 3)存在.由( 2)得, E(-3,0),N(-,0)∴F(,),EN= ,作 MQ⊥CD 于 Q,设存在满足条件的点M(,m),则FM=-m ,EF==,MQ=OM=由题意得: Rt △ FQM ∽ Rt △ FNE ,∴=,整理得 4m 2+36m-63=0 ,∴m2+9m=,m 2+9m+=+(m+ )2=m+ =±∴ m1=,m2=-,∴点 M 的坐标为M1(,),M2(,-).”可见,一个人的心胸和眼光,决定了他志向的短浅或高远;一个清代“红顶商人”胡雪岩说:“做生意顶要紧的是眼光,看得到一省,就能做一省的生意;看得到天下,就能做天下的生意;看得到外国,就能做外国的生意。
2017年安徽中考数学试题及答案

2017年安徽中考数学试题及答案一、选择题(本题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母填在题后的括号内。
)1. 若a > 0,b < 0,且|a| > |b|,则a + b()A. 大于0B. 小于0C. 等于0D. 不确定2. 下列各组数中,是同类项的是()A. 3x²y 和 2xy²B. 2x²和 3x²C. 3x²y 和 2x²yD. 3x²y 和 2xy3. 计算(x-1)(x+1)的结果是()A. x²-1B. x²+1C. x²-2xD. x²+2x4. 已知一个三角形的两边长分别为3和4,第三边长为x,则x的取值范围是()A. 1 < x < 7B. 4 < x < 7C. 1 < x < 5D. 0 < x < 75. 一个数的平方根是2,则这个数是()A. 4B. -4C. 2D. -26. 一个正数的倒数是()A. 正数B. 负数C. 0D. 17. 函数y=2x+1的图象是()A. 一条直线B. 一条曲线C. 一个点D. 一个圆8. 计算(-2)³的结果是()A. -8B. 8C. -6D. 69. 一个数的绝对值是3,则这个数可能是()A. 3B. -3C. 3或-3D. 010. 一个数的平方是9,则这个数是()A. 3B. -3C. 3或-3D. 9二、填空题(本题共5小题,每小题4分,共20分。
请将答案填在题后的横线上。
)11. 一个数的相反数是-5,则这个数是______。
12. 一个数的立方是-27,则这个数是______。
13. 一个数的平方是25,则这个数是______。
14. 已知一个直角三角形的两条直角边长分别为3和4,则斜边长是______。
2017年中考数学试题分项版解析汇编第02期专题01实数含解析20170816117

专题1:实数一、选择题1.(2017北京第4题)实数a,b,c,d在数轴上的对应点的位置如图所示,则正确的结论是()A.a4B.bd0 C. a b D.b c0【答案】C.考点:实数与数轴2.(2017天津第1题)计算(3)5的结果等于()A.2 B.2C.8 D.8【答案】A.【解析】试题分析:根据有理数的加法法则即可得原式-2,故选A.3.(2017天津第4题)据《天津日报》报道,天津市社会保障制度更加成熟完善,截止2017年4月末,累计发放社会保障卡12630000张.将12630000用科学记数法表示为()A.0.1263108B.1.263107C.12.63106D.126.3105【答案】B.【解析】试题分析:学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,n的值为这个数的整数位数减1,所以12630000=1.263107.故选B.4.(2017福建第1题)3的相反数是()A.-3 B.1C.133D.3【解析】只有符号不同的两个数互为相反数,因此3的相反数是-3;故选A.5.(2017福建第3题)用科学计数法表示136 000,其结果是()A.0.136106B.1.36105C.136103D.136106【答案】B【解析】13600=1.36×105,故选B.6.(2017河南第1题)下列各数中比1大的数是()A.2 B.0 C.-1 D.-3【答案】A,【解析】试题分析:根据正数大于0,0大于负数,两个负数,绝对值大的反而小可得题目选项中的各数中比1大的数是2,故选A.考点:有理数的大小比较.7.(2017河南第2题)2016年,我国国内生产总值达到74.4万亿元.数据“74.4万亿”用科学计数法表示为()A.74.41012B.7.441013C.74.41013D.7.441014【答案】B.考点:科学记数法.8.(2017湖南长沙第1题)下列实数中,为有理数的是()A.3B.C.32D.1【答案】D【解析】试题分析:根据实数的意义,有理数为有限小数和有限循环小数,无理数为无限不循环小数,可知1是有理数.故选:D9.(2017广东广州第1题)如图1,数轴上两点A,B表示的数互为相反数,则点B表示的()A.-6 B.6 C.0 D.无法确定【答案】B【解析】试题分析:-6的相反数是6,A点表示-6,所以,B点表示6.故选答案B.考点:相反数的定义10.(2017湖南长沙第3题)据国家旅游局统计,2017年端午小长假全国各大景点共接待游客约为82600000人次,数据82600000用科学记数法表示为()A.0.826106B.8.26107C.82.6106D.8.26108【答案】B考点:科学记数法的表示较大的数111.(2017山东临沂第1题)的相反数是()2007 11A.B.C.2017 D.201720072007【答案】A【解析】试题分析:根据只有符号不同的两数互为相反数,可知的相反数为.1120072007故选:A112.(2017山东青岛第1题)的相反数是().8A.8 B.8 C.18D.18【答案】C 【解析】试题分析:根据只有符号不同的两个数是互为相反数,知:1的相反数是818.故选:C考点:相反数定义13. (2017四川泸州第1题)7的绝对值为()A.7B.7C.17D.17【答案】A.【解析】试题分析:根据绝对值的性质可得-7的绝对值为7,故选A.14. (2017四川泸州第2题) “五一”期间,某市共接待海内外游客约567000人次,将567000用科学记数法表示为()A.567103B.56.7104C.5.67105D.0.567106【答案】C.15.(2017山东滨州第1题)计算-(-1)+|-1|,结果为()A.-2 B.2 C.0 D.-1【答案】B.【解析】原式=1+1=2,故选B.16. (2017江苏宿迁第1题)5的相反数是11A.5B.C.D.555【答案】D.【解析】试题分析:根据只有符号不同的两个数互为相反数可得5的相反数是-5,故选D.17. .(2017山东日照第1题)﹣3的绝对值是()A.﹣3 B.3 C.±3 D.【答案】B.试题分析:当a是负有理数时,a的绝对值是它的相反数﹣a,所以﹣3的绝对值是3.故选B.考点:绝对值.18. (2017辽宁沈阳第1题)7的相反数是()A.-7B.C.D.74177【答案】A.【解析】试题分析:根据“只有符号不同的两个数互为相反数”可得7的相反数是-7,故选A.考点:相反数.19.(2017山东日照第3题)铁路部门消息:2017年“端午节”小长假期间,全国铁路客流量达到4640万人次.4640万用科学记数法表示为()A.4.64×105B.4.64×106C.4.64×107D.4.64×108【答案】C.考点:科学记数法—表示较大的数.20. (2017辽宁沈阳第3题) “弘扬雷锋精神,共建幸福沈阳”幸福沈阳需要830万沈阳人共同缔造。
2018年安徽省中考数学试题含答案解析(Word版)

2018年安徽省初中学业水平考试数学一、选择题(本大题共10小题,每小题4分,满分40分)1. 的绝对值是()A. B. 8 C. D.【答案】B【详解】数轴上表示数-8的点到原点的距离是8,所以-8的绝对值是8,故选B.【点睛】本题考查了绝对值的概念,熟记绝对值的概念是解题的关键.2. 2017年我赛粮食总产量为亿斤,其中亿科学记数法表示()A. B. C. D.【答案】C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】亿=63520000000,63520000000小数点向左移10位得到所以亿用科学记数法表示为:8,故选C.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.3. 下列运算正确的是()A. B. C. D.【答案】D【解析】【分析】根据幂的乘方、同底数幂乘法、同底数幂除法、积的乘方的运算法则逐项进行计算即可得. 【详解】A. ,故A选项错误;B. ,故B选项错误;C. ,故C选项错误;D. ,正确,故选D.【点睛】本题考查了有关幂的运算,熟练掌握幂的乘方,同底数幂的乘法、除法,积的乘方的运算法则是解题的关键.4. 一个由圆柱和圆锥组成的几何体如图水平放置,其主(正)视图为()A. (A)B. (B)C. (C)D. (D)【答案】A【解析】【分析】根据主视图是从几何体正面看得到的图形,认真观察实物,可得这个几何体的主视图为长方形上面一个三角形,据此即可得.【详解】观察实物,可知这个几何体的主视图为长方体上面一个三角形,只有A选项符合题意,故选A.【详解】本题考查了几何体的主视图,明确几何体的主视图是从几何体的正面看得到的图形是解题的关键.5. 下列分解因式正确的是()A. B.C. D.【答案】C【解析】【分析】根据因式分解的步骤:先提公因式,再用公式法分解即可求得答案.注意分解要彻底.【详解】A. ,故A选项错误;B. ,故B选项错误;C. ,故C选项正确;D. =(x-2)2,故D选项错误,故选C.【点睛】本题考查了提公因式法,公式法分解因式.注意因式分解的步骤:先提公因式,再用公式法分解.注意分解要彻底.6. 据省统计局发布,2017年我省有效发明专利数比2016年增长假定2018年的平均增长率保持不变,2016年和2018年我省有效发明专利分别为a万件和b万件,则()A. B.C. D.【解析】【分析】根据题意可知2017年我省有效发明专利数为(万件,2018年我省有效发明专利数为(,由此即可得.【详解】由题意得:2017年我省有效发明专利数为(万件,2018年我省有效发明专利数为(万件,即2a万件,故选B.【点睛】本题考查了增长率问题,弄清题意,找到各量之间的数量关系是解题的关键.7. 若关于的一元二次方程x(x+1)+ax=0有两个相等的实数根,则实数a的值为()A. B. 1 C. D.【答案】A【解析】【分析】整理成一般式后,根据方程有两个相等的实数根,可得△=0,得到关于a的方程,解方程即可得.【详解】x(x+1)+ax=0,x2+(a+1)x=0,由方程有两个相等的实数根,可得△=(a+1)2-4×1×0=0,解得:a1=a2=-1,故选A.【点睛】本题考查一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.8. 为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲,乙两组数据,如下表:甲 2 6 7 7 8乙 2 3 4 8 8类于以上数据,说法正确的是()A. 甲、乙的众数相同B. 甲、乙的中位数相同C. 甲的平均数小于乙的平均数D. 甲的方差小于乙的方差【解析】【分析】分别根据众数、中位数、平均数、方差的定义进行求解后进行判断即可得.【详解】甲:数据7出现了2次,次数最多,所以众数为7,排序后最中间的数是7,所以中位数是7,,=4,乙:数据8出现了2次,次数最多,所以众数为8,排序后最中间的数是4,所以中位数是4,,所以只有D选项正确,故选D.【点睛】本题考查了众数、中位数、平均数、方差,熟练掌握相关定义及求解方法是解题的关键.9. □ABCD中,E、F是对角线BD上不同的两点,下列条件中,不能得出四边形AECF一定为平行四边形的是()∠BAE=∠DCF【答案】B【解析】【分析】根据平行线的判定方法结合已知条件逐项进行分析即可得.【详解】A、如图,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵BE=DF,∴OE=OF,∴四边形AECF是平行四边形,故不符合题意;B、如图所示,AE=CF,不能得到四边形AECF是平行四边形,故符合题意;C、如图,∵四边形ABCD是平行四边形,∴OA=OC,∵AF//CE,∴∠FAO=∠ECO,又∵∠AOF=∠COE,∴△AOF≌△COE,∴AF=CE,∴AF CE,∴四边形AECF是平行四边形,故不符合题意;D、如图,∵四边形ABCD是平行四边形,∴AB=CD,AB//CD,∴∠ABE=∠CDF,又∵∠BAE=∠DCF,∴△ABE≌△CDF,∴AE=CF,∠AEB=∠CFD,∴∠AEO=∠CFO,∴AE//CF,∴AE CF,∴四边形AECF是平行四边形,故不符合题意,故选B.【点睛】本题考查了平行四边形的性质与判定,熟练掌握平行四边形的判定定理与性质定理是解题的关键.10. 如图,直线都与直线l垂直,垂足分别为M,N,MN=1,正方形ABCD的边长为,对角线AC 在直线l上,且点C位于点M处,将正方形ABCD沿l向右平移,直到点A与点N重合为止,记点C平移的距离为x,正方形ABCD的边位于之间分的长度和为y,则y关于x的函数图象大致为()A. B. C. D.【答案】A【解析】【分析】由已知易得AC=2,∠ACD=45°,分0≤x≤1、1<x≤2、2<x≤3三种情况结合等腰直角三角形的性质即可得到相应的函数解析式,由此即可判断.【详解】由正方形的性质,已知正方形ABCD的边长为,易得正方形的对角线AC=2,∠ACD=45°,如图,当0≤x≤1时,y=2,如图,当1<x≤2时,y=2m+2n=2(m+n)= 2,如图,当2<x≤3时,y=2,综上,只有选项A符合,故选A.【点睛】本题考查了动点问题的函数图象,涉及到正方形的性质,等腰直角三角形的性质,勾股定理等,结合图形正确分类是解题的关键.二、填空题(本大共4小题,每小题5分,满分30分)11. 不等式的解集是___________.【答案】x>10【解析】【分析】按去分母、移项、合并同类项的步骤进行求解即可得.【详解】去分母,得x-8>2,移项,得x>2+8,合并同类项,得x>10,故答案为:x>10.【点睛】本题考查了解一元一次不等式,熟练掌握解一元一次不等式的基本步骤及注意事项是解题的关键.12. 如图,菱形ABOC的AB,AC分别与⊙O相切于点D、E,若点D是AB的中点,则∠DOE__________. 【答案】60°【解析】【分析】由AB,AC分别与⊙O相切于点D、E,可得∠BDO=∠ADO=∠AEO=90°,根据已知条件可得到BD=OB,在Rt△OBD中,求得∠B=60°,继而可得∠A=120°,再利用四边形的内角和即可求得∠DOE 的度数.【详解】∵AB,AC分别与⊙O相切于点D、E,∴∠BDO=∠ADO=∠AEO=90°,∵四边形ABOC是菱形,∴AB=BO,∠A+∠B=180°,∵BD=AB,∴BD=OB,在Rt△OBD中,∠ODB=90°,BD=OB,∴cos∠B=,∴∠B=60°,∴∠A=120°,∴∠DOE=360°-120°-90°-90°=60°,故答案为:60°.【点睛】本题考查了切线的性质,菱形的性质,解直角三角形的应用等,熟练掌握相关的性质是解题的关键.13. 如图,正比例函数y=kx与反比例函数y=的图象有一个交点A(2,m),AB⊥x轴于点B,平移直线y=kx使其经过点B,得到直线l,则直线l对应的函数表达式是_________ .【答案】y=x-3【解析】【分析】由已知先求出点A、点B的坐标,继而求出y=kx的解析式,再根据直线y=kx平移后经过点B,可设平移后的解析式为y=kx+b,将B点坐标代入求解即可得.【详解】当x=2时,y==3,∴A(2,3),B(2,0),∵y=kx过点A(2,3),∴3=2k,∴k=,∴y=x,∵直线y=x平移后经过点B,∴设平移后的解析式为y=x+b,则有0=3+b,解得:b=-3,∴平移后的解析式为:y=x-3,故答案为:y=x-3.【点睛】本题考查了一次函数与反比例函数的综合应用,涉及到待定系数法,一次函数图象的平移等,求出k的值是解题的关键.14. 矩形ABCD中,AB=6,BC=8.点P在矩形ABCD的内部,点E在边BC上,满足△PBE∽△DBC,若△APD是等腰三角形,则PE的长为数___________.【答案】3或【解析】【分析】由△PBE∽△DBC,可得∠PBE=∠DBC,继而可确定点P在BD上,然后再根据△APD是等腰三角形,分DP=DA、AP=DP两种情况进行讨论即可得.【详解】∵四边形ABCD是矩形,∴∠BAD=∠C=90°,CD=AB=6,∴BD=10,∵△PBE∽△DBC,∴∠PBE=∠DBC,∴点P在BD上,如图1,当DP=DA=8时,BP=2,∵△PBE∽△DBC,∴PE:CD=PB:DB=2:10,∴PE:6=2:10,∴如图2,当AP=DP时,此时P为BD中点,∵△PBE∽△DBC,∴PE:CD=PB:DB=1:2,∴PE:6=1:2,∴PE=3;综上,PE的长为或3,故答案为:或3.【点睛】本题考查了相似三角形的性质,等腰三角形的性质,矩形的性质等,确定出点P在线段BD上是解题的关键.三、解答题15. 计算:【答案】7【解析】【分析】先分别进行0次幂的计算、二次根式的乘法运算,然后再按运算顺序进行计算即可.【详解】=1+2+=1+2+4=7.【点睛】本题考查了实数的运算,熟练掌握实数的运算法则、0次幂的运算法则是解题的关键. 16. 《孙子算经》中有过样一道题,原文如下: “今有百鹿入城,家取一鹿不尽,又三家共一鹿适尽,问城中家几何?” 大意为:今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,问城中有多少户人家?请解答上述问题.【答案】城中有75户人家.【解析】【分析】设城中有x户人家,根据今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,可得方程x+x=100,解方程即可得.【详解】设城中有x户人家,由题意得x+x=100,解得x=75,答:城中有75户人家.【点睛】本题考查了一元一次方程的应用,弄清题意,找出等量关系列方程进行求解是关键. 17. 如图,在由边长为1个单位长度的小正方形组成的10×10网格中,已知点O,A,B均为网格线的交点. (1)在给定的网格中,以点O为位似中心,将线段AB放大为原来的2倍,得到线段(点A,B的对应点分别为).画出线段;(2)将线段绕点逆时针旋转90°得到线段.画出线段;(3)以为顶点的四边形的面积是个平方单位.【答案】(1)画图见解析;(2)画图见解析;(3)20【解析】【分析】(1)结合网格特点,连接OA并延长至A1,使OA1=2OA,同样的方法得到B1,连接A1B1即可得;(2)结合网格特点根据旋转作图的方法找到A2点,连接A2B1即可得;(3)根据网格特点可知四边形AA1 B1 A2是正方形,求出边长即可求得面积.【详解】(1)如图所示;(2)如图所示;(3)结合网格特点易得四边形AA1 B1 A2是正方形,AA1=,所以四边形AA1 B1 A2的在面积为:=20,故答案为:20.【点睛】本题考查了作图-位似变换,旋转变换,能根据位似比、旋转方向和旋转角得到关键点的对应点是作图的关键.18. 观察以下等式:第1个等式:,第2个等式:,第3个等式:,第4个等式:,第5个等式:,……按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.【答案】(1);(2),证明见解析.【解析】【分析】(1)根据观察到的规律写出第6个等式即可;(2)根据观察到的规律写出第n个等式,然后根据分式的运算对等式的左边进行化简即可得证. 【详解】(1)观察可知第6个等式为:,故答案为:;(2)猜想:,证明:左边====1,右边=1,∴左边=右边,∴原等式成立,∴第n个等式为:,故答案为:.【点睛】本题考查了规律题,通过观察、归纳、抽象出等式的规律与序号的关系是解题的关键. 19. 为了测量竖直旗杆AB的高度,某综合实践小组在地面D处竖直放置标杆CD,并在地面上水平放置个平面镜E,使得B,E,D在同一水平线上,如图所示.该小组在标杆的F处通过平面镜E恰好观测到旗杆顶A(此时∠AEB=∠FED).在F处测得旗杆顶A的仰角为平面镜E的俯角为米,问旗杆AB的高度约为多少米? (结果保留整数)(参考数据【答案】旗杆AB高约18米.【解析】【分析】如图先证明△FDE∽△ABE,从而得,在Rt△FEA中,由tan∠AFE=,通过运算求得AB的值即可.【详解】如图,∵FM//BD,∴∠FED=∠MFE=45°,∵∠DEF=∠BEA,∴∠AEB=45°,∴∠FEA=90°,∵∠FDE=∠ABE=90°,∴△FDE∽△ABE,∴,在Rt△FEA中,∠AFE=∠MFE+∠,∴,∴答:旗杆AB高约18米.【点睛】本题考查了解直角三角形的应用,相似三角形的判定与性质,得到是解题的关键.20. 如图,⊙O为锐角△ABC的外接圆,半径为5.(1)用尺规作图作出∠BAC的平分线,并标出它与劣弧BC的交点E(保留作图痕迹,不写作法);(2)若(1)中的点E到弦BC的距离为3,求弦CE的长.【答案】(1)画图见解析;(2)CE=【解析】【分析】(1)以点A为圆心,以任意长为半径画弧,分别与AB、AC有交点,再分别以这两个交点为圆心,以大于这两点距离的一半为半径画弧,两弧交于一点,过点A与这点作射线,与圆交于点E ,据此作图即可;(2)连接OE交BC于点F,连接OC、CE,由AE平分∠BAC,可推导得出OE⊥BC,然后在Rt△OFC中,由勾股定理可求得FC的长,在Rt△EFC中,由勾股定理即可求得CE的长.【详解】(1)如图所示,射线AE就是所求作的角平分线;(2)连接OE交BC于点F,连接OC、CE,∵AE平分∠BAC,∴,∴OE⊥BC,EF=3,∴OF=5-3=2,在Rt△OFC中,由勾股定理可得FC==,在Rt△EFC中,由勾股定理可得CE==.【点睛】本题考查了尺规作图——作角平分线,垂径定理等,熟练掌握角平分线的作图方法、推导得出OE⊥BC是解题的关键.21. “校园诗歌大赛”结束后,张老师和李老师将所有参赛选手的比赛成绩(得分均为整数)进行整理,并分别绘制成扇形统计图和频数直方图部分信息如下:(1)本次比赛参赛选手共有人,扇形统计图中这一组人数占总参赛人数的百分比为;(2)赛前规定,成绩由高到低前60%的参赛选手获奖.某参赛选手的比赛成绩为78分,试判断他能否获奖,并说明理由;(3)成绩前四名是2名男生和2名女生,若从他们中任选2人作为获奖代表发言,试求恰好选中1男1女的概率.【答案】(1)50,30%;(2)不能,理由见解析;(3)P=【解析】【分析】(1)由直方图可知分数段有5人,由扇形统计图可知这一分数段人占10%,据此可得选手总数,然后求出这一分数段所占的百分比,用1减去其他分数段的百分比即可得到分数段所占的百分比;(2)观察可知这一分数段的人数占了60%,据此即可判断出该选手是否获奖;(3)画树状图得到所有可能的情况,再找出符合条件的情况后,用概率公式进行求解即可.【详解】(1)本次比赛选手共有(2+3)÷10%=50(人),这一组人数占百分比为:(8+4)÷50×100%=24%,所以这一组人数占总人数的百分比为:1-10%-24%-36%=30%,故答案为:50,30%;(2)不能;由统计图知,和两组占参赛选手60%,而,所以他不能获奖;(3)由题意得树状图如下由树状图知,共有12种等可能结果,其中恰好选中1男1女的8结果共有种,故P==.【点睛】本题考查了直方图、扇形图、概率,结合统计图找到必要信息进行解题是关键.22. 小明大学毕业回家乡创业,第一期培植盆景与花卉各50盆售后统计,盆景的平均每盆利润是160元,花卉的平均每盆利润是19元,调研发现:①盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元;②花卉的平均每盆利润始终不变.小明计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x盆,第二期盆景与花卉售完后的利润分别为W1,W2(单位:元)(1)用含x的代数式分别表示W1,W2;(2)当x取何值时,第二期培植的盆景与花卉售完后获得的总利润W最大,最大总利润是多少?【答案】(1)W1=-2x²+60x+8000,W2=-19x+950;(2)当x=10时,W总最大为9160元.【解析】【分析】(1)第二期培植的盆景比第一期增加x盆,则第二期培植盆景(50+x)盆,花卉(50-x)盆,根据盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元,②花卉的平均每盆利润始终不变,即可得到利润W1,W2与x的关系式;(2)由W总=W1+W2可得关于x的二次函数,利用二次函数的性质即可得.【详解】(1)第二期培植的盆景比第一期增加x盆,则第二期培植盆景(50+x)盆,花卉[100-(50+x)]=(50-x)盆,由题意得W1=(50+x)(160-2x)=-2x²+60x+8000,W2=19(50-x)=-19x+950;(2)W总=W1+W2=-2x²+60x+8000+(-19x+950)=-2x²+41x+8950,∵-2<0,故当x=10时,W总最大,W总最大=-2×10²+41×10+8950=9160.【点睛】本题考查了二次函数的应用,弄清题意,找准数量关系列出函数解析式是解题的关键.23. 如图1,Rt△ABC中,∠ACB=90°,点D为边AC上一点,DE⊥AB于点E,点M为BD中点,CM的延长线交AB于点F.(1)求证:CM=EM;(2)若∠BAC=50°,求∠EMF的大小;(3)如图2,若△DAE≌△CEM,点N为CM的中点,求证:AN∥EM.【答案】(1)证明见解析;(2)∠EMF=100°;(3)证明见解析.【解析】【分析】(1)在Rt△DCB和Rt△DEB中,利用直角三角形斜边中线等于斜边一半进行证明即可得;(2)根据直角三角形两锐角互余可得∠ABC=40°,根据CM=MB,可得∠MCB=∠CBM,从而可得∠CMD=2∠CBM,继而可得∠CME=2∠CBA=80°,根据邻补角的定义即可求得∠EMF的度数;【详解】(1)∵M为BD中点,Rt△DCB中,MC=BD,Rt△DEB中,EM=BD,∴MC=ME;(2)∵∠BAC=50°,∠ACB=90°,∴∠ABC=90°-50°=40°,∵CM=MB,∴∠MCB=∠CBM,∴∠CMD=∠MCB+∠CBM=2∠CBM,同理,∠DME=2∠EBM,∴∠CME=2∠CBA=80°,∴∠EMF=180°-80°=100°;(3)∵△DAE≌△CEM,CM=EM,∴AE=EM,DE=CM,∠CME=∠DEA=90°,∠ECM=∠ADE,∵CM=EM,∴AE=ED,∴∠DAE=∠ADE=45°,∴∠ABC=45°,∠ECM=45°,又∵CM=ME=BD=DM,∴DE=EM=DM,∴△DEM是等边三角形,∴∠EDM=60°,∴∠MBE=30°,∵CM=BM,∴∠BCM=∠CBM,∵∠MCB+∠ACE=45°,∠CBM+∠MBE=45°,∴∠ACE=∠MBE=30°,∴∠ACM=∠ACE+∠ECM=75°,连接AM,∵AE=EM=MB,∴∠MEB=∠EBM=30°,∠AME=∠MEB=15°,∵∠CME=90°,∴∠CMA=90°-15°=75°=∠ACM,∴AC=AM,∵N为CM中点,∴AN⊥CM,∵CM⊥EM,∴AN∥CM.【点睛】本题考查了三角形全等的性质、直角三角形斜边中线的性质、等腰三角形的判定与性质、三角形外角的性质等,综合性较强,正确添加辅助线、灵活应用相关知识是解题的关键.。
合肥市2017年中考数学试题及答案(Word版)

合肥市2017年中考数学试题及答案(试卷满分150分,考试时间120分钟)一、选择题(本大题共10小题,每小题4分,共40分) 1.12的相反数是 A .12 B .12- C .2 D .-22.计算()23a-的结果是A .6a B .6a - C .5a - D .5a 3.如图,一个放置在水平试验台上的锥形瓶,它的俯视图为4.截止2016年底,国家开发银行对“一带一路”沿线国家累计发放贷款超过1600亿美元,其中1600亿用科学计数法表示为A .101610⨯ B .101.610⨯ C .111.610⨯ D .120.1610⨯ 5.不等式420x ->的解集在数轴上表示为6.直角三角板和直尺如图放置,若120∠=︒,则2∠的度数为【 】A .60︒B .50︒C .40︒D .30︒7.为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘制成如图所示的频数直方图,已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是A .280B .240C .300D .2608. 一种药品原价每盒25元,经过两次降价后每盒16元,设两次降价的百分率都为x ,则x 满足A .()161225x +=B .()251216x -=C .()216125x += D .()225116x -= 9. 已知抛物线2y ax bx c =++与反比例函数by x=的图像在第一象限有一个公共点,其横坐标为 1,则一次函数y bx ac =+的图像可能是10.如图,在矩形ABCD 中,AB =5,AD =3,动点P满足13PAB ABCDS S =V 矩形,则点P 到A ,B 两点距 离之和PA +PB 的最小值为【 】AC .二、填空题(本大题共4小题,每小题5分,满分20分) 11.27的立方根是_____________.12.因式分解:244a b ab b -+=_________________.13.如图,已知等边△ABC 的边长为6,以AB 为直径的⊙O与边AC ,BC 分别交于D ,E 两点,则劣弧DE 的长为 ___________.14. 在三角形纸片ABC 中,90A ∠=︒,30C ∠=︒,AC =30cm ,将该纸片沿过点B 的直线折叠,使点A 落在斜边BC 上的一点E 处,折痕记为BD (如图1), 剪去△CDE 后得到双层△BDE (如图2),再沿着过△BDE 某顶点的直线将双层三角形剪开,使得展开后的平面图 形中有一个是平行四边形,则所得平行四边形的周长为 ___________cm 。
最新-2017年安徽中考数学压轴题集

精品文档2008-2017年安徽省初中学业水平考试数学压轴题集(本卷收录近10年安徽省中考的第10、14、22、23题)一、选择题每小题都给出A、B、C、D四个选项,其中只有一个是正确的.1 .则点P到A=3.动点P满足,B两点距离之和1.如图,在矩形ABCD中,AB=5,AD S S PAB矩形ABCD3)A+PB的最小值为(P3429 A. D.B. C.4125,则∠PBCPAB=,2.如图,Rt△ABC,AB⊥BC,AB=6BC=4,P是△ABC内部的一个动点,且满足∠)CP线段长的最小值为(12131383A. D. B.2 C. 13132题图第2 第1题图22xy?c1)x??ax?(b?yc?bx?ax+y两点,则函数Q和二次函数图象相交于3.如图,一次函数P,12)的图象可能是(D.C. B. A.第3题图l满足:的对角线BD长为,若直线4.如图,正方形ABCD223的距离为;到直线①点Dl.两点到直线l距离相等A②,C )l则符合题意的直线的条数是(D.4C.3 A.1 B.2)ABC.5如图,点P是等边三角形外接圆⊙O上点,在以下判断中,不正确的是(APC当弦A.PB最长时,△是等腰三角形⊥POAC 是等腰三角形时,△B.当APC POC.当⊥=30°ACPAC时,∠精品文档.精品文档D.当∠ACP=30°时,△BPC是直角三角形题图第5 第4题图分别沿斜边中点与这两点的连线6.在一张直角三角形纸片的两直角边上各取一点,,、4、3剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2 )则原直角三角形纸片的斜边长是(1725454或 B. C.10 或D.10A.106题图第、的边于M上一点,过P垂直于AC的直线交菱形ABCD7.如图所示,P是菱形ABCD的对角线ACx的函数图象的大致形状是的面积为y,则y关于=2,BD=1,AP=x,△AMNN两点,设ACB.A.第7题图D. C.,6m/s甲、乙跑步的速度分别为4m/s和米的笔直公路上进行跑步,8.甲、乙两个准备在一段长为1200则两人从起跑至其中一人先到达终点的过程中,若同时起跑,起跑前乙在起点,甲在乙前面100米处,)m甲、乙两之间的距离y()与时间t(s)的函数图象是(D. C. A. B.的度数AIBACD的内切圆圆心,则∠为中,9.△ABCAB=AC,∠A为锐角,CDAB 边上的高,I为△是 C.135° D.150° B.125° A.120°于点N,则MN等于MNM,AB如图,在10.△ABC中,=AC=5BC=6,点为BC中点,⊥AC691212 B. A. C. D.5555精品文档.精品文档第10题图第11题图二、填空题11.在三角形纸片ABC中,∠A=90°,∠C=30°,AC=30cm,将该纸片沿过点B的直线折叠,使点A落在斜边BC上的一点E处,折痕记为BD(如图1),剪去△CDE后得到双层△BDE(如图2),再沿着过△BDE某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为__________cm.12.如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE沿BE折叠,点C恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF 上的点H处,有下列3的正确FG.其中;③;④AG+DF=∠结论:①EBG=45°;②△DEF∽△ABG S=S FGH△△ABG2(把所有正确结论的序号都选上).是14题图第第12题图11ca?b?ab?;=9b+c则有下列结论:①若c≠0,满足13.已知实数a、b、c;②若a=3,则,1??ba把.(其中正确的是bb=c,则abc=0;④若a、、c中只有两个数相等,则a+b+c=8.③若a=所有正确结论的序号都选上)、EFAD的中点,作CE⊥AB,垂足E在线段AB上,连接如图,在14.?ABCD中,AD=2AB,F是.(把所有正确结论的序号都填在横线上)CF,则下列结论中一定成立的是1S=2S.∠AEF;④∠=①;②EFCF;③DFE=3BCD??DCF?CEFBEC△△2,A不经过点(E15.已知矩形纸片ABCD中,AB=1,BC=2,将该纸片折叠成一个平面图形,折痕EF为正方形时,给出以下判断:A'CDF①当四边形F是该矩形边界上的点),折叠后点A落在点A'处,为等腰梯形;④当四边BA'CD=5时,四边EF=2;②当EF=2时,四边形A'CDF为正方形;③当EF (把所有正确结论的序号都填在横线上)EF=5. 其中正确的是.形BA'CD为等腰梯形时,,AB、△PBC、△PDAPCD、△△、如图,16.P是矩形ABCD内的任意一点,连接PAPB、PC、PD,得到P,;③若SS=2S+S,给出如下结论:①、设它们的面积分别是SS、S、SS+S=+S;②SS= S+14142333412132(把所有正确.点在矩形的对角线上其中正确的结论的序号是.,则SS则S=2 ④若=SP2214结论的序号都填在横线上)16 15第题图第题图题图第18精品文档.精品文档a?b?b?a;定义运算,下面给出了关于这种运算的几个结论:①;②17.62?(??b)2)?a?b?a(1a?b?0a?b?0,则a=0.其中正确结论的序号是③若,则;④若.(填ab2)?b(a?a)?(?b上你认为所有正确结论的序号)18.如图,AD是△ABC的边BC上的高,由下列条件中的某一个就能推出△ABC 是等腰三角形的是________ _.(把所有正确答案的序号都填写在横线上)①∠BAD=∠ACD;②∠BAD=∠CAD;③AB+BD=AC+CD;④AB-BD=AC-CD.11,则该x轴的另一交点到原点的距离为1,且图象与19.已知二次函数的图象经过原点及点),?(?42.二次函数的解析式为2c?ax?bx?y的根是a;②方程c20.如图为二次函数<0的图象,在下列说法中:①20?cax??bx x??1x?3a?b?c>0;④当x>1时,y随x,的增大而增大.;③正确的说法有__________.(把正12确的答案的序号都填在横线上)20题图第三、解答题经市场调查,.元,规定每千克不低于成本,且不高于80元21.某超市销售一种商品,成本每千克40(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:每天的(2)设商品每天的总利润为W(元),求W与x之间的函数表达式(利润=收入-成本);(3)试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价为多少元时获得最大利润,最大利润是多少?精品文档.精品文档22.已知正方形ABCD,点M为AB的中点.(1)如图1,点G为线段CM上的一点,且∠AGB=90°,延长AG、BG分别与边BC、CD交于点E、F.①求证:BE=CF;②求证:. 2CE?BCBE?(2)如图2,在边BC上取一点E,满足,连接AE交CM 于点G,连接BG并延长2CEBE??BC交CD于点F,求tan∠CBF的值.2 22 题图第 1 第22题图2bxy ax+ 23.如图,二次函数的图象经过点与.(6,0)A(2,4)B的值;1()求a,bOACB,写出四边形<(两点之间的一动点,横坐标为x2<x6)BAC)(2点是该二次函数图象上,.S的最大值的函数表达式,并求的横坐标关于点的面积SCx精品文档.精品文档24.如图,A,B分别在射线OA,ON上,且∠MON为钝角,现以线段OA,OB 为斜边向∠MON的外侧作等腰直角三角形,分别是△OAP,△OBQ,点C,D,E分别是OA,OB,AB的中点.(1)求证:△PCE≌△EDQ;(2)延长PC,QD交于点R.①如图1,若∠MON=150°,求证:△ABR为等边三角形;AB②如图3,若△ARB∽△PEQ,求∠MON大小和的值.PQ第24题图 1第题第24 2 图3 24题图精品文档.精品文档25.为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80m的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC的长度为xm,2.的面积为ym矩形区域ABCD(1)求y与x之间的函数关系式,并注明自变量x的取值范围;(2)x为何值时,y有最大值?最大值是多少?题图第25作F作AB的垂线,过点AB、CD的中点,过点E,在四边形26.如图1ABCD 中,点E、F分别是BGC.、DG,且∠AGD=∠CD的垂线,两垂线交于点G,连接AG、BG、CG BC;1)求证:AD=(EGF;AGD)求证:△∽△(2AD.的值、BC所在直线互相垂直,求(3)如图2,若AD EF2 26题图第题图第261精品文档.精品文档27.若两个二次函数图象的顶点、开口方向都相同,则称这两个二次函数为“同簇二次函数”.(1)请写出两个为“同簇二次函数”的函数;222y1?2m?y?2x?4mx5ax?bx?y?,已知关于x的二次函数其中的图象经过点,和2()(1,1)A112y?yyyy的最大值. ≤3时,”,求函数0若的表达式,并求出当≤与x 为“同簇二次函数2121228.如图1,正六边形ABCDEF的边长为a,P是BC边上一动点,过P作PM∥AB交AF于M,作PN∥CD交DE于N.(1)①∠MPN= ;②求证:PM+PN=3a;(2)如图2,点O是AD的中点,连接OM、ON,求证:OM=ON;(3)如图3,点O是AD的中点,OG平分∠MON,判断四边形OMGN是否为特殊四边形?并说明理由.3第28题图 2 28 1 28第题图第题图精品文档.精品文档29.某大学生利用暑假40天社会实践参与了一家网店的经营,了解到一种成本为(2)求该网店第x天获得的利润y关于x的函数关系式;(3)这40天中该网店第几天获得的利润最大?最大利润是多少?30.我们把由不平行于底边的直线截等腰三角形的两腰所得的四边形称为“准等腰梯形”;如图1,四边形ABCD即为“准等腰梯形”;其中∠B=∠C.(1)在图1所示的“准等腰梯形”ABCD中,选择合适的一个顶点引一条直线将四边形ABCD分割成一个等腰梯形和一个三角形或分割成一个等腰三角形和一个梯形;(画出一种示意图即可)(2)如图2,在“准等腰梯形”ABCD中∠B=∠C.E为边BC上一点,若AB ∥DE,AE∥DC,求证:ABBE;?DCEC(3)在由不平行于BC的直线AD截△PBC所得的四边形ABCD中,∠BAD与∠ADC的平分线交于点E.若EB=EC,请问当点E在四边形ABCD内部时(即图3所示情形),四边形ABCD 是不是“准等腰梯形”,为什么?若点E不在四边形ABCD内部时,情况又将如何?写出你的结论.(不必说明理由)第30题图1 第30题图2 第30题图3精品文档.精品文档31.如图1,在△ABC中,D、E、F分别为三边的中点,G点在边AB上,△BDG 与四边形ACDG的周长相等,设BC=a、AC=b、AB=c.(1)求线段BG的长;(2)求证:DG平分∠EDF;(3)连接CG,如图2,若△BDG与△DFG相似,求证:BG⊥CG.2 题图第31 第31题图1处发出,把球看成点,其运2m的A.如图,排球运动员站在点O处练习发球,将球从O点正上方322h?(x?6)y?a点的水平距离为)满足关系式(m.已知球网与O)与运行的水平距离行的高度y(mx O点的水平距离为18m. 2.43m9m,高度为,球场的边界距(不要求写出自变量与x的关系式;x的取值范围)y)当(1h=2.6时,求h)当=2.6时,球能否越过球网?球会不会出界?请说明理由;(2. )若球一定能越过球网,又不出边界,求h的取值范围(3题图第32精品文档.精品文档33.在△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕顶点C顺时针旋转,旋转角为. △A'B'C',得到?? )180(0?<?<.3 第33题图第33题图2 第33题图1CD相交于点D,证明:△CDA是等边三角形;时,设(1)如图(1),当AB∥BCBA与SS求证:.ACA'和△BCB'的面积分别为和)如图((22),连接A'A、B'B,设△'BCB'ACA1:3S?S: . ''BCBACA长P °时,E θ= a'3(3)如图(),设AC中点为E,BA'中点为P,AC=,连接EP,当. 度最大,最大值为上,这四条直线中相邻两条之间l、l如图,正方形ABCD的四个顶点分别在四条平行线l、l、.344312. )0,h>0>(的距离依次为h、h、hh>0,h313122 h)求证h=;(13122h??(hh)?S(2)设正方形ABCD求证;的面积为S.1233. 随S)若(3h的变化情况的面积变化时,说明正方形h,当ABCD1hh??11212精品文档.精品文档第34题图35.春节期间某水库养殖场为适应市场需求,连续用20天时间,采用每天降低水位以减少捕捞成本的办法,对水库中某种鲜鱼进行捕捞、销售.九(1)班数学建模兴趣小组根据调查,整理出第x天(1≤x≤20且x为整数)的捕捞与销售的相关信息如下:鲜鱼销售单价(元/kg)20x?5 /kg)单位捕捞成本(元5950?x kg)捕捞量((1)在此期间该养殖场每天的捕捞量与前一天的捕劳量相比是如何变化的?(2)假定该养殖场每天捕捞和销售的鲜鱼没有损失,且能在当天全部售出,求第x天的收入(y元)与x(天)之间的函数关系式;(当天收入=日销售额-日捕捞成本)(3)试说明(2)中的函数y随x的变化情况,并指出在第几天y取得最大值,最大值是多少?36.如图,已知△ABC∽△ABC,相似比为k(k>1),且△ABC的三边长分别为a、b、c(a>b>c),111△ABC的三边长分别为a、b、c. 111111(1)若c=a,求证:a=kc1(2)若c=a,试给出符合条件的一对△ABC和△ABC,使得a、b、c和a、b、c都是正整数,1111111并加以说明;(3)若b=a,c=b,是否存在△ABC和△ABC,使得k=2?请说明理由. 11111精品文档.精品文档第36题图37.如图,M为线段AB的中点,AE与BD交于点C,∠DME=∠A=∠B=α,且DM交AC于F,ME交BC于G.(1)写出图中三对相似三角形,并证明其中的一对;(2)连结FG,如果α=45°,AB=,AF=3,求FG的长.24题图37 第)所示.138.已知某种水果的批发单价与批发量的函数关系如图(1)请说明图中①、②两段函数图象的实际意义.(函数关系式;在下图的坐)之间的kg (元)与批发量(2)写出批发该种水果的资金金额wm(么范围内,以同样的资金可以批发到较多数量的该种水果.标系中画出该函数图象;指出金额在什)所示,该2 3()经调查,某经销商销售该种水果的日最高销量与零售价之间的函数关系如图(精品文档.精品文档经销商拟每日售出60kg以上该种水果,且当日零售价不变,请你帮助该经销商设计进货和销售的方案,使得当日获得的利润最大.2 第38题图第38题图1OC. OB的两边AB、AC所在直线的距离相等,且=到39.已知:点O△ABC ;AC在BC上,求证:AB=1(1)如图,若点O ;的内部,求证:AB=ACO(2)如图2,若点在△ABC. =AC成立吗?请画图表示ABC(3)若点O在△的外部,AB21 39 第题图题图第39精品文档.精品文档40.刚回营地的两个抢险分队又接到救灾命令:一分队立即出发往30千米的A镇;二分队因疲劳可在营地休息a(0≤a≤3)小时再往A镇参加救灾.一分队了发后得知,唯一通往A镇的道路在离营地10千米处发生塌方,塌方地形复杂,必须由一分队用1小时打通道路,已知一分队的行进速度为5千米/时,二分队的行进速度为(4+a)千米/时.(1)若二分队在营地不休息,问二分队几小时能赶到A镇?(2)若二分队和一分队同时赶到A镇,二分队应在营地休息几小时?(3)下列图象中,①②分别描述一分队和二分队离A镇的距离y(千米)和时间x(小时)的函数关系,请写出你认为所有可能合理的代号,并说明它们的实际意义.d)( c b )( a ()()第40题图精品文档.。
安徽省六安市中考数学试卷

安徽省六安市中考数学试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)下列说法错误的是()A . 任何有理数都有倒数B . 互为倒数的两数的积等于1C . 互为倒数的两数符号相同D . 1和其本身互为倒数2. (2分) (2020八上·柳州期末) 科学家发现一种病毒的直径为微米,则用科学记数法表示为()A .B .C .D .3. (2分)如图,矩形ABCD绕着点A顺时针旋转60°得到矩形AEFG,若BC=3,且E恰好落在CD上,则的长为()A .B . πC . πD . π4. (2分) (2018九上·防城港期中) 设x1 , x2是一元二次方程x2-2x-3=0的两根,则x1+x2=()A . -2B . 2C . 3D . -35. (2分)(2017·广东模拟) 如图,是由几个相同的小正方体组成的一个几何体的三视图,这个几何体可能是()A .B .C .D .6. (2分)某班七个兴趣小组人数分别为4,4,5,x,6,6,7.已知这组数据的平均数是5,则这组数据的中位数是()A . 7B . 6C . 5D . 47. (2分) (2020八上·息县期末) 如图,以的顶点为圆心,适当长为半径画弧,分别交于点,交于点;再分别以,为圆心,大于的长为半径画弧,两弧在内部交于点,过点作射线,连接,则下列说法不一定成立的是()A . 射线是的平分线B . 是等腰三角形C . ,两点关于所在直线对称D . ,两点关于所在直线对称8. (2分) (2018九上·南昌期中) 如图,直线y=kx+b(k≠0)与抛物线y=ax2(a≠0)交于A,B两点,且点A 的横坐标是-2,点B的横坐标是3,则以下结论:①抛物线y=ax2(a≠0)的图象的顶点一定是原点;②x>0时,直线y=kx+b(k≠0)与抛物线y=ax2(a≠0)的函数值都随着x的增大而增大;③AB的长度可以等于5;④△OAB有可能成为等边三角形;⑤当-3<x<2时,ax2+kx<b,其中正确的结论是()A . ①②④B . ①②⑤C . ②③④D . ③④⑤二、填空题 (共8题;共8分)9. (1分) (2019九下·武威月考) 分解因式: ________.10. (1分) (2017七下·岳池期末) 如图折叠一张矩形纸片,已知∠1=70°,则∠2的度数是________.11. (1分) (2016八上·县月考) 将抛物线向左平移2个单位,向上平移1个单位后,得以新的抛物线,那么新的抛物线的表达式是________.12. (1分) (2019八上·朝阳期末) 如图,Rt△ABC中,∠C=90°,D、E分别是边AB、AC的点,将△ABC 沿DE折叠,使点A的对称点A′恰好落在BC的中点处.若AB=10,BC=6,则AE的长为________.13. (1分)某钢铁厂今年1月份钢产量为4万吨,三月份钢产量为4.84万吨,每月的增长率相同,问2、3月份平均每月的增长率是________.14. (1分) (2019七下·宜宾期中) 对任意有理数x ,用表示不大于x的最大整数.例如:① ;② ;③ ;④ 若,则x的取值范围是≤ <;以上结论正确是________.(把你认为符合题意结论的序号都填上)15. (1分)如图,在菱形ABCD中,AB=BD,点E,F分别在BC,CD边上,且CE=DF,BF与DE交于点G,若BG=2,DG=4,则CD长为________.16. (1分) (2017八下·射阳期末) 如图,矩形ABCD中,AB=4,AD=6,点E在边AD上,且AE:ED=1:2.动点P 从点A出发,沿AB运动到点B停止.过点E作EF⊥PE交射线BC于点F .设点M是线段EF的中点,则在点P运动的整个过程中,点M的运动路径长为________.三、解答题 (共8题;共80分)17. (10分)(2020·如皋模拟) 计算或化简:(1)(2)18. (5分)如图,在▱ABCD中,AC是对角线,BE⊥AC,DF⊥AC,垂足分别为点E,F,求证:AE=CF.19. (15分) (2018九上·临渭期末) 为进一步深化基教育课程改革,构建符合素质教育要求的学校课程体系,某学校自主开发了A书法、B阅读,C足球,D器乐四门校本选修课程供学生选择,每门课程被选到的机会均等.(1)学生小红计划选修两门课程,请写出所有可能的选法;(2)若学生小明和小刚各计划送修一门课程,则他们两人恰好选修同一门课程的概率为多少?20. (5分)某商店第一次用600元购进2B铅笔若干支,第二次又用600元购进该款铅笔,但这次每支的进价是第一次进价的倍,购进数量比第一次少了30支.求第一次每支铅笔的进价是多少元?21. (5分)(2017·马龙模拟) 如图,小芸在自家楼房的窗户A处,测量楼前的一棵树CD的高.现测得树顶C处的俯角为45°,树底D处的俯角为60°,楼底到大树的距离BD为20米.请你帮助小芸计算树的高度(精确到0.1米).22. (10分)(2017·苏州模拟) 如图,函数y= x与函数y= (x>0)的图象相交于点A(n,4).点B在函数y= (x>0)的图象上,过点B作BC∥x轴,BC与y轴相交于点C,且AB=AC.(1)求m、n的值;(2)求直线AB的函数表达式.23. (15分) (2019九上·泰州月考) 如图,在平面直角坐标系中,⊙A的半径为1,圆心A点的坐标为(2,1).直线OM是一次函数y=-x的图象.将直线OM沿x轴正方向平行移动.(1)填空:直线OM与x轴所夹的锐角度数为________°;(2)求出运动过程中⊙A与直线OM相切时的直线OM的函数关系式;(可直接用(1)中的结论)(3)运动过程中,当⊙A与直线OM相交所得的弦对的圆心角为90°时,直线OM的函数关系式.24. (15分)(2017·滦县模拟) 如图,抛物线y=x2﹣2x﹣3与x轴交A、B两点(A点在B点左侧),直线l 与抛物线交于A、C两点,其中C点的横坐标为2.(1)求A、B两点的坐标及直线AC的函数表达式;(2)P是线段AC上的一个动点,(不与A、C重合),过P点作y轴的平行线交抛物线于E点,求线段PE长度的最大值,并直接写出△ACE面积的最大值;(3)点G为抛物线上的动点,在x轴上是否存在点F,使A、C、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,直接写出所有满足条件的F点坐标;如果不存在,请说明理由.参考答案一、单选题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共8题;共8分)9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共8题;共80分)17-1、17-2、18-1、19-1、19-2、20-1、21-1、22-1、22-2、23-1、23-2、23-3、24-1、24-2、24-3、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年安徽省中考数学试卷一、选择题(每题4发,共40分)1.(4分)12的相反数是( )A .12B .﹣12C .2D .﹣22.(4分)计算(﹣a 3)2的结果是( ) A .a 6 B .﹣a 6 C .﹣a 5 D .a 53.(4分)如图,一个放置在水平实验台上的锥形瓶,它的俯视图为( )A .B .C .D .4.(4分)截至2016年底,国家开发银行对“一代一路”沿线国家累计贷款超过1600亿美元,其中1600亿用科学记数法表示为( ) A .16×1010B .1.6×1010C .1.6×1011D .0.16×10125.(4分)不等式4﹣2x >0的解集在数轴上表示为( ) A . B .C .D .6.(4分)直角三角板和直尺如图放置,若∠1=20°,则∠2的度数为( )A .60°B .50°C .40°D .30°7.(4分)为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘制成如图所示的频数直方图,已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是( )A .280B .240C .300D .2608.(4分)一种药品原价每盒25元,经过两次降价后每盒16元.设两次降价的百分率都为x ,则x 满足( )A .16(1+2x )=25B .25(1﹣2x )=16C .16(1+x )2=25D .25(1﹣x )2=169.(4分)已知抛物线y=ax 2+bx +c 与反比例函数y=b x的图象在第一象限有一个公共点,其横坐标为1,则一次函数y=bx +ac 的图象可能是( )A .B .C .D .10.(4分)如图,在矩形ABCD 中,AB=5,AD=3,动点P 满足S △PAB =13S 矩形ABCD ,则点P 到A 、B 两点距离之和PA +PB 的最小值为( )A .√29B .√34C .5√2D .√41二、填空题(每题5分,共20分) 11.(5分)27的立方根为 .12.(5分)因式分解:a 2b ﹣4ab +4b= .13.(5分)如图,已知等边△ABC 的边长为6,以AB 为直径的⊙O 与边AC 、BC分别交于D 、E 两点,则劣弧DÊ的长为 .14.(5分)在三角形纸片ABC 中,∠A=90°,∠C=30°,AC=30cm ,将该纸片沿过点B 的直线折叠,使点A 落在斜边BC 上的一点E 处,折痕记为BD (如图1),减去△CDE 后得到双层△BDE (如图2),再沿着过△BDE 某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为 cm .三、(每题8分,共16分)15.(8分)计算:|﹣2|×cos60°﹣(13)﹣1.16.(8分)《九章算术》中有一道阐述“盈不足术”的问题,原文如下: 今有人共买物、人出八,盈三;人出七,不足四,问人数,物价各几何? 译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少? 请解答上述问题.四、(每题8分,共16分)17.(8分)如图,游客在点A 处做缆车出发,沿A ﹣B ﹣D 的路线可至山顶D 处,假设AB 和BD 都是直线段,且AB=BD=600m ,α=75°,β=45°,求DE 的长. (参考数据:sin75°≈0.97,cos75°≈0.26,√2≈1.41)18.(8分)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC和△DEF(顶点为网格线的交点),以及过格点的直线l.(1)将△ABC向右平移两个单位长度,再向下平移两个单位长度,画出平移后的三角形.(2)画出△DEF关于直线l对称的三角形.(3)填空:∠C+∠E=.五、(每题10分,共20分)19.(10分)【阅读理解】我们知道,1+2+3+…+n=n(n+1)2,那么12+22+32+…+n2结果等于多少呢?在图1所示三角形数阵中,第1行圆圈中的数为1,即12,第2行两个圆圈中数的和为2+2,即22,…;第n行n个圆圈中数的和为n+n+⋯+n︸n个n,即n2,这样,该三角形数阵中共有n(n+1)2个圆圈,所有圆圈中数的和为12+22+32+…+n2.【规律探究】将三角形数阵经两次旋转可得如图2所示的三角形数阵,观察这三个三角形数阵各行同一位置圆圈中的数(如第n﹣1行的第一个圆圈中的数分别为n﹣1,2,n),发现每个位置上三个圆圈中数的和均为,由此可得,这三个三角形数阵所有圆圈中数的总和为3(12+22+32+…+n2)=,因此,12+22+32+…+n2=.【解决问题】根据以上发现,计算:12+22+32+⋯+201721+2+3+⋯+2017的结果为.20.(10分)如图,在四边形ABCD中,AD=BC,∠B=∠D,AD不平行于BC,过点C作CE∥AD交△ABC的外接圆O于点E,连接AE.(1)求证:四边形AECD为平行四边形;(2)连接CO,求证:CO平分∠BCE.六、(本题满分12分)21.(12分)甲、乙、丙三位运动员在相同条件下各射靶10次,每次射靶的成绩如下:甲:9,10,8,5,7,8,10,8,8,7乙:5,7,8,7,8,9,7,9,10,10丙:7,6,8,5,4,7,6,3,9,5(1)根据以上数据完成下表:平均数中位数方差甲88乙88 2.2丙63(2)根据表中数据分析,哪位运动员的成绩最稳定,并简要说明理由;(3)比赛时三人依次出场,顺序由抽签方式决定,求甲、乙相邻出场的概率.七、(本题满分12分)22.(12分)某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y(千克)与每千克售价x (元)满足一次函数关系,部分数据如下表:售价x(元/千克)506070销售量y(千克)1008060(1)求y与x之间的函数表达式;(2)设商品每天的总利润为W(元),求W与x之间的函数表达式(利润=收入﹣成本);(3)试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价为多少元时获得最大利润,最大利润是多少?八、(本题满分14分)23.(14分)已知正方形ABCD,点M边AB的中点.(1)如图1,点G为线段CM上的一点,且∠AGB=90°,延长AG、BG分别与边BC、CD交于点E、F.①求证:BE=CF;②求证:BE2=BC•CE.(2)如图2,在边BC上取一点E,满足BE2=BC•CE,连接AE交CM于点G,连接BG并延长CD于点F,求tan∠CBF的值.2017年安徽省中考数学试卷参考答案与试题解析一、选择题(每题4发,共40分)1.(4分)(2017•安徽)12的相反数是( )A .12B .﹣12C .2D .﹣2【分析】根据相反数的概念解答即可.【解答】解:12的相反数是﹣12,添加一个负号即可.故选:B .【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.(4分)(2017•安徽)计算(﹣a 3)2的结果是( ) A .a 6 B .﹣a 6 C .﹣a 5 D .a 5【分析】根据整式的运算法则即可求出答案. 【解答】解:原式=a 6, 故选(A )【点评】本题考查整式的运算,解题的关键是熟练运用幂的乘方公式,本题属于基础题型.3.(4分)(2017•安徽)如图,一个放置在水平实验台上的锥形瓶,它的俯视图为( )A .B .C .D .【分析】俯视图是分别从物体的上面看,所得到的图形.【解答】解:一个放置在水平实验台上的锥形瓶,它的俯视图为两个同心圆.故选B.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.4.(4分)(2017•安徽)截至2016年底,国家开发银行对“一代一路”沿线国家累计贷款超过1600亿美元,其中1600亿用科学记数法表示为()A.16×1010B.1.6×1010C.1.6×1011D.0.16×1012【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:1600亿用科学记数法表示为1.6×1011,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.(4分)(2017•安徽)不等式4﹣2x>0的解集在数轴上表示为()A.B.C.D.【分析】根据解一元一次不等式基本步骤:移项、系数化为1可得.【解答】解:移项,得:﹣2x>﹣4,系数化为1,得:x<2,故选:D.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.6.(4分)(2017•安徽)直角三角板和直尺如图放置,若∠1=20°,则∠2的度数为()A.60°B.50°C.40°D.30°【分析】过E作EF∥AB,则AB∥EF∥CD,根据平行线的性质即可得到结论.【解答】解:如图,过E作EF∥AB,则AB∥EF∥CD,∴∠1=∠3,∠2=∠4,∵∠3+∠4=60°,∴∠1+∠2=60°,∵∠1=20°,∴∠2=40°,故选C.【点评】本题考查了平行线的性质,熟练掌握平行线的性质定理是解题的关键.7.(4分)(2017•安徽)为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘制成如图所示的频数直方图,已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是()A.280 B.240 C.300 D.260【分析】用被抽查的100名学生中参加社团活动时间在8~10小时之间的学生所占的百分数乘以该校学生总人数,即可得解.【解答】解:由题可得,抽查的学生中参加社团活动时间在8~10小时之间的学生数为100﹣30﹣24﹣10﹣8=28(人),∴1000×28100=280(人),即该校五一期间参加社团活动时间在8~10小时之间的学生数大约是280人.故选:A.【点评】本题考查了频数分布直方图以及用样本估计总体,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.8.(4分)(2017•安徽)一种药品原价每盒25元,经过两次降价后每盒16元.设两次降价的百分率都为x,则x满足()A.16(1+2x)=25 B.25(1﹣2x)=16 C.16(1+x)2=25 D.25(1﹣x)2=16【分析】等量关系为:原价×(1﹣降价的百分率)2=现价,把相关数值代入即可.【解答】解:第一次降价后的价格为:25×(1﹣x);第二次降价后的价格为:25×(1﹣x)2;∵两次降价后的价格为16元,∴25(1﹣x)2=16.故选D.【点评】本题考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.9.(4分)(2017•安徽)已知抛物线y=ax2+bx+c与反比例函数y=bx的图象在第一象限有一个公共点,其横坐标为1,则一次函数y=bx+ac的图象可能是()A .B .C .D .【分析】根据抛物线y=ax 2+bx +c与反比例函数y=bx的图象在第一象限有一个公共点,可得b >0,根据交点横坐标为1,可得a +b +c=b ,可得a ,c 互为相反数,依此可得一次函数y=bx +ac 的图象. 【解答】解:∵抛物线y=ax 2+bx +c与反比例函数y=bx的图象在第一象限有一个公共点, ∴b >0,∵交点横坐标为1, ∴a +b +c=b , ∴a +c=0, ∴ac <0,∴一次函数y=bx +ac 的图象经过第一、二、三象限. 故选:B .【点评】考查了一次函数的图象,反比例函数的性质,二次函数的性质,关键是得到b >0,ac <0.10.(4分)(2017•安徽)如图,在矩形ABCD 中,AB=5,AD=3,动点P 满足S △PAB =13S 矩形ABCD ,则点P 到A 、B 两点距离之和PA +PB 的最小值为( )A .√29B .√34C .5√2D .√41【分析】首先由S △PAB =13S 矩形ABCD ,得出动点P 在与AB 平行且与AB 的距离是2的直线l 上,作A 关于直线l 的对称点E ,连接AE ,连接BE ,则BE 就是所求的最短距离.然后在直角三角形ABE 中,由勾股定理求得BE 的值,即PA +PB 的最小值.【解答】解:设△ABC 中AB 边上的高是h .∵S △PAB =13S 矩形ABCD ,∴12AB•h=13AB•AD , ∴h=23AD=2,∴动点P 在与AB 平行且与AB 的距离是2的直线l 上,如图,作A 关于直线l 的对称点E ,连接AE ,连接BE ,则BE 就是所求的最短距离. 在Rt △ABE 中,∵AB=5,AE=2+2=4, ∴BE=√AB 2+AE 2=√52+42=√41, 即PA +PB 的最小值为√41. 故选D .【点评】本题考查了轴对称﹣最短路线问题,三角形的面积,矩形的性质,勾股定理,两点之间线段最短的性质.得出动点P 所在的位置是解题的关键.二、填空题(每题5分,共20分)11.(5分)(2017•安徽)27的立方根为 3 . 【分析】找到立方等于27的数即可. 【解答】解:∵33=27, ∴27的立方根是3, 故答案为:3.【点评】考查了求一个数的立方根,用到的知识点为:开方与乘方互为逆运算.12.(5分)(2017•安徽)因式分解:a 2b ﹣4ab +4b= b (a ﹣2)2 . 【分析】原式提取b ,再利用完全平方公式分解即可.【解答】解:原式=b (a 2﹣4a +4)=b (a ﹣2)2, 故答案为:b (a ﹣2)2【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.13.(5分)(2017•安徽)如图,已知等边△ABC 的边长为6,以AB 为直径的⊙O 与边AC 、BC 分别交于D 、E 两点,则劣弧DÊ的长为 π .【分析】连接OD 、OE ,z 证明△AOD 、△BOE 是等边三角形,得出∠AOD=∠BOE=60°,求出∠DOE=60°,再由弧长公式即可得出答案. 【解答】解:连接OD 、OE ,如图所示: ∵△ABC 是等边三角形, ∴∠A=∠B=∠C=60°, ∵OA=OD ,OB=OE ,∴△AOD 、△BOE 是等边三角形, ∴∠AOD=∠BOE=60°, ∴∠DOE=60°,∵OA=12AB=3,∴DE ̂的长=60π×3180=π;故答案为:π.【点评】本题考查了等边三角形的性质与判定、弧长公式;熟练掌握弧长公式,证明三角形是等边三角形是解决问题的关键.14.(5分)(2017•安徽)在三角形纸片ABC 中,∠A=90°,∠C=30°,AC=30cm ,将该纸片沿过点B 的直线折叠,使点A 落在斜边BC 上的一点E 处,折痕记为BD (如图1),减去△CDE 后得到双层△BDE (如图2),再沿着过△BDE 某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为 40或80√33cm .【分析】解直角三角形得到AB=10√3,∠ABC=60°,根据折叠的性质得到∠ABD=∠EBD=12∠ABC=30°,BE=AB=10√3,求得DE=10,BD=20,如图1,平行四边形的边是DF ,BF ,如图2,平行四边形的边是DE ,EG ,于是得到结论. 【解答】解:∵∠A=90°,∠C=30°,AC=30cm , ∴AB=10√3,∠ABC=60°, ∵△ADB ≌△EDB ,∴∠ABD=∠EBD=12∠ABC=30°,BE=AB=10√3,∴DE=10,BD=20,如图1,平行四边形的边是DF ,BF ,且DF=BF=20√33, ∴平行四边形的周长=80√33,如图2,平行四边形的边是DE ,EG ,且DF=BF=10,∴平行四边形的周长=40,综上所述:平行四边形的周长为40或80√33,故答案为:40或80√33.【点评】本题考查了剪纸问题,平行四边形的性质,解直角三角形,正确的理解题意是解题的关键.三、(每题8分,共16分)15.(8分)(2017•安徽)计算:|﹣2|×cos60°﹣(13)﹣1.【分析】分别利用负整数指数幂的性质以及绝对值的性质、特殊角的三角函数值化简求出答案.【解答】解:原式=2×12﹣3=﹣2.【点评】此题主要考查了负整数指数幂的性质以及绝对值、特殊角的三角函数值等知识,正确化简各数是解题关键.16.(8分)(2017•安徽)《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物、人出八,盈三;人出七,不足四,问人数,物价各几何? 译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少? 请解答上述问题.【分析】根据这个物品的价格不变,列出一元一次方程进行求解即可. 【解答】解:设共有x 人,可列方程为:8x ﹣3=7x +4. 解得x=7, ∴8x ﹣3=53,答:共有7人,这个物品的价格是53元.【点评】本题考查了一元一次方程的应用,解题的关键是明确题意,找出合适的等量关系,列出相应的方程.四、(每题8分,共16分)17.(8分)(2017•安徽)如图,游客在点A 处做缆车出发,沿A ﹣B ﹣D 的路线可至山顶D 处,假设AB 和BD 都是直线段,且AB=BD=600m ,α=75°,β=45°,求DE 的长.(参考数据:sin75°≈0.97,cos75°≈0.26,√2≈1.41)【分析】在R △ABC 中,求出BC=AB•cos75°≈600×0.26≈156m ,在Rt △BDF 中,求出DF=BD•sin45°=600×√22≈300×1.41≈423,由四边形BCEF 是矩形,可得EF=BC ,由此即可解决问题.【解答】解:在Rt △ABC 中,∵AB=600m ,∠ABC=75°, ∴BC=AB•cos75°≈600×0.26≈156m , 在Rt △BDF 中,∵∠DBF=45°,∴DF=BD•sin45°=600×√22≈300×1.41≈423,∵四边形BCEF 是矩形,∴EF=BC=156,∴DE=DF +EF=423+156=579m . 答:DE 的长为579m .【点评】本题考查解直角三角形的应用,锐角三角函数、矩形的性质等知识,解题的关键是学会利用直角三角形解决问题,属于中考常考题型.18.(8分)(2017•安徽)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC和△DEF(顶点为网格线的交点),以及过格点的直线l.(1)将△ABC向右平移两个单位长度,再向下平移两个单位长度,画出平移后的三角形.(2)画出△DEF关于直线l对称的三角形.(3)填空:∠C+∠E=45°.【分析】(1)将点A、B、C分别右移2个单位、下移2个单位得到其对应点,顺次连接即可得;(2)分别作出点D、E、F关于直线l的对称点,顺次连接即可得;(3)连接A′F′,利用勾股定理逆定理证△A′C′F′为等腰直角三角形即可得.【解答】解:(1)△A′B′C′即为所求;(2)△D′E′F′即为所求;(3)如图,连接A′F′,∵△ABC≌△A′B′C′、△DEF≌△D′E′F′,∴∠C+∠E=∠A′C′B′+∠D′E′F′=∠A′C′F′,∵A′C′=√12+22=√5、A′F′=√12+22=√5,C′F′=√12+32=√10,∴A′C′2+A′F′2=5+5=10=C′F′2,∴△A′C′F′为等腰直角三角形,∴∠C+∠E=∠A′C′F′=45°,故答案为:45°.【点评】本题主要考查作图﹣平移变换、轴对称变换,熟练掌握平移变换、轴对称变换及勾股定理逆定理是解题的关键.五、(每题10分,共20分)19.(10分)(2017•安徽)【阅读理解】我们知道,1+2+3+…+n=n(n+1)2,那么12+22+32+…+n2结果等于多少呢?在图1所示三角形数阵中,第1行圆圈中的数为1,即12,第2行两个圆圈中数的和为2+2,即22,…;第n行n个圆圈中数的和为n+n+⋯+n︸n个n,即n2,这样,该三角形数阵中共有n(n+1)2个圆圈,所有圆圈中数的和为12+22+32+…+n2.【规律探究】将三角形数阵经两次旋转可得如图2所示的三角形数阵,观察这三个三角形数阵各行同一位置圆圈中的数(如第n ﹣1行的第一个圆圈中的数分别为n ﹣1,2,n ),发现每个位置上三个圆圈中数的和均为 2n +1 ,由此可得,这三个三角形数阵所有圆圈中数的总和为3(12+22+32+…+n 2)=n(n+1)(2n+1)2,因此,12+22+32+…+n 2= n(n+1)(2n+1)6.【解决问题】根据以上发现,计算:12+22+32+⋯+201721+2+3+⋯+2017的结果为 1345 .【分析】【规律探究】将同一位置圆圈中的数相加即可,所有圈中的数的和应等于同一位置圆圈中的数的和乘以圆圈个数,据此可得,每个三角形数阵和即为三个三角形数阵和的13,从而得出答案;【解决问题】运用以上结论,将原式变形为16×2017×(2017+1)×(2×2017+1)12×2017×(2017+1),化简计算即可得. 【解答】解:【规律探究】由题意知,每个位置上三个圆圈中数的和均为n ﹣1+2+n=2n +1, 由此可得,这三个三角形数阵所有圆圈中数的总和为: 3(12+22+32+…+n 2)=(2n +1)×(1+2+3+…+n )=(2n +1)×n(n+1)2, 因此,12+22+32+…+n 2=n(2n+1)(n+1)6;故答案为:2n +1,n(n+1)(2n+1)2,n(n+1)(2n+1)6;【解决问题】原式=16×2017×(2017+1)×(2×2017+1)12×2017×(2017+1)=13×(2017×2+1)=1345, 故答案为:1345.【点评】本题主要考查数字的变化类,阅读材料、理解数列求和的具体方法得出规律,并运用规律解决实际问题是解题的关键.20.(10分)(2017•安徽)如图,在四边形ABCD中,AD=BC,∠B=∠D,AD不平行于BC,过点C作CE∥AD交△ABC的外接圆O于点E,连接AE.(1)求证:四边形AECD为平行四边形;(2)连接CO,求证:CO平分∠BCE.【分析】(1)根据圆周角定理得到∠B=∠E,得到∠E=∠D,根据平行线的判定和性质定理得到AE∥CD,证明结论;(2)作OM⊥BC于M,ON⊥CE于N,根据垂径定理、角平分线的判定定理证明.【解答】证明:(1)由圆周角定理得,∠B=∠E,又∠B=∠D,∴∠E=∠D,∵CE∥AD,∴∠D+∠ECD=180°,∴∠E+∠ECD=180°,∴AE∥CD,∴四边形AECD为平行四边形;(2)作OM⊥BC于M,ON⊥CE于N,∵四边形AECD为平行四边形,∴AD=CE,又AD=BC,∴CE=CB,∴OM=ON,又OM⊥BC,ON⊥CE,∴CO平分∠BCE.【点评】本题考查的是三角形的外接圆与外心,掌握平行四边形的判定定理、垂径定理、圆周角定理是解题的关键.六、(本题满分12分)21.(12分)(2017•安徽)甲、乙、丙三位运动员在相同条件下各射靶10次,每次射靶的成绩如下:甲:9,10,8,5,7,8,10,8,8,7乙:5,7,8,7,8,9,7,9,10,10丙:7,6,8,5,4,7,6,3,9,5(1)根据以上数据完成下表:平均数 中位数 方差 甲8 8 2 乙8 8 2.2 丙 6 6 3(2)根据表中数据分析,哪位运动员的成绩最稳定,并简要说明理由;(3)比赛时三人依次出场,顺序由抽签方式决定,求甲、乙相邻出场的概率.【分析】(1)根据方差公式和中位数的定义分别进行解答即可;(2)根据方差公式先分别求出甲、乙、丙的方差,再根据方差的意义即方差越小越稳定即可得出答案;(3)根据题意先画出树状图,得出所有情况数和甲、乙相邻出场的情况数,再根据概率公式即可得出答案.【解答】解:(1)∵甲的平均数是8,∴甲的方差是:110[(9﹣8)2+2(10﹣8)2+4(8﹣8)2+2(7﹣8)2+(5﹣8)2]=2; 把丙运动员的射靶成绩从小到大排列为:3,4,5,5,6,6,7,7,8,9,则中位数是6+62=6; 故答案为:6,2;(2)∵甲的方差是:110[(9﹣8)2+2(10﹣8)2+4(8﹣8)2+2(7﹣8)2+(5﹣8)2]=2;乙的方差是:110[2(9﹣8)2+2(10﹣8)2+2(8﹣8)2+3(7﹣8)2+(5﹣8)2]=2.2;丙的方差是:110[(9﹣6)2+(8﹣6)2+2(7﹣6)2+2(6﹣6)2+2(5﹣6)2+(4﹣6)2+(3﹣6)2]=3;∴S甲2<S乙2<S丙2,∴甲运动员的成绩最稳定;(3)根据题意画图如下:∵共有6种情况数,甲、乙相邻出场的有2种情况,∴甲、乙相邻出场的概率是26=1 3.【点评】此题考查了方差、平均数、中位数和画树状图法求概率,一般地设n个数据,x1,x2,…x n的平均数为x,则方差S2=1n[(x1﹣x¯)2+(x2﹣x¯)2+…+(x n﹣x¯)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立;概率=所求情况数与总情况数之比.七、(本题满分12分)22.(12分)(2017•安徽)某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:售价x(元/千克)506070销售量y(千克)1008060(1)求y与x之间的函数表达式;(2)设商品每天的总利润为W(元),求W与x之间的函数表达式(利润=收入﹣成本);(3)试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价为多少元时获得最大利润,最大利润是多少?【分析】(1)根据题意可以设出y 与x 之间的函数表达式,然后根据表格中的数据即可求得y 与x 之间的函数表达式;(2)根据题意可以写出W 与x 之间的函数表达式;(3)根据(2)中的函数解析式,将其化为顶点式,然后根据成本每千克40元,规定每千克售价不低于成本,且不高于80元,即可得到利润W 随售价x 的变化而变化的情况,以及售价为多少元时获得最大利润,最大利润是多少.【解答】解:(1)设y 与x 之间的函数解析式为y=kx +b ,{50k +b =10060k +b =80, 得{k =−2b =200, 即y 与x 之间的函数表达式是y=﹣2x +200;(2)由题意可得,W=(x ﹣40)(﹣2x +200)=﹣2x 2+280x ﹣8000,即W 与x 之间的函数表达式是W=﹣2x 2+280x ﹣8000;(3)∵W=﹣2x 2+280x ﹣8000=﹣2(x ﹣70)2+1800,40≤x ≤80,∴当40≤x ≤70时,W 随x 的增大而增大,当70≤x ≤80时,W 随x 的增大而减小,当x=70时,W 取得最大值,此时W=1800,答:当40≤x ≤70时,W 随x 的增大而增大,当70≤x ≤80时,W 随x 的增大而减小,售价为70元时获得最大利润,最大利润是1800元.【点评】本题考查二次函数的应用,解答本题的关键是明确题意,求出相应的函数解析式,利用二次函数的性质和二次函数的顶点式解答.八、(本题满分14分)23.(14分)(2017•安徽)已知正方形ABCD ,点M 边AB 的中点.(1)如图1,点G 为线段CM 上的一点,且∠AGB=90°,延长AG 、BG 分别与边BC 、CD 交于点E 、F .①求证:BE=CF ;②求证:BE 2=BC•CE .(2)如图2,在边BC上取一点E,满足BE2=BC•CE,连接AE交CM于点G,连接BG并延长CD于点F,求tan∠CBF的值.【分析】(1)①由正方形的性质知AB=BC、∠ABC=∠BCF=90°、∠ABG+∠CBF=90°,结合∠ABG+∠BAG=90°可得∠BAG=∠CBF,证△ABE≌△BCF可得;②由RtABG斜边AB中线知MG=MA=MB,即∠GAM=∠AGM,结合∠CGE=∠AGM、∠GAM=∠CBG知∠CGE=∠CBG,从而证△CGE∽△CBG得CG2=BC•CE,由BE=CF=CG可得答案;(2)延长AE、DC交于点N,证△CEN∽△BEA得BE•CN=AB•CE,由AB=BC、BE2=BC•CE知CN=BE,再由CNAM=CGGM=CFBM且AM=MB得FC=CN=BE,设正方形的边长为1、BE=x,根据BE2=BC•CE求得BE的长,最后由tan∠CBF=FCBC =BEBC可得答案.【解答】解:(1)①∵四边形ABCD是正方形,∴AB=BC,∠ABC=∠BCF=90°,∴∠ABG+∠CBF=90°,∵∠AGB=90°,∴∠ABG+∠BAG=90°,∴∠BAG=∠CBF,∵AB=BC,∠ABE=∠BCF=90°,∴△ABE≌△BCF,∴BE=CF,②∵∠AGB=90°,点M为AB的中点,∴MG=MA=MB,∴∠GAM=∠AGM,又∵∠CGE=∠AGM,∠GAM=∠CBG,∴∠CGE=∠CBG,又∠ECG=∠GCB,∴△CGE∽△CBG,∴CECG =CGCB,即CG2=BC•CE,由∠CFG=∠GBM=∠BGM=∠CGF得CF=CG,由①知BE=CF,∴BE=CG,∴BE2=BC•CE;(2)延长AE、DC交于点N,∵四边形ABCD是正方形,∴AB∥CD,∴∠N=∠EAB,又∵∠CEN=∠BEA,∴△CEN∽△BEA,∴CEBE =CNBA,即BE•CN=AB•CE,∵AB=BC,BE2=BC•CE,∴CN=BE,∵AB∥DN,∴CNAM =CGGM=CFBM,∵AM=MB,∴FC=CN=BE,不妨设正方形的边长为1,BE=x,由BE2=BC•CE可得x2=1•(1﹣x),解得:x1=√5−12,x2=−√5−12(舍),∴BE BC =√5−12, 则tan ∠CBF=FC BC =BE BC =√5−12. 【点评】本题主要考查相似形的综合问题,熟练掌握正方形与直角三角形的性质、全等三角形的判定与性质、相似三角形的判定与性质是解题的关键.。