2017年安徽省中考数学 解析版

合集下载

2017安徽省中考数学试题及答案

2017安徽省中考数学试题及答案

2017安徽省中考数学试题及答案2017年安徽省初中学业水平考试数 学 (试题卷)注意事项:1.你拿到的试卷满分为150分,考试时间为120分钟.2.本试卷包括“试题卷”和“答题卷”两部分,“试题卷”共4页,“答题卷”共6页. 3.请务必在“答题卷”上答题,在“试题卷”上答题是无效的. 4.考试结束后,请将“试题卷”和“答题卷”一并交回.一、 选择题(本大题共10小题,每小题4分,满分40分) 1.12的相反数是 A .21 B .12- C .2 D .2-【答案】B 【考查目的】考查实数概念——相反数.简单题. 2.计算32()a -的结果是A .6aB .6a -C .5a - D .5a 【答案】A【考查目的】考查指数运算,简单题.3.如图,一个放置在水平实验台的锥形瓶,它若120=︒∠,则2∠的度数为A .60︒B .50︒C .40︒D .30︒ 【答案】C【考查目的】考查三角形内角和,平行线性质,简单题. 7.为了解某校学生今年五一期间参加社团活动情况,随机抽查了其中100名学生进行统计,并绘成如图所示的频数分布直方图.已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是 A .280 B .240 C .300 D .260 【答案】A .【考查目的】考查统计知识,频数分布直方图识别和应用,简单题.8.一种药品原价每盒25元,经过两次降价后每盒16元.设两次降价的百分率都为x ,则x 满足A .16(12)25x +=B .25(12)16x -=C .216(1)25x += D .225(1)16x -= 【答案】D .【考查目的】考查增长率,二次函数的应用,简频数(人数)8102430)第7题图单题. 9.已知抛物线2y axbx c=++与反比例函数b y x=的图象在第一象限有一个公共点,其横坐标为1.则一次函数y bx ac =+的图象可能是【答案】B .公共点在第一象限,横坐标为1,则0b y =>,排除C ,D ,又y a b c =++得0a c +=,故0ac <,从而选B . 【考查目的】考查初等函数性质及图象,中等题. 10.如图,矩形ABCD 中,53AB AD ==,.动点P 满足13PABABCDS S∆=矩形.则点P 到A B ,两点距离之和PA PB + 的最小值为( ) A 29 B 34C .52D 41【答案】D ,P 在与AB 平行且到AB 距离为2直线上,O O OO xyxyx yy x A . B . C . D .第10题图PDCBA第14题图图1 图2BE (A )DBECD 第13题图OEABCD即在此线上找一点到A B,两点距离之和的最小值.【考查目的】考查对称性质,转化思想,中等题.二、填空题(本大题共4小题,每小题5分,满分20分)11.27的立方根是____________ .【答案】3【考查目的】考查立方根运算,简单题.12.因式分解:244a b ab b-+=____________ .【答案】2b a-(2)【考查目的】考查因式分解,简单题.13.如图,已知等边ABC△的边长为6,以AB为直径的⊙O与边AC BC,分别交于D E,两点,则劣弧的DE的长为____________ .【答案】2π【考查目的】考查圆的性质,三角形中位线,弧长计算,中等题.14.在三角形纸片ABC中,903030cm∠=︒∠=︒=,,,将A C AC该纸片沿过点E的直线折叠,使点A落在斜边BC上的一点E处,折痕记为BD(如图1),剪去△后得到双层BDECDE△(如图2),再沿着过某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为____________cm.【答案】40cm 或203cm .(沿如图的虚线剪.)【考查目的】考查对称,解直角三角形,空间想象,较难题.三、 (本大题共2小题,每小题8分,共16分) 15.计算:11|2|cos60()3--⨯︒-. 【考查目的】考查幂运算、立方根、特殊角的三角函数值,简单题.【解答】原式=12322⨯-=- 16.《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四。

2017年中考真题 数学(安徽卷)(含解析)

2017年中考真题 数学(安徽卷)(含解析)

D.
考点: 解一元一次不等式及其解集在数轴上的表示方法.
6.直角三角板和直尺如图放置.若 1 20 ,则 2 的度数为( )
A. 60
【答案】C 【解析】
B. 50
C. 40
D. 30
试题分析:由题意得:
a b 4 50 2 40
3=50
故选答案 C
考点:平行线的性质、外角的性质
7.为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中 100 名学生进行统计,并绘成
(1)根据以上数据完成下表:
平均数
中位数
方差

8
8

8

6
8
2.2
3
(2)依据表 中数据分析,哪位运动员的成绩最稳定,并简要说明理由;
(3)比赛时三人依次出场,顺序由抽签方式决定.求甲、乙相邻出场的概率.
【答案】解:(1)
平均数
中位数
方差

2


6
[来源:Z|xx|]
【解析】
试题分析:(1)根据中位数和方差的定义求解;(2)根据方差的意义求解;(3)用列举法求概率.

.由此可得,这三个三角形数阵所有圆圈中数的总和为:3(12 22 32 n2 )
.
因此,12 22 32 n2 =
.
【解决问题】
根据以上发现,计算
12
22 1 2
32 2017 3 2017
2
的结果为
.
【答案】 2n +1 【解析】
(2n +1)×n(n +1)
2
1 n(n +1)(2n +1)

2017年安徽中考数学试题及简析

2017年安徽中考数学试题及简析

2017年安徽省初中毕业学业考试数学试题本试卷共八大题,计23小题,满分150分,考试时间120分钟. 一、.选择题(10×4分=40分)1. 2-的倒数是………………………………………………………………………………………【 A 】A .12-B .12C . 2D .2-【涉及知识点】倒数的概念【点评】本题考查有理数的概念,简单题.2. 用科学记数法表示537万正确的是……………………………………………………………【 C 】A .537×104B .5.37×105C .5.37×106D .0.537×107【涉及知识点】科学记数法【点评】本题考查科学记数法,简单题.3.图中所示的几何体为圆台,其主(正)视图正确的是…………………………………………【 A 】4.下列运算正确的是…………………………………………………………………………………【 B 】A .235x y xy +=B . 23555m m m ⋅=C . 222()a b a b -=-D . 236m m m ⋅= 【涉及知识点】整式的运算【点评】本题考查整式的运算,简单题. 5.已知不等式组3010x x ->⎧⎨+≥⎩其解集在数轴上表示正确的是…………………………………………【 D 】【涉及知识点】一元一次不等式组【点评】本题考查解一元一次不等式组及解集在数轴上表示,简单题. 6.如图,AB ∥CD ,∠A+∠E=75°,则∠C 为………………………………【 C 】 A .60° B .65° C .75° D .80°【涉及知识点】三角形内角和、相交线与平行线知识A. B. C. D. EDCB A7.目前我国已建立了比较完善的经济困难学生资助体系,某校去年上半年发放给每个经济困难学生389元,今年上半年发放了438元.设每半年...发放的资助金额的平均增长率为x ,则下面列出的方程中正确的是……………………【 B 】 A .438(1+x )2=389 B .389 (1+x )2=438 C .389(1+2x )=438 D .438(1+2x )=389【涉及知识点】列代数式、增长率【点评】增长率问题一直是中考的热点,基本关系式是:增长后量=增长前量×(1+增长率),是增长率问题的核心公式,简单题.8.如图,随机闭合开关K 1,K 2,K 3中的两个,则能让两盏灯泡同时发光的概率为……【 B 】 A .16 B .13 C .12 D .23【涉及知识点】(物理学)电路、概率【点评】本题属于学科间综合题,需结合物理学中电路和数学中概率等知识,综合性强,对培养学生综合运用知识有一定导向作用,今后应值得注意,中等题. 9.图1所示矩形ABCD 中,BC =x ,CD =y ,y 与x 满足的反比例函数关系如图2所示,等腰直角三角形AEF 的斜边EF 过C 点,M 为EF 的中点,则下列结论正确的是………………【 D 】A .当x =3时,EC <EMB .当y =9时,EC >EM C .当x 增大时,EC ·CF 的值增大.D .当y 增大时,BE ·DF 的值不变.【涉及知识点】等腰直角三角形、矩形、反比例函数图象【点评】本题属于学科内综合题,综合考查反比例函数图象,等腰直角三角形,矩形, 将函数图象融于几何图形考查是近年常用的方式,中等题.本题错误率较高.10.如图,点P 是等边三角形ABC 外接圆⊙O 上的点,在以下判断中,不正确...的是……【 C 】 A .当弦PB 最长时,ΔAPC 是等腰三角形 B .当ΔAPC 是等腰三角形时,PO ⊥AC C .当PO ⊥AC 时,∠ACP=30° D .当∠ACP=30°,ΔPBC 是直角三角形. [解] A .此时PB 为直径,ΔAPC 是直角三角形B .此时P 或为B ,或在劣弧AC 的中点 C .若P 与B 点重合,则不成立D .∠ACP=30°时,∠BCP=90° 【涉及知识点】圆及其内接三角形2第8题图第9题 图1F【点评】本题综合考查圆及其内接三角形的性质,属于学科内综合题,思考时要充分利用圆的对称性,考虑各种可能情形,本题错误率较高,较难题.另外“点P 是等边三角形ABC 外接圆⊙O 上的点”如何理解?实质上,该点可以是圆周上任一点,可与A 、B 、C 任一点重合;“不正确”宜用“错误”表述,学生理解更清楚,不作“文字游戏”为好! 二、填空题(4×5分=20分)1112.因式分解:2x y y -= .【答案】(1)(1)y x x +- 【涉及知识点】因式分解【点评】本题考查分解因式,先提公因式,再用平方差公式分解,简单题.13.如图,P 为平行四边形ABCD 边AD 上一点,E .F 分别为PB .PC 的中点,ΔPEF ,.ΔPDC ,.ΔPAB的面积分别为S ,S 1,S 2,若S=2,则S 1+S 2=【答案】8【涉及知识点】平行四边形、三角形中位线【点评】本题综合考查平行四边形质,三角形中位线性质,中等题.14.已知矩形纸片ABCD 中,AB=1,BC=2,将该纸片叠成一个平面图形,折痕EF 不经过A 点(E 、F是该矩形边界上的点),折叠后点A 落在A ′处,给出以下判断: (1)当四边形A ′CDF 为正方形时,(2)当A ′CDF 为正方形(3)当BA ′CD 为等腰梯形; (4)当四边形BA ′CD 为等腰梯形时,其中正确的是 (把所有正确结论序号都填在横线上).【答案】(1)(3)(4)【涉及知识点】矩形、轴对称、特殊四边形【点评】本题需要学生反复动手操作,题型较新,属于操作探究题,综合考查矩形性质,轴对称,特殊四边形等知识,较难题,本题错误率高,究其主要原因是没有现成的图形,而将“文字语言”转化成“图形语言”正是学生的“软肋”.解决本题,首先要审好题,如能正确理解“折叠”、“不经过A ”、“边界”等词语的内涵有利于判断结论的正确性.(1)由条件可以唯一确定图形,如图1,2;(2)是(1)的FE PD CBA 第13题图 第14题图 DC B A图1 图2 图3 图4情形,如图4;(4)是(3)的逆命题,最好的切入点是抓住B 、C 、D 为定点,A′为动点,可能的位置借助几何直觉或思辩(推理)即可确定,即已知等腰梯形的三个顶点,确定第四个顶点,显然只有一种情形成立,如图4.填空题,注重结果,不注重过程,学生解答本题,真实的思维过程无法获取,不排除学生靠猜测得分,但要想将训练学生的思维落在实处,还得引导学生作深层次的思考! 三、(本大题共2小题,每小题8分,满分16分) 15.计算:2sin30°+(—1)2—2【涉及知识点】三角形函数值、实数的运算 【点评】本题考查实数的运算,基础题.16.已知二次函数图像的顶点坐标为(1,-1),且经过原点(0,0),求该函数的解析式. 【解】设解析式为2(1)1y a x =--,将(0,0)代入得:1a =,故解析式为22(1)12y x x x =--=- 【涉及知识点】二次函数【点评】本题考查待定系数法求二次函数解析式,基础题.【典型错误】典型错误:审题错误,误将“二次函数”当成“一次函数”.四、(本大题共2小题,每小题8分,满分16分) 17.如图,已知A (-3,-3),B (-2,-1),C (-1,-2)是直角坐标平面上三点. (1)请画出ΔABC 关于原点O 对称的ΔA 1B 1C 1,DCBEDCBF ED CBDCA′B′E BAF(2)请写出点B 关天y 轴对称的点B 2的坐标,若将点B 2向上平移h 个单位,使其落在△A 1B 1C 1内部,指出h 的取值范围.【解】(1)略;(2)B 2(2,-1),2<h<3.5 【涉及知识点】图形变换【点评】本题考查平面直角坐标系中的中心对称,轴对称,平移,基础题,本题推陈出新,尤其求平移的距离取值范围,既能靠几何直觉从形的角度直观获得,又能依靠代数的方法,计算出直线A 1C 1的解析式,求出B 2平移的“终点站”的坐标,“算”出距离.【典型错误】(1)作关于y=-x 的对称图形;字母标注不对应;不标注对应点;(2)漏写B 2的坐标,认为“内部”包含“边界”,写成:2≤h ≤3.518.我们把正六边形的顶点及其对称中心称作如图(1)所示基本图的特征点,显然这样的基本图共有7个特征点.将此基本图不断复制并平移,使得相邻两个基本图的一边重合,这样得到图(2),图(3),……(1)观察以上图形并完成下表:猜想:在图(n )中,特征点的个数为 (用n 表示)(2)如图,将图(n )放在直角坐标系中,设其中第一个基本图的对称中心O 1的坐标为(x 1,2),则x 1= ;图(2017)的对称中心的横坐标为【涉及知识点】规律探究,等边三角形【点评】本题属于规律探究型试题,一直是近年来中考的热点题型,渗透由特殊→一般、简单→复杂……图(1) 图(2) 图(3)的数学研究方法,综合考查图形变换、坐标变化规律等知识,题目内容很好,但呈现形式若改进为如下形式,或许更好;【典型错误】(1)漏写表格中图(4)对应的特征点的个数;(2)误认为求第2017个正六边形的中五、(本大题共2小题,每小题10分,满分20分)19.如图,防洪大堤的横断面是梯形ABCD ,其中AD ∥BC ,坡角α=60°,汛期来临前对其进行了加固,改造后的背水面坡角β=45°,若原坡长AB=20m ,求改造后的坡长AE (结果保留根号). 【解】设坡高为h ,则h=ABsin60°,h=AEsin45°【涉及知识点】解直角三角形的应用.【点评】本题考察学生对解直角三角形中坡角以及特殊角三角函数值、勾股定理等知识的掌握,要求学生能熟练地选择恰当的方法去求解,考察了转化的数学思想.20.某校为了进一步开展“阳光体育”活动,购买了一批乒乓球拍和羽毛球拍,已知一副羽毛球拍比一副乒乓球拍费贵20元,购买羽毛球拍的费用比购买乒乓球拍的2000元要多,多出部分能购买25副乒乓球拍.(1)若每副乒乓球拍的价格为x 元,请你用含x 的代数式表示该校购买这批乒乓球拍和羽毛球拍的总费用.(2)若购买的两种球拍数一样,求x .【解】(1)由题知,买乒乓球拍用了2000元,买羽毛球的费用为2000+25x总费用:2000+2000+25x=4000+25x E B CA Dβα第19题图222540000160040(40)x x x x =⇒=⇒==-舍去,检验,略.答:略.【涉及知识点】分式方程的应用【点评】本题考察学生对解直角三角形中坡角以及特殊角三角函数值、勾股定理等知识的掌握,要求学生能熟练地选择恰当的方法去求解,考查转化的数学思想.题目有两处语言表达不够规范,①“购买羽毛球拍的费用比购买乒乓球拍的2000元要多”,从答案可以看出购买乒乓球拍用了2000元,为什么不直接表述?②“多出部分能购买25副乒乓球拍”表述不规范,最好改为“多出部分恰能购买25副乒乓球拍”就与参考答案的意义一致了.对分式方程的解不检验.【典型错误】主要是学生对题目中“购买羽毛球拍的费用比购买乒乓球拍2000元要多”这句话没读懂,从而设了几个字母(未知数)来表示.也有许多同学对题目中“多出的部分能购买25副乒乓球拍”理解成用不等式去表示(这可能是题目不严谨的原因).对第(2)小问,列分式方程求解的同学忘了要验根(既要验分式方程有意义,又要验使实际问题有意义),也有的同学只验了一个而被扣分.还有一部分同学把第(2)问中“若购买的两种球拍数一样”误认为对全题都成立,将“次条件”当成“主条件”,从而将第(1)小问做错了.六、(本题满分12分)21.某厂为了解工人在单位时间内加工同一种零件的技能水平,随机抽取了50名工人加工的零件进行检测,统计出他们各自加工的合格品数是1到8这八个整数,现提供统计图的部分信息如图,请解答下列问题: (1)根据统计图,求这50名工人加工出的合格品数的 中位数; (2)写出这50名工人加工出合格品数的众数的可能取值; (3)厂方认定,工人在单位时间内加工出的合格品数不低于3件为技能合格,否则,将接受技能再培训.已知该厂有同类工人400名,请估计该厂将接受技能再培训的人数.【解】(1)合格品数从小到大排列,第25、26个数都是4,故中位数为4;(2)人数可能取的值为4,5,6.(写出下列全部:{4,5}、{4,6}不扣分);/件(本小题部分学生计算错误,还有的学生没有写出64的由来.解答条理不清楚.)【涉及知识点】统计的应用【点评】本题考查学生对统计学中中位数、众数概念的理解和掌握.要求学生能读懂统计图表,会用统计图表中所反映的数据解题.考察了统计学中用样本平均数去估计总体平均数的数学思想以及分类讨论的数学思想.【典型错误】第(1)问主要错误是大多是将“加工出的合格品数的中位数”误认为就是求加工人数的中位数,反映出学生审题不清,同时也反映出部分学生对本题的研究对象是什么不清楚;第(2)问部分同学对概念不清,把众数和中位数混淆一谈.更多的错误是解题过程中的语言叙述;第(3)问部分同学将“厂方认为,工人在单位时间内加工出的合格品数不低于3件为技能合格”与“估计该厂将接受技能培训的人数”没读懂,从而错误地将抽取的50名工人中将接受技能培训的人数当成了2+6+8人,得到错误地将336就当成了需要将接受技能再培训的人数.由于这几题是属于基础题,没有考察学生能力方面的知识点,在整个试卷的批改过程中没发现我们认为的优秀的解法,特此说明.七、(本题满分12分)22.某大学生利用暑假40天社会实践参与了一家网店经营,了解到一种成本为20元/件的新型商品在第x 天销售的相关信息如下表所示.(1)请计算第几天该商品的销售单价为35元/件?(2)求该网店第x天获得的利润y关于x的函数关系式.(3)这40天中该网店第几天获得的利润最大?最大利润是多少?即第10天或第35天时,销售单价为35元/件第21天时利润最大,最大利润为725元. 【涉及知识点】函数的应用.【点评】本题考查二次函数、反比例函数性质的应用,渗透分类思想,每小题均需分两种情形,对学生的计算能力较高.【典型错误】①不答题;②计算出错;③二次函数求最值,用配方法或套公式的多,用交点式的极少! 八、(本题满分14分)23.我们把由不平行于底边的直线截等腰三角形的两腰所得的四边形称为“准等腰梯形”.如图1,四边形ABCD 即为“准等腰梯形”,其中∠B=∠C .(1)在图1所示的“准等腰梯形”ABCD 中,选择合适的一个顶点引一条直线将四边形ABCD 分割成一个等腰梯形和一个三角形或分割成一个等腰三角形和一个梯形(画出一种示意图即可);(2)如图2,在“准等腰梯形”ABCD 中,∠B=∠C ,E 为边BC 上一点,若AB ∥DE ,AE ∥DC ,求证:AB BEDC EC=; (3)在由不平行于BC 的直线截ΔPBC 所得的四边形ABCD 中,∠BAD 与∠ADC 的平分线交于点E ,若EB=EC ,请问当点E 在四边形ABCD 内部时(即图3所示情形),四边形ABCD 是不是“准等腰梯形”,为什么?若点E 不在四边形ABCD 内部时,情况又将如何?写出你的结论(不必说明理由).第23题 图1 第23题 图2 第23题 图3ED CB ADCB P AEDCBAC∴△ABE ∽△DEC ,又∠B=∠C ,所以△ABE ∽△DEC 均为等腰三角形.(3)过E 作EF ⊥AB 于F ,作EG ⊥AD 于G ,作EH ⊥CD 于H , ∵AE 平分∠BAD ,DE 平分∠ADC , ∴FE=EG=EH∵EB=EC ,∴Rt △BFE ≌Rt △CHE ,∴从而∠EBF=∠ECH 从而∠ABC=∠DCB ,即四边形ABCD 是“准等腰梯形”, 当点E 在四边形ABCD 的边BC 上时,是“准等腰梯形”, 当点E 在四边形ABCD 的外部时,四边形ABCD 不一定是“准等腰梯形”.(反例如图所示)【涉及知识点】三角形相似,角平分线性质,等腰三角形 【点评】本题以学生熟悉的等腰三角形为背景,采取新定义的形式呈现,新颖不落俗套,各小题呈梯度呈现,问题皆处在学生的最近“思维发展区”,重学生阅读能力、思维能力考查,对于高一级学校选拔学生很有帮助!该题的关键在于过E 作AB 、CD 的垂线,垂足F 、H 在直线BC 的同侧还是异侧,同侧时,ABCD 是准等腰梯形,异侧时则不是.由于本题中∠B=∠C 且为锐角,故当E 在ABCD 内部时,F 、H 在BC 同侧,结论正确.当F 、H 在BC 异侧时,结论不正确.此图作为原题的反例不合适,原题设改为“我们把由不平行于底边的直线截等腰三角形的两腰所得的四边形称为“准等腰梯形”.如图1,四边形ABCD 即为“准等腰梯形”.其中∠B 、∠C 是锐角,且∠B=∠C .” [改进]CEB11 我们把由不平行于底边的直线截等腰三角形的两腰或两腰延长线所得的四边形称为“准等腰梯形”.如图1,在由不平行于BC 的直线截ΔPBC 所得的四边形ABCD 中,∠BAD 与∠ADC 的平分线交于点E ,若EB=EC ,(1) 证明:当E 在BC 上时,ABCD 是准等腰梯形;(2) 若点E 在四边形ABCD 内部时(如图2),四边形ABCD 是不是“准等腰梯形”,为什么?(3) 若点E 在四边形ABCD 外部时(如图3),情况又将如何?为什么?【典型错误】(1)过C 作平行于AD 的直线,分割成两个图形不合题意;(2)证明没有发挥“∠B=∠C ”的作用,对应关系混淆不清,如条件虽直接可得:△ABE ∽△DEC ,但不可(3)不点明结论。

2017年安徽省中考数学试题及答案

2017年安徽省中考数学试题及答案

2017年安徽省初中毕业学业考试数学一、选择题(本题共10小题,每小题4分,满分40分)1.-2,0,2,-3这四个数中最大的是( ) A .-1 B .0 C .1 D .22. 安徽省2010年末森林面积为3804.2千公顷,用科学记数法表示3804.2千正确的是( )A .3804.2×103B .380.42×104C .3.842×106D .3.842×1053. 下图是五个相同的小正方体搭成的几体体,其左视图是( )4.设1a ,a 在两个相邻整数之间,则这两个整数是( ) A .1和2 B .2和3 C .3和4 D .4 和5 5.从下五边形的五个顶点中,任取四个顶点连成四边形,对于事件M ,“这个四边形是等腰梯形”.下列推断正确的是( )A .事件M 是不可能事件B . 事件M 是必然事件 CC .10D . 117. 如图,⊙半径是1,A 、B 、C 是圆周上的三点,∠BAC =36°, 则劣弧BC 的长是( )A .5πB . 25πC . 35πD . 45π8.一元二次方程()22x x x-=-的根是( )A .-1B . 2C . 1和2D . -1和29.如图,四边形ABCD 中,∠BAD =∠ADC =90°,AB =AD=CD,点P 在四边形ABCD上,若P 到BD 的距离为32,则点P 的个数为( )A .1B .2C .3D .410.如图所示,P 是菱形ABCD 的对角线AC 上一动点,过P 垂直于AC 的直线交菱形ABCD 的边于M 、N 两点,设AC =2,BD =1,AP =x ,则△AMN 的面积为y ,则y 关于x 的函数图象的大致形状是( )二、填空题(本题共4小题,每小题5分,满分20分)11.因式分解:=_________.12.根据里氏震级的定义,地震所释放的相对能量E 与地震级数n 的关系为:10nE =,那么9级地震所释放的相对能量是7级地震所释放的相对能量的倍数是 .13.如图,⊙O 的两条弦AB 、CD 互相垂直,垂足为E ,且AB =CD ,已知CE =1,ED =3,则⊙O 的半径是_________.14.定义运算()1a b a b ⊗=-,下列给出了关于这种运算的几点结论:①()226⊗-= ②③若0a b +=,则())(2a b b a ab⊗+⊗= ④若0a b ⊗=,则a =0. 其中正确结论序号是_____________.(把在横线上填上你认为所有正确结论的序号)三、(本题共2小题,每小题8分,满分16分)15.先化简,再求值:21211x x ---,其中x =-2(解)16.江南生态食品加工厂收购了一批质量为10000千克的某种山货,根据市场需求对其进行粗加工和精加工处理,已知精加工的该种山货质量比粗加工的质量3倍还多2000千克.求粗加工的该种山货质量. (解)四、(本题共2小题,每小题8分,满分16分)17. 如图,在边长为1个单位长度的小正方形组成的网格中,按要求画出△A 1B 1C 1和△A 2B 2C 2;⑴把△ABC 先向右平移4个单位,再向上平移1个单位,得到△A 1B 1C 1;⑵以图中的O 为位似中心,将△A 1B 1C 1作位似变换且放大到原来的两倍,得到△A 2B 2C 2. (解)18.在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位.其行走路线如下图所示.(1)填写下列各点的坐标:A 1(____,_____),A 3(____,_____),A 12(____,____); (2)写出点A n 的坐标(n 是正整数); (解)(3)指出蚂蚁从点A100到A101的移动方向.(解)五、(本题共2小题,每小题10分,满分20分)19.如图,某高速公路建设中需要确定隧道AB的长度.已知在离地面1500m,高度C处的飞机,测量人员测得正前方A、B两点处的俯角分别为60°和45°,求隧道AB的长.(解)20.一次学科测验,学生得分均为整数,满分10分,成绩达到6分以上(包括6分)为合格.成绩达到9分为优秀.这次测验中甲乙两组学生成绩分布的条形统计图如下(1(2)甲组学生说他们的合格率、优秀率均高于乙组,所以他们的成绩好于乙组.但乙组学生不同意甲组学生的说法,认为他们组的成绩要高于甲组.请你给出三条支持乙组学生观点的理由.(解)六、(本题满分12分)21. 如图函数11y k x b=+的图象与函数2k y x =(x >0)的图象交于A 、B 两点,与y 轴交于C点.已知A 点的坐标为(2,1),C 点坐标为(0,3).(1)求函数1y 的表达式和B 点坐标;(解)(2)观察图象,比较当x >0时,1y 和2y 的大小.七、(本题满分12分)22.在△ABC 中,∠ACB =90°,∠ABC =30°,将△ABC 绕顶点C 顺时针旋转,旋转角为θ(0°<θ<180°),得到△A ′B ′C ′.(1)如图(1),当AB ∥CB ′时,设AB 与CB ′相交于D.证明:△A ′CD 是等边三角形; (解)(2)如图(2),连接A ′A 、B ′B ,设△ACA ′和△BCB ′的面积分别为S △ACA ′和S △BCB ′. 求证:S △ACA ′∶S △BCB ′=1∶3; (证)(3)如图(3),设AC 中点为E ,A ′B ′中点为P ,AC=a ,连接EP ,当θ=_______°时,EP 长度最大,最大值为________. (解)八、(本题满分14分)23.如图,正方形ABCD的四个顶点分别在四条平行线l1、l2、l3、l4上,这四条直线中相邻两条之间的距离依次为h1、h2、h3(h1>0,h2>0,h3>0).(1)求证h1=h3;(解)(2) 设正方形ABCD的面积为S.求证S=(h2+h3)2+h12;(解)(3)若12312h h+=,当h1变化时,说明正方形ABCD的面积为S随h1的变化情况.(解)2011年安徽省初中毕业学业考试数学参考答案1~5 ACACB 6~10 DBDBC11. ()21+a b ; 12. 100; 13. 5 14. ①③.15. 原式=112111)1)(1(1)1)(1(21-=+-=+=-+-=-+-+x x x x x x x .16. 设粗加工的该种山货质量为x 千克,根据题意,得 x +(3x +2000)=10000.解得 x =2000.答:粗加工的该种山货质量为2000千克. 17. 如下图18.⑴A 1(0,1) A 3(1,0) A 12(6,0) ⑵A n (2n ,0) ⑶向上19. 简答:∵OA350033150030t an 1500=⨯=⨯= , OB =OC =1500,∴AB =635865150035001500=-≈-(m ).答:隧道AB 的长约为635m .20. (1)甲组:中位数 7; 乙组:平均数7, 中位数7(2)(答案不唯一)①因为乙组学生的平均成绩高于甲组学生的平均成绩,所以乙组学生的成绩好于甲组; ②因为甲乙两组学生成绩的平均分相差不大,而乙组学生的方差低于甲组学生的方差,说明乙组学生成绩的波动性比甲组小,所以乙组学生的成绩好于甲组;③因为乙组学生成绩的最低分高于甲组学生的最低分,所以乙组学生的成绩好于甲组.21. (1)由题意,得⎩⎨⎧==+.3,121b b k 解得⎩⎨⎧=-=.3,11b k ∴ 31+-=x y又A 点在函数x k y 22=上,所以 212k=,解得22=k 所以 解方程组⎪⎩⎪⎨⎧=+-=x y x y 2,3 得⎩⎨⎧==.2,111y x ⎩⎨⎧==.1,222y x所以点B 的坐标为(1, 2)(2)当0<x <1或x >2时,y 1<y 2;当1<x <2时,y 1>y 2; 当x =1或x =2时,y 1=y 2.22.(1)易求得 60='∠C D A , DC C A =', 因此得证. (2)易证得A AC '∆∽B BC '∆,且相似比为3:1,得证.(3)120°, a2323.(1)过A 点作AF ⊥l 3分别交l 2、l 3于点E 、F ,过C 点作CH ⊥l 2分别交l 2、l 3于点H 、G ,证△ABE ≌△CDG 即可.(2)易证△ABE ≌△BCH ≌△CDG ≌△DAF ,且两直角边长分别为h 1、h 1+h 2,四边形EFGH。

【数学】2017安徽省中考数学试题及答案

【数学】2017安徽省中考数学试题及答案

【关键字】数学2017年安徽省初中学业水平考试数学(试题卷)注意事项:1.你拿到的试卷满分为150分,考试时间为120分钟.2.本试卷包括“试题卷”和“答题卷”两部分,“试题卷”共4页,“答题卷”共6页.3.请务必在“答题卷”上答题,在“试题卷”上答题是无效的.4.考试结束后,请将“试题卷”和“答题卷”一并交回.一、选择题(本大题共10小题,每小题4分,满分40分)1.的相反数是A.B.C.D.【答案】B【考查目的】考查实数概念——相反数.简单题.2.计算的结果是A.B.C.D.【答案】A【考查目的】考查指数运算,简单题.3.如图,一个放置在水平实验台的锥形瓶,它的俯视图是【答案】B.【考查目的】考查三视图,简单题.4.截至2016年底,国家开发银行对“一带一路”沿线国家累计发放贷款超过1600亿美元.其中1600亿用科学记数法表示为A.B.C.D.【答案】C【考查目的】考查科学记数法,简单题.5.不等式的解集在数轴上表示为()【答案】C.【考查目的】考查在数轴上表示不等式的解集,简单题.6.直角三角板和直尺如图放置,若,则的度数为A.B.C.D.【答案】C【考查目的】考查三角形内角和,平行线性质,简单题.7.为了解某校学生今年五一期间参加社团活动情况,随机抽查了其中100名学生进行统计,并绘成如图所示的频数分布直方图.已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是A.B.C.D.【答案】A.【考查目的】考查统计知识,频数分布直方图识别和应用,简单题.8.一种药品原价每盒元,经过两次降价后每盒元.设两次降价的百分率都为,则满足A.B.C.D.【答案】D.【考查目的】考查增长率,二次函数的应用,简单题.9.已知抛物线与反比例函数的图象在第一象限有一个公共点,其横坐标为.则一次函数的图象可能是【答案】B.公共点在第一象限,横坐标为1,则,排除C,D,又得,故,从而选B.1文档收集于互联网,如有不妥请联系删除.2文档收集于互联网,如有不妥请联系删除.【考查目的】考查初等函数性质及图象,中等题. 10.如图,矩形中,.动点满足.则点到两点距离之和 的最小值为( )A .B .C .D .【答案】D ,在与平行且到距离为2直线上,即在此线上找一点到两点距离之和的最小值. 【考查目的】考查对称性质,转化思想,中等题.二、填空题(本大题共4小题,每小题5分,满分20分) 11.的立方根是____________ . 【答案】3【考查目的】考查立方根运算,简单题.12.因式分解:244a b ab b -+=____________ . 【答案】2(2)b a -【考查目的】考查因式分解,简单题.13.如图,已知等边ABC △的边长为6,以AB 为直径的⊙O 与边AC BC ,分别交于D E ,两点,则劣弧的DE 的长为____________ . 【答案】2π【考查目的】考查圆的性质,三角形中位线,弧长计算,中等题.14.在三角形纸片ABC 中,903030cm A C AC ∠=︒∠=︒=,,,将该纸片沿过点E 的直线折叠,使点A 落在斜边BC 上的一点E 处,折痕记为BD (如图1),剪去CDE △后得到双层BDE △(如图2),再沿着过某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为____________cm .【答案】40cm 或.(沿如图的虚线剪.)【考查目的】考查对称,解直角三角形,空间想象,较难题.三、(本大题共2小题,每小题8分,共16分) 15.计算:11|2|cos60()3--⨯︒-.【考查目的】考查幂运算、立方根、特殊角的三角函数值,简单题.【解答】原式=12322⨯-=-16.《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四。

2017年安徽中考数学试题及答案

2017年安徽中考数学试题及答案

2017年安徽中考数学试题及答案一、选择题(本题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母填在题后的括号内。

)1. 若a > 0,b < 0,且|a| > |b|,则a + b()A. 大于0B. 小于0C. 等于0D. 不确定2. 下列各组数中,是同类项的是()A. 3x²y 和 2xy²B. 2x²和 3x²C. 3x²y 和 2x²yD. 3x²y 和 2xy3. 计算(x-1)(x+1)的结果是()A. x²-1B. x²+1C. x²-2xD. x²+2x4. 已知一个三角形的两边长分别为3和4,第三边长为x,则x的取值范围是()A. 1 < x < 7B. 4 < x < 7C. 1 < x < 5D. 0 < x < 75. 一个数的平方根是2,则这个数是()A. 4B. -4C. 2D. -26. 一个正数的倒数是()A. 正数B. 负数C. 0D. 17. 函数y=2x+1的图象是()A. 一条直线B. 一条曲线C. 一个点D. 一个圆8. 计算(-2)³的结果是()A. -8B. 8C. -6D. 69. 一个数的绝对值是3,则这个数可能是()A. 3B. -3C. 3或-3D. 010. 一个数的平方是9,则这个数是()A. 3B. -3C. 3或-3D. 9二、填空题(本题共5小题,每小题4分,共20分。

请将答案填在题后的横线上。

)11. 一个数的相反数是-5,则这个数是______。

12. 一个数的立方是-27,则这个数是______。

13. 一个数的平方是25,则这个数是______。

14. 已知一个直角三角形的两条直角边长分别为3和4,则斜边长是______。

2017年安徽省中考数学 解析版

2017年安徽省中考数学 解析版

2017年安徽省中考数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)1.的相反数是()A. B.- C.2 D.﹣2【解析】相反数的概念,主要考查有理数的相关概念,主要有有理数的倒数,有理数的绝对值,有理数的相反数,有理数在数轴上的表示.是中考考试中的必考考点.本题考查了相反数的意义,根据相反数的概念解答即可.一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.的相反数是,添加一个负号即可,故选:B.2.计算(﹣a3)2的结果是()A.a6 B.﹣a6 C.﹣a5 D.a5【解析】本题考查整式的运算,解题的关键是熟练运用幂的乘方公式,本题属于基础题型.幂的乘方与积的乘方.根据整式的运算法则即可求出答案.解:原式=a6,故选A.3.如图,一个放置在水平实验台上的锥形瓶,它的俯视图为()A.B.C.D.【解析】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.简单组合体的三视图.俯视图是分别从物体的上面看,所得到的图形.一个放置在水平实验台上的锥形瓶,它的俯视图为两个同心圆.故选B.4.截至2016年底,国家开发银行对“一带一路”沿线国家累计发放贷款超过1600亿美元,其中1600亿用科学记数法表示为()A.16×1010 B.1.6×1010C.1.6×1011 D.0.16×1012【解析】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.科学记数法—表示较大的数.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.1600亿用科学记数法表示为1.6×1011,故选:C.5.不等式4﹣2x>0的解集在数轴上表示为()A.B.C.D.【解析】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.解一元一次不等式;在数轴上表示不等式的解集.根据解一元一次不等式基本步骤:移项、系数化为1可得.移项,得:﹣2x>﹣4,系数化为1,得:x<2,故选:D.6.直角三角板和直尺如图放置,若∠1=20°,则∠2的度数为()A.60°B.50°C.40°D.30°【解析】本题考查了平行线的性质,熟练掌握平行线的性质定理是解题的关键.平行线的性质.过E作EF∥AB,则AB∥EF∥CD,根据平行线的性质即可得到结论.如图,过E作EF∥AB,则AB∥EF∥CD,∴∠1=∠3,∠2=∠4.∵∠3+∠4=60°,∴∠1+∠2=60°.∵∠1=20°,∴∠2=40°,故选C.7.为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘制成如图所示的频数直方图,已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是()A.280 B.240 C.300 D.260【解析】本题考查了频数分布直方图以及用样本估计总体,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.频数(率)分布直方图;用样本估计总体.用被抽查的100名学生中参加社团活动时间在8~10小时之间的学生所占的百分数乘以该校学生总人数,即可得解.由题可得,抽查的学生中参加社团活动时间在8~10小时之间的学生数为100﹣30﹣24﹣10﹣8=28(人),∴1000×=280(人),即该校五一期间参加社团活动时间在8~10小时之间的学生数大约是280人.故选:A.8.一种药品原价每盒25元,经过两次降价后每盒16元.设两次降价的百分率都为x,则x满足()A.16(1+2x)=25 B.25(1﹣2x)=16C.16(1+x)2=25 D.25(1﹣x)2=16【解析】本题考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.由实际问题抽象出一元二次方程.等量关系为:原价×(1﹣降价的百分率)2=现价,把相关数值代入即可.第一次降价后的价格为:25×(1﹣x);第二次降价后的价格为:25×(1﹣x)2;∵两次降价后的价格为16元,∴25(1﹣x)2=16.故选D.9.已知抛物线y=ax2+bx+c与反比例函数的图象在第一象限有一个公共点,其横坐标为1,则一次函数y=bx+ac的图象可能是()A.B.C.D.【解析】考查了一次函数的图象,反比例函数的性质,二次函数的性质,关键是得到b>0,ac<0.一次函数的图象;反比例函数的性质;二次函数的性质.根据抛物线y=ax2+bx+c与反比例函数的图象在第一象限有一个公共点,可得b>0,根据交点横坐标为1,可得,可得a,c互为相反数,依此可得一次函数y=bx+ac的图象.∵抛物线与反比例函数的图象在第一象限有一个公共点,∴b>0,∵交点横坐标为1,∴a+b+c=b,∴a+c=0,∴ac<0,∴一次函数y=bx+ac 的图象经过第一、三、四象限.故选:B.,则点10.如图,在矩形ABCD中,AB=5,AD=3,动点P满足矩形P到A,B两点距离之和PA+PB的最小值为()A.B.C.D.关S△故选二、填空题(本大题共4小题,每小题5分,满分20分)11. 27的立方根为.【解析】本题考查了求一个数的立方根,用到的知识点为:开方与乘方互为逆运算.立方根.找到立方等于27的数即可.∵33=27,∴27的立方根是3,故答案为:3.12.因式分解:a2b﹣4ab+4b= .【解析】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.提公因式法与公式法的综合运用.原式提取b,再利用完全平方公式分解即可.解:原式=b(a2﹣4a+4)=b(a﹣2)2,故答案为:b(a﹣2)2.13.如图,已知等边△ABC的边长为6,以AB为直径的⊙O与边AC,BC分别交于D,E两点,则劣弧的长为.【解析】本题考查了等边三角形的性质与判定、弧长公式;熟练掌握弧长公式,证明三角形是等边三角形是解决问题的关键.连接OD,OE,先证明△AOD,△BOE 是等边三角形,得出∠AOD=∠BOE=60°,求出∠DOE=60°,再由弧长公式即可得出答案.连接OD,OE,如图所示:∵△ABC是等边三角形,∴∠A=∠B=∠C=60°.∵OA=OD,OB=OE,∴△AOD,△BOE是等边三角形,∴∠AOD=∠BOE=60°,∴∠DOE=60°.∵OA=AB=3,∴的长.故答案为: .14.在三角形纸片ABC中,∠A=90°,∠C=30°,AC=30cm,将该纸片沿过点B 的直线折叠,使点A落在斜边BC上的一点E处,折痕记为BD(如图1),减去△CDE后得到双层△BDE(如图2),再沿着过△BDE某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为cm.【解析】本题考查了剪纸问题,平行四边形的性质,解直角三角形,正确的理解题意是解题的关键.解直角三角形得到AB=10,∠ABC=60°,根据折叠的性质得到∠ABD=∠EBD=∠ABC=30°,BE=AB=10,求得DE=10,BD=20,如图1,平行四边形的边是DF,BF,如图2,平行四边形的边是DE,EG,于是得到结论.∵∠A=90°,∠C=30°,AC=30cm,∴AB=10,∠ABC=60°,∴三、(本大题共2小题,每小题8分,满分16分)15.计算:|﹣2|×cos60°﹣()﹣1.【解析】本题主要考查了负整数指数幂的性质以及绝对值、特殊角的三角函数值等知识,正确化简各数是解题关键.分别利用负整数指数幂的性质以及绝对值的性质、特殊角的三角函数值化简求出答案.原式=2×﹣3=﹣2.16.《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物、人出八,盈三;人出七,不足四,问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?请解答上述问题.【解析】本题考查了一元一次方程的应用,解题的关键是明确题意,找出合适的等量关系,列出相应的方程.根据这个物品的价格不变,列出一元一次方程进行求解即可.设共有x人,可列方程为:8x﹣3=7x+4.解得x=7,∴8x﹣3=53,答:共有7人,这个物品的价格是53元.四、(本大题共2小题,每题8分,共16分)17.如图,游客在点A处坐缆车出发,沿A﹣B﹣D的路线可至山顶D处,假设AB和BD都是直线段,且AB=BD=600m,α=75°,β=45°,求DE的长.(参考数据:sin75°≈0.97,cos75°≈0.26,≈1.41)【解析】本题考查解直角三角形的应用,锐角三角函数、矩形的性质等知识,解题的关键是学会利用直角三角形解决问题,属于中考常考题型.在,在∴∴答:DE的长为579m.18.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC 和△DEF(顶点为网格线的交点),以及过格点的直线l.(1)将△ABC向右平移两个单位长度,再向下平移两个单位长度,画出平移后的三角形.(2)画出△DEF关于直线l对称的三角形.(3)填空:∠C+∠E= .【解析】本题主要考查作图﹣平移变换、轴对称变换,熟练掌握平移变换、轴对称变换及勾股定理逆定理是解题的关键.作图-轴对称变换;作图-平移变换.解:(1)将点,,分别右移2个单位、下移2个单位得到其对应点,顺次连接即可得;(2)分别作出点D,E,F关于直线l的对称点,顺次连接即可得;(3)连接A′F′,利用勾股定理逆定理证△A′C′F′为等腰直角三角形即可得.【答案】解:(1)△A′B′C′即为所求;(2(3五、(本大题共2小题,每题10分,共20分)19.【阅读理解】我们知道,1+2+3+…+n=,那么12+22+32+…+n2结果等于多少呢?在图1所示三角形数阵中,第1行圆圈中的数为1,即12,第2行两个圆圈中数的和为2+2,即22,…;第n行n个圆圈中数的和为,即n2,这样,该三角形数阵中共有个圆圈,所有圆圈中数的和为12+22+32+…+n2.【规律探究】,12规律,并运用规律解决实际问题是解题的关键.解:【规律探究】将同一位置圆圈中的数相加即可,所有圈中的数的和应等于同一位置圆圈中的数的和乘以圆圈个数,据此可得,每个三角形数阵和即为三个三角形数阵和的,从而得出答案;【解决问题】运用以上结论,将原式变形为)(),化简计算即可得.【答案】解:【规律探究】由题意知,每个位置上三个圆圈中数的和均为﹣,3(20∥(1(2【解析】本题考查的是三角形的外接圆与外心,掌握平行四边形的判定定理、垂径定理、圆周角定理是解题的关键.(1)根据圆周角定理得到∠B=∠E,得到∠E=∠D,根据平行线的判定和性质定理得到AE∥CD,证明结论;(2)作OM⊥BC于M,ON⊥CE于N,根据垂径定理、角平分线的判定定理证明.【答案】证明:(1)由圆周角定理得,∠B=∠E,又∠B=∠D,∴∠E=∠D,∵CE∥AD,∴∠D+∠ECD=180°,∴∠E+∠ECD=180°,∴AE∥CD,∴四边形AECD为平行四边形;(2)作OM⊥BC于M,ON⊥CE于N,∵四边形AECD为平行四边形,∴AD=CE,又AD=BC,∴CE=CB,∴OM=ON,又OM⊥BC,ON⊥CE,∴CO平分∠BCE.六、(本题满分12分)21.甲、乙、丙三位运动员在相同条件下各射靶10次,每次射靶的成绩如下:甲:9,10,8,5,7,8,10,8,8,7乙:5,7,8,7,8,9,7,9,10,10【解析】本题考查了方差、平均数、中位数和画树状图法求概率,一般地设n个数据,x1,x2, (x)n的平均数为,则方差S2= [(x1﹣x¯)2+(x2﹣x¯)2+…+(xn﹣x¯)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立;概率=所求情况数与总情况数之比.(1)根据方差公式和中位数的定义分别进行解答即可;(2)根据方差公式先分别求出甲的方差,再根据方差的意义即方差越小越稳定即可得出答案;(3)根据题意先画出树状图,得出所有情况数和甲、乙相邻出场的情况数,再根据概率公式即可得出答案.【答案】解:(1)∵甲的平均数是8,∴甲的方差是: [(9﹣8)2+2(10﹣8)2+4(8﹣8)2+2(7﹣8)2+(5﹣8)2]=2;把丙运动员的射靶成绩从小到大排列为:3,4,5,5,6,6,7,7,8,9,则中位数是=6;故答案为:6,2;(2﹣8);4﹣6∴S(3∵共有6种情况数,甲、乙相邻出场的有4种情况,∴甲、乙相邻出场的概率是=.七、(本题满分12分)22.某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:(2)设商品每天的总利润为W(元),求W与x之间的函数表达式(利润=收入﹣成本);(3)试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价为多少元时获得最大利润,最大利润是多少?【解析】本题考查二次函数的应用,解答本题的关键是明确题意,求出相应的函数解析式,利用二次函数的性质和二次函数的顶点式解答.(1)根据题意可以设出y与x之间的函数表达式,然后根据表格中的数据即可求得y与x之间的函数表达式;(2)根据题意可以写出W与x之间的函数表达式;(3)根据(2)中的函数解析式,将其化为顶点式,然后根据成本每千克40元,规定每千克售价不低于成本,且不高于80元,即可得到利润W随售价x的变化而变化的情况,以及售价为多少元时获得最大利润,最大利润是多少.【答案】解:(1)设y与x之间的函数解析式为y=kx+b,,,得,即y与x之间的函数表达式是﹣;(2)由题意可得,(﹣)(﹣)﹣﹣,即W与x之间的函数表达式是﹣﹣;(3)∵﹣﹣﹣(﹣),,∴当40≤x≤70时,W随x的增大而增大,当70≤x≤80时,W随x的增大而减小,当x=70时,W取得最大值,此时W=1800,答:当40≤x≤70时,W随x的增大而增大,当70≤x≤80时,W随x的增大而减小,售价为70元时获得最大利润,最大利润是1800元.八、(本题满分14分)23.已知正方形ABCD,点M边AB的中点.(1)如图1,点G为线段CM上的一点,且∠AGB=90°,延长AG,BG分别与边BC,CD交于点E,F.①求证:BE=CF;②求证:BE2=BC•CE.(2)如图2,在边BC上取一点E,满足BE2=BC•CE,连接AE交CM于点G,连接BG并延长CD于点F,求tan∠CBF的值.【解析】本题主要考查相似形的综合问题,熟练掌握正方形与直角三角形的性质、全等三角形的判定与性质、相似三角形的判定与性质是解题的关键.(1)①由正方形的性质知AB=BC、∠ABC=∠BCF=90°、∠ABG+CBF=90°,结合∠ABG+∠BAG=90°可得∠BAG=∠CBF,证△ABE≌△BCF可得;②由RtABG斜边AB中线知MG=MA=MB,即∠GAM=∠AGM,结合∠CGE=∠AGM、∠GAM=∠CBG知∠CGE=∠CBG,从而证△CGE∽△CBG得CG2=BC•CE,由可(2,∴∵AB=BC,∠ABE=∠BCF=90°,∴△ABE≌△BCF,∴BE=CF,②∵∠AGB=90°,点M为AB的中点,∴MG=MA=MB,∴∠GAM=∠AGM,又∵∠CGE=∠AGM,∠GAM=∠CBG,∴∠CGE=∠CBG,又∠ECG=∠GCB,∴△CGE∽△CBG,∴,即CG2=BC•CE,由∠CFG=∠GBM=∠BGM=∠CGF得CF=CG,由①知BE=CF,∴BE=CG,∴BE2=BC•CE;(2)延长AE、DC交于点N,∵四边形ABCD是正方形,∴AB∥CD,∴∠N=∠EAB,又∵∠CEN=∠BEA,∴△CEN∽△BEA,∴,即BE•CN=AB•CE,∵AB=BC,BE2=BC•CE,∴CN=BE,∵AB∥DN,∴,∵AM=MB,。

2017年安徽省中考数学试卷(含答案)

2017年安徽省中考数学试卷(含答案)

2017年安徽省初中学业水平考试数学 (试题卷)一、选择题(本题共10个小题,每小题4分,满分40分) 每小题都给出A 、B 、C 、D 四个选项,其中只有一个是正确的. 1.12的相反数是( ) A .12- B .12- C .2D .-22. 计算22()a -的结果是( ) A .6aB .6a -C .5a -D .5a3. 如图,一个放置在水平实验台上的锥形瓶,它的俯视图为( )4. 截至2016年底,国家开发银行对“一带一路”沿线国家累积发放贷款超过1600亿美元.其中1600亿用科学计数法表示为( )A.101610⨯ B .101.610⨯ C.111.610⨯ D .120.1610⨯5. 不等式320x ->的解集在数轴上表示为( )6. 直角三角板和直尺如图放置.若120∠=︒,则2∠的度数为( )A.60︒ B .50︒ C.40︒ D.30︒ 7. 为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘成如图所示的频数直方图.已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是( )A .280B .240C .300D .260 8. 一种药品原价每盒25元,经过两次降价后每盒16元.设两次降价的百分率都为x ,则x 满足( ).A .16(12)25x +=B .25(12)16x -= C.216(1)25x += D .225(1)16x -= 9. 已知抛物线2y ax bx c =++与反比例函数by x=的图象在第一象限有一个公共点,其横坐标为1.则一次函数y bx ac =+的图象可能是( )10. 如图,在矩形ABCD 中,5AB =,3AD =.动点P 满足13PAB ABCD S S ∆=矩形.则点P 到A ,B两点距离之和PA PB +的最小值为( )A B C. D 二、填空题(本大题共4小题,每小题5分,满分20分) 11. 27的立方根是 .12. 因式分解:244a b ab b -+= .13. 如图,已知等边ABC ∆的边长为6,以AB 为直径的⊙O 与边AC ,BC 分别交于D ,E 两点,则劣弧 DE的长为 .14. 在三角形纸片ABC 中,90A ∠=︒,30C ∠=︒,30AC cm =.将该纸片沿过点B 的直线折叠,使点A 落在斜边BC 上的一点E 处,折痕记为BD (如图1),剪去CDE ∆后得到双层BDE ∆(如图2),再沿着边BDE ∆某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形.则所得平行四边形的周长为 cm. 三、(本大题共2小题,每小题8分,满分16分) 15. 计算:11|2|cos 60()3--⨯︒-.16.《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何? 译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元.问共有多少人?这个物品的价格是多少? 请解答上述问题.四、(本大题共2小题,每小题8分,满分16分)17. 如图,游客在点A 处坐缆车出发,沿A B D --的路线可至山顶D 处.假设AB 和BD 都是直线段,且600AB BD m ==,75α=︒,45β=︒,求DE 的长.(参考数据:sin 750.97︒≈,cos 750.26︒≈ 1.41≈)18. 如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点ABC ∆和DEF ∆ (顶点为网格线的交点),以及过格点的直线l .(1)将ABC ∆向右平移两个单位长度,再向下平移两个单位长度,画出平移后的三角形; (2)画出DEF ∆关于直线l 对称的三角形; (3)填空:C E ∠+∠= ︒.五、(本大题共2小题,每小题10分,满分20分) 19.【阅读理解】我们知道,(1)1232n n n +++++=,那么2222123n ++++ 结果等于多少呢? 在图1所示三角形数阵中,第1行圆圈中的数为1,即21;第2行两个圆圈中数的和为22+,即22;……;第n 行n 个圆圈中数的和为n nn n n +++个,即2n .这样,该三角形数阵中共有(1)2n n +个圆圈,所有圆圈中数的和为2222123n ++++ .【规律探究】将桑拿教学数阵经两次旋转可得如图所示的三角形数阵,观察这三个三角形数阵各行同一位置圆圈中的数(如第1n -行的第一个圆圈中的数分别为1n -,2,n ),发现每个位置上三个圆圈中数的和均为 .由此可得,这三个三角形数阵所有圆圈中数的总和为:22223(123)n ++++= .因此,2222123n ++++ = .【解决问题】根据以上发现,计算222212320171232017++++++++ 的结果为 .20. 如图,在四边形ABCD 中,AD BC =,B D ∠=∠,AD 不平行于BC ,过点C 作//CE AD 交ABC ∆的外接圆O 于点E ,连接AE .(1)求证:四边形AECD 为平行四边形; (2)连接CO ,求证:CO 平分BCE ∠.六、(本题满分12分)21. 甲、乙、丙三位运动员在相同条件下各射靶10次,每次射靶的成绩如下: 甲:9,10,8,5,7,8,10,8,8,7; 乙:5,7,8,7,8,9,7,9,10,10; 丙:7,6,8,5,4,7,6,3,9,5. (1)根据以上数据完成下表:(2)依据表中数据分析,哪位运动员的成绩最稳定,并简要说明理由;(3)比赛时三人依次出场,顺序由抽签方式决定.求甲、乙相邻出场的概率.七、(本题满分12分)22.某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元.经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:(1)求y与x之间的函数表达式;(2)设商品每天的总利润为W(元),求W与x之间的函数表达式(利润=收入-成本);(3)试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价为多少元时获得最大利润,最大利润是多少?八、(本题满分14分)23.已知正方形ABCD ,点M 为边AB 的中点.(1)如图1,点G 为线段CM 上的一点,且90AGB ∠=︒,延长AG ,BG 分别与边BC ,CD 交于点E ,F .①求证:BE CF =; ②求证:2BE BC CE =⋅.(2)如图2,在边BC 上取一点E ,满足2BE BC CE =⋅,连接AE 交CM 于点G ,连接BG 延长交CD 于点F ,求tan CBF ∠的值.2017年中考数学参考答案一、1-5:BABCD 6-10:CADBD二、11、312、()22b a -13、p 14、40三、15、解:原式12322=?=-. 16、解:设共有x 人,根据题意,得8374x x -=+, 解得7x =,所以物品价格为87353?=(元). 答:共有7人,物品的价格为53元.四、17、解:在Rt BDF △中,由sin DFBDβ=得,sin 600sin 45600423DF BD b=???°(m).在Rt ABC △中,由cos BCABa =可得, cos 600cos756000.26156BC AB a =???°(m). 所以423156579DE DF EF DF BC =+=+=+=(m). 18、(1)如图所示;(2)如图所示;(3)45五、19、21n +()()1212n n n ++?()()11216n n n ++134520、(1)证明:∵B D =∠∠,B E =∠∠,∴D E =∠∠, ∵CE AD ∥,∴180E DAE +=∠∠°. ∴180D DAE +=∠∠°,∴AE CD ∥. ∴四边形AECD 是平行四边形.(2)证明:过点O 作OM EC ^,ON BC ^,垂足分别为M 、N . ∵四边形AECD 是平行四边形,∴AD EC =.又AD BC =,∴EC BC =,∴OM ON =,∴CO 平分BCE ∠.六、21、解:(1)(2)因为2 2.23<<,所以222s s s <<甲乙丙,这说明甲运动员的成绩最稳定. (3)三人的出场顺序有(甲乙丙),(甲丙乙),(乙甲丙),(乙丙甲),(丙甲乙),(丙乙甲)共6种,且每一种结果出现的可能性相等,其中,甲、乙相邻出场的结果有(甲乙丙),(乙甲丙),(丙甲乙),(丙乙甲)共4种,所以甲、乙相邻出场的概率4263P ==. 七、22.解:(1)设y kx b =+,由题意,得501006080k b k b ì+=ïí+=ïî,解得2200k b ì=-ïí=ïî,∴所求函数表达式为2200y x =-+.(2)()()240220022808000W x x x x =--+=-+-.(3)()22228080002701800W x x x =-+-=--+,其中4080x #,∵20-<,∴当4070x ?时,W 随x 的增大而增大,当7080x <?时,W 随x 的增大而减小,当售价为70元时,获得最大利润,这时最大利润为1800元.八、23、(1)①证明:∵四边形ABCD 为正方形,∴AB BC =,90ABC BCF ==∠∠°, 又90AGB =∠°,∴90BAE ABG +=∠∠°,又90ABG CBF +=∠∠°,∴BAE CBF =∠∠, ∴ABE BCF △≌△(ASA),∴BE CF =.②证明:∵90AGB =∠°,点M 为AB 中点,∴MG MA MB ==,∴GAM AGM =∠∠, 又∵CGE AGM =∠∠,从而CGE CGB =∠∠,又ECG GCB =∠∠,∴CGE CBG △∽△,∴CE CGCG CB=,即2CG BC CE =?,由CFG GBM CGF ==∠∠∠,得CF CG =. 由①知,BE CF =,∴BE CG =,∴2BE BC CE =?. (2)解:(方法一)延长AE ,DC 交于点N (如图1),由于四边形ABCD 是正方形,所以AB CD ∥, ∴N EAB =∠∠,又CEN BEA =∠∠,∴CEN BEA △∽△, 故CE CN BE BA=,即BE CN AB CE ??, ∵AB BC =,2BE BC CE =?,∴CN BE =,由AB DN ∥知,CN CG CFAM GM MB==, 又AM M B =,∴FC CN BE ==,不妨假设正方形边长为1,设BE x =,则由2BE BC CE =?,得()211x x =?,解得1x =2x (舍去),∴BE BC ,于是tan FC BE CBF BC BC ==∠(方法二)不妨假设正方形边长为1,设BE x =,则由2BE BC CE =?,得()211x x =?,解得1x =2x (舍去),即BE =作GN BC ∥交AB 于N (如图2),则MNG MBC △∽△,∴12MN MB NG BC ==, 设MN y =,则2GN y =,GM ,∵GN AN BE AB =121y +=,解得y ,∴12GM =,从而GM MA MB ==,此时点G 在以AB 为直径的圆上, ∴AGB △是直角三角形,且90AGB =∠°, 由(1)知BE CF =,于是tan FC BE CBF BC BC ===∠.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年安徽省中考数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)1.12 的相反数是( )A .12B .-12C .2D .﹣2 【解析】相反数的概念,主要考查有理数的相关概念,主要有有理数的倒数,有理数的绝对值,有理数的相反数,有理数在数轴上的表示.是中考考试中的必考考点.本题考查了相反数的意义,根据相反数的概念解答即可.一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.12的相反数是−12,添加一个负号即可,故选:B. 2.计算(﹣a 3)2的结果是( )A .a 6B .﹣a 6C .﹣a 5D .a 5 【解析】本题考查整式的运算,解题的关键是熟练运用幂的乘方公式,本题属于基础题型.幂的乘方与积的乘方.根据整式的运算法则即可求出答案. 解:原式=a 6,故选A.3.如图,一个放置在水平实验台上的锥形瓶,它的俯视图为( )A .B .C .D .【解析】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.简单组合体的三视图.俯视图是分别从物体的上面看,所得到的图形.一个放置在水平实验台上的锥形瓶,它的俯视图为两个同心圆.故选B.4.截至2016年底,国家开发银行对“一带一路”沿线国家累计发放贷款超过1600亿美元,其中1600亿用科学记数法表示为()A.16×1010 B.1.6×1010C.1.6×1011 D.0.16×1012【解析】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.科学记数法—表示较大的数.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.1600亿用科学记数法表示为1.6×1011,故选:C.5.不等式4﹣2x>0的解集在数轴上表示为()A.B.C.D.【解析】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.解一元一次不等式;在数轴上表示不等式的解集.根据解一元一次不等式基本步骤:移项、系数化为1可得.移项,得:﹣2x>﹣4,系数化为1,得:x<2,故选:D.6.直角三角板和直尺如图放置,若∠1=20°,则∠2的度数为()A.60°B.50°C.40°D.30°【解析】本题考查了平行线的性质,熟练掌握平行线的性质定理是解题的关键.平行线的性质.过E作EF∥AB,则AB∥EF∥CD,根据平行线的性质即可得到结论.如图,过E作EF∥AB,则AB∥EF∥CD,∴∠1=∠3,∠2=∠4.∵∠3+∠4=60°,∴∠1+∠2=60°.∵∠1=20°,∴∠2=40°,故选C.7.为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘制成如图所示的频数直方图,已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是()A.280 B.240 C.300 D.260【解析】本题考查了频数分布直方图以及用样本估计总体,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.频数(率)分布直方图;用样本估计总体.用被抽查的100名学生中参加社团活动时间在8~10小时之间的学生所占的百分数乘以该校学生总人数,即可得解.由题可得,抽查的学生中参加社团活动时间在8~10小时之间的学生数为100﹣30﹣24﹣10﹣8=28(人),∴1000×28=280(人),即该校五一100期间参加社团活动时间在8~10小时之间的学生数大约是280人.故选:A.8.一种药品原价每盒25元,经过两次降价后每盒16元.设两次降价的百分率都为x,则x满足()A.16(1+2x)=25 B.25(1﹣2x)=16C.16(1+x)2=25 D.25(1﹣x)2=16【解析】本题考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.由实际问题抽象出一元二次方程.等量关系为:原价×(1﹣降价的百分率)2=现价,把相关数值代入即可.第一次降价后的价格为:25×(1﹣x);第二次降价后的价格为:25×(1﹣x)2;∵两次降价后的价格为16元,∴25(1﹣x)2=16.故选D.的图象在第一象限有一个公共点,9.已知抛物线y=ax2+bx+c与反比例函数 y=bx其横坐标为1,则一次函数y=bx+ac的图象可能是()A.B.C.D.【解析】考查了一次函数的图象,反比例函数的性质,二次函数的性质,关键是得到b>0,ac<0.一次函数的图象;反比例函数的性质;二次函数的性质.根据抛物线y=ax2+bx+c与反比例函数y=b的图象在第一象限有一个公共点,可得xb>0,根据交点横坐标为1,可得a+b+c=b,可得a,c互为相反数,依此可得一次函数y=bx+ac的图象.∵抛物线y=ax2+bx+c与反比例函数y=bx的图象在第一象限有一个公共点,∴b>0,∵交点横坐标为1,∴a+b+c=b,∴a+c=0,∴ac<0,∴一次函数y=bx+ac 的图象经过第一、三、四象限.故选:B.10.如图,在矩形ABCD中,AB=5,AD=3,动点P满足S△PAB=13S矩形ABCD,则点P到A,B两点距离之和PA+PB的最小值为()A.√29B.√34C.5√2D.√41【解析】本题考查了轴对称﹣最短路线问题,三角形的面积,矩形的性质,勾股定理,两点之间线段最短的性质.得出动点P所在的位置是解题的关键.首先由S△PAB =13S矩形ABCD,得出动点P在与AB平行且与AB的距离是2的直线l上,作A关于直线l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离.然后在直角三角形ABE中,由勾股定理求得BE的值,即PA+PB的最小值.设△ABC中AB边上的高是h.∵S△PAB =13S矩形ABCD,∴12AB•h=13AB•AD,∴h=23AD=2,∴动点P在与AB平行且与AB的距离是2的直线l上,如图,作A关于直线l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离.在Rt△ABE中,∵AB=5,AE=2+2=4,∴BE=√AB2+AE2=√52+42=√41,即PA+PB的最小值为√41.故选D.二、填空题(本大题共4小题,每小题5分,满分20分)11. 27的立方根为.【解析】本题考查了求一个数的立方根,用到的知识点为:开方与乘方互为逆运算.立方根.找到立方等于27的数即可.∵33=27,∴27的立方根是3,故答案为:3.12.因式分解:a2b﹣4ab+4b= .【解析】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.提公因式法与公式法的综合运用.原式提取b,再利用完全平方公式分解即可.解:原式=b(a2﹣4a+4)=b(a﹣2)2,故答案为:b(a﹣2)2.13.如图,已知等边△ABC的边长为6,以AB为直径的⊙O与边AC,BC分别交于D,E两点,则劣弧的长为.【解析】本题考查了等边三角形的性质与判定、弧长公式;熟练掌握弧长公式,证明三角形是等边三角形是解决问题的关键.连接OD,OE,先证明△AOD,△BOE 是等边三角形,得出∠AOD=∠BOE=60°,求出∠DOE=60°,再由弧长公式即可得出答案.连接OD,OE,如图所示:∵△ABC是等边三角形,∴∠A=∠B=∠C=60°.∵OA=OD,OB=OE,∴△AOD,△BOE是等边三角形,∴∠AOD=∠BOE=60°,∴∠DOE=60°.AB=3,∵OA=12∴的长=60π×3=π.180故答案为:π.14.在三角形纸片ABC中,∠A=90°,∠C=30°,AC=30cm,将该纸片沿过点B 的直线折叠,使点A落在斜边BC上的一点E处,折痕记为BD(如图1),减去△CDE后得到双层△BDE(如图2),再沿着过△BDE某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为cm.【解析】本题考查了剪纸问题,平行四边形的性质,解直角三角形,正确的理解题意是解题的关键.解直角三角形得到AB=10√3,∠ABC=60°,根据折叠的性质∠ABC=30°,BE=AB=10√3,求得DE=10,BD=20,如图1,平得到∠ABD=∠EBD=12行四边形的边是DF,BF,如图2,平行四边形的边是DE,EG,于是得到结论.∵∠A=90°,∠C=30°,AC=30cm,∴AB=10√3,∠ABC=60°,∵△ADB≌△EDB,∠ABC=30°,BE=AB=10√3,∴∠ABD=∠EBD=12∴DE=10,BD=20.,如图1,平行四边形的边是DF,BF,且DF=BF=20√33∴平行四边形的周长=80√3,3如图2,平行四边形的边是DE,EG,且DF=BF=10,∴平行四边形的周长=40,,综上所述:平行四边形的周长为40或80√33故答案为:40或80√3.3三、(本大题共2小题,每小题8分,满分16分)15.计算:|﹣2|×cos60°﹣(1)﹣1.3【解析】本题主要考查了负整数指数幂的性质以及绝对值、特殊角的三角函数值等知识,正确化简各数是解题关键.分别利用负整数指数幂的性质以及绝对值的﹣3=﹣2.性质、特殊角的三角函数值化简求出答案.原式=2×1216.《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物、人出八,盈三;人出七,不足四,问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?请解答上述问题.【解析】本题考查了一元一次方程的应用,解题的关键是明确题意,找出合适的等量关系,列出相应的方程.根据这个物品的价格不变,列出一元一次方程进行求解即可.设共有x人,可列方程为:8x﹣3=7x+4.解得x=7,∴8x﹣3=53,答:共有7人,这个物品的价格是53元.四、(本大题共2小题,每题8分,共16分)17.如图,游客在点A处坐缆车出发,沿A﹣B﹣D的路线可至山顶D处,假设AB和BD都是直线段,且AB=BD=600m,α=75°,β=45°,求DE的长.(参考数据:sin75°≈0.97,cos75°≈0.26,√2≈1.41)【解析】本题考查解直角三角形的应用,锐角三角函数、矩形的性质等知识,解题的关键是学会利用直角三角形解决问题,属于中考常考题型.在R△ABC中,求出BC=AB•cos75°≈600×0.26≈156m,在Rt△BDF中,求出≈300×1.41≈423,由四边形BCEF是矩形,可得EF=BC,DF=BD•sin45°=600×√22由此即可解决问题.【答案】解:在Rt△ABC中,∵AB=600m,∠ABC=75°,∴BC=AB•cos75°≈600×0.26≈156m,在Rt△BDF中,∵∠DBF=45°,≈300×1.41≈423,∴DF=BD•sin45°=600×√22∵四边形BCEF是矩形,∴EF=BC=156,∴DE=DF+EF=423+156=579m.答:DE的长为579m.18.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC 和△DEF(顶点为网格线的交点),以及过格点的直线l.(1)将△ABC向右平移两个单位长度,再向下平移两个单位长度,画出平移后的三角形.(2)画出△DEF关于直线l对称的三角形.(3)填空:∠C+∠E= .【解析】本题主要考查作图﹣平移变换、轴对称变换,熟练掌握平移变换、轴对称变换及勾股定理逆定理是解题的关键.作图-轴对称变换;作图-平移变换.解:(1)将点A,B,C分别右移2个单位、下移2个单位得到其对应点,顺次连接即可得;(2)分别作出点D,E,F关于直线l的对称点,顺次连接即可得;(3)连接A′F′,利用勾股定理逆定理证△A′C′F′为等腰直角三角形即可得.【答案】解:(1)△A′B′C′即为所求;(2)△D′E′F′即为所求;(3)如图,连接A′F′,∵△ABC≌△A′B′C′、△DEF≌△D′E′F′,∴∠C+∠E=∠A′C′B′+∠D′E′F′=∠A′C′F′,∵A′C′=√12+22=√5、A′F′=√12+22=√5,C′F′=√12+32=√10,∴A′C′2+A′F′2=5+5=10=C′F′2,∴△A′C′F′为等腰直角三角形,∴∠C+∠E=∠A′C′F′=45°,故答案为:45°.五、(本大题共2小题,每题10分,共20分)19.【阅读理解】我们知道,1+2+3+…+n=n(n+1),那么12+22+32+…+n2结果等于多少呢?2在图1所示三角形数阵中,第1行圆圈中的数为1,即12,第2行两个圆圈中数的和为2+2,即22,…;第n 行n 个圆圈中数的和为,即n 2,这样,该三角形数阵中共有n(n+1)2个圆圈,所有圆圈中数的和为12+22+32+…+n 2.【规律探究】将三角形数阵经两次旋转可得如图2所示的三角形数阵,观察这三个三角形数阵各行同一位置圆圈中的数(如第n ﹣1行的第一个圆圈中的数分别为n ﹣1,2,n ),发现每个位置上三个圆圈中数的和均为 ,由此可得,这三个三角形数阵所有圆圈中数的总和为3(12+22+32+…+n 2)= ,因此,12+22+32+…+n 2= . 【解决问题】根据以上发现,计算:12+22+32+⋯+201721+2+3+⋯+2017的结果为 .【解析】本题主要考查数字的变化类,阅读材料、理解数列求和的具体方法得出规律,并运用规律解决实际问题是解题的关键.解:【规律探究】将同一位置圆圈中的数相加即可,所有圈中的数的和应等于同一位置圆圈中的数的和乘以圆圈个数,据此可得,每个三角形数阵和即为三个三角形数阵和的13,从而得出答案;【解决问题】运用以上结论,将原式变形为16×2017×(2017+1)×(2×2017+1)12×2017×(2017+1),化简计算即可得. 【答案】 解:【规律探究】由题意知,每个位置上三个圆圈中数的和均为n ﹣1+2+n =2n +1, 由此可得,这三个三角形数阵所有圆圈中数的总和为: 3(12+22+32+…+n 2)=(2n+1)×(1+2+3+…+n )=(2n+1)×n(n+1)2,因此,12+22+32+…+n 2=n (2n+1)(n+1)6;故答案为:2n+1,n (n+1)(2n+1)2,n (n+1)(2n+1)6;【解决问题】原式=16×2017×(2017+1)×(2×2017+1)12×2017×(2017+1)=13×(2017×2+1)=1345,故答案为:1345.20.如图,在四边形ABCD 中,AD=BC ,∠B=∠D ,AD 不平行于BC ,过点C 作CE ∥AD 交△ABC 的外接圆O 于点E ,连接AE . (1)求证:四边形AECD 为平行四边形; (2)连接CO ,求证:CO 平分∠BCE .【解析】本题考查的是三角形的外接圆与外心,掌握平行四边形的判定定理、垂径定理、圆周角定理是解题的关键.(1)根据圆周角定理得到∠B=∠E,得到∠E=∠D,根据平行线的判定和性质定理得到AE∥CD,证明结论;(2)作OM⊥BC于M,ON⊥CE于N,根据垂径定理、角平分线的判定定理证明.【答案】证明:(1)由圆周角定理得,∠B=∠E,又∠B=∠D,∴∠E=∠D,∵CE∥AD,∴∠D+∠ECD=180°,∴∠E+∠ECD=180°,∴AE∥CD,∴四边形AECD为平行四边形;(2)作OM⊥BC于M,ON⊥CE于N,∵四边形AECD为平行四边形,∴AD=CE,又AD=BC,∴CE=CB,∴OM=ON,又OM⊥BC,ON⊥CE,∴CO平分∠BCE.六、(本题满分12分)21.甲、乙、丙三位运动员在相同条件下各射靶10次,每次射靶的成绩如下:甲:9,10,8,5,7,8,10,8,8,7乙:5,7,8,7,8,9,7,9,10,10丙:7,6,8,5,4,7,6,3,9,5(1)根据以上数据完成下表:平均数中位数方差甲 8 8 2乙 8 8 2.2丙 6 6 3(2)根据表中数据分析,哪位运动员的成绩最稳定,并简要说明理由;(3)比赛时三人依次出场,顺序由抽签方式决定,求甲、乙相邻出场的概率.【解析】本题考查了方差、平均数、中位数和画树状图法求概率,一般地设n个数据,x1,x2, (x)n的平均数为,则方差S2=1n[(x1﹣x¯)2+(x2﹣x¯)2+…+(xn﹣x¯)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立;概率=所求情况数与总情况数之比.(1)根据方差公式和中位数的定义分别进行解答即可;(2)根据方差公式先分别求出甲的方差,再根据方差的意义即方差越小越稳定即可得出答案;(3)根据题意先画出树状图,得出所有情况数和甲、乙相邻出场的情况数,再根据概率公式即可得出答案.【答案】解:(1)∵甲的平均数是8,∴甲的方差是:110 [(9﹣8)2+2(10﹣8)2+4(8﹣8)2+2(7﹣8)2+(5﹣8)2]=2; 把丙运动员的射靶成绩从小到大排列为:3,4,5,5,6,6,7,7,8,9,则中位数是6+62=6;故答案为:6,2;(2)∵甲的方差是:110 [(9﹣8)2+2(10﹣8)2+4(8﹣8)2+2(7﹣8)2+(5﹣8)2]=2;乙的方差是:110[2(9﹣8)2+2(10﹣8)2+2(8﹣8)2+3(7﹣8)2+(5﹣8)2]=2.2;丙的方差是:110 [(9﹣6)2+(8﹣6)2+2(7﹣6)2+2(6﹣6)2+2(5﹣6)2+(4﹣6)2+(3﹣6)2]=3; ∴S 甲2<S 乙2<S 丙2, ∴甲运动员的成绩最稳定;(3)根据题意画图如下:∵共有6种情况数,甲、乙相邻出场的有4种情况, ∴甲、乙相邻出场的概率是46=23.七、(本题满分12分)22.某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:售价x(元/千克)506070销售量y(千克)1008060(1)求y与x之间的函数表达式;(2)设商品每天的总利润为W(元),求W与x之间的函数表达式(利润=收入﹣成本);(3)试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价为多少元时获得最大利润,最大利润是多少?【解析】本题考查二次函数的应用,解答本题的关键是明确题意,求出相应的函数解析式,利用二次函数的性质和二次函数的顶点式解答.(1)根据题意可以设出y与x之间的函数表达式,然后根据表格中的数据即可求得y与x之间的函数表达式;(2)根据题意可以写出W与x之间的函数表达式;(3)根据(2)中的函数解析式,将其化为顶点式,然后根据成本每千克40元,规定每千克售价不低于成本,且不高于80元,即可得到利润W随售价x的变化而变化的情况,以及售价为多少元时获得最大利润,最大利润是多少.【答案】解:(1)设y与x之间的函数解析式为y=kx+b,{50k+b=100,60k+n=80,得{k=−2b=200,即y与x之间的函数表达式是y=﹣2x+200;(2)由题意可得,W=(x﹣40)(﹣2x+200)=﹣2x2+280x﹣8000,即W与x之间的函数表达式是W=﹣2x2+280x﹣8000;(3)∵W=﹣2x2+280x﹣8000=﹣2(x﹣70)2+1800,40≤x≤80,∴当40≤x≤70时,W随x的增大而增大,当70≤x≤80时,W随x的增大而减小,当x=70时,W取得最大值,此时W=1800,答:当40≤x≤70时,W随x的增大而增大,当70≤x≤80时,W随x的增大而减小,售价为70元时获得最大利润,最大利润是1800元.八、(本题满分14分)23.已知正方形ABCD,点M边AB的中点.(1)如图1,点G为线段CM上的一点,且∠AGB=90°,延长AG,BG分别与边BC,CD交于点E,F.①求证:BE=CF;②求证:BE2=BC•CE.(2)如图2,在边BC上取一点E,满足BE2=BC•CE,连接AE交CM于点G,连接BG并延长CD于点F,求tan∠CBF的值.【解析】本题主要考查相似形的综合问题,熟练掌握正方形与直角三角形的性质、全等三角形的判定与性质、相似三角形的判定与性质是解题的关键.(1)①由正方形的性质知AB=BC、∠ABC=∠BCF=90°、∠ABG+CBF=90°,结合∠ABG+∠BAG=90°可得∠BAG=∠CBF,证△ABE≌△BCF可得;②由RtABG斜边AB中线知MG=MA=MB,即∠GAM=∠AGM,结合∠CGE=∠AGM、∠GAM=∠CBG知∠CGE=∠CBG,从而证△CGE∽△CBG得CG2=BC•CE,由BE=CF=CG可得答案;(2)延长AE、DC交于点N,证△CEN∽△BEA得BE•CN=AB•CE,由AB=BC,BE2=BC·CE知CN=BE,再由CNAM =CGGM=CFBM且AM=MB得FC=CN=BE,设正方形的边长为1,BE=x,根据BE2=BC•CE求得BE的长,最后由tan∠CBF=FCBC =BEBC可得答案.【答案】解:(1)①∵四边形ABCD是正方形,∴AB=BC,∠ABC=∠BCF=90°,∴∠ABG+∠CBF=90°,∵∠AGB=90°,∴∠ABG+∠BAG=90°,∴∠BAG=∠CBF,∵AB=BC,∠ABE=∠BCF=90°,∴△ABE≌△BCF,∴BE=CF,②∵∠AGB=90°,点M为AB的中点,∴MG=MA=MB,∴∠GAM=∠AGM,又∵∠CGE=∠AGM,∠GAM=∠CBG,∴∠CGE=∠CBG,又∠ECG=∠GCB,∴△CGE∽△CBG,∴CECG =CGCB,即CG2=BC•CE,由∠CFG=∠GBM=∠BGM=∠CGF得CF=CG,由①知BE=CF,∴BE=CG,∴BE2=BC•CE;(2)延长AE、DC交于点N,∵四边形ABCD是正方形,∴AB∥CD,∴∠N=∠EAB,又∵∠CEN=∠BEA,∴△CEN∽△BEA,∴CEBE =CNBA,即BE•CN=AB•CE,∵AB=BC,BE2=BC•CE,∴CN=BE,∵AB∥DN,∴CNAM =CGGM=CFBM,∵AM=MB,∴FC=CN=BE,不妨设正方形的边长为1,BE=x,由BE2=BC•CE可得x2=1•(1﹣x),解得:x1=√5−12,x2=−√5−12(舍),∴BEBC =√5−12,则tan∠CBF=FCBC =BEBC=√5−12.。

相关文档
最新文档