材料力学第十章动荷载

合集下载

第十、十一章动载荷 交变应力概述

第十、十一章动载荷 交变应力概述

第十章 动载荷与交变应力
§10-2 动静法的应用
一、动静法
1. 构件作加速运动时,构件内各质点将产生惯性力, 惯性力的大小等于质量与加速度的乘积,方向与加速度的方向
相反。 2. 动静法:在任一瞬时,作用在构件上的荷载,惯性力和
约束力,构成平衡力系。当构件的加速度已知时,可用动静 法求解其动应力。
二、匀加速直线运动构件的动应力
式中, st
P 为静应力。 A
由(3),(4)式可见,动荷载等于动荷载因数与静荷载 的乘积;动应力等于动荷载因数与静应力的乘积。即用动荷因 数反映动荷载的效应。
6
材 料 力 学 电 子 教 案
第十章 动载荷与交变应力
例 10-4 已知梁为16号工字钢,吊索横截面面积 A=108
mm2,等加速度a =10 m/s2 ,不计钢索质量。求:1,吊索的动应 力d ; 2,梁的最大动应力d, max 。 解: 1. 求吊索的d 16号工字钢单位长度的 重量为
横截面上的正应力为
FNd rw2 D 2 d A 4
13
材 料 力 学 电 子 教 案
第十一章 动载荷与交变应力
四、匀变速转动时构件的动应力
例 6-3 直径d =100 mm的圆轴,右端有重量 P =0.6 kN, 直径D=400 mm的飞轮,以均匀转速n =1 000 r/min旋转(图a)。
P a FNd P a P (1 ) g g a 令 K d 1 (动荷系数) g
(1) (2) (3)

5
FN d Kd P
材 料 力 学 电 子 教 案
第十章 动载荷与交变应力
钢索横截面上的动应力为
FN d P d K d K d st A A

材料力学第10章(动载荷)

材料力学第10章(动载荷)
突加荷载 h 0,
Kd 2
二、水平冲击 mg v
d
Fd d , Pst st
Pst mg 其中: mgl st EA
Fd
st
Pst
mv2 冲击前:动 T1 能 2
冲击后: 应变能Vε 2 Fd d 2
2 F 2 st mv d mg
h
P
h
解:
st
Pl 1.7 102 (mm) EA
2h K d 1 1 st
2 500 1 1 243 2 1.7 10
l
l
d 2 A 4
P 2 103 0.028(MPa) st 4 A 7.1 10 d Kd st
假设: (1)冲击物为刚体; (2)不计冲击过程中的声、光、热等能量损耗(能量守恒);
(3)冲击过程中被冲击物的变形为线弹性变形过程。(保守计算)
一、自由落体冲击
P
冲击前: T 0
V P(h d )
B
h
A
冲击后:
1 Vε d Fd d 2
A
Δd
能量守恒: T V Vd
B
2h st
l
4 Pl 3 22mm st 3 EI
K d 1 1 2 50 3.35 22
40 C 30
d Kd st
M max Pl 50(MPa) st W W
d Kd st 161 MPa) (
A
Δd
Fd
B
1 P (h d ) Fd d 2 Fd d P st
2 Fd 1 Fd P (h st ) st P 2 P

材料力学 动荷载和循环应力

材料力学 动荷载和循环应力

Mechanic of Materials
§10.4 杆件受冲击时的应力和变形
例题 : 图中所示的两根受重物Q冲击的钢梁,其中一根是支承于 刚性支座上,另外一根支于弹簧刚度系数k=100N/mm的弹性支 座上。已知l = 3m, h=0.05m, Q=1kN, Iz=3.4×107mm4, Wz=308.6×109mm3,E=200GPa,比较两者的冲击应力。
Mechanic of Materials
§ 10.1 概述
一、什么是动载荷,与静荷载的区别。
1、静荷载:
从零开始缓慢地增到终值,然后保持不变的载荷 2、动载荷:
使构件产生明显的加速度的载荷或随时间变化 的载荷。动载荷本质:是惯性力 3、动应力、动变形
构件由于动荷载所引起的应力、变形 4、分类:惯性载荷、冲击载荷、振动载荷、交变载荷
§10.4 杆件受冲击时的应力和变形
三、求冲击问题的解题步骤
Mechanic of Materials
1、求静位移、静应力
静冲击物静置在被冲击物的冲击位置上,由拉压杆胡克定 理,梁可以查表,求冲击处发生静位移。也可以由能梁法 求解。
2、求动荷系数
kd 1
1 2h st
kd
v2 g st
3、求动位移、静应力等
a
冲击物
被冲击物
解决冲击问题的方法:近似但偏 于安全的方法--能量法
Mechanic of Materials
§10.4 杆件受冲击时的应力和变形
采用能量法处理冲击问题的基本假设: 1、除机械能外,所有其它的能量损失(塑性变形能、
热能)等均忽略不计; 2、冲击过程中,结构保持线弹性范围内,即力与变
§ 10.1 概述

材料力学课件PPT

材料力学课件PPT

力学性质:在外力作用下材料在变形和破坏方面所 表现出的力学性能













材料拉伸时的力学性质
材料拉伸时的力学性质
二 低 碳 钢 的 拉 伸
材料拉伸时的力学性质
二 低碳钢的拉伸(含碳量0.3%以下)
e
b
f 2、屈服阶段bc(失去抵抗变 形的能力)
b
e P
a c s
s — 屈服极限
(二)关于塑性流动的强度理论
1.第三强度理论(最大剪应力理论) 这一理论认为最大剪应力是引起材料塑性流动破坏的主要
因素,即不论材料处于简单还是复杂应力状态,只要构件危险 点处的最大剪应力达到材料在单向拉伸屈服时的极限剪应力就 会发生塑性流动破坏。
这一理论能较好的解释塑性材料出现的塑性流动现象。 在工程中被广泛使用。但此理论忽略了中间生应力 2的影响, 且对三向均匀受拉时,塑性材料也会发生脆性断裂破坏的事 实无法解释。
许吊起的最大荷载P。
CL2TU8
解: N AB
A [ ]
0.0242 4
40 106
18.086 103 N 18.086 kN
P = 30.024 kN
6.5圆轴扭转时的强度计算
圆轴扭转时的强度计算
▪ 最大剪应力:圆截面边缘各点处
max
Tr
Ip
max
Wp T
Wp
Ip r

抗扭截面模量
3、强化阶段ce(恢复抵抗变形
的能力)
o
b — 强度极限
4、局部径缩阶段ef
明显的四个阶段
1、弹性阶段ob

材料力学教程11动荷载

材料力学教程11动荷载

0
n
30
10
3
角加速度: 1 0
角加速度与角速度方向相反, 按动静y法在飞轮上加惯性力:
Md
2
I
0.53
3
mt
x
Td
0.5
3
A
B
0 md
max
T Wt
2.67MPa
§12.4 杆件受冲击时的应力和变形
冲击 : 加载的速度在非常短的时间内发生改变,
构件受到很大的作用力,这种现象称为冲击。
243EIh 2Pl3
A
CD B
2l 9
h
Kd 1
1
243EIh 2Pl3
A A
CD B
C
P D
B
( D )st
M W
2Pl 9W
( D )d kd st
2 Pl
1
9
(1
1
243EIh 2Pl3
)
2Pl 9W
A
B
(C )st
23Pl 3 1296EI
1l
(C )d kd C
4
例已知:重为G的重物以水平速度v冲击到圆形截面AB梁的 C点,EI. 求:σd max
(锻锤与锻件的接触撞击,重锤打桩,高速转动的飞 轮突 然刹车等)
求解冲击问题的简化算法—能量法
冲击应力估算中的基本假定: ①不计冲击物的变形; ②冲击物与构件接触后无回弹; ③构件的质量与冲击物相比很小,可忽略不计 ④材料服从虎克定律; ⑤冲击过程中,声、热等能量损耗很小,可略去不计
承受各种变形的弹性杆件都可以看作是一个弹簧。 例如:
d
d
Q
st
st
P Q 或

材料力学一

材料力学一

第三节 杆件变形的基本形式
杆的基本变形可分为: 轴向拉伸或压缩 : 直杆受到一对大小相等、方向相反、
作用线与轴线重合的外力作用时,杆件的变形主要是
轴线方向的伸长或缩短,这种变形称为轴向拉伸或压
缩.
F
F
F
F
剪切:杆件受到一对大小相等、方向相反、作用线相 互平行且相距很近的外力作用时,杆件的变形主要是 两部分沿外力作用方向发生料的机械性能测定(力和变形的关系,
强度指标等〕
2、验证理论和假设
3、实测:对复杂的结构、载荷难以估计的以
及检验设计要求,需要借助于试验来完成。
材料力学是固体力学的一个有机组成部分,是研
究变形固体的第一门课程,在基本概念、基本理 论和基本方法等方面为结构力学、弹性力学等奠 定了基础;同时也是机械设计、结构设计等课程 的先导课程,是工程技术人员必备的基础知识,
在材料力学中则对变形固体作如下假设:
1.连续性假设。假设物质毫无空隙地充满了整个固体。可
把某些力学量用坐标的连续函数来表示。
2.均匀性假设。假设固体内各处的力学性能完全相同。将
物体性能看作各组成部分性能的统计平均量,物体的任一部分 的力学性能都与整体的力学性能相同。
3.各向同性假设。假设固体在各个方向的力学性能完全相
同-----各向同性材料,如铸钢、铸铁、玻璃、塑料等, 还有些材料在不同的方向具有不同的力学性能,称为各向异性
材料,如木材, 还有正交各向异性材料,如胶合板等。
4.小变形假设。如果固体的变形较之其尺寸小得多,这种
变形称为小变形。研究物体的静力平衡时,可略去这种小变形, 按原始尺寸计算,在分析物体的变形规律时,不能忽略。
材料力学
第一章 绪论 第二章 杆件的内力分析 第三章 杆件横截面上的应力应变分析 第四章 杆件的变形计算 第五章 应力状态和应变状态分析 第六章 材料力学性能及实验应力分析基础 第七章 压杆稳定 第八章 杆类构件静力学设计 *第九章 能量方法初步 第十章 简单静不定问题 *第十一章 动荷载 第十二章 交变应力 附录Ⅰ 平面图形几何性质

材料力学2--动荷载、交变应力

材料力学2--动荷载、交变应力
min r (1)应力比 r max r = -1 :对称循环 ; r = 0 :脉动循环 。
r < 0 :拉压循环 ; r > 0 :拉拉循环 或压压循环。
(2)应力幅 (3)平均应力 m
max min
1 m ( max min ) 2
12.1 概述
一、静载荷与动载荷:
Байду номын сангаас
载荷不随时间变化(或变化极其平稳缓慢)且使构件各部件加 速度保持为零(或可忽略不计),此类载荷为静载荷。
载荷随时间急剧变化且使构件的速度有显著变化(系统产生惯 性力),此类载荷为动载荷。 二、动响应:
构件在动载荷作用下产生的各种响应(如应力、应变、位移 等),称为动响应。
速度不能确定,要采用“能量法”求解; 3.交变应力: 应力随时间作周期性变化,疲劳问题。
12.2 构件有加速度时动应力计算
采用
动静法
在构件运动的某一时刻,将惯性力加在构件上, 使原来作用在构件上的外力和惯性力假想地组成 平衡力系,然后按静荷作用下的问题来处理。
一、直线运动构件的动应力
例: 图示梁、钢索结构。起吊重物以等加速度a提升。 试求钢索横截面的动应力和梁的最大动应力。 解:(1) 钢索的轴力: a
实验表明:在静载荷下服从虎克定律的材料,只要应力不超 过比例极限 ,在动载荷下虎克定律仍成立且E静=E动。
三、动荷系数:
动响应 动荷因数K d 静响应
d Kd st
四、动应力分类: 1.简单动应力: 加速度可以确定,采用“动静法”求解。 2.冲击载荷: 速度在极短暂的时间内有急剧改变。此时,加
2h Δd Δst (1 1 ) Δst
2h 引用记号 K d (1 1 ) Δst

材料力学公式超级大汇总

材料力学公式超级大汇总

1.外力偶矩计算公式 P功率,n转速2.弯矩、剪力和荷载集度之间的关系式3.轴向拉压杆横截面上正应力的计算公式杆件横截面轴力F N,横截面面积A,拉应力为正4.轴向拉压杆斜截面上的正应力与切应力计算公式夹角a 从x轴正方向逆时针转至外法线的方位角为正5.6.纵向变形和横向变形拉伸前试样标距l,拉伸后试样标距l1;拉伸前试样直径d,拉伸后试样直径d17.8.纵向线应变和横向线应变9.10.泊松比11.胡克定律12.受多个力作用的杆件纵向变形计算公式13.承受轴向分布力或变截面的杆件,纵向变形计算公式14.轴向拉压杆的强度计算公式15.许用应力, 脆性材料,塑性材料16.延伸率17.截面收缩率18.剪切胡克定律切变模量G,切应变g19.拉压弹性模量E、泊松比和切变模量G之间关系式20.圆截面对圆心的极惯性矩a实心圆21.b空心圆22.圆轴扭转时横截面上任一点切应力计算公式扭矩T,所求点到圆心距离r23.圆截面周边各点处最大切应力计算公式24.扭转截面系数,a实心圆25. b空心圆26.薄壁圆管壁厚δ≤ R0 /10 ,R0为圆管的平均半径扭转切应力计算公式27.圆轴扭转角与扭矩T、杆长l、扭转刚度GH p的关系式28.同一材料制成的圆轴各段内的扭矩不同或各段的直径不同如阶梯轴时或29.等直圆轴强度条件30.塑性材料;脆性材料31.扭转圆轴的刚度条件或32.受内压圆筒形薄壁容器横截面和纵截面上的应力计算公式,33.平面应力状态下斜截面应力的一般公式,34.平面应力状态的三个主应力,,35.主平面方位的计算公式36.面内最大切应力37.受扭圆轴表面某点的三个主应力, ,38.三向应力状态最大与最小正应力 ,39.三向应力状态最大切应力40.广义胡克定律41.42.43.四种强度理论的相当应力44.一种常见的应力状态的强度条件,45.组合图形的形心坐标计算公式,46.任意截面图形对一点的极惯性矩与以该点为原点的任意两正交坐标轴的惯性矩之和的关系式47.截面图形对轴z和轴y的惯性半径,48.平行移轴公式形心轴z c与平行轴z1的距离为a,图形面积为A49.纯弯曲梁的正应力计算公式50.横力弯曲最大正应力计算公式51.矩形、圆形、空心圆形的弯曲截面系数, ,52.几种常见截面的最大弯曲切应力计算公式为中性轴一侧的横截面对中性轴z的静矩,b为横截面在中性轴处的宽度53.矩形截面梁最大弯曲切应力发生在中性轴处54.工字形截面梁腹板上的弯曲切应力近似公式55.轧制工字钢梁最大弯曲切应力计算公式56.圆形截面梁最大弯曲切应力发生在中性轴处57.圆环形薄壁截面梁最大弯曲切应力发生在中性轴处58.弯曲正应力强度条件59.几种常见截面梁的弯曲切应力强度条件60.弯曲梁危险点上既有正应力σ又有切应力τ作用时的强度条件或,61.梁的挠曲线近似微分方程62.梁的转角方程63.梁的挠曲线方程64.轴向荷载与横向均布荷载联合作用时杆件截面底部边缘和顶部边缘处的正应力计算公式65.偏心拉伸压缩66.弯扭组合变形时圆截面杆按第三和第四强度理论建立的强度条件表达式,67.圆截面杆横截面上有两个弯矩和同时作用时,合成弯矩为68.圆截面杆横截面上有两个弯矩和同时作用时强度计算公式69.弯拉扭或弯压扭组合作用时强度计算公式70.剪切实用计算的强度条件71.挤压实用计算的强度条件72.等截面细长压杆在四种杆端约束情况下的临界力计算公式73. 压杆的约束条件:a 两端铰支 μ=l74. b 一端固定、一端自由 μ=2 75. c 一端固定、一端铰支 μ=0.7 76. d 两端固定 μ=0.577. 压杆的长细比或柔度计算公式 ,78. 细长压杆临界应力的欧拉公式79. 欧拉公式的适用范围80. 压杆稳定性计算的安全系数法81. 压杆稳定性计算的折减系数法82.关系需查表求得3 截面的几何参数序号 公式名称 公式 符号说明3.1截面形心位置AzdA z Ac⎰=,AydA y Ac⎰=Z 为水平方向 Y 为竖直方向3.2截面形心位置∑∑=ii i c A A z z , ∑∑=ii i c A A y y3.3 面积矩 ⎰=AZ ydA S ,⎰=Ay zdA S3.4 面积矩 i i z y A S ∑=,i i y z A S ∑=3.5截面形心位置A S z yc =,ASy z c =4 应力和应变5 应力状态分析2 内力和内力图6 强度计算7 刚度校核8 压杆稳定性校核10 动荷载9 能量法和简单超静定问题材料力学公式汇总一、应力与强度条件 1、拉压 []σσ≤=maxmax AN2、剪切 []ττ≤=AQmax 挤压 []挤压挤压挤压σσ≤=AP3、圆轴扭转 []ττ≤=W tTmax 4、平面弯曲 ①[]σσ≤=maxz max W M②[]max t max t max max σσ≤=y I Mzt③[]ττ≤⋅=bI S Q z *max z max max 5、斜弯曲 []σσ≤+=maxyyz z max W M W M6、拉压弯组合 []σσ≤+=maxmax zW M A N注意:“5”与“6”两式仅供参考 7、圆轴弯扭组合:①第三强度理论 []στσσ≤+=+=z 2n2w 2n2wr34W M M②第四强度理论 []στσσ≤+=+=z2n2w 2n2w r475.03W M M二、变形及刚度条件 1、拉压 ∑⎰===∆LEAxx N EAL N EANLL d )(ii 2、扭转 ()⎰=∑==Φpp i i p GI dx x T GI L T GI TLπφ0180⋅=Φ=p GI T L m / 3、弯曲1积分法:)()(''x M x EIy = C x x M x EI x EIy +==⎰d )()()('θ D Cx x x x M x EIy ++=⎰⎰d ]d )([)( 2叠加法:()21,P P f …=()()21P f P f ++…, ()21,P P θ=()()++21P P θθ…3基本变形表注意:以下各公式均指绝对值,使用时要根据具体情况赋予正负号EI ML B 3=θ,EI ML A 6=θ EI PL A B 162==θθ EIqL A B 243==θθ4弹性变形能注:以下只给出弯曲构件的变形能,并忽略剪力影响,其他变形与此相似,不予写出EI L M U 22==i i i EI L M 22∑=()⎰EIdx x M 22 5卡氏第二定理注:只给出线性弹性弯曲梁的公式 三、应力状态与强度理论1、二向应力状态斜截面应力2、二向应力状态极值正应力及所在截面方位角 3、二向应力状态的极值剪应力注:极值正应力所在截面与极值剪应力所在截面夹角为4504、三向应力状态的主应力:321σσσ≥≥最大剪应力:231max σστ-=5、二向应力状态的广义胡克定律 1、表达形式之一用应力表示应变2、表达形式之二用应变表示应力 6、三向应力状态的广义胡克定律 7、强度理论1[]111σσσ≤=r ()3212σσμσσ+-=r []σ≤ []bb n σσ=2[]σσσσ≤-=313r ()()()[]213232221421σσσσσσσ-+-+-=r []σ≤ []s s n σσ=8、平面应力状态下的应变分析1αγαεεεεεα2sin 22cos 22⎪⎪⎭⎫ ⎝⎛---++=xy y x y x +-=⎪⎭⎫ ⎝⎛-αεεγα2sin 22yx αγ2cos 2⎪⎪⎭⎫ ⎝⎛-xy 222min max 222⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛-±+=xy y x y x γεεεεεεyx xyεεγα-=02tg 四、压杆稳定1、临界压力与临界应力公式若把直杆分为三类①细长受压杆 p λλ≥ ()2min 2cr L EI P μπ= 22cr λπσE=②中长受压杆 s p λλλ≥≥ λσb a -=cr ③短粗受压杆 s λλ≤ “cr σ”=s σ 或 b σ2、关于柔度的几个公式 i Lμλ= p 2p σπλE= ba s s σλ-=3、惯性半径公式AI i z =圆截面 4di z =,矩形截面12min b i =b 为短边长度五、动载荷只给出冲击问题的有关公式 能量方程 U V T ∆=∆+∆冲击系数 std 211∆++=hK 自由落体冲击 st20d ∆=g v K 水平冲击 六、截面几何性质1、 惯性矩以下只给出公式,不注明截面的形状⎰=dA I P 2ρ=324d π ()44132απ-D D d =α2、惯性矩平移轴公式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9cm2 ,单位长重量q=25. 5N/m , [] =300MPa, 以a=2m/s2的加速度
提起重50kN 的物体,试校核钢丝绳的强度.
解:(1)受力分析如图
FNst
FNd
(G
ql)(1
a) g
(2)动应力
lq
d
FNd A
1 (G A
ql)(1
a) g
1 2.9 104
(50 103
25.5
Chapter 10 Dynamic Load
(Dynamic Loading)
第十章 动载荷(Dynamic loading)
§10-1 概述 (Instruction) §10-2 动静法的应用 (The application for method of dynamic equilibrium) §10-3 构件受冲击时的应力和变形(Stress and deformation by impact loading)
D st
FNst l EA
Dd
FNd l EA
Dd K d Dst
FNd FNst
Dd D st
d st
Kd
P
P Pa g
结论:只要将静载下的内力,应力,变形,乘以动荷系数Kd即
得动载下的应力与变形.
作匀加速直线运动的构件的动荷系数
Kd
1
a g
(Dynamic Loading)
例题2 起重机钢丝绳长60m,名义直径28cm,有效横截面面积A=2.
2020/4/13
(Dynamic Loading)
§10-1 概述(Instruction)
一、基本概念 (Basic concepts)
1、静荷载(Static load) 荷载由零缓慢增长至最终值,然后保持不变.构件内各质点加
速度很小,可略去不计.
2、动荷载 (Dynamic load) 荷载作用过程中随时间快速变化,或其本身不稳定(包括大
例题1 一起重机绳索以加速度 a 提升 一重为 P 的物体,设绳索的横截面面积为
A,绳索单位体积的质量r,求距绳索下端为
x 处的 m-m 截面上的应力.
F
mm
a
x
P
(Dynamic Loading)
F
mm
a
x
F’
F
FNst
FNd
mm
m
rAg
m rAg
rAg x a
rAa r Ag x r Aa
P
达朗伯原理(D’Alembert’s Principle): 达朗伯原理认为处于不平衡状态
的质点,存在惯性力,惯性力的方向与加速度方向相反,惯性力的数值等于加速度 与质点质量的乘积.只要在质点上加上惯性力,就可以把动力学问题在形式上作
为静力学问题来处理,这就是动静法 (Method of kineto static).
d
FNd A
Kd
FNst A
Kd st
P
st为静荷载下绳索中的静应力
强度条件为 d Kd st [ ]
FNd
mm
r Ag r Aa
x
P Pa g
(Dynamic Loading)
Dd表示动变形 Dst表示静变形
FNst
FNd
m
m
当材料中的应力不超过比
例极限时荷载与变形成正比
rAg
x rAg rAa
三、动荷因数 (Dynamic factor)
动荷因数Kd =
动响应 静响应
四、动荷载的分类 (Classification of dynamic load)
1.惯性力(Inertia force) 3.振动问题(Vibration problem)
2.冲击荷载(Impact load) 4.交变应力(Alternate stress)
(Dynamic Loading)
(Dynamic Loading)
(Dynamic Loading)
(Dynamic Loading)
(Dynamic Loading)
§10-2 动静法的应用 (The application for method of dynamic equilibrium)
60)(1
2) 9.8
G
214MPa [ ] 300MPa
(Dynamic Loading) 二、转动构件的动应力
(Dynamic stress of tD的薄圆环,绕通过其圆心且垂于环平面的轴
作等速转动.已知环的角速度为 ,环的横截面面积为A,材料的单位 体积质量为r.求圆环横截面上的正应力.
根据牛顿定律 ma = F
F - ma =0
-ma=FI
F a
FI =- ma
F + FI =0
惯性力(Inertia force): 大小等于
质点的质量m与加速度a 的乘积,方向与 a 的方向相反,即 FI= -ma
(Dynamic Loading)
一、直线运动构件的动应力(Dynamic stress of the body in the straight-line motion)
O r
(Dynamic Loading)
解:
O r
因圆环很薄,可认为圆环上各 点的向心加速度相同,等于圆环中 线上各点的向心加速度.
an
D2
2
因为环是等截面的,所以相同长度 的任一段质量相等.
其上的惯性力集度为
qd
(1
A r )( D 2 )
2
Ar 2D
2
qd
O
r
(Dynamic Loading)
P
绳索的重力集度为 rAg
物体的惯性力为 P a
g
Pa
P
g
P
FNst P rAgx
绳索每单位长度的惯性力rAa
FNd
(1
a )( g
P
rAgx)
P Pa g
(Dynamic Loading)
FNst P rAgx
FNd
(1
a g
)( P
rAgx)
m
FNst
m
FNd KdFNst
rAg
x
绳索中的动应力为
小、方向),构件内各质点加速度较大.
(Dynamic Loading)
二、动响应 (Dynamic response)
构件在动载荷作用下产生的各种响应(如应力、应变、位
移等),称为动响应(dynamic response).
实验表明 在静载荷下服从胡克定律的材料,只要应力不超过
比例极限,在动载荷下胡克定律仍成立且E静=E动.
qd
(1
A r )( D 2 )
2
Ar 2D
2
Fd
π 0
qd
(
D 2
d
)
sin
Ar 2D2
π
sind
4
0
FNd
Ar 2D2
2
y
d
Fd
O
qd
(
D 2
d
)
qd
FNd
FNd
Fd 2
Ar 2D2
4
d
FNd A
r 2 D2
4
(Dynamic Loading)
d
Fd A
r 2D2
相关文档
最新文档