(完整word版)matlab心电信号R波检测

合集下载

使用Matlab进行心电图分析与心律失常检测的方法总结

使用Matlab进行心电图分析与心律失常检测的方法总结

使用Matlab进行心电图分析与心律失常检测的方法总结引言心电图是一种用来记录心脏电活动的方法,通过测量心脏产生的电信号,并将其转化为图形,可以帮助医生判断心脏的健康状况。

心电图分析在医学诊断中具有重要的意义,可以帮助医生发现心脏疾病的异常情况。

其中,心律失常是一种常见的心脏疾病,严重的心律失常可能危及患者的生命安全,因此心律失常检测具有重要的临床价值。

本文将介绍使用Matlab进行心电图分析与心律失常检测的方法,并总结一些相关的技术和工具。

心电图的基本原理心电图的基本原理是依靠测量心脏产生的电信号,并将其转化为图形显示。

正常情况下,心脏的电信号呈现出一定的规律性,通过观察和分析心电图波形,可以判断心脏的健康状况。

心电图分析的步骤使用Matlab进行心电图分析的一般步骤如下:1. 导入心电图数据:将采集到的心电图数据导入Matlab中,通常可以使用文本文件或者导入工具进行导入。

2. 数据预处理:对导入的心电图数据进行预处理,包括滤波、去噪和去基线等操作。

滤波可以去除信号中的噪声和干扰,使信号更加平滑;去噪可以去除信号中的伪迹和杂散噪声,提高信号质量;去基线可以去除信号中的直流分量,使信号更易于分析。

3. 特征提取:通过分析心电图波形,提取一些特征参数来描述心脏电活动的特点。

常见的特征参数包括R峰的位置、T峰的形态、QRS波群的宽度和波形形态等。

通过这些特征参数,可以对心脏电活动进行定量分析和比较。

4. 心律失常检测:根据特定的算法和规则,对提取的特征参数进行心律失常检测。

常见的心律失常包括心房颤动、室性心动过速、室上性心动过速等。

通过分析心电图波形和特征参数,可以判断出心律失常的类型和程度。

5. 结果显示:将心电图分析的结果通过图形显示出来,以便医生进行观察和诊断。

通常可以显示心电图波形、特征参数和心律失常检测结果等。

心电图分析的工具和函数在Matlab中,有一些常用的工具和函数可以用于心电图分析,包括信号处理工具箱、波形处理工具箱、模式识别工具箱等。

matlab处理波信息

matlab处理波信息

matlab处理波信息Matlab是一种强大的科学计算软件,可以用于处理波信号。

以下是一些常见的用Matlab处理波信息的方法:1. 导入和可视化波信号数据:首先,你需要将波信号数据导入到Matlab中。

可以使用`importdata`函数或`load`函数加载数据文件。

然后,使用Matlab中的绘图函数(例如`plot`)将波信号可视化。

2. 时域分析:通过对波信号进行时域分析,可以获得关于波的时间特性的信息。

在Matlab中,你可以使用`fft`函数进行快速傅里叶变换,计算波信号的频谱。

另外,还可以使用`ifft`函数进行逆傅里叶变换,将频域信号转换回时域信号。

3. 频域分析:频域分析可以提供有关波信号频率特性的信息。

在Matlab中,你可以使用`fft`函数计算频谱,并使用`abs`函数获取幅度谱。

还可以使用`angle`函数获取相位谱。

通过对频谱的分析,可以提取波信号的频率分量和相位信息。

4. 滤波处理:滤波是一种常见的波信号处理技术,用于去除噪声或提取感兴趣的频率成分。

Matlab提供了各种滤波函数,例如`filter`函数用于滤波,`fir1`函数用于设计FIR滤波器,`butter`函数用于设计巴特沃斯滤波器等。

5. 谱分析:谱分析是一种用于估计波信号频谱的方法。

在Matlab中,你可以使用`pwelch`函数或`periodogram`函数进行谱估计。

这些函数可用于计算功率谱密度(PSD)估计,并提供了不同的参数和选项,以满足不同的分析需求。

6. 波形合成:如果你希望生成具有特定频率和幅度特性的波信号,可以使用Matlab中的合成函数。

例如,`sin`函数可以生成正弦波信号,`sawtooth`函数可以生成锯齿波信号,`square`函数可以生成方波信号等。

除了上述方法,还有许多其他功能和工具可用于处理波信号。

Matlab提供了丰富的文档和示例代码,可以帮助你更深入地了解和应用这些功能。

(完整word版)心电信号处理

(完整word版)心电信号处理

心电信号处理方法探究胡林生物医学工程专业0802班引言:近些年来,随着人们生活节奏的加快和工作压力的加大,心脏病逐渐成为危害人类健康的主要疾病之一。

据统计,全世界死亡人数中约有三分之一死于该疾病,而在我国因心血管疾病而死亡的人数也占总死亡人数的44%,可见心脏病已成为危害人类健康和生命安全的“第一杀手”。

心电信号是人类最早研究并应用于医学临床的生物电信号之一,与其他生物电信号相比,它更易于检测并具有较直观的规律性,而且它是心脏电活动在体表的综合反映,临床心电图检查对于检测和诊断心脏疾病具有重要意义.在实际应用中,心电信号的去噪处理和波形检测是心电信号分析诊断系统的关键,其准确性、可靠性决定着诊断和治疗心脏病患者的效果。

本文结合吉林省科技发展项目“可穿戴人体参数无创连续监测仪器研制”中心电监测模块的研制任务,提出对心电信号去噪处理算法和波形检测算法进行研究,其具有重要的理论意义和实用价值。

目前世界上还没有满足临床要求的计算机心电图识别与诊断方法和相应的程序,特别是心电图波形识别方面, 还存在许多有待解决的问题P波的波峰和起止点的识别尚未得到很好解决就是一例。

心电图诊断的常见流程:图1心电图诊断的常见流程获取心电信号后的预处理主要是抑制干扰, 以获得便于识别的心电信号)波形识别主要提取心电信号中各波段的特征(如峰点、起止点)并加以识别) 波形参数测量是在波形识别基础上计算出各波的幅度与时间间隔)诊断是根据诊断标准对测量得到的参数作分析, 判断出波形中所含的病变因素.从图∗可以看出,波形的预处理与波形识别在心电图自动诊断中占着极其重要的位置,它们是心电图自动诊断过程的基础和重要组成部分。

图2 心电波形的判断图3 受干扰的心电图小波变换的心电信号处理:小波变换是80 年代后兴起的一种新的数学分析工具,它克服了Fourier 变换的不足,在时域和频域均具有良好的局部化特性。

小波变换的含义是:把某一被称为基本小波(也叫母小波mot her wavelet)的函数Ψ( t)作位移τ,再在不同尺度α下与待分析信号系统f ( x)作内积,表示为:W T f (α,τ) = 1α∫f ( t)Ψ3 (1 - τα) d t =〈f ( t),Ψατ( t) > ,α〉0 (1)其中,< x , y 〉代表内积, 上标3 代表共轭,即〈f ( t),y (t) > =∫f ( t) y3 ( t)d t.小波变换在频域的等效表示为:公茂法等基于小波变换的心电信号处理研究Journal of Shandong University of Science and TechnologyNatural ScienceW T f (σ,τ) =α2π∫F(ω)Ψ3 (αω) ejωt dω,α> 0 (2)其中, F(ω) 、Ψ(ω)分别是f (x)、φ(x)的Fourier 变换。

心电信号的提取和matlab编程

心电信号的提取和matlab编程

MIT-BIH ECG 信号的数据读取方法和Matlab程序收藏最近在写一篇基于小波变换的ECG信号压缩算法的论文,遇到了怎样获取ECG信号测试数据的问题,在百度和专业论坛里搜索了一番,发现也有很多朋友为此发愁。

现在论文写好了,投稿中,顺便也把怎样获取和处理ECG信号数据的方法写出来,供有需要的朋友参考,省却在百度和论坛里苦苦求索的麻烦,呵呵 ^_^ 一、首先,如果是对ECG心电信号进行观察、分析和诊断使用的话,有两个方法:(1)从MIT-BIH数据库下载请参考我前些天发布的文章《MIT-BIH ECG 心电数据的下载和读取图解》,里面有详尽介绍。

/chenyusiyuan/archive/2008 /01/06/2027887.aspx(2)用专门的Matlab心电数据读取程序我10日在浩惠电子论坛(/bbs/)的“医疗器械”版块找到了读取ECG心电数据的Matlab程序(rddata.m),如获至宝啊!这个程序是由外国人写的,能够读取MIT-BIH数据库 .atr、.dat、.hea三种文件的数据,根据这些数据计算出实际的心电信号值,并绘制出信号波形。

程序不大,注释也算齐全,不过是英文的,需要这个程序的朋友请按以下链接下载。

匿名提取文件连接/3497080791233097或登录Mofile,使用提取码3497080791233097 提取文件PS: 关于rddata.m的下载,在打开/3497080791233097后,下载链接是在“文件标签”和“文件介绍”之后的地方,夹在两块广告图片之间,共有3个链接:“推荐快车(flashget)高速下载文件下载文件(IE浏览器) 下载文件(非IE浏览器)”,非常隐蔽,一般点击中间的那个链接“下载文件(IE浏览器)”就会弹出保存对话框了。

二、如果是要对ECG信号进行压缩、编码等信号处理操作上面程序获得的数据就不便于使用了,因为那是转换为具有实际意义的心电数据,信号数据值一般在-2~2之间,单位是mV。

心电信号R波检测分析与处理

心电信号R波检测分析与处理

实验报告一、实验目的1.读取心电信号2.进行R波检测3.进行异变分析二、实验工具1.PC机2.Matlab软件三、实验原理及结果1.读取心电信号(1)心电数据文件存储方式心电数据文件在存储时为了节省存储空间,使用了自定义的格式,因此无法通过直观方式去读取心电数据。

一个心电数据记录由三个部分组成:(1)头文件(拓展名是hea);(2)数据文件(拓展名是dat);(3)注释文件(拓展名是art)”】。

[.hea]文件由ASCII码字符组成。

以234.hea为例:234 2 360 650000234.dat 2l2 200 11 l024 l008 18427 0 M LII234.dat 2l2 200 11 1024 1051 21057 0 Vl# 56 F 1971 3655 x2# None# The PVCs are uniform第一行从左到右分别代表文件名序号,导联数目,采样频率,采样点数;第二行从左到右记录导联1的数据,包括文件名,存储格式,增益,AD分辨率,ADC 零值,第一个采样点值,校验数,注解(如果是0,可以从中间读取任意一段输出),导联类型;第三行从左到右记录导联2的数据,内容同第二行一致;最后几行以#开始的为注释行,一般说明患者的情况以及用药情况等。

[.dat]文件采用212格式进行存储。

“2l2”格式是针对两路导联的数据库记录,这两路导联的数据交替存储,每三个字节存储两个数据。

这两个数据分别采样自导联l和导联2,第一个字节作为导联1数据的低8位,第二个字节的高四位作为导联l数据的高四位;第二个字节的低四位作为导联2数据的高四位,第三个字节作为导联2数据的低8位,以234.dat为例。

按照“2l2”的格式,前三个字节为“F0 34 1B”,两路导联值分别为0x3F0和0x41B,转换成十进制分别为1008和l051,这两个值分别是两路导联的第一采样点值,后面依此类推。

[.art]采用二进制存储,格式定义比较复杂。

第04课 matlab心电信号R波检测

第04课 matlab心电信号R波检测

《生物医学信号处理》实习报告图1-1标准的心电波形图不同导联所记录的心电图,在波形表现上会有所不同,但一个正常的心电波形周期图基本上都是由一个P波,一个QRS披群,一个T波以及过渡期所组成"有时在T波后,还会出现一个小的U波"心电信号的这些特征波形和过渡期均代表着一定的生理学意义,现以MLH导联的正常心电图波形为例,如图(1一l)所示,对心电波形的主要组成及其特点进行简要介绍"。

(1)P波:也叫心房去极波,反映的是左右两心房去极化过程的电位变化"波形一般圆钝光滑,历时0.08一0.11:,波幅不超过0.25mV"两心房复极化过程所产生的电位变化称为T a波,它通常与P一R段!QRS波群或S一T段重叠在一起,且波幅很低,在心电图上不易辨认"。

(2)P一R间期(或称P一Q间期):是P波起点到QRS波群起点之间的时间间隔,反映了自心房除极开始至心室除极开始的一段时间"正常成人的P一R间期为0.12一0.20:"若超过0.205,一般表明有房室传导阻滞的发生"P一R间期的长短与年龄及心率有关。

(3)QRS波群:反映两心室去极化过程的电位变化"典型的QRS 波群包括三个紧密相连的电位波动:第一个向下的波称为Q波;紧接着是向上!高而尖峭的R波;最后是向下的S波"在不同导联中,这三个波不一定都出现,各波的幅度变化也较大"历时约0.06一0.105"。

(4)S一T段:指Q RS波群终点与T波起点之间的线段,一般与零电位基线平齐"在这段时期内,因心室各部分都已全部进入除极化状态,但尚未开始复极,故心室各部分之间没有电位差存在,心电曲线恢复到基线水平"但若有冠状动脉供血不足或心肌梗死等情况发生时,S一T段常会偏离基线,并超过一定的幅度范围"。

(5)T波:反映两心室复极化过程的电位变化"波形圆钝,升降支并不完全对称,波形的前支较长而后支较短,占时约0.05一0.255"T波方向应与QR S波群的主波方向一致"在以R波为主的导联中,其波幅应不低于本导联R波的1/10。

毕业设计(论文)-基于matlab的心率检测系统[管理资料]

毕业设计(论文)-基于matlab的心率检测系统[管理资料]

毕业设计(论文)题目:基于matlab的心率检测系统学院:信息工程学院专业名称:电子信息工程班级学号:学生姓名:指导教师:二O16 年06 月基于matlab的心率检测摘要:1984年,美国MathWorks公司正式推出了商业数学软件matlab。

这是一款用于算法的研发、数据的可视化、数据分析以及数值计算的高级技术计算语言和交互式环境。

在国际学术中,matlab已经公认为方便、准确、可靠的科学计算标准软件。

在研发部门,matlab更被认作高效研究、开发的首要软件。

如今,matlab更是已经渗透到我们生活的各行各业。

这次对心率的检测也用到了强大的matlab。

由于matlab包含了众多的函数,我们可以利用这些函数来处理心电信号的显示、滤波及RQS波的检测等。

本次设计中运用到了GUI,这样可以很方便直观的显示我们需要的波形及更快捷的对波形进行一系列的操作。

对心电数据的显示可以用matlab中的textread函数。

在滤波中更是可以用到众多的滤波函数如buttord函数、butter函数及blackman函数等。

在这次毕设中,对心电信号的滤波采用的是带通滤波器加上hamming窗滤波器,这样可以有效的减少噪声的干扰。

对RQS波的检测采用的是动态阈值法。

这种方法在实际运用中成功率很高,并且算法思路清晰简明。

对于心率的检测,在用动态阈值法找到R波后,就可以同过编程来计算心率。

关键词:matlab、心率检测、RQS波检测、滤波指导老师签名:Heart rate detection based on matlabStudent name : Zhong Wei Qiao Class: 12041440Supervisor: Yang Su HuaAbstract: In 1984, the United States MathWorks company officially launched the commercial mathematical software is a high technology computing language and interactive environment for the development of algorithms,data visualization, data analysis and numerical the international has been recognized as a convenient, accurate and reliable scientific computing standard R & D is recognized as an effective research and development of the first ,matlab is already penetrated into all walks of life in our lives.The detection of heart rate also used a powerful matlab in this matlab contains a large number of functions,we can use these functions to deal with the ECG signal display, filter and RQS wave design is applied to the GUI,this can be very convenient and intuitive display we need the waveform and more efficient to carry out a series of operation of the display of ECG data can be used in textread matlab the filter is to use a large number of filter functions such as buttord function, Blackman function and butter function and so this complete set, the ECG signal filtering using a band-pass filter and Hamming window filter, which can effectively reduce the noise dynamic threshold method is used to detect the RQS method in practical application success rate is very high, and the algorithm is clear and heart rate detection, after using the dynamic threshold method to find the R wave, you can use the program to calculate the heart rate.Keyword:matlab,heart rate detection ,RQS wave detection ,filterSignature of Supervisor:目录1 前言课题的背景及意义 (3)国内外研究概况及发展趋势 (3)研究的内容及实验方案 (4)2 心电信号及其特征心电信号的产生 (8)心电信号的特点 (9)心电信号频域特点 (9)心电信号时域特点 (10)3 心电信号的预处理心电信号预处理的意义 (11)滤波方案的设计与分析 (13)低通配合窗函数滤波 (14)带通配合窗函数滤波 (14)最终方案的选择 (16)4 心电信号RQS波的复检RQS波的检测方案与分析 (19)方案选择与处理 (21)5 心电信号的心率检测心率计算 (23)6 系统软件设计GUI结构设计 (24)模块实现 (26)7总结 (27)参考文献 (28)致谢 (29)附录 (30)第一章前言当前,我国的心脑血管疾病仍呈逐年上升趋势。

基于Matlab的小波提升与心电信号R波检测

基于Matlab的小波提升与心电信号R波检测

基于Matlab的小波提升与心电信号R波检测岑小林;胡佳宗;陈援峰【摘要】本文以MIT-BIH心电数据库作为研究对象,简要介绍了使用小波变换进行心电信号检测的原理和小波提升算法的机制,阐述了采用提升小波变换的方法分解ECG信号并对R波进行定位的流程。

给出了matlab示例代码。

%We used the MIT-BIH database in our research, introduced the theary of ECG detection using wavelet transform and the mechanism of the Lifting Scheme, we explained how to decompose ECG signal by Lifting Scheme, and how to locate the position of R-Wave. We also give the example code of matlab.【期刊名称】《数字技术与应用》【年(卷),期】2014(000)006【总页数】2页(P132-133)【关键词】MIT-BIH;小波提升;Matlab【作者】岑小林;胡佳宗;陈援峰【作者单位】广州城市职业学院广东广州 510405;广州城市职业学院广东广州510405;广州城市职业学院广东广州 510405【正文语种】中文【中图分类】R540.41心电信号是最重要的生命体征信号之一。

心脏病患或潜在的心脏病患,包括心血管疾病高危人群、亚健康人群、病情待定人群,通过心电设备记录患者在正常生活、工作及活动时的心电变化并且加以分析,可以帮助确定病情,或者捕捉到潜在的心脏疾病的心电信息,对患者起到预警及监护作用。

新型心电监测设备普遍具备了智能诊断功能。

这一功能是建立在对心电图的自动分析基础之上。

要能够自动分析心电图,R波的检测是最基本的,这是因为从心电图上看,R波一般是幅度最大的波,最容易被检测到。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6)分别检测不含噪声和含噪声的心率失常ECG信号(任务一中得到的MIT-BIH数据)
原理(写出具体的计算公式)
心电信号是体表电极测量的心电电压幅度随时间变化的函数,属于时域波形信号,虽然从人体体表不同部位的不同导联上所测得的心电波形各异,且不同个体的心电信号存在差异,但所有正常的心电波形周期均可划分为P波!P一R段!QRS波群!S一T段!T波等几个主要部分,且每个特征子波段都代表着一定的生理学意义,如图(2一1)所示"如果心脏发生了病变,就会使得心电信号在周期和波形形态上发生某些畸变,有关的心电图学专著二中给出了大量心脏病变的心电图示例,足以说明心电波形的复杂多变性和电生理机理的复杂性"由于ECG信号容易受到各种噪声干扰的影响和其本身波形形态的复杂多变,一般情况下,直接利用ECG信号的时域波形进行信号分类和疾病诊断比较困难,更多的是要对时域ECG信号进行某种变换或处理,提取ECG信号的变换域特征进行分析和判断"体表心电图时域波形信号的幅度范围一般在IOuV一4mv之间,典型值为lmv左右"从时域波形中可以看出,ECG信号特征段的分界处是波形上的拐点,即波形变化起伏最大的点,这也是ECG信号波形检测与定位时最关注的点,关于心电信号中典型波段及特征点所代表的生理学意义将在下一节中进行较为详细的论述"
(3)对每个心动周期段信号的尺度一时间图,分别找出在每一个尺度下的正的极大值点和负的极大值点,将其连成线得到正!负模极大值线"由每条正!负模极大值线的斜率求出该点对应的李氏指数,根据李氏指数判据剔除李氏指数小于O和大于1所对应的模极值线。
(4)因为信号的连续小波变换的模极值线有可能出现中断现象,所以需对每一条正!负模极大值线进行直线拟合,以分别求出它们在尺度a二0的时间位置,若在a=0时正。负模极大值并不收敛于同一个点,则取二者的平均值作为R波的初步位置。
图2-1
基于Marr小波变换的R波峰值奇异点定位
由前面的讨论可知,信号x(t)的所有奇异点在尺度一时间平面的模极大值线上,且其小波变换 在
充分接近于零时,其模极大值点就是信号的突变点。由于Marr小波是二次微分小波,而且图形是以原点左右对称的,因此原始信号的奇异点在其小波变换的各层细节信号上仍然保持为极大值,这就使得对原始心电信号R波峰值奇异点的检测可以转化为对特征尺度上细节信号的极大值点的检测"相比之下,Marr小波能克服采用一次微分小波检测信号奇异点时存在的以下缺陷:(l)一次微分小波检测算法需通过检测小波模极大值对的过零点来定位信号奇异点,而过零点易受到噪声干扰,使得定位精度的稳定性难以保证。(2)一次微分小波变换算法中需借助于一对相邻的模极值点位置及两者之间的斜率间接确定R波位置,并且还要根据特征尺度进行时移修正,其计算过程相对比较复杂和繁琐。
(5)在初步确定为R波的位置对应10ms时间范围内,检测原信号的极值点,并将其最终确定为R波位置。
(6)应用不应期判据"由于心肌细胞除极化和复极化需要一个过程,存在一个绝对不应期,所以除了室颤和室扑外一般人的心率小于300次/分。一个QRS波群产生以后,其后一定时间间隔内都不会出现另一个QRS波群,我们把这个时间间隔称为不应期"本算法中的不应期设置为Zooms"所以检测到一个R波后将其后Zooms内的模极值都忽略,这样可以避免很多由噪声干扰所引起的误检。
具体算法实现步骤如下:
(1)对给定的心电信号作连续小波变换,小波基选用Haar小波,分解尺度a=32分解后得到的小波系数可在一个尺度一时间平面上以灰度图的形式表示。
(2)对心电信号按心动周期进行分段,分段算法是首先对尺度一时间图按尺度a的方向进行累加,从而得到在尺度方向上小波变换的积分值随时间变化的曲线"对于Haar小波而言,该曲线在R波之前有一个波峰,R波之后有一个波谷"再分别选其正!负极大值的一半作为正负闭值,对积分值随时间变化的曲线进行闭值化处理,并令大于正阂值的点为+l,小于负阂值的点为一1,在两者之间的点等于0,这样在每一个R波位置的之前就有一个+l,之后有一个一1,两者之间的区域为0"把某一个一1位置和其后出现的第一个+l位置这一段数据的中点定为心动周期的分割点,从而实现了信号的分段,每一段都包括一个心动周期,而其R波在该段的中部。
基于EMO与Marr小波变换的心电信号ORS波检测
针对常规的基于EMD的QRS波检测算法在信号存在严重高频干扰的情况下会出现较多错检导致检测准确率较低的问题,本文将基于离散小波变换的QRS波检测算法与EMD方法相结合,提出一种基于EMD分解与Marr小波变换的心电信号QRS波检测新算法,来克服以上算法的不足,即尝试利用EMD分解法将非平稳心电信号分解为一系列具有不同特征尺度的IMF分量,然后利用Marr小波变换对相应低阶IMF分量叠加得到的重构信号进行奇异性分析,从而实现对原始心电信号QRS波的准确检测和定位。
小波基的选取
由前面的讨论可知,在基于离散小波变换的QRS检测中,定位算法及检测效果与小波基函数的选择密切相关,Marr小波(又称Mexicanhat小波)具有良好的连续性、对称性以及指数衰减性,并且还具有一阶消失矩等性质,非常适合对信号进行奇异性检测。Marr小波的母函数是高斯函数的二阶导数与常数的乘积,表达式为:
EMD分解:
EMD分解的低阶本征模态分量中包含原信号的骤变部分,而高阶本征模态分量中包含缓变部分。在心电信号中,对于高瞬时幅频的QRS波群自然就被分配到低阶高频模态分量中,而且R波的局部特征在第一、二本征模函数分量中得到了明显体现。但EMD算法中包含局部求极值!样条插值!边界效应处理等步骤,其计算量相当可观,使得处理速度非常缓慢,而且目前没有快速算法,因此无法满足实时动态检测的要求"而且每分解出一个本征模函数分量,计算量将增大一倍,所以本文根据心电信号的时频特性和检测的实时性要求,提出只对心电信号作三层经验模式分解处理,然后将分解得到的第一、二、三本征模函数分量直接相加重构得到一个新信号,通过对此新信号进行奇异性分析来实现QRS波的检测和定位,这样不仅可以有效抑制基线漂移,高幅P波!T波以及伪差信号等低频干扰以及边界效应,而且还能将处理速度提高几倍。但是由第一、二、三模函数分量相加所构成的信号中往往还会包含QRS波带宽以外的频率分量,所以直接对它进行阂值判决的R波检测算法的正确检测率必然不高,而且容易受到高频噪声的干扰,抗干扰能力较差,但是把它作为定位R波的预处理信号是不错的选择"另外EMD分解中筛选过程的中止准则常用方差,但也可根据信号特点手动设定筛选次数"研究发现,筛选次数小,QRS波在本征模函数域对应的分量越不明显;而筛选次数越多,中心频率越大,特别是运算量成倍增长"通过反复实验尝试,本研究通过对心电数据进行8次筛选,以极小的分解损失换取高的计算速度,而且丝毫不影响QRS波的提取效果。
图1-1标准的心电波形图
不同导联所记录的心电图,在波形表现上会有所不同,但一个正常的心电波形周期图基本上都是由一个P波,一个QRS披群,一个T波以及过渡期所组成"有时在T波后,还会出现一个小的U波"心电信号的这些特征波形和过渡期均代表着一定的生理学意义,现以MLH导联的正常心电图波形为例,如图(1一l)所示,对心电波形的主要组成及其特点进行简要介绍"。
(5)T波:反映两心室复极化过程的电位变化"波形圆钝,升降支并不完全对称,波形的前支较长而后支较短,占时约0.05一0.255"T波方向应与QRS波群的主波方向一致"在以R波为主的导联中,其波幅应不低于本导联R波的1/10。
(6)Q一T间期:指从QRS波群起点到T波终点之间的时间,它代表心室开始去极化到全部复极化完毕所需的时间"这一间期的长短与心率密切相关"心率越快,Q一T间期越短:反之,则Q一T间期越长"正常的Q一T间期依心率!年龄及性别不同而有所不同.当心率为75次/分时,Q一T间期为0.30一0.405"分析Q一T间期的变化,对疾病的早期诊断和分析抗心律失常药物对心脏的影响,可起到一定的辅助作用"由于Q一T间期受心率的影响比较大,临床上经常采用修正的Q一T间期,即采用Bazett公式计算:
当 时就称之为二进离散小波变换,然而取
时,在实际信号分析中有时显得尺度跳跃跨度太大,当希望尺度a在a>O的范围内取任意值进行分析时就需要进行连续小波变换"下面将根据心电信号的连续小波变换模极大值线检测和定位R波峰。
心电信号的R波峰是奇异点,而且它具有较大的幅度和较高的斜率等典型特征,根据基于小波变换的信号奇异性检测理论可知,每个R波的位置都对应于小波变换的模极大值的汇聚点,所以本算法首先对心电信号作连续小波变换并对信号按照心动周期进行分段,以便分别对一个心动周期内的波形进行奇异性分析,然后分别在每一个心动周期内检测模极大值点,它们的连线就是模极大值线由此确定R波的位置,并剔除李氏指数为负对应为噪声产生的模极值线以及应用不应期策略减少噪声干扰,提高检测准确率。
因为它像墨西哥帽的截面,所以也常称之为墨西哥帽小波。Marr小波函数属于二次微分小波,在时域和频域都有很好的局部化,并且满 。由于Marr小波函数具有无限光滑性以及无穷次可微,并且不对单独的噪声点敏感,再加上其独特的时域性质,能使包含信息的特征点特别突出,因此本文选用Marr小波基进行R波峰值奇异点检测,应具有良好的定位特性和分析精度"根据Marr小波基函数,计算得到相应的小波分解低通和高通滤波器的系数l和h,如下图2-1所示:根据人和气就可以利用Mallat算法递归计算出信号的小波变换。
(7)U波:T波后0.02一0.04:可能会出现一个与T波方向一致的低宽U波,其成因和生理意义目前尚不十分清楚"。
本文注重于QRS波的检测,而在查阅一些文献资料以后,发现QRS波的检测主要分为基于小波变换的心电信号ORS波检测与基于EMO与Marr小波变换的心电信号ORS波检测两种。
基于小波变换的心电信号ORS波检测
相关文档
最新文档