高中物理 第一章 电磁感应 电磁感应规律的应用学案 粤教版选修32

合集下载

高中物理电磁感应第一第二节学案粤教版选修3-2

高中物理电磁感应第一第二节学案粤教版选修3-2

达标练习:1发现电流磁效应现象的科学家是__奥斯特__ _,发现通电导线在磁场中受力规律的科学家是_安培 ,发现电磁感应现象的科学家是 _法拉第__ _,发现电荷间相互作用力规律的的科学家是__库仑___ _。

2关于感应电流,下列说法中正确的是( bc )A .只要闭合电路内有磁通量,闭合电路中就有感应电流产生B .穿过螺线管的磁通量发生变化时,螺线管内部就一定有感应电流产生C .线框不闭合时,即使穿过线圈的磁通量发生变化,线圈中也没有感应电流D .只要电路的一部分作切割磁感线运动,电路中就一定有感应电流3矩形闭合线圈平面跟磁感线方向平行,如图所示.下列情况中线圈有感应电流的是(a ).A.线圈绕ab 轴转动B.线圈垂直纸而向外平动C.线圈沿ab 轴下移D.线圈绕cd 轴转动4、如图所示线圈两端接在电流表上组成闭合回路。

在下列情况中,电流表指针不发生偏转的是 ( d )A.线圈不动,磁铁插入线圈B.线圈不动,磁铁从线圈中拔出C.磁铁不动,线圈上、下移动D.磁铁插在线圈内不动5如图所示,一有限范围的匀强磁场,宽为d.一个边长为l 正方形导线框以速度v 匀速地通过磁场区.若d>l,则在线框中不产生感应电流的时间就等于( c) A.v dB.v lC.v l d -D.v 2l d -6、有一金属圆环与一根带绝缘层的长直导线放在同一平面内,且直导线与环的直径重合,如图所示,当直导线内通以均匀增加的电流时,圆环 内将____无___(填有、无)感应电流。

将金属圆环向右移动时___有_____(填有、无)感应电流。

7、如图所示,一水平放置的矩形线圈在条形磁铁S 极附近下落,在下落过程中,线圈平面保持水平,位置1和3都靠近位置2,则线圈从位置1到位置2的过程中,线圈内_____有___感应电流,线圈从位置2到位置3的过程中,线圈内__有___感应电流(均选填“有”或“无”).。

20172018学年高中物理第一章电磁感应第5节电磁感应规律的应用学案粤教版选修32

20172018学年高中物理第一章电磁感应第5节电磁感应规律的应用学案粤教版选修32

第五节 电磁感应规律的应用学 习 目 标知 识 脉 络1.知道法拉第电机的结构和工作原理.(重点)2.理解电磁感应现象中能量转化与守恒,并能解答相关问题.(难点) 3.了解电磁感应规律在生产和生活中的应用,会运用电磁感应规律解决生活和生产中的有关问题.法 拉 第 电 机[先填空] 1.原理放在两极之间的铜盘可以看成是由无数根铜棒组成的,铜棒一端连在铜盘圆心,另一端连在圆盘边缘.当转动圆盘时,铜棒在两磁极间切割磁感线,铜棒就相当于电源,其中圆心为电源的一个极,铜盘的边缘为电源的另一个极.它可以通过导线对用电器供电,使之获得持续的电流.2.转动切割电动势的大小 如图1­5­1所示,电机工作时电动图1­5­1势的大小E =ΔΦΔt =B πL 2T =B πL 22πω=12BωL 2.或E =BLv 中=BL 12Lω=12BωL 2.3.电势高低的判断产生电动势的导体相当于电源,在电源内部电动势的方向从低电势指向高电势. 4.电磁感应中的电路问题 (1)内电路和外电路切割磁感线运动的导体或磁通量发生变化的线圈都相当于电源.该部分导体的电阻或线圈的电阻相当于电源的内电阻,其余部分是外电阻. (2)电源电动势和路端电压电动势:E =n ΔΦΔt 或E =BLv sin_θ.路端电压:U =E -Ir . (3)电流方向在电源内部:电流由负极流向正极. 在电源外部:电流由正极经用电器流向负极. [再判断]1.导体杆在磁场中切割磁感线产生感应电动势相当于电源,其余部分相当于外电路.(√)2.长为l 的直导线在磁感应强度为B 的匀强磁场中以速度v 匀速运动产生的最大感应电动势为Blv .(√)[后思考]如图1­5­2所示是法拉第电机原理图,铜盘转起来之后相当于电源,圆心O 和圆盘边缘谁是正极?图1­5­2【提示】 通过右手定则可判断出电流由外边缘流向内侧,由此可判断出内侧O 点为正极.[合作探讨]如图1­5­3所示,导体ab 长2l ,绕其中点O 逆时针匀速转动.图1­5­3探讨1:导体Ob 产生的电势差? 【提示】 12Bl 2ω.探讨2:导体ab 产生的电势差? 【提示】 0. [核心点击] 1.对电源的理解电源是将其他形式的能转化为电能的装置.在电磁感应现象中,通过导体切割磁感线和线圈磁通量的变化而将其他形式的能转化为电能.2.对电路的理解内电路是切割磁感线的导体或磁通量发生变化的线圈,外电路由电阻、电容等电学元件组成.3.电动势的大小(1)平动切割E =BLv sin θ (2)转动切割E =BLv 中 (3)磁场变化E =n ΔΦΔt1.如图1­5­4所示,一个绕圆心轴MN 匀速转动的金属圆盘,匀强磁场垂直于圆盘平面,磁感应强度为B ,圆盘中心和圆盘边缘通过电刷与螺线管相连,圆盘转动方向如图所示,则下述结论中正确的是( )图1­5­4A .圆盘上的电流由圆心流向边缘B .圆盘上的电流由边缘流向圆心C .金属圆盘上各处电势相等D .螺线管产生的磁场,F 端为N 极【解析】 当圆盘转动方向如题图所示时,根据右手定则可判断出圆盘上的感应电流方向是从圆心流向边缘的,故A 正确,B 错误;由于圆盘上存在感应电流,故其上的电势并不相等,C 错误;由螺线管中的电流方向和安培定则可判断出E 端为N 极,故D 是错误的.【答案】 A2.如图1­5­5甲所示,匀强磁场区域宽为2L ,磁感应强度为B ,方向垂直纸面向外.由均匀电阻丝做成的正方形线框abcd 边长为L ,总电阻为R .在线框以垂直磁场边界的速度v ,匀速通过磁场区域的过程中,线框ab 、cd 两边始终与磁场边界平行.求:甲 乙 图1­5­5(1)cd 边刚进入磁场时,cd 中流过的电流及其两端的电压大小;(2)在乙图中,画出线框在穿过磁场的过程中,cd 中电流I 随线框运动位移x 的变化图象,并在横纵坐标中标出相应的值.取线框刚进入磁场时x =0,电流在线框中顺时针流动方向为正.【导学号:】【解析】 (1)cd 边切割磁感线产生的感应电动势E =BLv ,流过cd 边的电流I =E R =BLvRcd 两端的电压U c d =E -Ir c d =BLv -I R 4=34BLv .(2)cd 中的电流I 随x 变化的图线如图所示【答案】 (1)BLv R 34BLv (2) 见解析解答该类问题的解题步骤1.用法拉第电磁感应定律和楞次定律或右手定则确定感应电动势的大小和方向(感应电流方向是电源内部电流的方向).2.根据“等效电源”和电路中其他各元件的连接方式画出等效电路.3.根据E =BLv 或E =n ΔΦΔt 结合闭合电路欧姆定律,串、并联电路知识和电功率、焦耳定律等关系式联立求解.电 磁 感 应 中 的 能 量 转 化[先填空]1.电磁感应现象中产生的电能是通过克服安培力做功转化而来的.2.克服安培力做了多少功,就有多少电能产生,而这些电能又通过电流做功而转化为其他形式的能.3.反电动势(1)定义:直流电动机模型通电后,线圈因受安培力而转动,切割磁感线产生的感应电动势.(2)方向:与外加电压的方向相反.(3)决定因素:电动机线圈转动越快,反电动势越大.[再判断]1.无论“磁生电”还是“电生磁”都必须遵循能量守恒定律.(√)2.在闭合线圈上方有一条形磁铁自由下落直至穿过线圈过程中,磁铁下落过程中机械能守恒.(×)[后思考]在闭合线圈上方有一条形磁铁,自由下落直至穿过线圈过程中,能量是如何转化的?【提示】线圈增加的内能是由磁铁减少的机械能转化而来的.[合作探讨]如图1­5­6所示,两根电阻不计的光滑平行金属导轨倾角为θ,导轨下端接有电阻R,匀强磁场垂直于斜面向上.质量为m、电阻不计的金属棒ab在沿斜面与棒垂直的恒力F作用下沿导轨匀速上滑,上升高度为h.图1­5­6探讨1:试说明此过程中受哪些力作用?做功情况怎样?【提示】金属杆ab在上滑过程中切割磁感线产生感应电流,感应电流受安培力,方向沿斜面向下.金属杆共受拉力、重力、支持力、安培力四个力.其中支持力不做功,拉力做正功,重力和安培力做负功.探讨2:上述过程中,试分析克服安培力做功与回路中产生热量的转化关系?【提示】安培力做负功,机械能转化为电能而产热.[核心点击]1.由磁场变化引起的电磁感应现象中,磁场能转化为电能,若电路是纯电阻电路,转化过来的电能将全部转化为电阻的内能.2.由相对运动引起的电磁感应现象中,通过克服安培力做功,把机械能或其他形式的能转化为电能.克服安培力做多少功,就产生多少电能.若电路是纯电阻电路,转化过来的电能也将全部转化为电阻的内能.3.(多选)如图1­5­7所示,一粗糙的平行金属轨道平面与水平面成θ角,两轨道上端用一电阻R 相连,该装置处于匀强磁场中,磁场方向垂直轨道平面向上,质量为m 的金属杆ab 以初速度v 0从轨道底端向上滑行,滑行到某高度h 后又返回到底端.若运动过程中金属杆始终保持与导轨垂直且接触良好,轨道与金属杆的电阻均忽略不计.则下列说法正确的是( ) 【导学号:】图1­5­7A .金属杆ab 上滑过程与下滑过程通过电阻R 的电荷量一样多B .金属杆ab 上滑过程中克服重力、安培力与摩擦力所做功之和大于12mv 2C .金属杆ab 上滑过程与下滑过程因摩擦而产生的内能一定相等D .金属杆ab 在整个过程中损失的机械能等于装置产生的焦耳热【解析】 金属杆在轨道上滑行时平均电动势E =ΔΦt =BS t ,通过的电荷量Q =It =BSRtt=BS R,故上滑和下滑时通过电阻R 的电荷量相同;根据能量守恒定律金属杆ab 上滑过程中克服重力、安培力与摩擦力所做功之和等于减少的动能12mv 20,金属杆ab 上滑过程与下滑过程中所受摩擦力大小相等,移动的位移大小相等,故因摩擦而产生的内能一定相等,根据能量守恒定律可知整个过程中损失的机械能等于装置产生的焦耳热和摩擦产生的能量之和.故A 、C 正确,B 、D 错误.【答案】 AC4.(多选)如图1­5­8所示,两根足够长的光滑导轨竖直放置,间距为L ,底端接阻值为R 的电阻.将质量为m 的金属棒悬挂在一个固定的轻弹簧下端,金属棒和导轨接触良好,导轨所在平面与磁感应强度为B 的匀强磁场垂直,除电阻R 外其余电阻均不计.现将金属棒从弹簧原长位置由静止释放,则( ) 【导学号:】图1­5­8A .释放瞬间金属棒的加速度等于重力加速度gB .金属棒向下运动时,流过电阻R 的电流方向为a →bC .金属棒的速度为v 时,所受的安培力大小为F =B 2L 2vRD .电阻R 上产生的总热量等于金属棒重力势能的减少【解析】 金属棒刚释放时,弹簧处于原长,此时弹力为零,又因此时速度为零,因此也不受安培力作用,金属棒只受重力作用,其加速度应等于重力加速度,故选项A 正确;金属棒向下运动时,由右手定则可知,在金属棒上电流方向向右,电阻等效为外电路,其电流方向为b →a ,故选项B 错误;金属棒速度为v 时,安培力大小为F =BIL ,I =BLv /R ,由以上两式得F =B 2L 2vR,故选项C 正确;金属棒下落过程中,由能量守恒定律知,金属棒减少的重力势能转化为弹簧的弹性势能、金属棒的动能以及电阻R 上产生的内能,因此选项D 错误.【答案】 AC5.如图1­5­9所示,竖直固定的光滑U 形金属导轨MNOP 每米长度的电阻为r ,MN 平行于OP ,且相距为l ,磁感应强度为B 的匀强磁场与导轨所在平面垂直.有一质量为m 、电阻不计的水平金属杆ab 可在导轨上自由滑动,滑动过程中与导轨接触良好且保持垂直.将ab 从某一位置由静止开始释放后,下滑h 高度时速度达到最大,在此过程中,电路中产生的热量为Q ,以后设法让杆ab 保持这个速度匀速下滑,直到离开导轨为止 .求:图1­5­9(1)金属杆匀速下滑时的速度;(2)匀速下滑过程中通过金属杆的电流I 与时间t 的关系.【导学号:】【解析】 (1)金属杆ab 由静止释放到刚好达最大速度v m 的过程中,由能量守恒定律可得mgh =Q +12mv 2m解得v m =2gh -2Qm.①(2)设金属杆刚达到最大速度时,电路总电阻为杆达最大速度时有mg =BIl ②E =Blv m ③ I =E R 0④由②③④得mg =B 2l 2v m R 0,再经时间t ,电路总电阻R =R 0-2rv m t ,则I =E R =Blv mR联立以上各式解得I =BlmgB 2l 2-2rmgt.【答案】 (1)2gh -2Qm(2)I =BlmgB 2l 2-2rmgt电能的三种求解思路(1)利用克服安培力做功求解:电磁感应中产生的电能等于克服安培力所做的功. (2)利用能量守恒求解:相应的其他能量的减少量等于产生的电能. (3)利用电路特征求解:通过电路中所消耗的电能来计算.。

2011高二物理学案:1.5 电磁感应规律的应用(粤教版选修3-2)

2011高二物理学案:1.5 电磁感应规律的应用(粤教版选修3-2)

1.5 电磁感应规律的应用 学案(粤教版选修3-2)1.情景分析:如图1所示,铜棒Oa 长为L ,磁场的磁感应强度为B ,铜棒在垂直于匀强磁场的平面上绕O 点以角速度ω匀速转动,则棒切割磁感线的等效速度v =ωL2,产生的感应电动势E =12BL 2ω,由右手定则可判定铜棒的O 端电势较高.图12.如图2所示,导体棒ef 沿着导轨面向右匀速运动,导轨电阻不计.导体棒ef 相当于电源,e 是正极,f 是负极,电源内部电流由负极流向正极;R 和R g 构成外电路,外电路中电流由电源正极流向负极.图23.电磁感应中的能量:在由导体切割磁感线产生的电磁感应现象中,导体克服安培力做多少功,就有多少其他形式的能转化为电能,即电能是通过克服安培力做功转变来的.4.正在转动的电风扇叶片,一旦被卡住,电风扇电动机的温度上升,时间一久,便发生一种焦糊味,十分危险,产生这种现象的原因是________________________________________________________________________. 答案 见解析解析 电风扇叶片一旦卡住,这时反电动势消失,电阻很小的线圈直接连在电源的两端,电流会很大,所以电风扇电动机的温度很快上升,十分危险.5.当穿过线圈的磁通量发生变化时,下列说法中正确的是( ) A .线圈中一定有感应电流 B .线圈中一定有感应电动势C .感应电动势的大小跟磁通量的变化成正比D .感应电动势的大小跟线圈的电阻有关 答案 B解析 产生感应电流的条件与产生感应电动势的条件是不同的,只有电路闭合且磁通量发生变化才能产生感应电流,不管电路是否闭合,只要磁通量变化,就一定有感应电动势产生.感应电动势只与磁通量的变化快慢和线圈的匝数有关.6.如图3所示,在竖直向下的匀强磁场中,将一水平放置的金属棒ab 以水平速度v 抛出,且棒与磁场垂直,设棒在落下的过程中方向不变且不计空气阻力,则金属棒在运动的过程中产生的感应电动势大小变化情况是()图3A .越来越大B .越来越小C .保持不变D .无法判断 答案 C解析 在运用公式E =BL v 进行感应电动势的运算时,要注意该公式中B 、L 、v 三者必须互相垂直.如果不互相垂直,要进行相应的分解后运用分量代入运算.本题中切割速度为金属棒的水平分速度,水平分速度不变,故感应电动势大小保持不变,选C.7.如图4所示,竖直放置的两根平行金属导轨之间接有定值电阻R ,质量不能忽略的金属棒与两导轨始终保持垂直并良好接触且无摩擦,棒与导轨的电阻均不计,整个装置放在匀强磁场中,磁场方向与导轨平面垂直,棒在竖直向上的恒力F 作用下加速上升的一段时间内,力F 做的功与安培力做的功的代数和等于()图4A .棒的机械能增加量B .棒的动能增加量C .棒的重力势能增加量D .电阻R 上放出的热量 答案 A解析 棒受重力G 、拉力F 和安培力F A 的作用.由动能定理:W F +W G +W 安=ΔE k 得W F+W 安=ΔE k +mgh ,即力F 做的功与安培力做功的代数和等于机械能的增量,A 项正确.【概念规律练】知识点一 法拉第电机模型的分析1.如图5所示,长为L 的金属棒ab ,绕b 端在垂直于匀强磁场的平面内以角速度ω匀速转动,磁感应强度为B ,求ab 两端的电势差.图5答案 12BL 2ω解析 方法一 棒上各处速率不等,故不能直接用公式E =BL v 求解,由v =ωr 可知,棒上各点线速度跟半径成正比,故可用棒的中点的速度作为平均切割速度代入公式计算.由v =ωL /2,有BL v =12BL 2ω,由右手定则判断φa >φb ,即U ab >0,故U ab =12BL 2ω方法二 用E =n ΔΦΔt来求解.设经过Δt 时间ab 棒扫过的扇形面积为ΔS =12LωΔtL =12L 2ωΔt变化的磁通量为ΔΦ=B ΔS =12BL 2ωΔt ,所以E =n ΔΦΔt =nB ΔS Δt =12BL 2ω(n =1)由右手定则判断φa >φb所以a 、b 两端的电势差为12BL 2ω.点评 当导体棒转动切割磁感线时,若棒上各处磁感应强度B 相同,则可直接应用公式E =12BL 2ω. 2.如图6所示,长为L 的导线下悬一小球,在竖直向上的匀强磁场中做圆锥摆运动,圆锥的偏角为θ,摆球的角速度为ω,磁感应强度为B ,则金属导线中产生的感应电动势大小为________.图6答案 12BL 2ωsin 2 θ解析 导线的有效长度为L ′=L sin θ电动势E =12BL ′2ω=12BL 2ωsin 2 θ点评 导体在磁场中转动,导线本身与磁场并不垂直,应考虑切割磁感线的有效长度.知识点二 电磁感应中的电路问题3.如图7所示,长为L =0.2 m 、电阻为r =0.3 Ω、质量为m =0.1 kg 的金属棒CD 垂直放在位于水平面上的两条平行光滑金属导轨上,两导轨间距也为L ,棒与导轨接触良好,导轨电阻不计,导轨左端接有R =0.5 Ω的电阻,量程为0~3.0 A 的电流表串联在一条导轨上,量程为0~1.0 V 的电压表接在电阻R 的两端,垂直导轨平面的匀强磁场向下穿过平面.现以向右恒定的外力F 使金属棒右移,当金属棒以v =2 m/s 的速度在导轨平面上匀速滑动时,观察到电路中的一个电表正好满偏,而另一电表未满偏.问:图7(1)此时满偏的电表是什么表?说明理由. (2)拉动金属棒的外力F 有多大? (3)导轨处的磁感应强度多大? 答案 (1)见解析 (2)1.6 N (3)4 T解析 (1)假设电流表满偏,则I =3 A ,R 两端电压U =IR =3×0.5 V =1.5 V ,将大于电压表的量程,不符合题意,故满偏电表应该是电压表.(2)由能量关系,电路中的电能应是外力做功转化来的,所以有F v =I 2(R +r ),I =UR,两式联立得,F =U 2(R +r )R 2v=1.6 N.(3)磁场是恒定的,且不发生变化,由于CD 运动而产生感应电动势,因此是动生电动势.根据法拉第电磁感应定律有E =BL v ,根据闭合电路欧姆定律得E =U +Ir 以及I =UR,联立三式得B =U L v +Ur RL v=4 T.点评 注意区分电源和外电路,熟练运用闭合电路的有关规律. 4.匀强磁场的磁感应强度B =0.2 T ,磁场宽度l =3 m ,一正方形金属框边长ad =l ′=1 m ,每边的电阻r =0.2 Ω,金属框以v =10 m/s 的速度匀速穿过磁场区,其平面始终保持与磁感线方向垂直,如图8所示.求:图8(1)画出金属框穿过磁场区的过程中,金属框内感应电流的I -t 图线;(要求写出作图依据) (2)画出ab 两端电压的U -t 图线.(要求写出作图依据) 答案 见解析解析 线框的运动过程分为三个阶段:第Ⅰ阶段cd 相当于电源,ab 为等效外电路;第Ⅱ阶段cd 和ab 相当于开路时两并联的电源;第Ⅲ阶段ab 相当于电源,cd 相当于外电路,如下图所示.(1)在第一阶段,有I 1=Er +3r=Bl ′v 4r =2.5 A感应电流方向沿逆时针方向,持续时间为t 1=l ′v =110s =0.1 sab 两端的电压为U 1=I 1·r =2.5×0.2 V =0.5 V (2)在第二阶段,有I 2=0,U 2=E =Bl ′v =2 V t 2=0.2 s(3)在第三阶段,有I 3=E4r=2.5 A感应电流方向为顺时针方向 U 3=I 3×3r =1.5 V ,t 3=0.1 s规定逆时针方向为电流正方向,故I -t 图象和ab 两端U -t 图象分别如下图所示.点评 第二阶段cd 与ab 全部进入磁场后,回路中磁通量不变化,无感应电流,但ab 、cd 都切割磁感线,有感应电动势,相当于开路时两个并联的电路.【方法技巧练】用能量观点巧解电磁感应问题5.如图9所示,将匀强磁场中的线圈(正方形,边长为L )以不同的速度v 1和v 2匀速拉出磁场,线圈电阻为R ,那么两次拉出过程中,外力做功之比W 1∶W 2=________.外力做功功率之比P 1∶P 2=________.图9答案 v 1∶v 2 v 21∶v 22解析 线圈匀速拉出磁场,故其动能未变化.线圈中由于电磁感应产生电流,即有电能产生,且电能全部转化为内能,故外力做多少功就有多少内能产生.W =Q =I 2R Δt =⎝⎛⎫ΔΦ2R Δt =(ΔΦ)2R Δt ∝1Δt∝v故W 1∶W 2=v 1∶v 2同理,由P =W Δt =Q Δt∝v 2可得P 1∶P 2=v 21∶v 22 方法总结 两次均匀速把线框拉出磁场都有F 安=F 外,但两次的外力不同.6.光滑曲面与竖直平面的交线是抛物线,如图10所示,抛物线的方程为y =x 2,其下半部处在一个水平方向的匀强磁场中,磁场的上边界是y =a 的直线(图中的虚线所示),一个质量为m 的小金属块从抛物线y =b (b >a )处以速度v 沿抛物线下滑,假设抛物线足够长,则金属块在曲面上滑动的过程中产生的焦耳热总量是()图10A .mgb B.12m v 2C .mg (b -a )D .mg (b -a )+12m v 2答案 D解析 金属块在进入磁场或离开磁场的过程中,穿过金属块的磁通量发生变化,产生电流,进而产生焦耳热.最后,金属块在高为a 的曲面上做往复运动.减少的机械能为mg (b -a )+12m v 2,由能量的转化和守恒可知,减少的机械能全部转化成焦耳热,即选D.方法总结 在电磁感应现象中,感应电动势是由于非静电力移动自由电荷做功而产生的,要直接计算非静电力做功一般比较困难,因此要根据能量的转化及守恒来求解.。

2024-2025学年高中物理第一章电磁感应第02节研究产生感应电流的条件教案4粤教版选修3-2

2024-2025学年高中物理第一章电磁感应第02节研究产生感应电流的条件教案4粤教版选修3-2
1.知识层次:大部分学生已经掌握了电磁感应的基本概念,但对产生感应电流的条件的理解不够深入。学生对于楞次定律、磁通量等概念的认知较为基础,需要进一步深化理解。
2.能力层次:学生在实验操作和观察方面具备一定的能力,但分析问题和解决问题的能力有待提高。学生对于实验数据的处理和解释能力较为薄弱,需要加强训练。
教学内容与学生已有知识的联系:学生在学习本节课之前,已经学习了电磁感应的基本概念,对电磁感应现象有了初步的了解。在此基础上,本节课将进一步引导学生深入研究产生感应电流的条件,巩固和拓展学生对电磁感应现象的认识。
本节课将围绕以下几个方面展开:
1.感应电流的产生条件:引导学生通过实验观察和理论分析,探讨产生感应电流的条件,包括闭合回路、磁通量的变化等。
然而,我也发现了一些问题。例如,在讲解磁通量的计算时,我发现有些学生对于公式的理解不够深入,因此在课后我需要加强对这部分内容的讲解。此外,在小组讨论的环节,我发现有些学生参与度不高,他们对于电磁感应的应用理解不够深入。因此,在接下来的教学中,我需要更加关注这部分学生的学习情况,引导他们更好地理解和应用电磁感应的知识。
知识点梳理
本节课的知识点主要包括以下几个方面:
1.电磁感应现象的定义:电磁感应是指在磁场中,闭合回路中的感应电流的产生。具体来说,当闭合回路中的磁通量发生变化时,回路中就会产生感应电流。
2.磁通量的概念:磁通量是描述磁场穿过某个闭合回路的大小。它等于磁场强度与回路面积的乘积,与回路所在的磁场方向有关。
本节课的教学内容紧密结合学生的已有知识,符合教学实际,注重培养学生的实验观察能力、理论分析能力和解决实际问题的能力。
核心素养目标
本节课的核心素养目标主要包括物理观念、科学思维、实验探究和科学态度。

高中物理 第一章 电磁感应 第4节 法拉第电磁感应定律教案 粤教版选修32

高中物理 第一章 电磁感应 第4节 法拉第电磁感应定律教案 粤教版选修32

第4节法拉第电磁感应定律本节教材分析三维目标(一)、知识与技能1、知道决定感应电动势大小的因素;2、知道磁通量的变化率是表示磁通量变化快慢的物理量,并能对“磁通量的变化量”、“磁通量的变化率”进行区别;3、理解法拉第电磁感应定律的内容和数学表达式;4、会用法拉第电磁感应定律解答有关问题;5、会计算导线切割磁感线时感应电动势的大小;(二)过程与方法通过学生实验,培养学生的动手能力和探究能力.(三)情感态度与价值观培养学生对实际问题的分析与推理能力。

培养学生的辨证唯物注意世界观,尤其在分析问题时,注意把握主要矛盾.教学重点学生动手探究磁是否能生电及怎样才能生电。

教学难点引导学生按照探究步骤独立完成一个较为完整的探究过程。

教学建议理解和应用法拉第电磁感应定律,教学中应该使学生注意以下几个问题:⑴要严格区分磁通量、磁通量的变化、磁通量的变化率这三个概念.⑵求磁通量的变化量一般有三种情况:当回路面积不变的时候,;当磁感应强度不变的时候,;⑶ E是时间内的平均电动势,一般不等于初态和末态感应电动势瞬时值的平均值,即:⑷注意课本中给出的法拉第电磁感应定律公式中的磁通量变化率取绝对值,感应电动势也取绝对值,它表示的是感应电动势的大小,不涉及方向.⑸公式表示导体运动切割磁感线产生的感应电动势的大小,是一个重要的公式.要使学生知道它是法拉第电磁感应定律的一个特殊形式,当导体做切割磁感线的运动时,使用比较方便.使用它计算时要注意B、L、v这三个量的方向必须是互相垂直的,遇到不垂直的情况,应取垂直分量.建议在具体教学中,教师帮助学生形成知识系统,以便加深对已经学过的概念和原理的理解,有助于理解和掌握新学的概念和原理.在法拉第电磁感应定律的教学中,有以下几个内容与前面的知识有联系,希望教师在教学中加以注意:⑴由“恒定电流”知识知道,闭合电路中要维持持续电流,其中必有电动势的存在;在电磁感应现象中,闭合电路中有感应电流也必然要存在对应的感应电动势,由此引出确定感应电动势的大小问题.⑵电磁感应现象中产生的感应电动势,为人们研制新的电源提供了可能,当它作为电源向外供电的时候,我们应当把它与外电路做为一个闭合回路来研究,这和直流电路没有分别;⑶用能量守恒和转化来研究问题是中学物理的一个重要的方法.化学电源中的电动势表征的是把化学能转化为电能的本领,感应电动势表征的是把机械能转化为电能的本领.新课导入设计导入一1:要使闭合电路中有电流必须具备什么条件?(引导学生回答:这个电路中必须有电源,因为电流是由电源的电动势引起的)2:如果电路不是闭合的,电路中没有电流,电源的电动势是否还存在呢?(引导学生回答:电动势是反映了电源提供电能本领的物理量,电路不闭合电源电动势依然存在)引入新课:在电磁感应现象里,既然闭合电路里有感应电流,那么这个电路中也必定有电动势,在电磁感应现象里产生的电动势叫做感应电动势,产生感应电动势的那部分导体就相当于电源.导入二创设情景,导入课题设问1:在电磁感应现象中,闭合电路中产生了感应电流,所以一定存在电源,那么维持这一感应电流的电源是谁呢?答:感应线圈,它相当于电源。

「精品」高中物理第一章电磁感应第一节电磁感应现象第二节产生感应电流的条件学案粤教版选修32

「精品」高中物理第一章电磁感应第一节电磁感应现象第二节产生感应电流的条件学案粤教版选修32

第一节 电磁感应现象第二节 产生感应电流的条件行定性和定量的判断.一、电磁感应现象1.奥斯特实验揭示了通电导线周围有磁场.法拉第发现了电磁感应现象,揭示了磁确实能产生电.2.由磁生电的现象叫做电磁感应现象,由电磁感应现象产生的电流叫做感应电流.预习交流1科拉顿为什么没有观察到电磁感应现象?答案:在科拉顿实验中,电磁感应现象已经发生,科拉顿之所以没有观察到实验现象,是因为他将反映有感应电流产生的电流计放到了另一房间,而电磁感应现象仅在磁铁插入线圈的瞬间产生,即只在穿过闭合线圈的磁通量发生变化时产生。

二、产生感应电流的条件1.引起磁通量变化的原因是各不相同的,可能是闭合电路或闭合电路一部分的磁感应强度发生变化,或者是闭合电路在磁场中的面积发生变化,也可能是闭合电路与磁场的夹角发生变化.2.不论何种原因,只要使穿过闭合电路的磁通量发生变化,闭合电路中就有感应电流产生. 预习交流2把一个铜环放在匀强磁场中,使环的平面与磁场的方向垂直,如图(a ),如果使环沿着磁场的方向移动,铜环是否产生感应电流?为什么?如果磁场是不均匀的,如图(b ),是否产生感应电流?为什么?答案:(a )中无感应电流,(b )中有感应电流,因为(a )中磁场是均匀的,穿过闭合铜环中的磁通量不发生变化,而(b )中磁场是不均匀的,当铜环在(b )中沿磁场方向运动时,磁通量发生了变化.一、导体在磁场中做切割磁感线的运动1.如图所示的N 、S 极间的磁感线分布,具有什么特点?答案:如题图所示的N 、S 极间,除边沿外,为匀强磁场.其间的磁感线为由N 极指向S 极的均匀分布的磁感线.2.如上题图所示,当导体ab在磁场中分别垂直于磁感线与沿着磁感线运动时,是否均有感应电流产生?答案:当导体ab垂直磁感线运动时,有感应电流产生;当导体ab沿着磁感线运动时,没有感应电流产生.3.“当闭合电路的一部分导体在磁场中做切割磁感线运动时,电路中有感应电流产生.”此句话中的“切割”是否就是指导体ab垂直磁感线运动?答案:导体ab垂直磁感线运动只是导体ab切割磁感线的一种形式.只要导体ab不沿磁感线方向运动.即导体ab的运动方向不与磁感线方向平行,导体ab就一定会切割磁感线,一般我们将ab 垂直磁感线的运动叫正切割,把不垂直、不平行磁感线的运动叫斜切割.实验中,我们之所以让导体ab垂直磁感线运动,是因为同等条件下,正切割时产生的感应电流最大,实验现象最明显.如图所示,线框与通电直导线均位于水平面内,当线框abcd由实线位置在水平面内向右平动,逐渐移动到虚线位置,这个过程中线框abcd中是否有感应电流产生?答案:有感应电流产生.解析:在整个线框abcd向右运动过程中,导线ad、bc切割磁感线,导线ab、cd不切割磁感线,但导线ad、bc处的磁感线疏密不同,即线框abcd在运动过程中,穿过整个线框的磁通量发生了变化,故线框abcd中会有感应电流产生.闭合电路的部分导体在磁场中做切割磁感线运动时,穿过整个闭合电路的磁通量是变化的,故闭合电路中有感应电流产生.整个闭合电路都在磁场中运动切割磁感线时,如果穿过整个闭合电路的磁通量发生变化,则闭合电路中有感应电流产生;如果穿过整个闭合电路的磁通量没有发生变化,则闭合电路中没有感应电流产生.二、磁通量1.磁通量怎样表示?它的物理意义是什么?答案:磁通量用字母Φ表示.它的物理意义:在磁感应强度为B的匀强磁场中,有一个与磁场方向垂直的平面S,我们把B与S的乘积BS叫做穿过这个面积的磁通量.它还可以理解为垂直穿过某一平面的磁感线的条数.2.在匀强磁场中怎样计算磁通量?答案:(1)B与S垂直时:Φ=BS,B指匀强磁场的磁感应强度,S为线圈的面积.(2)B与S不垂直时:Φ=BS⊥,S⊥为线圈在垂直磁场方向上的投影面积,在应用时可将S投影到与B垂直的方向上或者S不动,将B分解为垂直于S和平行于S的两个分量,则Φ=B⊥S,如图所示,Φ=BS sinθ.(3)某线圈平面内有不同方向的磁场时:分别计算不同方向的磁场的磁通量,然后规定某个方向的磁通量为正,反方向的磁通量为负,求其代数和.3.在非匀强磁场中,怎样分析磁通量的变化?答案:条形磁铁、通电导线周围的磁场都是非匀强磁场,通常只对穿过其中的线圈的磁通量进行定性分析,分析时应兼顾磁场强弱、线圈面积和磁场与线圈的夹角等因素,并可充分利用磁感线来判断,即磁通量的大小对应穿过线圈的磁感线的条数,穿过线圈的磁感线的条数变化,则说明磁通量变化.两个圆环A、B如图所示放置,且半径R A>R B,一条形磁铁的轴线过两个圆环的圆心处,且与圆环平面垂直,则穿过A、B环的磁通量ΦA和ΦB的关系是().A.ΦA>ΦB B.ΦA=ΦBC.ΦA<ΦB D.无法确定答案:C解析:因为有两个方向的磁感线穿过线圈,磁通量应是磁感线抵消之后所剩余的净条数.从上向下看,穿过圆环A、B的磁感线如图所示,磁感线有进有出,A、B环向外的磁感线条数一样多,但A环向里的磁感线条数较多,抵消得多,净剩条数少,所以ΦA<ΦB,选C.1.当有两个方向的磁感线穿过某一回路时,求磁通量时要按求代数和的方法求合磁通量(即穿过回路面积的磁感线的净条数).2.线圈为多匝时,不影响磁通量的计算,即Φ≠NBS,因为穿过线圈的磁感线的条数不受匝数影响.3.若线圈面积S1大于磁场区域面积S2,如图,那么Φ=BS中的S应指闭合电路中处于磁场中的那部分有效面积S2.三、产生感应电流的条件1.闭合导体回路的一部分导体在磁场中运动时一定产生感应电流吗?导体切割磁感线运动是什么样的运动?答案:不一定,闭合导体回路的一部分导体在磁场中运动时,若其速度方向与磁场方向平行,则不能产生感应电流;导体切割磁感线运动,是导体的运动方向和磁感线的方向不平行的运动.2.穿过闭合电路的磁通量的变化方式有哪些?答案:(1)磁场不变,闭合电路的面积发生变化,例如教材图1-2-1的实验中导体ab垂直于磁感线运动时.(2)闭合电路的面积不变,磁场发生变化,例如教材图1-2-3的实验中闭合开关、滑片快速推动和滑片慢速推动时.(3)线圈平面和磁场方向的夹角θ发生变化,引起穿过线圈的磁通量发生变化.即B、S不变,θ变化.以后学到的交流电的产生即属于此情况.(4)磁场、线圈面积都发生变化,引起穿过线圈的磁通量变化.在高中阶段几乎不涉及这种情况.3.如图所示,电吉他的弦是磁性材料,已被磁化成永磁体.当弦振动时,线圈中产生感应电流,感应电流输送到放大器,把声音播放出来.请解释电吉他是如何产生感应电流的?弦能否改用尼龙材料?答案:弦是永磁体,弦振动时,穿过线圈的磁通量发生变化,线圈中产生感应电流.不能改用尼龙材料.4.在地球赤道上空,从飞机上投下一个巨大的闭合铜线圈,线圈平面朝向地球北极,这个线圈中会产生感应电流吗?为什么?答案:地磁场类似于条形磁铁的磁场,当闭合铜线圈竖直下落时,穿过线圈的磁通量越来越大,所以线圈中会产生感应电流.一个100匝的线圈,其横截面是边长为L=0.20 m的正方形,放在磁感应强度为B=0.50 T的匀强磁场中,线圈平面与磁场垂直.若将这个线圈横截面的形状由正方形改变成圆形(横截面的周长不变),在这一过程中穿过线圈的磁通量改变了多少?答案:5.5×10-3Wb解析:线圈横截面是正方形时的面积S1=L2=(0.20)2 m2=4.0×10-2 m2穿过线圈的磁通量Φ1=BS1=0.50×4.0×10-2 Wb=2.0×10-2 Wb横截面形状为圆形时,其半径r=4L/(2π)=2L/π横截面积大小S2=π(2L/π)2=16/(100π)m2穿过线圈的磁通量Φ2=BS2=0.50×16/(100π)Wb≈2.55×10-2 Wb所以,磁通量的变化ΔΦ=Φ2-Φ1=(2.55-2.0)×10-2 Wb=5.5×10-3 Wb.1.感应电流产生的条件(1)电路闭合(2)穿过电路的磁通量发生变化2.分析是否产生感应电流,关键是分析穿过闭合线圈的磁通量是否变化,而分析磁通量是否有变化,关键是分清磁感线的分布,即分清磁感线的疏密变化和磁感线方向的变化及有效磁场面积的变化.3.磁通量及磁通量的变化量与匝数无关,求Φ及ΔΦ时,不去考虑线圈匝数n.4.对于穿过某一平面的双向磁场,Φ应表示的是合磁通量的大小.5.磁通量的正、负号并不表示磁通量的方向,它的符号仅表示磁感线的贯穿方向.1.发电机的基本原理是电磁感应,发现“磁生电”现象的科学家是().A.安培 B.奥斯特 C.法拉第 D.欧姆答案:C解析:安培提出分子电流假说,奥斯特发现了电流的磁效应,法拉第发现了“磁生电”现象,欧姆通过实验得出了欧姆定律.2.关于感应电流的产生,下列说法中正确的是().A.只要闭合电路内有磁通量,闭合电路中就有感应电流产生B.穿过螺线管的磁通量变化时,螺线管的内部就一定有感应电流产生C.线框不闭合时,即使穿过线框的磁通量变化,线框中也没有感应电流D.只要闭合电路的一部分做切割磁感线运动,电路中就一定有感应电流答案:C解析:如果闭合电路磁通量不变化,不会产生感应电流,故A项错,B项中螺线管中的磁通量变化,但螺线管不一定闭合,故不一定有感应电流产生,D项中闭合电路的一部分做切割磁感线运动,但该回路中的磁通量不一定变化,因而不一定有感应电流产生.3.线框平面与直导线共面,若使线框从图示位置向上移动到直导线的上方的对称位置,如下图所示,在整个过程中,穿过线框的磁通量将().A.先增大后减小B.先增大后减小,再增大后又减小C.先减小后增大,再减小后又增大D.先增大后不变,再又减小答案:B解析:线框从图示位置向上移动到上边与直导线重合的过程中,磁通量增大;再移动到中央位置的过程中,向里的磁感线减少,向外的磁感线增多,向里的合磁通量减小到零,再移动到下边与直导线重合的过程中,向外的合磁通量增大;然后再向上远离直导线的过程中,向外的磁通量又减小.4.如图所示,将一个矩形线圈ABCD放入匀强磁场中,若线圈平面平行于磁感线,则下列运动中,哪些在线圈中会产生感应电流().A.矩形线圈做平行于磁感线的平移运动B.矩形线圈做垂直于磁感线的平移运动C.矩形线圈绕AB边转动D.矩形线圈绕BC边转动答案:C解析:根据产生感应电流的条件可知,判断闭合线圈中是否产生感应电流,关键是判断线圈中磁通量是否发生变化.A项中,矩形线圈做平行于磁感线的平移运动,磁通量不发生变化,无感应电流.B项中,矩形线圈做垂直于磁感线的平移运动,磁通量不发生变化,不产生感应电流.C项中,矩形线圈绕AB边转动,穿过线圈的磁通量必发生变化,会产生感应电流.D项中,矩形线圈绕BC 边转动,没有磁感线穿过线圈,磁通量恒为零,线圈中没有感应电流.5.下列各图中的线框或导线按如图所示的方向在匀强磁场中运动时,能产生感应电流的是().答案:B解析:A、C项中磁通量没有发生变化,无感应电流产生;D项中电路不闭合,不具备产生感应电流的条件;B项中,穿过闭合线圈的磁通量在减少,有感应电流产生.。

高中物理第一章电磁感应第六节法拉第电磁感应定律预习导学案粤教版选修3_32


根据法拉第电磁感应定律,感应电动势 ab 杆所受的安培力 F 安= BL1I = ( B0+ 联立上述四个方程解得:
E=
Φ
=
t
B t) L1I ,
t
B L 1L 2,回路中的感应电流为
t
E I=
R
t=
MgR L1 2 L2 (
B )2t
t B0=5 s.
B
答案: 5 s 2.如图 1-6-2 所示, ab 是一个可绕垂直于纸面的轴 O 转动的闭合矩形导线框,当滑动变 阻器 R 的滑片自左向右滑动时,线框 ab的运动情况是( )
通量的变化量Δ Φ很大时,磁通量的变化率
Φ
可能很小。
t
( 3)磁通量 Φ是状态量;磁通量的变化量Δ Φ是过程量;磁通量的变化率 况,瞬时变化率是状态量、平均变化率是过程量。
Φ有两种情 t
( 4)磁通量的变化量Δ Φ与电路感应电动势无关, 而磁通量的变化率 应电动势相联系,是正比关系,也可理解成等于单匝线圈上的感应电动势。
【自主整理】Leabharlann 1.由于电磁感应,在闭合电路中产生感应电流,而处于磁场中的感应电流往往又受到安
培力作用,而安培力做功则会带来能量的转化。
2.电磁流量计是由流量传感器和转换器两大部分组成。 能量转化: 电磁感应现象中产生的电能是通过克服安培力做功转变而来的,
克服安培力
做了多少功就有多少电能产生,而这些电能又通过电流做功使电阻发热转变成内能。
则线框 ab只有顺时针旋转才能使 θ角有增大的趋势,而使穿过线圈的磁通量增加,则答案
C
正确。注意此题并不需要明确电源的极性。
答案: C
【变式训练二】
1.如图 1-6-3 所示,匀强磁场方向垂直于线圈平面,先后两次将线圈从同一位置匀速地

高中物理第一章第五节电磁感应规律的应用学案粤教版选修3_2

第五节 电磁感应规律的应用1.了解法拉第电机原理以及电磁流量计原理. 2.理解电磁感应中的电路问题及其应用. 3.理解电磁感应中的图象问题及其应用. 4.理解电磁感应中的动力学问题. 5.理解电磁感应中的能量问题.1.在法拉第电机中,产生感应电动势部分相当于电源,如果它与用电器连接就构成了闭合回路.2.法拉第电机的电源部分与其他导体或线框构成了闭合回路,遵从闭合电路欧姆定律. 3.在电磁感应中切割磁感线部分或在磁场中的部分导体相当于电源,在电源内部,感应电流的方向是从电源的负极流向正极;在外电路中,电流从电源的正极流向电源的负极.电磁流量计的工作原理 如图所示,导电液体在垂直于磁场的非磁性测量管内流动,与流动方向垂直的方向上产生与流量成正比的感应电动势.设感应电动势为E ,磁感应强度为B ,测量管截面内平均流速为v ,流量计导管内径为d ,管壁ab 两点间的感应电动势E =Bvd .管中沿途的流量为14πd 2v ,所以Q =πd 4BE .例电磁流量计广泛应用于测量可导电流体(如污水)在管中的流量(在单位时间内通过管内横截面的流体的体积),假设流量计是如下图所示的横截面为长方形的一段管道,其中空部分的长、宽、高分别为图中的a、b、c,流量计的两端与输送液体的管道相连接(图中虚线).图中流量计的上、下两面是金属材料,前、后两面是绝缘材料,现在流量计所在处加磁感应强度为B的匀强磁场,磁场方向垂直于前后两面,当导电液体稳定地流经流量计时,在管外将流量计上、下表面分别与一串接了电阻R的电流表的两端连接,I表示测得的电流值,已知流体的电阻率为ρ,不计电流表的内阻,则可求得流量为( )A.I B ⎝ ⎛⎭⎪⎫bR +ρc a B.I B ⎝ ⎛⎭⎪⎫aR +ρb cC.I B ⎝⎛⎭⎪⎫cR +ρa b D.I B ⎝⎛⎭⎪⎫cR +ρb a解析:流体中有长度为c 的导电液体切割磁感线产生电动势,相当于电源,感应电动势为E =Bcv ,内电阻为r =ρc ab .外电路电阻为R ,根据闭合电路欧姆定律得I =E R +r,再根据流量的定义式Q =bcv ,可得选项A 正确.答案:A一、单项选择题1.如右图所示,两条平行虚线之间存在匀强磁场,虚线间的距离为l ,磁场方向垂直纸面向里.abcd 是位于纸面内的梯形线圈,ad 与bc 间的距离也为l .t =0时刻,bc 边与磁场区域边界重合.现令线圈以恒定的速度v 沿垂直于磁场区域边界的方向穿过磁场区域.取沿a →b →c →d →a 的感应电流方向为正,则在线圈穿越磁场区域的过程中,感应电流I 随时间t 变化的图线可能是(B )解析:进入磁场时,切割磁场的有效长度越来越短,电流越来越小,方向逆时针;出磁场时,切割磁场的有效长度越来越短,电流越来越小,方向顺时针.2.如下图所示,粗细均匀的电阻为r 的金属圆环,放在图示的匀强磁场中,磁感强度为B ,圆环直径为l ,另一长为l ,电阻为r2的金属棒ab 放在圆环上,接触电阻不计.当ab棒以v 0向左运动到图示虚线位置时,金属棒两端电势差为(C )A .BLv 0 B.12BLv 0C.13BLv 0D.23BLv 0 解析:当到图示位置时,E =BLv 0,总电阻R =12r ·12r 12r +12r +12r =34r ,所以金属棒两端电压U=E R ·14r =13BLv 0. 3.如右图所示,两个互连的相同面积的金属圆环,粗金属环的电阻为细金属环电阻的12,磁场方向垂直穿过金属环所在的区域,当磁感应强度随时间均匀变化时,若粗环内产生感应电动势,则a 、b 两点的电势差为U 1;若细环内产生感应电动势,则a 、b 两点的电势差为U 2.那么U 1∶U 2为(B)A .1∶2B .2∶1C .1∶3D .3∶1解析:由E =ΔΦΔt =ΔB ·S Δt 可知产生的电动势相同,U 1、U 2为路端电压,U 1=E R ·23R =23E ,同理U 2=E3,所以U 1∶U 2=2∶1.4.用均匀导线做成的正方形线框边长为0.2 m ,正方形的一半放在垂直于纸面向里的匀强磁场中,如图所示,在磁场以10 T/s 的变化率增强时,线框中a 、b 两点间的电势差是(B )A .U ab =0.1 VB .U ab =-0.1 VC .U ab =0.2 VD .U ab =-0.2 V解析:由E =ΔΦΔt =ΔB ·S Δt =10×0.02 V =0.2 V ,由楞次定律可知U ab =-E2=-0.1 V ,选项B 正确.二、多项选择题5.下图是法拉第研制成的世界上第一台发电机模型的原理图.将铜盘放在磁场中,让磁感线垂直穿过铜盘,图中a 、b 导线与铜盘的中轴线处在同一平面内,转动铜盘,就可以使闭合电路获得电流.若图中铜盘半径为L ,匀强磁场的磁感应强度为B ,回路总电阻为R ,从上往下看逆时针匀速转动铜盘的角速度为ω.则下列说法正确的是(AB )A .回路中电流大小恒定B .回路中电流方向不变,且从b 导线流进灯泡,再从a 流向旋转的铜盘C .回路中有大小和方向作周期性变化的电流D .若将匀强磁场改为仍然垂直穿过铜盘的变化的磁场,在回路中电流大小也恒定 解析:把铜盘看作若干条由中心指向边缘的铜棒组合而成,当铜盘转动时,每根铜棒都在切割磁感线,相当于电源,由右手定则知,中心为电源正极,盘边缘为负极,若干个相同的电源并联对外供电,电流方向由b 经灯泡再从a 流回铜盘,方向不变,B 对,回路中感应电动势为E =BL v -=12B ωL 2,所以电流I =E R =B ωL 22R,A 对.6.如图所示,有两根和水平方向成α角的光滑平行的金属轨道,上端接有可变电阻R ,下端足够长,空间有垂直于轨道平面的匀强磁场,磁感强度为B .一根质量为m 的金属杆从轨道上由静止滑下,经过足够长的时间后,金属杆的速度会趋近于一个最大速度v m ,则(BC )A .如果B 增大,v m 将变大 B .如果α变大,v m 将变大C .如果R 变大,v m 将变大D .如果m 变小,v m 将变大解析:棒做加速度减小的加速运动,当加速度为零时速度达到最大,此时mg sin α=F安=BBLv m R l ,所以v m =mgR sin αB 2l 2,可知B 、C 对. 7.如图所示,竖直放置的螺线管与导线abcd 构成回路,导线所在区域内有一垂直纸面向里的变化的匀强磁场,螺线管下方水平桌面上有一导体圆环,导线abcd 所围区域内磁场的磁感应强度按下列哪一图线所表示的方式随时间变化,导体圆环将受到磁场作用力(AB )解析:C 、D 磁通量变化是均匀的,产生的感应电流是恒定的,圆环中没有磁通量的变化,没有感应电流,也就不受磁场作用力.8.如右图所示,将一个正方形导线框ABCD 置于一个范围足够大的匀强磁场中,磁场方向与其平面垂直.现在AB 、CD 的中点处连接一个电容器,其上、下极板分别为a 、b ,让匀强磁场以某一速度水平向右匀速移动,则(AC )A.ABCD回路中没有感应电流B.A与D、B与C间没有电势差C.电容器a、b两极板分别带上负电和正电D.电容器a、b两极板分别带上正电和负电解析:磁场向右匀速运动,导体AD、BC相当于向左运动,切割磁场.9.如右图所示,空间有一个方向水平的有界磁场区域,一个矩形线框,自磁场上方某一高度下落,然后进入磁场,进入磁场时,导线框平面与磁场方向垂直.则在进入时导线框可能的情况是(AB)A.变加速下落B.变减速下落C.匀减速下落D.匀加速下落解析:线框下落时的高度不同,进入磁场时的速度、产生的感应电动势、感应电流、线框所受的安培力不同,可能大于、等于或小于线框重力,故线框的运动可能有三种:变加速下落、变减速下落、匀速下落.三、非选择题(按题目要求作答.解答题应写出必要的文字说明、方程和重要演算步骤,答案中必须明确写出数值和单位.)10.如右图所示,PQNM是由粗裸导线连接两个定值电阻组合成的闭合矩形导体框,其中R1=4 Ω、R2=2 Ω,水平放置,金属棒ab与PQ、MN垂直,并接触良好.整个装置放在垂直纸面向里的匀强磁场中,磁感强度B=0.4 T.已知ab长l=0.5 m,金属棒ab以5 m/s 向右运动,其余电阻均忽略不计,流过棒ab的电流有多大?(不计摩擦)解析:等效电路如下图所示:产生的感应电动势为:E =BLv =0.4×0.5×5 V =1 V , 电阻R 1、R 2并联的总电阻为:R 并=43Ω.由闭合电路的欧姆定律得: 回路中的总电流为:I 总=34 A.答案:34A11.圆形导线框固定在匀强磁场中,磁感线的方向与导线框所在平面垂直.规定磁场的正方向垂直纸面向里,磁感应强度B 随时间t 变化的规律如图所示.若规定顺时针方向为感应电流i 的正方向,请画出it 图象.解析:根据法拉第电磁感应定律:E =nΔΦΔt =nS ·ΔBΔt,由Bt 图象知,1~3 s ,B 的变化率相同,0~1 s 、3~4 s ,B 的变化率相同,再结合楞次定律,0~1 s 、3~4 s 内感应电流的方向为顺时针方向,1~3 s内感应电流的方向为逆时针方向.故it 图象如图所示.答案:见解析12.如图所示,把总电阻为2R 的均匀电阻丝焊接成一半径为a 的圆环,水平固定在垂直纸面向里的磁感应强度为B 的匀强磁场中,一长度为2a 、电阻等于R 、粗细均匀的金属棒MN 放在圆环上,与圆环始终保持良好的接触.当金属棒以恒定速度v 向右移动,且经过圆心时,求: (1)棒上电流的大小和方向及棒两端的电压U MN ; (2)在圆环和金属棒上消耗的总功率.解析:求金属棒上的瞬时电流,需先求得瞬时电动势,故用公式E =Blv . (1)金属棒过圆心时的电动势大小为: E =2Bav由闭合电路欧姆定律得电流大小为:I =E R 外+r =2Bav R 2+R=4Bav 3R电流方向从N 流向M .路端电压为:U MN =IR 2=2Bav3.(2)全电路的热功率为: P =EI =8B 2a 2v23R .答案:见解析。

高中物理 第一章 电磁感应 第六节 自感现象及其应用学案 粤教版选修32

第六节 自感现象及其应用4.日光灯的原理.一、自感现象1.自感现象当一个线圈中的电流发生变化时,它所产生的变化磁场不仅在邻近的电路中激发出感应电动势,同样它本身也会激发出感应电动势.这种由于导体本身的电流发生变化而使自身产生电磁感应的现象,叫做自感现象.2.自感电动势由自感而产生的感应电动势叫做自感电动势.二、自感系数自感系数L 简称自感或电感,它跟线圈的大小、形状、圈数以及是否有铁芯等因素有关,线圈的横截面积越大、线圈绕制得越密、匝数越多,它的自感系数就越大.另外有铁芯的线圈的自感系数比没有铁芯时大.单位亨利,符号是H .常用的还有毫亨(mH )和微亨(μH ),换算关系是1 H =103 mH =106 μH.预习交流1自感电动势与什么因素有关呢?答案:根据法拉第电磁感应定律E =n ΔΦΔt,在自感现象中,由于磁通量的变化是由电流的变化引起的,故自感电动势的大小应与电流的变化快慢、线圈的自感系数有关.三、日光灯1.主要组成灯管、镇流器和启动器.2.灯管(1)工作原理:管中气体导电时发出紫外线,荧光粉受其照射发出可见光.可见光的颜色由荧光粉的种类决定.(2)气体导电的特点:灯管两端的电压达到一定值时,气体才能导电;而要在灯管中维持一定大小的电流,所需的电压却低得多.预习交流2在高电压的激发下,日光灯的灯管才能发光.这个使日光灯的灯管发光的高电压是由谁来提供的?答案:镇流器中的电流急剧减小,会产生很高的自感电动势,这个自感电动势与电源电压加在一起,形成一个瞬时高电压,加在灯管两端,使灯管中的气体放电,日光灯被点亮.一、自感现象1.当线圈中的电流发生变化时,在线圈自身中是否会发生电磁感应现象?答案:当线圈中的电流发生变化时,穿过线圈的磁通量发生变化,在线圈中会产生感应电动势,所以会发生电磁感应现象,这种电磁感应现象叫自感.2.如何确定自感电动势的方向?自感电动势的作用又是什么?答案:(1)自感电动势的方向当原电流增大时,自感电动势的方向与原电流方向相反;当原电流减小时,自感电动势方向与原电流方向相同(即增反减同).(2)自感电动势的作用阻碍原电流的变化,而不是阻止,原电流仍在变化,只是使原电流的变化时间变长,即总是起着推迟电流变化的作用.3.通过学习我们知道:自感现象可以分为通电自感和断电自感.通过实验演示可知,在断电过程中,有时灯泡闪亮一下再熄灭,有时灯泡只会延迟一段时间再熄灭,请分析出现上述两种现象的原因是什么.答案:在电源断开后灯泡又亮一下的原因是灯泡断电后自感线圈中产生的感应电流比原电路中的电流大.要想使灯泡闪亮一下再熄灭,就必须使自感线圈的电阻小于与之并联的灯泡.而当线圈电阻大于灯泡电阻,则灯泡只会延迟一段时间再熄灭.4.如图所示,当电路的开关断开后,灯泡的发光还会持续一段时间,有的灯泡甚至比原来还亮一些,请你思考一下这些能量是从哪里来的.答案:当电路开关闭合后电路中的电流从无到有,磁场也从无到有,电源把电能储存在线圈中的磁场中.当开关断开后,线圈中的磁场能转化为电能,从而使灯泡的发光持续一段时间.5.取一根长约1米的漆包线绕在一把锉刀上,再让一节干电池的正极与锉刀接触,负极则与导线的一端接触.手执导线的另外一端,让裸露的导线头在锉刀上来回刮动(如图所示),你观察到了什么现象?想一想,为什么会发生这一现象?答案:有电火花产生.由于锉面不平,刮动时,电路不断通断,出现自感现象,产生火花放电.在如图所示的电路中,a、b为两个完全相同的灯泡,L为自感线圈,E为电源,S为开关.关于两灯泡点亮和熄灭的先后次序,下列说法正确的是().A .合上开关,a 先亮,b 后亮;断开开关,a 、b 同时熄灭B .合上开关,b 先亮,a 后亮;断开开关,a 先熄灭,b 后熄灭C .合上开关,b 先亮,a 后亮;断开开关,a 、b 持续发光一段时间后,同时熄灭D .合上开关,a 、b 同时亮;断开开关,b 先熄灭,a 后熄灭答案:C解析:由于L 是自感线圈,当合上S 时,自感线圈L 将产生自感电动势,阻碍电流的流过,故b 灯先亮,而a 灯后亮.当S 断开时,a 、b 组成回路,L 产生自感电动势阻碍电流的减弱,a 、b 持续发光一段时间后,同时熄灭,故选项C 正确.1.自感电动势阻碍原电流的变化,而不是阻止,只是使原电流的变化时间变长,即自感电动势总是起着推迟电流变化的作用.2.自感电动势仍是感应电动势,所以可用楞次定律来判断其方向:当原电流增大时,自感电动势方向与原电流方向相反;当原电流减小时,自感电动势方向与原电流方向相同.3.自感电动势的大小E =L ΔI Δt.它可以超出线圈两端的原电压. 二、日光灯1.通过学习,我们知道自感现象可分为断电自感和通电自感,你知道在使日光灯灯管发光的过程中,应用了哪种自感现象吗?答案:断电自感.2.仔细阅读教材后,你认为启动器在日光灯电路中的作用是什么?答案:电路中的开关闭合后,电源电压加在启动器的静、动触片之间,使氖泡内的氖气放电,放电产生的热量使U 形动触片膨胀伸长,跟静触片接触,把电路接通.电路接通后,电流通过U 形动触片,由于动触片电阻很小,产生热量较少,U 形动触片冷却收缩,与静触片分离,使电路自动断开.所以说启动器在日光灯电路中相当于一个自动开关.3.有很多同学的家里使用的节能灯也是日光灯.它们与白炽灯相比,所消耗的电功率仅为相同亮度白炽灯的15~13,你知道它节能的原因吗? 答案:(1)日光灯管发光后,电阻小,要求电流小,且日光灯管是用交流电源(大小与方向都随时变化的电流)供电,此时镇流器产生自感电动势,阻碍电流的变化,从而在灯管正常发光时起到降压限流的作用,保证日光灯管的正常工作.(2)日光灯由于靠离子导电,电阻很小,故电流的热效应小,故日光灯能节省电能.如图所示是日光灯的结构示意图,若按图示的电路连接,关于日光灯发光的情况,下列叙述中正确的是( ).A .S 接通,S 、S 断开,日光灯就能正常发光B .S 1、S 2接通,S 3断开,日光灯就能正常发光C .S 3断开,接通S 1、S 2后,再断开S 2,日光灯就能正常发光D .当日光灯正常发光后,再接通S 3,日光灯仍能正常发光答案:C解析:当S 1接通,S 2、S 3断开时,电源电压220 V 直接加在灯管两端,达不到灯管启动的高压值,日光灯不能发光,选项A 错误.当S 1、S 2接通,S 3断开时,灯丝两端被短路,电压为零,不能使气体电离导电,日光灯不能发光,选项B 错误.当日光灯正常发光后,再接通S 3,则镇流器被短路,灯管两端电压过高,会损坏灯管,选项D 错误.只有当S 1、S 2接通,灯丝被预热,发出电子,再断开S 2,镇流器中产生很大的自感电动势,和电源电压一起加在灯管两端,使气体电离,日光灯正常发光,选项C 正确.日光灯的工作原理1.启动:开关闭合后,电源电压加在启动器两极,使氖气放电,发辉光,产生热量,使U 形触片膨胀,跟静触片接触使电路接通.电路接通后,氖气停止放电,U 形动触片冷却收缩,两触片分开,电路断开.电路断开的瞬间,镇流器产生很高的自感电动势,其方向与原电压方向相同,共同加在灯管两端,使汞蒸气放电,日光灯开始工作.2.正常发光:日光灯正常发光时,镇流器与两灯丝及灯管内的汞蒸气组成电路,由于镇流器的线圈的自感现象,阻碍通过灯管的电流变化,起降压限流作用,确保日光灯正常工作.1.关于自感现象,下列说法中正确的是( ).A .自感现象是线圈自身的电流变化而引起的电磁感应现象B .自感电动势总是阻止原电流的变化C .自感电动势的方向总与原电流方向相反D .自感电动势的方向总与原电流方向相同答案:A解析:自感现象是线圈自身的电流变化而引起的电磁感应现象,在自感现象中自感电动势总是阻碍原电流的变化,不是阻止,所以B 项错;当原电流减小时,自感电动势与原电流的方向相同,当原电流增加时,自感电动势与原电流方向相反,所以C 、D 两项错.2.下列关于线圈中自感电动势的大小的说法中正确的是( ).A .电流变化越大,自感电动势越大B .电流变化越快,自感电动势越大C .通过线圈的电流为0的瞬间,自感电动势为0D .通过线圈的电流为最大值的瞬间,自感电动势最大答案:B解析:由E =L ΔI Δt可知,自感电动势的大小与电流的变化率成正比,与电流的大小及电流变化的大小无关,故选项A 、C 、D 错误,选项B 正确.3.如下图所示电路中,L 是一个带铁芯的线圈,R 为纯电阻,两支路的直流电阻相等,A 1、A 2为双向电流表,在接通和断开开关S 的瞬间,两电流表的读数I 1、I 2分别是( ).A .I 1<I 2,I 1>I 2B .I <I ,I =IC.I1<I2,I1<I2D.I1=I2,I1<I2答案:B解析:接通开关S时,由于L中的自感电动势阻碍电流的增大,所以I1<I2;断开开关S时,L中的自感电动势阻碍电流的减小,通过L、A1、A2、R回路放电,所以I1=I2.4.如下图所示的四个日光灯的接线图中,S1为启动器,S2为电键,L为镇流器,能使日光灯正常发光的是().A.①③ B.②④C.①④ D.②③答案:A解析:日光灯工作时,电流通过镇流器、灯丝,电源和启动器形成回路,使启动器发出辉光,相当于启动器短路接通,同时电流加热灯丝,灯丝发射电子,镇流器起控制加热电流的作用;之后启动器断开瞬间,镇流器产生很大的自感电动势,出现一个高电压加在灯管两端,灯管中的气体放电、发光,此时启动器已无作用.所以启动器可用手动的开关来代替(实际操作时,当启动器丢失或损坏时,可手持带绝缘皮的导线短接启动器然后再断开),图④的错误是不能让镇流器短路.5.如图所示的电路中,L为自感线圈,R是一个灯泡,E是电源.当S闭合瞬间,通过电灯的电流方向是________;当S切断瞬间,通过电灯的电流方向是________.答案:A→B B→A解析:当S断开瞬间,由于电源提供给R及线圈的电流很快消失,因此线圈要产生一个和原电流方向相同的自感电动势为阻碍原电流减小,所以线圈此时相当于一个电源,与电灯R构成放电电路.故流经R的电流方向是B→A.。

高中物理 1.5《法拉第电磁感应定律的应用(一)》教案 粤教版选修32

高中物理 1.5《法拉第电磁感应定律的应用(一)》教案粤教版选修32一、教材分析本节是《电磁感应》一章的核心知识之一,与电路联系紧密,也是深化发电原理的基础。

教材容量大,逻辑性强,方法性强。

具体分析时思维维度多,能力要求高。

本课有两个三级主题:“法拉第电机”、“电磁感应中的电路”。

法拉第电机是把理论与实践相结合,通过将电机模拟化、抽象化,引导学生观察,分析感应电动势产生的原因,将电机的感应电动势与导体切割磁感线相结合;电磁感应中的电路通过感应电流与感应电动势的关系,结合闭合电路进行对比,明确两者本质上的区别,通过讨论与交流,让学生找出等效电源、外电路、电流方向,进而引导学生建立等效电路,结合闭合电路的欧姆定律求解电流、电压、电功率等问题。

二、教学目标依据《物理课程标准》要求和学生学习的实际出发,本节课的教学目标如下:1.知识与技能:(1)理解法拉第电机的原理;(2)掌握法拉第电机感应电动势的计算;(3)理解电磁感应现象电路中的电源及外电路。

2.过程与方法:(1)通过电磁感应中的电路的认识,在观察、分析、分类、归纳、转化、转换、综合等思维过程中,体会等效法的应用,加深学生对电磁感应内在规律的认识,凸现理论与应用的完美统一,培养严谨的物理思维习惯、方法。

(2)通过法拉第电机的探究,重结论,更重过程,明确探究的内涵,重温建立物理模型的方法。

3.情感态度与价值观:(1)通过电磁感应的闭合电路的探究,分析物理知识的内在联系,发展对科学的好奇心和求知欲。

(2)通过实际问题的研究,引导学生理论联系实际,增强把理论用于实践的主动性和积极性。

三、重点和难点(1)熟悉各种情况下感应电动势的表达(2)能画出等效电路图,并能联系闭合电路解题(3)形成学生的思维个性四、学生基本情况分析学生对本节兴趣较浓,探知欲较旺,教师应及时激励,凸现物理应用性的同时培养学生思维的连贯性、系统性。

物理选修生基础较好,有解惑冲动,教师要充分利用这一因素,加强引导,合理设置探究情境,营造静中有动的课堂氛围。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学案6 电磁感应规律的应用[学习目标定位] 1.知道法拉第电机的原理.2.掌握转动切割产生感应电动势的计算.3.掌握电磁感应现象中电路问题的分析方法和解题基本思路.4.理解电磁感应中的能量转化,并会应用能量观点分析电磁感应问题.1.感应电流的方向可用楞次定律或右手定则判断,其中后者仅适用于导体切割磁感线的情况.2.感应电动势的大小可以用公式E =n ΔΦΔt 或E =BLv 进行计算,其中前者一般用来计算平均电动势,后者一般计算瞬时电动势.3.闭合电路中电源电动势E 、内电压U 内、外电压(路端电压)U 外三者之间的关系为E =U 内+U 外,其中电源电动势E 的大小等于电源未接入电路时两极间的电势差.4.做功的过程就是能量转化的过程,做了多少功,就有多少能量被转化,功是能量转化的量度.几种常见的功能关系(1)合外力所做的功等于物体动能的变化. (2)重力做的功等于重力势能的变化. (3)弹簧弹力做的功等于弹性势能的变化.(4)除了重力和系统内弹力之外的其他力做的功等于机械能的变化. (5)电场力做的功等于电势能的变化. (6)安培力做的功等于电能的变化. 5.电流通过导体时产生的热量 焦耳定律:Q =I2Rt.一、法拉第电机法拉第圆盘可看作是由无数根长度等于半径的紫铜辐条组成,当圆盘转动时,辐条切割磁感线产生电动势.当电路闭合时产生电流,在电源内部电流方向从电源负极流向正极. 二、电磁感应中的能量转化电磁感应现象中产生的电能是通过克服安培力做功转化而来的,而这些电能又通过电流做功而转化为其他形式的能.因此,电磁感应现象符合能量守恒定律.一、法拉第电机 [问题设计]1.参考课本法拉第圆盘发电机的构造图,简单说明法拉第圆盘发电机产生电流的原因.答案法拉第电机的圆盘是由无数根辐条组成的,每根辐条做切割磁感线运动,产生感应电动势,电路闭合时产生感应电流.2.法拉第圆盘发电机的工作原理可以等效为一根导体棒在磁场中转动,如图1所示:当将导体棒和电阻组成闭合电路时,电路的哪部分相当于电源?电源的正极和负极在电路的哪个位置?电源内部电流方向如何?图1答案ab导体棒相当于电源,a是电源正极,b是电源负极,电源内部电流由负极流向正极.[要点提炼]1.导体棒绕一端为轴转动切割磁感线:由v=ωr可知各点线速度随半径按线性规律变化,切割速度用中点的线速度替代,即v=l2ω或v=vA+vB2.感应电动势E=12Bl2ω.2.电磁感应中的电路问题处理思路:(1)明确哪部分导体或电路产生感应电动势,该导体或电路就是电源,其他部分是外电路.(2)用法拉第电磁感应定律确定感应电动势的大小,用楞次定律确定感应电动势的方向.(3)画等效电路图.分清内外电路,画出等效电路图是解决此类问题的关键.(4)运用闭合电路欧姆定律、串并联电路特点、电功率、电热等公式联立求解.二、电磁感应中的能量转化[问题设计]如图2所示,ab在拉力F的作用下以速度v匀速向右运动,已知导体棒ab的长度为L,磁感应强度为B,电路中的总电阻为R.ab中的电流是多少?ab所受的安培力为多大?当导体棒匀速向右运动s距离时,拉力F做功和棒克服安培力做功分别是多少?图2答案电路的感应电动势E=BLv电流I=ER=BLvR所以ab棒所受安培力F安=BIL=B2L2v R由于导体棒做匀速运动,所以F=F安=B2L2v R拉力做功WF=Fs=B2L2vsR导体棒克服安培力做功W安=F安s=B2L2vsR[要点提炼]1.电磁感应现象中产生的电能是克服安培力做功转化而来的,克服安培力做多少功,就产生多少电能,电磁感应过程遵循能量守恒定律.2.求解电磁感应现象中能量守恒问题的一般思路(1)分析回路,分清电源和外电路.(2)分析清楚有哪些力做功,明确有哪些形式的能量发生了转化.如:①有摩擦力做功,必有内能产生;②有重力做功,重力势能必然发生变化;③克服安培力做功,必然有其他形式的能转化为电能,并且克服安培力做多少功,就产生多少电能;(3)列有关能量的关系式.3.焦耳热的计算技巧(1)感应电路中电流恒定时,焦耳热Q=I2Rt.(2)感应电路中电流变化时,可用以下方法分析:①利用动能定理先求克服安培力做的功,而产生的焦耳热等于克服安培力做的功,即Q=W 安.②利用能量守恒,即感应电流产生的焦耳热等于其他形式能量的减少量,即Q=ΔE其他.一、转动切割产生感应电动势的计算例1 长为L 的金属棒ab 以a 点为轴在垂直于匀强磁场的平面内以角速度ω做匀速转动,如图3所示,磁感应强度为B.求:图3(1)ab 棒各点速率的平均值. (2)ab 两端的电势差.(3)经时间Δt 金属棒ab 所扫过面积中磁通量为多少?此过程中平均感应电动势多大? 解析 (1)ab 棒各点速率的平均值v =va +vb 2=0+ωL 2=12ωL(2)ab 两端的电势差:E =BL v =12BL2ω(3)经时间Δt 金属棒ab 所扫过的扇形面积为ΔS ,则: ΔS =12L2θ=12L2ωΔt ,ΔΦ=BΔS =12BL2ωΔt.由法拉第电磁感应定律得: E =ΔΦΔt =12BL2ωΔt Δt =12BL2ω.答案 (1)12ωL (2)12BL2ω (3)12BL2ωΔt 12BL2ω二、电磁感应中的电路问题例2 (单选)用相同导线绕制的边长为L 或2L 的四个闭合导线框,以相同的速度匀速进入右侧匀强磁场,如图4所示.在每个线框进入磁场的过程中,M 、N 两点间的电压分别为Ua 、Ub 、Uc 和Ud.下列判断正确的是( )图4A .Ua<Ub<Uc<UdB .Ua<Ub<Ud<UcC .Ua =Ub<Uc =UdD .Ub<Ua<Ud<Uc解析 Ua =34BLv ,Ub =56BLv ,Uc =34·B·2Lv =32BLv ,Ud =46B·2L·v =43BLv ,故选B.答案 B例3 如图5所示,有一范围足够大的匀强磁场,磁感应强度B =0.2 T ,磁场方向垂直纸面向里.在磁场中有一半径r =0.4 m 的金属圆环,磁场与圆环面垂直,圆环上分别接有灯L1、L2,两灯的电阻均为R0=2 Ω.一金属棒MN 与圆环接触良好,棒与圆环的电阻均忽略不计.图5(1)若棒以v0=5 m/s 的速率在环上向右匀速滑动,求棒滑过圆环直径的瞬时MN 中的电动势和流过灯L1的电流;(2)撤去金属棒MN ,若此时磁场随时间均匀变化,磁感应强度的变化率为ΔB Δt =4π T/s ,求回路中的电动势和灯L1的电功率. 解析 (1)等效电路如图所示. MN 中的电动势E1=B·2r·v0=0.8 V MN 中的电流I =E1R0/2=0.8 A流过灯L1的电流I1=I2=0.4 A(2)等效电路如图所示 回路中的电动势E2=ΔBΔt ·πr2=0.64 V 回路中的电流I′=E22R0=0.16 A 灯L1的电功率P1=I′2R0=5.12×10-2 W 答案 (1)0.8 V 0.4 A (2)0.64 V 5.12×10-2W三、电磁感应中的能量问题例4 如图6所示,足够长的光滑金属框竖直放置,框宽L =0.5 m ,框的电阻不计,匀强磁场的磁感应强度B =1 T .方向与框面垂直,金属棒MN 的质量为100 g ,有效电阻为1 Ω,现将MN 无初速的释放并与框保持接触良好地竖直下落,从释放到达到最大速度的过程中通过棒某一截面的电荷量为2 C ,求此过程回路中产生的电能为多少?(空气阻力不计,g =10 m/s2)图6解析 金属棒下落过程做加速度逐渐减小的加速运动,加速度减小到零时速度达到最大,根据平衡条件得 mg =B2L2vmR① 在下落过程中,金属棒减小的重力势能转化为它的动能和电能E ,由能量守恒定律得mgh =12mv2m +E ② 通过金属棒某一横截面的电荷量为q =BhLR由①②③解得:E =mgh -12mv2m =mgRq BL -m3g2R22B4L4=0.1×10×1×21×0.5-0.13×102×122×1×0.54 J =3.2 J答案 3.2 J1.(转动切割产生感应电动势的计算)(单选)如图7所示,导体棒AB 的长为2R ,绕O 点以角速度ω匀速转动,OB 长为R ,且O 、B 、A 三点在一条直线上,有一磁感应强度为B 的匀强磁场充满转动平面且与转动平面垂直,那么AB 两端的电势差为 ( )图7A.12BωR2 B .2BωR2 C .4BωR2D .6BωR2答案 C解析 A 点线速度vA =ω·3R ,B 点线速度vB =ωR ,AB 棒切割磁感线的平均速度v =vA +vB2=2ωR ,由E =Blv 得,AB 两端的电势差为E =B·2R·v =4BωR2,C 正确. 2.(电磁感应中的电路问题)(单选)粗细均匀的电阻丝围成的正方形线框置于有界匀强磁场中,磁场方向垂直于线框平面,其边界与正方形线框的边平行.现使线框以同样大小的速度沿四个不同方向平移出磁场,如图所示,则在移出过程中线框一边a 、b 两点间的电势差绝对值最大的是( )答案 B解析 本题在磁场中的线框与速度垂直的边等效为切割磁感线产生感应电动势的电源.四个选项中的感应电动势大小均相等,回路电阻也相等,因此电路中的电流相等,B 中a 、b 两点间电势差为路端电压,为电动势的34,而其他选项则为电动势的14.故B 正确.3.(电磁感应中的能量问题)(双选)如图8所示,两根光滑的金属导轨,平行放置在倾角为θ的斜面上,导轨的左端接有电阻R ,导轨自身的电阻可忽略不计.斜面处在一匀强磁场中,磁场方向垂直于斜面向上.质量为m 、电阻可以忽略不计的金属棒ab ,在沿着斜面且与棒垂直的恒力F 作用下沿导轨匀速上滑,且上升的高度为h ,在这一过程中 ( )图8A.作用于金属棒上的各个力的合力所做的功等于零B.作用于金属棒上的各个力的合力所做的功等于mgh与电阻R上产生的焦耳热之和C.恒力F与安培力的合力所做的功等于零D.恒力F与重力的合力所做的功等于电阻R上产生的焦耳热答案AD解析金属棒匀速上滑的过程中,对金属棒受力分析可知,有三个力对金属棒做功,恒力F 做正功,重力做负功,安培力阻碍相对运动,沿斜面向下,做负功.匀速运动时,所受合力为零,故合力做功为零,A正确;克服安培力做多少功就有多少其他形式的能转化为电路中的电能,电能又等于R上产生的焦耳热,故外力F与重力的合力所做的功等于电阻R上产生的焦耳热,D正确.题组一转动切割产生感应电动势的计算1.(单选)一直升机停在南半球的地磁极上空.该处地磁场的方向竖直向上,磁感应强度为B.直升机螺旋桨叶片的长度为l,螺旋桨转动的频率为f,顺着地磁场的方向看螺旋桨,螺旋桨按顺时针方向转动,螺旋桨叶片的近轴端为a,远轴端为b,如图1所示,如果忽略a到转轴中心线的距离,用E表示每个叶片中的感应电动势,则()图1A.E=πfl2B,且a点电势低于b点电势B.E=2πfl2B,且a点电势低于b点电势C.E=πfl2B,且a点电势高于b点电势D.E=2πfl2B,且a点电势高于b点电势答案 A解析解这道题要考虑两个问题:一是感应电动势大小,E=Blv=Blω×l2=Bl×2πf×l2=πfl2B;二是感应电动势的方向,由右手定则可以判断出感应电动势的方向是由a→b,因此a点电势低.2.(单选)如图2所示,导体棒ab长为4L,匀强磁场的磁感应强度为B,导体绕过O点垂直纸面的轴以角速度ω匀速转动,aO=L.则a端和b端的电势差Uab的大小等于()图2A.2BL2ωB .4BL2ωC .6BL2ωD .8BL2ω 答案 B解析 UOa =12BL2ω,Uob =12B(3L)2ω,所以UAb =UOb -UOa =4BL2ω,B 正确.3.(单选)如图3所示,均匀磁场中有一由半圆弧及其直径构成的导线框,半圆直径与磁场边缘重合;磁场方向垂直于半圆面(纸面)向里,磁感应强度大小为B0.使该线框从静止开始绕过圆心O 、垂直于半圆面的轴以角速度ω匀速转动半周,在线框中产生感应电流.现使线框保持图中所示位置,磁感应强度大小随时间线性变化.为了产生与线框转动半周过程中同样大小的电流,磁感应强度随时间的变化率ΔBΔt的大小应为( )图3 A.4ωB0πB.2ωB0πC.ωB0πD.ωB02π答案 C解析 当线框绕过圆心O 的转动轴以角速度ω匀速转动时,由于面积的变化产生感应电动势,从而产生感应电流.设半圆的半径为r ,导线框的电阻为R ,即I1=E1R =ΔΦ1Rt =B0ΔSRt =12πr2B0R πω=B0r2ω2R .当线框不动,磁感应强度变化时,I2=E2R =ΔΦ2RΔt =ΔBS RΔt =ΔBπr22RΔt ,因I1=I2,可得ΔB Δt =ωB0π,C 选项正确.题组二 电磁感应中的能量问题4.(双选)如图4所示,位于一水平面内的两根平行的光滑金属导轨,处在匀强磁场中,磁场方向垂直于导轨所在的平面,导轨的一端与一电阻相连;具有一定质量的金属杆ab 放在导轨上并与导轨垂直.现用一平行于导轨的恒力F 拉杆ab ,使它由静止开始向右运动.杆和导轨的电阻、感应电流产生的磁场均可不计.用E 表示回路中的感应电动势,i 表示回路中的感应电流,在i 随时间增大的过程中,电阻消耗的功率等于 ( )图4A .F 的功率B .安培力的功率的绝对值C .F 与安培力的合力的功率D .iE 答案 BD5.(单选)如图5所示,边长为L 的正方形导线框质量为m ,由距磁场H 高处自由下落,其下边ab 进入匀强磁场后,线圈开始做减速运动,直到其上边dc 刚刚穿出磁场时,速度减为ab 边刚进入磁场时的一半,磁场的宽度也为L ,则线框穿越匀强磁场过程中产生的焦耳热为( )图5A .2mgLB .2mgL +mgHC .2mgL +34mgHD .2mgL +14mgH答案 C解析 设线框刚进入磁场时的速度为v1,刚穿出磁场时的速度v2=v12①线框自开始进入磁场到完全穿出磁场共下落高度为2L.由题意得12mv21=mgH ②12mv21+mg·2L =12mv22+Q ③ 由①②③得Q =2mgL +34mgH.C 选项正确.6.(单选)如图6所示,纸面内有一矩形导体闭合线框abcd ,ab 边长大于bc 边长,置于垂直纸面向里、边界为MN 的匀强磁场外,线框两次匀速地完全进入磁场,两次速度大小相同,方向均垂直于MN.第一次ab 边平行于MN 进入磁场,线框上产生的热量为Q1,通过线框导体横截面积的电荷量为q1;第二次bc 边平行于MN 进入磁场,线框上产生的热量为Q2,通过线框导体横截面的电荷量为q2,则 ( )图6A .Q1>Q2,q1=q2B .Q1>Q2,q1>q2C .Q1=Q2,q1=q2D .Q1=Q2,q1>q2答案 A解析 根据功能关系知,线框上产生的热量等于克服安培力做的功,即Q1=W1=F1lbc =B2l2a bv R lbc =B2Sv Rlab 同理Q2=B2Sv Rlbc ,又lab >lbc ,故Q1>Q2; 因q =I t =E R t =ΔΦR, 故q1=q2.因此A 正确.7.(单选)水平放置的光滑导轨上放置一根长为L 、质量为m 的导体棒ab ,ab 处在磁感应强度大小为B 、方向如图7所示的匀强磁场中,导轨的一端接一阻值为R 的电阻,导轨及导体棒电阻不计.现使ab 在水平恒力F 作用下由静止沿垂直于磁场的方向运动,当通过位移为x 时,ab 达到最大速度vm.此时撤去外力,最后ab 静止在导轨上.在ab 运动的整个过程中,下列说法正确的是( )图7A .撤去外力后,ab 做匀减速运动B .合力对ab 做的功为FxC .R 上释放的热量为Fx +12mv2m D .R 上释放的热量为Fx答案 D解析 撤去外力后,导体棒水平方向只受安培力作用,而F 安=B2L2v R,F 安随v 的变化而变化,故棒做加速度变化的变速运动,A 错;对整个过程由动能定理得W 合=ΔEk =0,B 错;由能量守恒定律知,外力做的功等于整个回路产生的电能,电能又转化为R 上释放的热量,即Q =Fx ,C 错,D 正确.8.(单选)如图8所示,矩形线圈长为L ,宽为h ,电阻为R ,质量为m ,线圈在空气中竖直下落一段距离后(空气阻力不计),进入一宽度也为h 、磁感应强度为B 的匀强磁场中.线圈进入磁场时的动能为Ek1,线圈刚穿出磁场时的动能为Ek2,从线圈刚进入磁场到线圈刚穿出磁场的过程中产生的热量为Q ,线圈克服安培力做的功为W1,重力做的功为W2,则以下关系中正确的是 ( )图8A .Q =Ek1-Ek2B .Q =W2-W1C .Q =W1D .W2=Ek2-Ek1答案 C解析 线圈进入磁场和离开磁场的过程中,产生的感应电流受到安培力的作用,线圈克服安培力所做的功等于产生的热量,故选项C 正确.根据功能的转化关系得,线圈减少的机械能等于产生的热量,即Q =W2+Ek1-Ek2,故选项A 、B 错误.根据动能定理得W2-W1=Ek2-Ek1,故选项D 错误.题组三 电磁感应中的电路问题9.(单选)如图9所示,用粗细相同的铜丝做成边长分别为L 和2L 的两只闭合正方形线框a 和b ,以相同的速度从磁感应强度为B 的匀强磁场区域中匀速地拉到磁场外,不考虑线框的重力,若闭合线框的电流分别为Ia 、Ib ,则Ia ∶Ib 为 ( )图9A .1∶4B .1∶2C .1∶1D .不能确定答案 C解析 产生的电动势为E =Blv ,由闭合电路欧姆定律得I =Blv R,又Lb =2La ,由电阻定律知Rb =2Ra ,故Ia ∶Ib =1∶1.10.(单选)如图10所示,两个相同导线制成的开口圆环,大环半径为小环半径的2倍,现用电阻不计的导线将两环连接在一起,若将大环放入一均匀变化的磁场中,小环处在磁场外,a 、b 两点间电压为U1,若将小环放入这个磁场中,大环在磁场外,a 、b 两点间电压为U2,则 ( )图10A.U1U2=1 B.U1U2=2 C.U1U2=4 D.U1U2=14 答案 B解析 根据题意设小环的电阻为R ,则大环的电阻为2R ,小环的面积为S ,则大环的面积为4S ,且ΔB Δt=k ,当大环放入一均匀变化的磁场中时,大环相当于电源,小环相当于外电路,所以E1=4kS ,U1=E1R +2R R =43kS ;当小环放入磁场中时,同理可得U2=E2R +2R2R =23kS ,故U1U2=2.选项B 正确. 11.(单选)如图11所示,竖直平面内有一金属圆环,半径为a ,总电阻为R ,磁感应强度为B 的匀强磁场垂直穿过环平面,环的最高点A 用铰链连接长度为2a 、电阻为R 2的导体棒AB ,AB 由水平位置紧贴环面摆下,当摆到竖直位置时,B 点的线速度为v ,则这时AB 两端的电压大小为( )图11 A.Bav 3 B.Bav 6 C.2Bav 3D .Bav 答案 A解析 摆到竖直位置时,AB 切割磁感线的瞬时感应电动势E′=B·2a·(12v)=Bav.由闭合电路欧姆定律有UAB =E′R 2+R 4·R 4=13Bav ,故选A. 12.如图12所示,半径为R 且左端开口的圆形导轨处在垂直于圆平面的匀强磁场中,磁感应强度为B ,方向垂直于纸面向里.一根长度略大于导轨直径的导体棒MN 以恒定速率v 在圆导轨上从左端滑到右端,电路中的定值电阻为r ,其余电阻不计.导体棒与圆形导轨接触良好.求:图12(1)在滑动过程中通过电阻r 的电流的平均值;(2)MN 从左端到右端的整个过程中,通过r 的电荷量;(3)当MN 通过圆形导轨中心时,通过r 的电流是多少?答案 (1)πBRv 2r (2)πBR2r (3)2BRv r解析 (1)计算平均电流,应该用法拉第电磁感应定律先求出平均感应电动势.整个过程磁通量的变化为ΔΦ=BS =BπR2,所用的时间Δt =2R v ,代入公式E =ΔΦΔt =πBRv 2,平均电流为I =E r =πBRv 2r. (2)电荷量的计算应该用平均电流,q =I Δt =BπR2r. (3)当MN 通过圆形导轨中心时,切割磁感线的有效长度最大,l =2R ,根据导体切割磁感线产生的电动势公式E =Blv ,得E =B·2Rv ,此时通过r 的电流为I =E r =2BRv r. 13.把总电阻为2R 的均匀电阻丝焊接成一半径为a 的圆环,水平固定在竖直向下的磁感应强度为B 的匀强磁场中,如图13所示,一长度为2a 、电阻等于R 、粗细均匀的金属棒MN 放在圆环上,它与圆环始终保持良好的接触,当金属棒以恒定速度v 向右移动经过环心O 时,求:图13(1)棒上电流的大小和方向及棒两端的电压UMN ;(2)圆环消耗的热功率和在圆环及金属棒上消耗的总热功率. 答案 (1)4Bav 3R N→M 23Bav (2)8Bav 29R 8Bav 23R解析 (1)金属棒MN 切割磁感线产生的感应电动势为E =Blv =2Bav. 外电路的总电阻为R 外=R·R R +R =12R金属棒上电流的大小为I =ER 外+R =2Bav12R +R =4Bav 3R ,电流方向从N 到M金属棒两端的电压为电源的路端电压UMN =IR 外=23Bav.(2)圆环消耗的热功率为外电路的总功率P 外=I2R 外=8Bav 29R圆环和金属棒上消耗的总热功率为电路的总功率P 总=IE =8Bav 23R .。

相关文档
最新文档