哈夫曼编码实验报告
哈夫曼实验报告实验目的(3篇)

6. 对压缩数据进行解压缩,验证哈夫曼编码的正确性。
7. 分析实验结果,对比压缩前后数据的差异。
五、实验总结
通过本次实验,我们掌握了哈夫曼编码的原理和构造方法,学会了如何使用哈夫曼编码进行数据压缩和解压缩。实验结果表明,哈夫曼编码能够有效降低数据的冗余,提高数据压缩效果。同时,本次实验也加深了我们对数据结构中树形结构及其应用的理解,提高了算法设计和实现能力。在今后的学习和工作中,我们将继续探索哈夫曼编码及其应用,为相关领域的研究和发展贡献自己的力量。
二、实验内容
1. 理解哈夫曼编码的原理,掌握哈夫曼树的构造方法。
2. 编写程序实现哈夫曼树的构建、编码和解码过程。
3. 对给定的字符集进行哈夫曼编码,并分析编码后的结果。
4. 对编码后的数据进行解码,验证解码结果的正确性。
5. 比较哈夫曼编码与其他编码方法在数据压缩方面的性能。
三、实验原理
哈夫曼编码是一种基于字符频率的变长编码方法。在哈夫曼编码中,每个字符都被赋予一个唯一的编码,编码的长度与其在原始数据中的频率成反比。频率高的字符编码较短,频率低的字符编码较长。这样,哈夫曼编码在保证数据完整性的同时,实现了数据压缩的目的。
2. 能够编写程序实现哈夫曼编码和解码,提高编程能力。
3. 分析哈夫曼编码在不同场景下的压缩效果,为实际应用提供参考。
4. 了解哈夫曼编码在实际应用中的优势和局限性,为解决实际问题提供思路。
5. 培养实验操作能力,提高解决实际问题的能力。
通过本次实验,我们希望学员能够全面掌握哈夫曼编码的原理、构造方法及其在实际应用中的价值,为今后的学习和工作打下坚实的基础。
第2篇
一、实验目的
1. 理解哈夫曼编码的原理及其在数据压缩中的应用。
哈夫曼编码的实验报告

哈夫曼编码的实验报告哈夫曼编码的实验报告一、引言信息的传输和存储是现代社会中不可或缺的一部分。
然而,随着信息量的不断增加,如何高效地表示和压缩信息成为了一个重要的问题。
在这个实验报告中,我们将探讨哈夫曼编码这一种高效的信息压缩算法。
二、哈夫曼编码的原理哈夫曼编码是一种变长编码方式,通过将出现频率较高的字符用较短的编码表示,而将出现频率较低的字符用较长的编码表示,从而实现信息的压缩。
它的核心思想是利用统计特性,将出现频率较高的字符用较短的编码表示,从而减少整体编码长度。
三、实验过程1. 统计字符频率在实验中,我们首先需要统计待压缩的文本中各个字符的出现频率。
通过遍历文本,我们可以得到每个字符出现的次数。
2. 构建哈夫曼树根据字符频率,我们可以构建哈夫曼树。
哈夫曼树是一种特殊的二叉树,其中每个叶子节点代表一个字符,并且叶子节点的权值与字符的频率相关。
构建哈夫曼树的过程中,我们需要使用最小堆来选择权值最小的两个节点,并将它们合并为一个新的节点,直到最终构建出一棵完整的哈夫曼树。
3. 生成编码表通过遍历哈夫曼树,我们可以得到每个字符对应的编码。
在遍历过程中,我们记录下每个字符的路径,左边走为0,右边走为1,从而生成编码表。
4. 进行编码和解码在得到编码表后,我们可以将原始文本进行编码,将每个字符替换为对应的编码。
编码后的文本长度将会大大减少。
为了验证编码的正确性,我们还需要进行解码,将编码后的文本还原为原始文本。
四、实验结果我们选取了一段英文文本作为实验数据,并进行了哈夫曼编码。
经过编码后,原始文本长度从1000个字符减少到了500个字符。
解码后的文本与原始文本完全一致,验证了哈夫曼编码的正确性。
五、讨论与总结哈夫曼编码作为一种高效的信息压缩算法,具有广泛的应用前景。
通过将出现频率较高的字符用较短的编码表示,哈夫曼编码可以在一定程度上减小信息的存储和传输成本。
然而,哈夫曼编码也存在一些局限性,例如对于出现频率相近的字符,编码长度可能会相差较大。
数据结构哈夫曼编码实验报告

数据结构哈夫曼编码实验报告数据结构哈夫曼编码实验报告1·实验目的1·1 理解哈夫曼编码的基本原理1·2 掌握哈夫曼编码的算法实现方式1·3 熟悉哈夫曼编码在数据压缩中的应用2·实验背景2·1 哈夫曼编码的概念和作用2·2 哈夫曼编码的原理和算法2·3 哈夫曼编码在数据压缩中的应用3·实验环境3·1 硬件环境:计算机、CPU、内存等3·2 软件环境:编程语言、编译器等4·实验过程4·1 构建哈夫曼树4·1·1 哈夫曼树的构建原理4·1·2 哈夫曼树的构建算法4·2 哈夫曼编码4·2·1 哈夫曼编码的原理4·2·2 哈夫曼编码的算法4·3 实现数据压缩4·3·1 数据压缩的概念和作用4·3·2 哈夫曼编码在数据压缩中的应用方法5·实验结果5·1 构建的哈夫曼树示例图5·2 哈夫曼编码表5·3 数据压缩前后的文件大小对比5·4 数据解压缩的正确性验证6·实验分析6·1 哈夫曼编码的优点和应用场景分析6·2 数据压缩效果的评估和对比分析6·3 实验中遇到的问题和解决方法7·实验总结7·1 实验所获得的成果和收获7·2 实验中存在的不足和改进方向7·3 实验对于数据结构学习的启示和意义附件列表:1·实验所用的源代码文件2·实验中用到的测试数据文件注释:1·哈夫曼编码:一种用于数据压缩的编码方法,根据字符出现频率构建树形结构,实现高频字符用较短编码表示,低频字符用较长编码表示。
2·哈夫曼树:由哈夫曼编码算法构建的一种特殊的二叉树,用于表示字符编码的结构。
哈夫曼树编码实验报告

哈夫曼树编码实验报告哈夫曼树编码实验报告引言:哈夫曼树编码是一种常用的数据压缩算法,通过对数据进行编码和解码,可以有效地减小数据的存储空间。
本次实验旨在探究哈夫曼树编码的原理和应用,并通过实际案例验证其有效性。
一、哈夫曼树编码原理哈夫曼树编码是一种变长编码方式,根据字符出现的频率来确定不同字符的编码长度。
频率较高的字符编码较短,频率较低的字符编码较长,以达到最佳的数据压缩效果。
1.1 字符频率统计首先,需要对待编码的数据进行字符频率统计。
通过扫描数据,记录每个字符出现的次数,得到字符频率。
1.2 构建哈夫曼树根据字符频率构建哈夫曼树,频率较低的字符作为叶子节点,频率较高的字符作为父节点。
构建哈夫曼树的过程中,需要使用最小堆来维护节点的顺序。
1.3 生成编码表通过遍历哈夫曼树,从根节点到每个叶子节点的路径上的左右分支分别赋予0和1,生成对应的编码表。
1.4 数据编码根据生成的编码表,将待编码的数据进行替换,将每个字符替换为对应的编码。
编码后的数据长度通常会减小,实现了数据的压缩。
1.5 数据解码利用生成的编码表,将编码后的数据进行解码,恢复原始数据。
二、实验过程与结果为了验证哈夫曼树编码的有效性,我们选择了一段文本作为实验数据,并进行了以下步骤:2.1 字符频率统计通过扫描文本,统计每个字符出现的频率。
我们得到了一个字符频率表,其中包含了文本中出现的字符及其对应的频率。
2.2 构建哈夫曼树根据字符频率表,我们使用最小堆构建了哈夫曼树。
频率较低的字符作为叶子节点,频率较高的字符作为父节点。
最终得到了一棵哈夫曼树。
2.3 生成编码表通过遍历哈夫曼树,我们生成了对应的编码表。
编码表中包含了每个字符的编码,用0和1表示。
2.4 数据编码将待编码的文本数据进行替换,将每个字符替换为对应的编码。
编码后的数据长度明显减小,实现了数据的压缩。
2.5 数据解码利用生成的编码表,将编码后的数据进行解码,恢复原始文本数据。
哈夫曼树编码实训报告

一、实训目的本次实训旨在通过实际操作,让学生掌握哈夫曼树的基本概念、构建方法以及编码解码过程,加深对数据结构中树型结构在实际应用中的理解。
通过本次实训,学生能够:1. 理解哈夫曼树的基本概念和构建原理;2. 掌握哈夫曼树的编码和解码方法;3. 熟悉Java编程语言在哈夫曼树编码中的应用;4. 提高数据压缩和传输效率的认识。
二、实训内容1. 哈夫曼树的构建(1)创建叶子节点:根据给定的字符及其权值,创建叶子节点,并设置节点信息。
(2)构建哈夫曼树:通过合并权值最小的两个节点,不断构建新的节点,直到所有节点合并为一棵树。
2. 哈夫曼编码(1)遍历哈夫曼树:从根节点开始,按照左子树为0、右子树为1的规则,记录每个叶子节点的路径。
(2)生成编码:将遍历过程中记录的路径转换为二进制编码,即为哈夫曼编码。
3. 哈夫曼解码(1)读取编码:将编码字符串按照二进制位读取。
(2)遍历哈夫曼树:从根节点开始,根据读取的二进制位,在哈夫曼树中寻找对应的节点。
(3)输出解码结果:当找到叶子节点时,输出对应的字符,并继续读取编码字符串。
三、实训过程1. 准备工作(1)创建一个Java项目,命名为“HuffmanCoding”。
(2)在项目中创建以下三个类:- HuffmanNode:用于存储哈夫曼树的节点信息;- HuffmanTree:用于构建哈夫曼树、生成编码和解码;- Main:用于实现主函数,接收用户输入并调用HuffmanTree类进行编码和解码。
2. 编写代码(1)HuffmanNode类:```javapublic class HuffmanNode {private char data;private int weight;private HuffmanNode left;private HuffmanNode right;public HuffmanNode(char data, int weight) {this.data = data;this.weight = weight;}}```(2)HuffmanTree类:```javaimport java.util.PriorityQueue;public class HuffmanTree {private HuffmanNode root;public HuffmanNode buildHuffmanTree(char[] data, int[] weight) {// 创建优先队列,用于存储叶子节点PriorityQueue<HuffmanNode> queue = new PriorityQueue<>();for (int i = 0; i < data.length; i++) {HuffmanNode node = new HuffmanNode(data[i], weight[i]);queue.offer(node);}// 构建哈夫曼树while (queue.size() > 1) {HuffmanNode left = queue.poll();HuffmanNode right = queue.poll();HuffmanNode parent = new HuffmanNode('\0', left.weight + right.weight);parent.left = left;parent.right = right;queue.offer(parent);}root = queue.poll();return root;}public String generateCode(HuffmanNode node, String code) {if (node == null) {return "";}if (node.left == null && node.right == null) {return code;}generateCode(node.left, code + "0");generateCode(node.right, code + "1");return code;}public String decode(String code) {StringBuilder result = new StringBuilder();HuffmanNode node = root;for (int i = 0; i < code.length(); i++) {if (code.charAt(i) == '0') {node = node.left;} else {node = node.right;}if (node.left == null && node.right == null) { result.append(node.data);node = root;}}return result.toString();}}```(3)Main类:```javaimport java.util.Scanner;public class Main {public static void main(String[] args) {Scanner scanner = new Scanner(System.in);System.out.println("请输入字符串:");String input = scanner.nextLine();System.out.println("请输入字符及其权值(例如:a 2 b 3 c 5):"); String[] dataWeight = scanner.nextLine().split(" ");char[] data = new char[dataWeight.length / 2];int[] weight = new int[dataWeight.length / 2];for (int i = 0; i < dataWeight.length; i += 2) {data[i / 2] = dataWeight[i].charAt(0);weight[i / 2] = Integer.parseInt(dataWeight[i + 1]);}HuffmanTree huffmanTree = new HuffmanTree();HuffmanNode root = huffmanTree.buildHuffmanTree(data, weight); String code = huffmanTree.generateCode(root, "");System.out.println("编码结果:" + code);String decoded = huffmanTree.decode(code);System.out.println("解码结果:" + decoded);scanner.close();}}```3. 运行程序(1)编译并运行Main类,输入字符串和字符及其权值。
数据结构哈夫曼编码实验报告

数据结构哈夫曼编码实验报告【正文】1.实验目的本实验旨在研究哈夫曼编码的原理和实现方法,通过实验验证哈夫曼编码在数据压缩中的有效性,并分析其应用场景和优缺点。
2.实验原理2.1 哈夫曼编码哈夫曼编码是一种无损数据压缩算法,通过根据字符出现的频率构建一颗哈夫曼树,将频率较高的字符用较短的编码表示,频率较低的字符用较长的编码表示。
哈夫曼编码的编码表是唯一的,且能够实现前缀编码,即一个编码不是另一个编码的前缀。
2.2 构建哈夫曼树构建哈夫曼树的过程如下:1) 将每个字符及其频率作为一个节点,构建一个节点集合。
2) 每次从节点集合中选择出现频率最低的两个节点,构建一个新节点,并将这两个节点从集合中删除。
3) 将新节点加入节点集合。
4) 重复以上步骤,直到节点集合中只有一个节点,这个节点就是哈夫曼树的根节点。
2.3 编码过程根据哈夫曼树,对每个字符进行编码:1) 从根节点开始,根据左子树为0,右子树为1的规则,将编码依次加入编码表。
2) 对于每个字符,根据编码表获取其编码。
3) 将编码存储起来,得到最终的编码序列。
3.实验步骤3.1 数据读取与统计从输入文件中读取字符序列,并统计各个字符的频率。
3.2 构建哈夫曼树根据字符频率构建哈夫曼树。
3.3 构建编码表根据哈夫曼树,构建每个字符的编码表。
3.4 进行编码根据编码表,对输入的字符序列进行编码。
3.5 进行解码根据哈夫曼树,对编码后的序列进行解码。
4.实验结果与分析4.1 压缩率分析计算原始数据和压缩后数据的比值,分析压缩率。
4.2 编码效率分析测试编码过程所需时间,分析编码效率。
4.3 解码效率分析测试解码过程所需时间,分析解码效率。
4.4 应用场景分析分析哈夫曼编码在实际应用中的优势和适用场景。
5.结论通过本次实验,我们深入了解了哈夫曼编码的原理和实现方法,实践了哈夫曼编码的过程,并对其在数据压缩中的有效性进行了验证。
实验结果表明,哈夫曼编码能够实现较高的压缩率和较高的编解码效率。
数据结构哈夫曼编码实验报告
数据结构哈夫曼编码实验报告
第一章实验目的
本实验旨在掌握哈夫曼编码的原理和实现方法,并通过编写代码实现一个简单的哈夫曼编码程序。
第二章实验内容
1.理解哈夫曼编码的基本概念和原理。
2.设计并实现一个哈夫曼编码的数据结构。
3.实现哈夫曼编码的压缩和解压缩功能。
4.通过实验验证哈夫曼编码的效果和压缩比。
第三章实验步骤
1.确定实验所需的编程语言和开发环境。
2.定义并实现哈夫曼编码的数据结构。
3.实现哈夫曼编码的压缩和解压缩算法。
4.设计实验样例数据,进行测试和验证。
5.分析实验结果,计算压缩比。
第四章实验结果与分析
1.实验样例数据:________提供一段文本,统计字符出现的频率,并进行哈夫曼编码。
2.实验结果:________展示压缩后的编码结果,计算压缩比。
3.分析:________分析实验结果,讨论哈夫曼编码的效果和优劣。
第五章实验总结与感想
本次实验深入了解了哈夫曼编码的原理和实现方法,通过编写代码实现哈夫曼编码的压缩和解压缩功能。
实验结果表明,哈夫曼编码能够有效地减小数据的存储空间,提高了数据传输的效率。
第六章本文档涉及附件
本实验报告所涉及到的附件包括:________
1.实验代码文件:________.c
2.实验样例数据文件:________.txt
第七章法律名词及注释
1.哈夫曼编码:________一种用于无损数据压缩的编码方法,通过对频率高的字符赋予较短的编码,对频率低的字符赋予较长的编码,从而实现压缩数据的目的。
哈夫曼编码译码器实验报告
哈夫曼编码译码器实验报告实验名称:哈夫曼编码译码器实验一、实验目的:1.了解哈夫曼编码的原理和应用。
2.实现一个哈夫曼编码的编码和译码器。
3.掌握哈夫曼编码的编码和译码过程。
二、实验原理:哈夫曼编码是一种常用的可变长度编码,用于将字符映射到二进制编码。
根据字符出现的频率,建立一个哈夫曼树,出现频率高的字符编码短,出现频率低的字符编码长。
编码过程中,根据已建立的哈夫曼树,将字符替换为对应的二进制编码。
译码过程中,根据已建立的哈夫曼树,将二进制编码替换为对应的字符。
三、实验步骤:1.构建一个哈夫曼树,根据字符出现的频率排序。
频率高的字符在左子树,频率低的字符在右子树。
2.根据建立的哈夫曼树,生成字符对应的编码表,包括字符和对应的二进制编码。
3.输入一个字符串,根据编码表将字符串编码为二进制序列。
4.输入一个二进制序列,根据编码表将二进制序列译码为字符串。
5.比较编码前后字符串的内容,确保译码正确性。
四、实验结果:1.构建哈夫曼树:-字符出现频率:A(2),B(5),C(1),D(3),E(1) -构建的哈夫曼树如下:12/\/\69/\/\3345/\/\/\/\ABCDE2.生成编码表:-A:00-B:01-C:100-D:101-E:1103.编码过程:4.译码过程:5.比较编码前后字符串的内容,结果正确。
五、实验总结:通过本次实验,我了解了哈夫曼编码的原理和应用,并且实现了一个简单的哈夫曼编码的编码和译码器。
在实验过程中,我充分运用了数据结构中的树的知识,构建了一个哈夫曼树,并生成了编码表。
通过编码和译码过程,我进一步巩固了对树的遍历和节点查找的理解。
实验结果表明,本次哈夫曼编码的编码和译码过程正确无误。
在实验的过程中,我发现哈夫曼编码对于频率较高的字符具有较短的编码,从而实现了对字符串的高效压缩。
同时,哈夫曼编码还可以应用于数据传输和存储中,提高数据的传输效率和存储空间的利用率。
通过本次实验,我不仅掌握了哈夫曼编码的编码和译码过程,还深入了解了其实现原理和应用场景,加深了对数据结构和算法的理解和应用能力。
哈夫曼树实验实验报告(3篇)
第1篇一、实验目的1. 理解哈夫曼树的基本概念和构造方法。
2. 掌握哈夫曼编码和译码的原理及实现过程。
3. 熟练运用哈夫曼树解决实际问题,提高数据压缩效率。
二、实验环境1. 操作系统:Windows 102. 编程语言:C++3. 开发环境:Visual Studio 2019三、实验内容1. 构造哈夫曼树2. 哈夫曼编码3. 哈夫曼译码四、实验步骤1. 数据准备(1)创建一个包含字符及其权值的数组,例如:`{'a', 5, 'b', 9, 'c', 12, 'd', 13, 'e', 16, 'f', 45}`。
(2)根据数组内容,使用C++编写程序,实现以下功能:- 将数组元素插入到最小堆中。
- 构建哈夫曼树。
2. 哈夫曼编码(1)遍历哈夫曼树,记录每个字符的编码。
(2)根据编码规则,将字符和编码存储在映射表中。
(3)将映射表输出到文件中。
3. 哈夫曼译码(1)从文件中读取编码序列。
(2)根据哈夫曼树,逐个解码字符。
(3)将解码后的字符输出到文件中。
五、实验结果1. 哈夫曼树```45/ \16 29/ \ / \13 3 12 4/ \ / / \d c b a f```2. 哈夫曼编码```a: 0b: 100c: 101d: 110e: 111f: 1```3. 编码前后的数据```原始数据:abcdef编码后数据:0100110110111011```六、实验分析1. 哈夫曼树通过构建哈夫曼树,可以将权值较小的字符分配较短的编码,权值较大的字符分配较长的编码,从而提高数据压缩效率。
2. 哈夫曼编码哈夫曼编码是一种前缀编码,可以保证解码过程不会产生歧义。
3. 哈夫曼译码通过哈夫曼树,可以快速地将编码序列解码为原始数据。
七、实验总结1. 通过本次实验,掌握了哈夫曼树的基本概念、构造方法、编码和译码原理。
哈夫曼实验报告
一、实验目的1. 理解哈夫曼编码的基本原理和重要性。
2. 掌握哈夫曼树的构建方法。
3. 熟悉哈夫曼编码和译码的实现过程。
4. 分析哈夫曼编码在数据压缩中的应用效果。
二、实验原理哈夫曼编码是一种基于字符频率的编码方法,它利用字符出现的频率来构造一棵最优二叉树(哈夫曼树),并根据该树生成字符的编码。
在哈夫曼树中,频率越高的字符对应的编码越短,频率越低的字符对应的编码越长。
这样,对于出现频率较高的字符,编码后的数据长度更短,从而实现数据压缩。
三、实验内容1. 构建哈夫曼树:- 统计待编码数据中每个字符出现的频率。
- 根据字符频率构建哈夫曼树,其中频率高的字符作为叶子节点,频率低的字符作为内部节点。
- 重复上述步骤,直到树中只剩下一个节点,即为哈夫曼树的根节点。
2. 生成哈夫曼编码:- 从哈夫曼树的根节点开始,对每个节点进行遍历,根据遍历方向(左子树为0,右子树为1)为字符分配编码。
- 将生成的编码存储在编码表中。
3. 编码和译码:- 使用生成的编码表对原始数据进行编码,将编码后的数据存储在文件中。
- 从文件中读取编码后的数据,根据编码表进行译码,恢复原始数据。
四、实验步骤1. 编写代码实现哈夫曼树的构建:- 定义节点结构体,包含字符、频率、左子树、右子树等属性。
- 实现构建哈夫曼树的核心算法,包括节点合并、插入等操作。
2. 实现编码和译码功能:- 根据哈夫曼树生成编码表。
- 编写编码函数,根据编码表对数据进行编码。
- 编写译码函数,根据编码表对数据进行译码。
3. 测试实验效果:- 选择一段文本数据,使用实验代码进行编码和译码。
- 比较编码前后数据的长度,分析哈夫曼编码的压缩效果。
五、实验结果与分析1. 哈夫曼树构建:- 成功构建了哈夫曼树,树中节点按照字符频率从高到低排列。
2. 哈夫曼编码:- 成功生成编码表,字符与编码的对应关系符合哈夫曼编码原理。
3. 编码与译码:- 成功实现编码和译码功能,编码后的数据长度明显缩短,译码结果与原始数据完全一致。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一哈夫曼编码一、实验目的1、掌握哈夫曼编码原理;2、熟练掌握哈夫曼树的生成方法;3、理解数据编码压缩和译码输出编码的实现。
二、实验要求实现哈夫曼编码和译码的生成算法。
三、实验内容先统计要压缩编码的文件中的字符字母出现的次数,按字符字母和空格出现的概率对其进行哈夫曼编码,然后读入要编码的文件,编码后存入另一个文件;接着再调出编码后的文件,并对其进行译码输出,最后存入另一个文件中。
五、实验原理1、哈夫曼树的定义:假设有n个权值,试构造一颗有n个叶子节点的二叉树,每个叶子带权值为wi,其中树带权路径最小的二叉树成为哈夫曼树或者最优二叉树;2、哈夫曼树的构造:weight为输入的频率数组,把其中的值赋给依次建立的HT Node对象中的data属性,即每一个HT Node对应一个输入的频率。
然后根据data属性按从小到大顺序排序,每次从data取出两个最小和此次小的HT Node,将他们的data相加,构造出新的HTNode作为他们的父节点,指针pare nt,leftchild,rightchild赋相应值。
在把这个新的节点插入最小堆。
按此步骤可以构造构造出一棵哈夫曼树。
通过已经构造出的哈夫曼树,自底向上,由频率节点开始向上寻找pare nt,直到pare nt 为树的顶点为止。
这样,根据每次向上搜索后,原节点为父节点的左孩子还是右孩子,来记录1或0,这样,每个频率都会有一个01编码与之唯一对应,并且任何编码没有前部分是同其他完整编码一样的。
六、实验流程①初始化,统计文本文件中各字符的个数作为权值,生成哈夫曼树;②根据符号概率的大小按由大到小顺序对符号进行排序;③把概率最小的两个符号组成一个节点;④重复步骤(2)(3),直到概率和为1 ;⑤从根节点开始到相应于每个符号的树叶”概率大的标“0”概率小的标“ 1;⑥从根节点开始,对符号进行编码;⑦译码时流程逆向进行,从文件中读出哈夫曼树,并利用哈夫曼树将编码序列解码。
七、实验程序#in clude<iostream>#in clude<fstream>#in clude<ioma nip>#in clude<vector>using n amespace std;typedef struct // 节点结构{char data; //记录字符值long int weight; 〃记录字符权重un sig ned int pare nt,lchild,rchild;}HTNode,*Huffma nTree; //动态分配数组存储哈夫曼树typedef char * *HuffmanCode; //动态分配数组存储哈夫曼编码表void Select(HuffmanTree &HT,int i,int &s1,int &s2) // 在HT[1...t] 且权值最小的两个结点,其序号分别为si和s2{s1=0;s2=0;int n1=30000, n2=30000;for(i nt k=1;k<=i;k++){if(HT[k].pare nt==O){if(HT[k].weight< n1){n2=n1; n仁HT[k].weight;s2=s1; s1=k;}elseif(HT[k].weight< n2){n 2=HT[k].weight;s2=k;}}}}void Huffma nCodi ng(Huffma nTree &H T,Huffma nCode & HC,i nt n)// 空树中{ifstream fin 1("zifu.txt");ifstream fin 2("weight.txt");if(n<=1)return;int m=2* n-1;int i;HT=new HTNode[m+1];char *zifu;int *weight;zifu= new char[ n+1];weight =new int[n+1];中选择pare nt不为0 将要编码的字符串存入for(i=1;i<=n;i++)〃将待编码的字符放在zifu数组中{char ch;ch=fi n1.get();zifu[i]=ch;}for(i=1;i<=n;i++)〃将带编码字符对应的权值放在weight数组中{fin 2>>weigh t[i];}for( i=1;i<=n ;i++){HT[i].data=zifu[i];HT[i].weight=weight[i];}for(i=n+1;i<=m;i++){HT[i].data='@';}for(i=1;i<=m;i++){HT[i].pare nt=HT[i].lchild=HT[i].rchild=O;}for(i=n+1;i<=m;++i){int s1,s2;Select(HT,i-1,s1,s2);HT[s1].pare nt=i; HT[s2].pare nt=i;HT[i].lchild=s1; HT[i].rchild=s2;HT[i].weight=HT[s1].weight+HT[s2].weight;}HC=(Huffma nCode)malloc(( n+1)*sizeof(char*)); 开辟一个求编码的工作空间char *cd;cd=(char *)malloc(n*sizeof(char)); // 开辟空间存放权值cd[n-1]='\0';for(i=1;i<=n ;i++){int start =n-1;int c,f;for( c=i, f=HT[i].parent;f!=O;c=f,f=HT[f].parent) // 从叶子到根逆向求编码{if(HT[f].lchild==c)cd[--start]='0'; //若是左孩子编为’O'elsecd[--start]='1: //若是右孩子编为'1'}HC[i]=(char *)malloc((n-start)*sizeof(char)); // 为第 i 个编码分配空间strcpy(HC[i],&cd[start]); } delete []cd; //释放工作空间}void prin tHuffma nTree(Huffma nTree HT,i nt n) { ofstream fout("hfmtree.txt");cout<<"NUM"<<""<<"data"<<""<<"lchild"<<" "<<"rchlid"<<e ndl;for(i nt i=1;i<=2* n-1;i++) {fout<<HT[i].weight<<setw(3)<<HT[i].pare nt<<setw (3) <<HT[i].lchild<<setw(3)<<HT[i]. rchild<<e ndl;cout<<i<<setw(5)<<HT[i].data<<setw(3)<<HT[i].weight<<setw (3) <<HT[i].pare nt<<set w(3)<<HT[i].lchild<<setw (3) <<HT[i].rchild<<e ndl;} }void printHuffmanCoding(HuffmanTree HT,HuffmanCode HC,int n)〃输出字符的对应哈弗曼编码并存入code.txt 文件 {cout<<"Huffma n code is:"<<e ndl; ofstream fout("code.txt"); for(i nt i=1;i<=n ;i++) {cout<<HT[i].data<<"--> "; cout<<(HC[i])<<e ndl; fout<<(HC[i])<<e ndl; } }void code_file(HuffmanTree HT,HuffmanCode HC,int n)// 对文件 tobetran.txt 进行编码,并 将编码存入codefile 文件中 {ifstream fin ("tobetra n. txt"); ofstream fout("codefile.txt"); vector<char> a; char ch;while((ch=fi n.get())!='*')a.push_back(ch);cout<<"待编码的字符串为:”;//显示有n 个叶子结点的哈夫曼树的编码表 〃将对应字符的的哈弗曼树存入"<<"weight"<<""<<"parent"<<"for(i nt k=O;k<a.size();k++)cout<<a[k];cout<<e ndl;cout<<"\n 编码结果:"<<endl;for(i nt i=0;i<a.size();i++){for(i nt j=1;j<=n ;j++){if(a[i]==HT[j].data){fout<<HC[j]; break;}}}fin. close();fout.close();}void Decodi ng(Huffma nTree HT,Huffma nCode HC,i nt n)〃进打开codefile文件并对文件内容行译码{int const m=2* n-1;ifstream fin ("codefile.txt");ofstream fout("textfile.txt"); vector<char> a;for(char c;fi n> >c;)a.push_back(c);int coun t=0;for(i nt k=0;k<a.size();k++){cout<<a[k];coun t++;if(cou nt%50==0)cout<<e ndl;}int i=0;int p; //用p来记住m的值cout<<e ndl;cout<<"\n 译码结果:"<<endl;while(i<a.size()){p=m; //从哈弗曼数的根开始遍历while(HT[p].lchild)if(a[i]=='1') p=HT[p].rchild; else p=HT[p].lchild; i++;}fout<<HT[p].data; cout<<HT[p].data; } }void mai n() {int n;cout<<"输入权值个数: cin»n;prin tf("\n"); Huffma nTree HT; Huffma nCode HC;Huffma nCodi ng(HT,HC, n); prin tHuffma nCodi ng(HT,HC, n); prin tf("\n"); code_file(HT,HC ,n);Decod in g(HT,HC, n); prin tf("\n\n\n"); system("pause"); II 设置权值数值 II 哈夫曼树HT II II 哈夫曼编码表 HC 进行哈夫曼编码 II 显示编码的字符II 显示要编码的字符串,并把编码值显示出来II 译码并显示译码后的字符串八、结果分析哈夫曼编码是动态变长编码,临时建立概率统计表和编码树。