小议电气主设备继电保护技术的现状与发展
我国继电保护技术的现状与发展

我国继电保护技术的现状与发展
继电保护技术是电力系统安全稳定运行的重要组成部分,其作用在于及时发现电力系统中出现的电力故障,保护电力系统设备免于过电流、过电压等故障引起的损坏情况,保障电力系统的稳定运行。
我国继电保护技术的发展经历了多年的发展和完善,现状和未来发展如下:
(一)现状
1.技术水平逐步提高。
近年来,国内继电保护技术的水平有所提升,国内继电保护设备的研发也取得了不少新的进展。
大量的国际先进技术,比如微机技术、DSP技术、模拟电路技术等已经在继电保护领域得到了广泛的应用。
2.保护功能更加完善。
伴随着技术的进步,保护的功能也逐渐完善,从最初的电压、电流保护到现在的差动保护、微机保护、数字保护等各种保护手段。
3.设备智能化程度提高。
通过数字化技术和微机技术的应用,继电保护设备的智能化程度也逐步提高,如智能继电保护、继电保护远程通信控制技术等。
(二)未来发展
1.继电保护设备的远程通信能力。
未来,继电保护设备将更加注重其远程通信能力的发展,以便于实现设备之间的信息共享,确保系统各部分的协调性和稳定性。
2.保护设备的集成化设计。
随着技术的发展,相信将来的继电保护设备将越来越向着集成化的方向设计,即不同保护功能的设备将集成到一个设备中来,实现对设备的一体化管理。
综上所述,我国的继电保护技术已经取得了一定的成果和发展,在未来的发展中,还有待在保护能力、智能化程度、远程通信等方面的深入提高和完善。
论电力系统继电保护技术现状分析

论电力系统继电保护技术现状分析简介电力系统继电保护技术是电力系统中非常重要的一项技术,它主要用于检测和定位电力系统中的故障,并采取相应的保护措施,以确保电力系统的运行安全和稳定。
随着电力系统的规模和复杂性的不断增加,继电保护技术也在不断发展和完善。
本文主要从现状分析继电保护技术的发展方向和面临的挑战。
一、现状分析1. 继电保护技术的发展趋势随着电力系统规模的不断扩大和电力负荷的不断增加,对继电保护技术的要求也越来越高。
目前,继电保护技术的发展主要体现在以下几个方面:(1) 高速保护技术:随着电力系统的扩展和负荷的增加,电力系统中的短路电流和故障电流也在不断增大。
保护设备需要具备更高的速度来检测和响应故障,以减少故障对电力系统的影响。
(2) 数字化保护技术:传统的继电保护设备主要采用模拟电路和电磁原理,受到体积大、可靠性差等问题的限制。
而数字化保护技术可以利用现代的计算机及通信技术,实现继电保护设备的集成化、智能化和网络化,提高继电保护系统的可靠性和灵活性。
(3) 智能保护技术:智能保护技术是指利用人工智能、模糊逻辑、遗传算法等先进技术来提高继电保护设备的自动化程度和智能化水平。
通过对电力系统中的数据进行实时监测和分析,智能保护技术可以更准确地判断故障类型和位置,并采取相应的保护措施。
尽管继电保护技术在不断发展和完善,但仍然面临一些挑战和困难:(1) 电力系统的复杂性:随着电力系统规模的不断扩大和电力负荷的不断增加,电力系统的复杂性也在不断增加。
传统的继电保护技术往往无法满足对复杂电力系统的保护要求,需要开发更先进的保护技术。
(2) 大数据处理:随着电力系统中数据的爆发式增长,对大数据处理和分析的要求也越来越高。
传统的继电保护设备无法有效处理大量的实时数据,需要设计更高效的数据处理算法和设备。
(3) 安全性和可靠性的矛盾:提高继电保护系统的安全性和可靠性是一项重要的任务。
安全性和可靠性之间往往存在矛盾关系。
电力系统继电保护的现状与发展前景

电力系统继电保护的现状与发展前景电力系统继电保护是电力系统中的重要组成部分,其作用是在电力系统发生故障时,及时保护电力设备和系统,避免事故扩大,保障电网的安全稳定运行。
随着电力系统的不断发展和变革,继电保护也在不断更新和改进,以适应电力系统发展的需求。
本文将就电力系统继电保护的现状及未来发展前景进行分析和探讨。
一、电力系统继电保护的现状1. 技术水平不断提高随着科技的不断发展,电力系统继电保护的技术水平也在不断提高。
新型继电保护装置采用了先进的数字化技术,能够实现更精确的故障检测和定位,具有更高的灵敏度和可靠性。
智能化的继电保护装置能够通过网络实时监测电力设备运行状态,提高了对电力系统的实时监控和管理能力。
2. 多功能一体化发展现代继电保护装置不仅具备故障检测和定位的功能,还具有功率控制、通信互联、数据采集等多种功能,逐渐向多功能一体化方向发展。
这种趋势使得继电保护装置更加智能化和集成化,简化了电力系统的设备布置和运行维护,提高了电力系统的整体性能和可靠性。
3. 安全性能不断提升随着电力系统规模的扩大和运行方式的改变,继电保护的安全性能也受到了更高的关注。
新型继电保护装置采用了多重安全保护措施,能够有效防止由于误操作、电磁干扰等原因引起的误动作,确保了电力系统的安全可靠运行。
4. 国际标准逐步统一随着电力系统的全球化发展,国际间对继电保护的标准化工作也在不断加强,各国间的标准逐步趋同,使得电力系统的互联互通更加便利和高效。
国际化的标准化工作使得继电保护设备和系统更加具备通用性,为国际间电力系统的安全运行和发展提供了更好的保障。
5. 绿色环保发展环保是当前社会的一个重要议题,电力系统继电保护装置也在向环保、节能的方向发展。
新型继电保护装置采用了更加环保的材料和技术,减少了对环境的污染和资源的消耗,符合现代社会对于绿色环保、可持续发展的要求。
1. 智能化技术的广泛应用2. 网络化运维的实现未来的电力系统继电保护将更加注重网络化运维。
电力系统继电保护的现状与发展前景

电力系统继电保护的现状与发展前景电力系统继电保护作为电力系统安全稳定运行的重要保障,直接关系到电力系统的可靠性和安全性。
随着电力系统规模的不断扩大和技术的不断进步,继电保护技术也在不断发展和完善。
本文将就电力系统继电保护的现状与发展前景进行探讨,希望能够对该领域的研究与应用提供一些参考。
一、电力系统继电保护的现状1. 继电保护的基本概念和作用继电保护是指在电力系统中,通过对各种故障情况进行监测和诊断,及时采取必要的保护措施,以防止故障的扩大和蔓延,保护电力设备和系统的安全稳定运行。
继电保护的作用主要包括对电力设备进行过载、短路等故障的保护,对系统发生故障时进行快速隔离和恢复,以及对违规操作和外部干扰进行检测和保护。
2. 继电保护技术的现状随着电力系统的规模不断扩大和复杂程度的不断增加,继电保护技术也在不断发展和完善。
目前,电力系统继电保护技术主要包括基于保护装置的数字化继电保护技术、保护装置之间的通信联动技术、基于人工智能和模糊逻辑的故障诊断技术等。
这些技术的应用大大提高了继电保护的准确性、及时性和可靠性。
3. 继电保护的存在问题目前电力系统继电保护仍然存在一些问题。
一是传统的继电保护技术难以满足复杂电力系统的要求。
随着电力系统的不断发展,传统的基于电流、电压等参数的继电保护技术已经无法满足对电力系统安全可靠运行的要求。
二是电力系统继电保护设备之间的互联互通问题。
目前,继电保护设备之间的通信联动技术还不够成熟,存在着系统间通信不畅、数据传输不准确等问题。
三是继电保护与其他智能化技术的融合问题。
随着物联网、大数据、人工智能等技术的快速发展,电力系统继电保护与这些技术的融合应用还存在一定困难。
1. 基于数字化技术的继电保护随着数字化技术的不断发展和普及,数字化继电保护技术将成为未来的发展方向。
数字化继电保护技术不仅可以提高保护装置的精度和可靠性,还可以实现对系统状态、故障信息等数据的实时监测和管理,为电力系统的智能化、自动化运行提供支持。
电力系统继电保护技术的现状与发展建议

电力系统继电保护技术的现状与发展建议电力系统继电保护技术是电力系统运行中非常重要的一项技术。
随着电力系统规模的不断扩大和电网结构的复杂化,继电保护技术也在不断发展和创新。
本文将从现状和发展建议两方面分析电力系统继电保护技术的现状以及未来的发展方向。
一、现状1.先进的继电保护技术:当前的继电保护技术已经比较成熟,包括电流、电压、功率等方面的继电保护装置已经广泛应用于电力系统中。
这些保护装置能够对电力系统的各种异常情况进行检测和保护,确保电力系统的安全稳定运行。
2.数字化技术的应用:数字化技术的应用使继电保护技术更加智能化和自动化。
数字化继电保护装置能够实时监测电力系统的各项参数,并通过数字通信技术进行数据传输和信息处理,提高了继电保护的速度和灵敏度。
3.高可靠性和可靠性技术:为了提高电力系统的可靠性和安全性,继电保护技术已经发展出多级保护、并联保护等技术,能够对电力系统中的故障进行多角度、多层次的保护,提高了电力系统的可靠性。
4.继电保护设备的完善性:现代继电保护设备在设计上更加完善,包括故障检测能力、抗干扰能力、抗击雷能力等方面的性能有了很大提升。
继电保护设备的体积也越来越小,方便安装和维护。
二、发展建议1.加强对新技术的研究和应用:随着电力系统的发展,新兴的技术如物联网、人工智能、大数据等技术在继电保护领域的应用也越来越广泛。
应加大对这些新技术的研究和应用力度,进一步提高继电保护技术的智能化水平。
2.完善多级保护和并联保护技术:多级保护和并联保护技术能够提高电力系统的可靠性和安全性,应进一步完善这些技术的应用,使其能够更好地适应电力系统的需求。
还应研究和开发新的保护策略,提高继电保护的精度和速度。
3.强化设备的可靠性和抗干扰能力:继电保护装置是电力系统中最重要的设备之一,应加强对继电保护设备的研制和生产,提高其可靠性和抗干扰能力。
还应加强对继电保护设备的标准化和统一化工作,提高设备的互操作性和通用性。
浅谈电力系统继电保护技术的现状与发展

浅谈电力系统继电保护技术的现状与发展引言电力系统继电保护技术作为电力系统安全运行的重要保障,其现状和发展一直备受关注。
随着电力系统规模的扩大和技术的进步,继电保护技术也不断创新和发展。
本文将就电力系统继电保护技术的现状和未来发展趋势进行探讨,旨在为相关领域的工程师和研究人员提供参考。
电力系统继电保护技术的现状1.系统可靠性提高–电力系统继电保护技术的先进性可以有效提高电力系统的可靠性。
采用现代化的继电保护设备,可以及时检测到电力系统中的故障,并采取相应的保护措施,防止事故扩大。
–高速通信技术的应用,使得继电保护设备之间能够进行快速的信息传递和协同动作,提高了对电力系统的保护性能和响应速度。
2.智能化水平不断提高–随着电力系统的智能化发展,继电保护技术也呈现出智能化的特点。
智能继电保护设备可以自动识别和定位故障,还可以进行自适应调整,提高对复杂系统的保护性能。
–智能化继电保护设备还可以进行远程监控和故障诊断,方便运维人员对电力系统进行实时的监控和管理,提高了运维效率和安全性。
3.多功能性得到提升–现代继电保护设备通过软件的方式实现了多种功能。
不仅可以实现基本的过电流保护和距离保护,还可以增加差动保护、抗饱和保护等功能,提高了电力系统的保护水平。
–多功能继电保护设备还具备数据采集和存储的功能,可以实时记录电力系统的运行参数,并进行远程的数据查询和分析,为电力系统的稳定运行提供实时参考。
电力系统继电保护技术的发展趋势1.高精度、高可靠性–未来的继电保护设备将具备更高的精度和可靠性。
新一代继电保护设备将采用先进的传感技术和数据处理算法,提高对电力系统故障的检测和定位能力,减少误判和误动作。
–针对复杂的电力系统,未来的继电保护设备会通过数据集成和多级协同的方式实现更高的可靠性,防止事故扩大,提高电力系统的安全性。
2.多维信息集成–随着电力系统的互联互通和数据智能化的发展,未来的继电保护设备将会实现多维信息的集成。
电力系统继电保护技术的现状与发展建议

电力系统继电保护技术的现状与发展建议当前,电力系统继电保护技术在保证电网稳定运行和安全的方面发挥着至关重要的作用。
然而,随着电力系统规模的不断扩大,电力负荷的增加,电力系统继电保护技术仍存在一些挑战和问题。
本文将针对电力系统继电保护技术的现状和发展提出以下建议。
一、加强现有继电保护设备的技术研究和改进目前,继电保护技术已可以分为电气量保护和特殊保护两大类。
其中,电气量保护是电力系统中最常用的继电保护设备,其稳定性和可靠性已被广泛认可。
特殊保护技术包括很多类型,如交流保护、直流保护、发电机保护以及暂态保护等。
为了更好地满足电力系统对精准保护的需求,需要加强这些特殊保护技术的研究和改进。
二、引入新的智能化继电保护技术近年来,随着人工智能技术和物联网技术的迅速发展,电力系统继电保护技术也开始逐渐向智能化方向发展。
目前,大数据分析技术、云计算等已经在电力系统继电保护中得到应用。
通过智能化技术的引入,不仅可以提高电力系统的处理效率,还可以进一步提高电力系统运行的安全性和稳定性。
三、重视信息化建设信息化建设是电力系统继电保护技术的重要组成部分。
电力系统进行保护控制需要依靠复杂的数据交互和信息传递。
因此,建立完善的信息化技术架构和支持系统,以提供可靠的数据资源保障,是电力系统继电保护技术的关键。
四、加强人员培训和技术交流电力系统继电保护技术的核心不仅在技术实现,更在人员的技术素质。
因此,需要重视人员的培训和技术交流,以增强人员的技术水平和技能。
同时,为了更好地推动技术发展,可以通过举办技术交流会、深化国际合作等方式来加强技术交流和合作。
总之,电力系统继电保护技术的发展需要多方面的技术支撑和管理措施。
从技术角度上,要加强现有设备的技术研究和改进,并引入新的智能化技术。
此外,还需要重视信息化建设,加强人员培训和技术交流等方面的管理措施。
这些努力可以提高电力系统继电保护技术的精准性、可靠性和稳定性,从而更好地保障了人们的用电需求和生产生活的需求。
电力系统继电保护技术的现状与发展趋势

电力系统继电保护技术的现状与发展趋势随着经济的发展,人们的用电量以迅猛的速度增长,因而电力系统面临着严重的过载、短路等危险。
因此,加强继电保护对于电力系统的稳定运行具有非常重要的作用。
继电保护作为电力系统安全运行的保护方法,在适应电力系统稳定运行需求的过程中技术更新较快,发挥的作用也越来越突出。
基于此,文章对电力系统继电保护技术的现状进行分析,并对其发展趋势做出展望,以期能够提供一个借鉴。
标签:电力系统;继电保护技术;现状;趋势1.我国继电保护技术发展现状1.1我国继电保护技术发展概况(1)机电式继电保护阶段。
1949年以后,我国逐渐意识到电力行业的重要性,因而在50年代,电力工程人员进行了大量的与继电保护技术有关的知识学习,之后,通过工程人员的不懈努力,终于建立了拥有丰富电力系统继电保护技术理论知识和经验的继电保护队伍,为国家电力系统的正常运转做了较大的贡献。
(2)晶体管继电保护阶段。
在机电式继电保护阶段,我国的电力系统线路保护技术完全来自于国外,到了60年代以后,科技的进步使得我国拥有了自行创造的电力系统线路保护技术,并且该技术带领电力系统继电保护技术走向了晶体管继电保护阶段,该阶段最鲜明的标志就是在葛洲坝上应用了晶体管继电保护技术。
(3)集成电路保护阶段。
进入70年代之后,晶体管继电保护出现了较多的问题,对此,电力系统的工程研究人员慢慢对集成电路保护产生浓厚的兴趣,最终使得集成电路保护获得推广,不仅弥补了晶体管继电保护的缺憾,还降低了对电力系统进行继电保护的成本。
(4)计算机继电保护阶段。
随着经济的快速发展,经济得到了迅猛的发展,为了顺应时代发展的潮流,电力系统的工程研究人员开始致力于计算机继电保护的研究,主要的标志就是输电线路微机保护装置的研制成功。
该阶段使得继电保护技术更加完美,为我国开辟了新的继电保护装置市场,充分确保了电力系统的安全运行。
1.2我国继电保护技术发展特点。
随着计算机技术的快速发展,计算机在计算能力、储存能力、数据采集能力等方面得到了快速发展,这为推进微机保护技术向更高品质更新提供了催化剂。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小议电气主设备继电保护技术的现状与发展
发表时间:2009-07-03T12:46:27.840Z 来源:《赤子》2009年第8期供稿作者:张洪涛
[导读] 随着电力系统超高压等级、单机容量增大、大联网系统的发展趋势,对主设备保护提出了更高的要求。
(沈阳万科物业服务有限公司,辽宁沈阳 110021)
摘要:随着电力系统超高压等级、单机容量增大、大联网系统的发展趋势,对主设备保护提出了更高的要求。
对当前电力系统中主设备继电保护的现状作以介绍,并阐述了未来发展趋势。
关键词:主设备;继电保护;技术
电气设备的继电保护主要是研究电力系统故障和危及安全运行的异常工况,以探讨其对策的反事故自动化措施。
因在其发展过程中曾主要用有触点的继电器来保护电力系统及其元件(发电机、变压器、输电线路等),使之免遭损害,所以沿称继电保护。
随着科学技术的发展,特别是电子技术、计算机技术和通信技术的发展,电力系统继电保护先后经历了不同的发展时期。
近10年来,电力工业突飞猛进,整个电力系统呈现出往超高电压等级、单机容量增大、大联网系统方向发展的趋势,这就对主设备保护的可靠性、灵敏性、选择性和快速性提出了更高的要求。
1 电气主设备保护的现状
以往电力系统大型主设备(包括发电机、变压器、母线、高压并联电抗器等)继电保护与超高压线路继电保护相比,处于一种相对滞后的状态,主设备保护正确动作率一直较低,与线路保护相比有较大差距。
近年来主设备保护的分析计算方法取得了很大进展,比如采用多回路分析法可以比较精确地计算发电机的内部故障,主设备内部故障保护的配置具备了理论基础[1,2]。
利用真实反应主设备内部各种故障及异常工况的动模系统和仿真系统检验主设备保护,极大地提高了新原理新技术的验证水平。
随着基于新硬件平台的数字式主设备保护的推陈出新,实现了主设备保护双主双后的配置方案,保护的设计方案、配置原则趋于完善,同时,新原理和新技术的应用也大大提高了主设备保护的安全运行水平。
1.1主设备保护的双重化配置和主后一体化趋势。
近年来,双主双后保护配置方案逐渐应用到主设备保护的领域,尤其是国电调[2002]138号文件《防止电力生产重大事故的二十五项重点要求》继电保护实施细则对主设备保护的双重化作出规定后,双主双后保护方案成为主设备保护研制、设计的指导准则,并为现场运行提供了极大的方便。
双主双后的保护实现方式是针对一个被保护对象,配置2套独立的保护。
每套保护均包含主后备保护,并且每套保护由2个CPU系统构成。
2个CPU系统之间均能进行完善的自检和互检,出口方式采用2个CPU系统“与”门出口。
这种配置方案概念清晰,彻底解决了保护拒动和误动的矛盾,即双重化配置解决了拒动问题,双CPU系统“与”门出口解决了硬件故障导致的误动问题。
这种思想已成功地应用到主设备保护上,大大提高了主设备保护的运行水平。
1.2主设备保护的新原理。
近年来,主设备保护通过对故障过程的电磁暂态过程的研究、TA饱和特性的研究、内部故障理论分析,结合实际动模和数字仿真,提出了一些新的原理并已在现场广泛应用。
(1)差动保护。
常规的两折线、三折线比率差动、标积制动式差动、采样值差动等已在很多文献中有所介绍。
(2)关于励磁涌流。
目前在工程上应用的判别励磁涌流的原理都是从涌流波形与短路电流波形的不同特征入手,来区分励磁涌流与短路的。
各种涌流判别原理都具有在故障合闸时,保护动作时间长或动作时间离散度大的缺点。
(3)关于TA饱和。
TA饱和问题是主设备保护共同面对的问题。
由于大型发电机变压器组容量大,故障电流非周期分量衰减时间常数长,可能引起差动保护各侧 TA传变暂态不一致或饱和。
对于变压器,各侧 TA特性不一致,更易引起 TA饱和,这样可能会造成在区外发生故障时差动保护误动对于母线近端发生区外故障时,TA也会严重饱和。
因此差动保护需有可靠的 TA饱和判据。
针对 TA饱和问题,国内外也提出了一些识别 TA饱和的办法:采用附加额外的电路来检测 TA 饱和,缺点是现场工程应用很不方便;提高定值,缺点是降低了内部故障的灵敏度;采用流出电流判据的标积式比率差动,理论计算表明当发电机发生某些内部故障时,也有流出电流,存在拒动的可能性。
2 主设备保护的发展趋势
2.1保护装置的一体化发展。
(1)充分的资源共享,一个装置包含了被保护元件所有的模拟量,保护逻辑的判据可以充分利用所有电气量,使保护更加完善、可靠,判据更加灵活实用。
(2)主后一体化装置,给故障录波、后台分析带来了便利。
任何一个故障启动或动作保护装置就可以录下整个单元所有模拟量,使得现场故障的综合分析、定性及事故处理更加方便,而分体式保护只能录下部分信息。
(3)主后一体化装置便于保护双重化的实现。
主后共用一组TA,TA断线概率大大下降;装置数量少,误动概率降低。
2.2新型光电流互感器、光电压互感器的应用。
传统的电磁式TA是一种非线性电流互感器,具有铁磁谐振、磁饱和、绝缘结构复杂、动态范围小、使用频带窄、铜材耗费大,远距离传送造成电位升高等问题。
新型光电流互感器(OTA)、光电压互感器(OTV)相对于电磁式TA具有明显的技术优势:不存在饱和问题,频率响应宽,动态范围大,在很大的电流变化区间内保持线性变换关系;实现了强电和弱电的完全绝缘隔离,具有很强的抗电磁干扰能力;不存在二次开路的问题,二次输出值较小,适合与保护直接接口。
因此其将成为主设备微机保护的发展趋势。
2.3信息网络化。
变电站监控和发电厂电气监控系统的发展,要求主设备保护具有强大的通信功能,以便通过监控系统实现保护动作报文管理、故障数据处理、定值远方整定、事故追忆等功能,实现了电气智能设备运行的深层次管理。
在采用高速度、大容量的微处理器及高速总线设计后,保护装置将具有更完善的数据处理功能和通信功能,可以更好地实现保护信息化、网络化设计。
主设备保护除了动作后经通信网络上传故障报文、数据到监控系统以外,还可以为系统动态提供保护装置的运行状态和信息,并可根据系统运行方式的变化通过数据交换,提供修改保护判据和定值的依据,保证全系统的安全稳定运行。
2.4故障分析技术。
新一代主设备保护必须具有强大的故障录波功能,除了记录完整的事件报文、故障数据外,装置还可以记录故障发生前后全过程所有的模拟量、开关量、启动量、中间量的变化,完整地记录每个保护的动作行为。
主设备保护的故障信息上传至电气监控系统或保护信息管理系统后,通过高级应用软件,分析保护的动作行为是否正确,为故障查找、分析提供充分的依据。
完整的故障数据经数字仿真系统可实现主设备的故障再现,对事故进行深入分析,为保护性能的改进完善提供重要的依据。
2.5信息网络技术。
当代继电保护技术的发展,正在从传统的模拟式、数字式探索着进入信息技术领域。
在变电站综合自动化方面,保护的配置比较灵活。
如果变电站综合自动化采用传统模式,也就是远方终端装置(RTU)加上当地监控系统,这时候,保护装置的信息可以通过遥信输入回路进入RTU,也可以通过串行口与RTU按照约定的通信规约进行信息传递。
2.6自适应技术、智能技术和数字技术的发展。
自适应继电保护的基本思想是使保护能尽可能地适应电力系统的各种变化,进一步改善保护的性能。
对于主设备保护而言,它与某些保护的判据、定值和系统的变化也是息息相关的,比如发电机失步保护、变压器零序保护等。
目前,部分保护功能已经具备了一定的自适应能力,比如浮动门限、变斜率比率差动保护中的制动特性、自适应3次谐波电压比率定子接地判据等。
随着与微机保护技术密切相关的其他科技领域新技术和新理论的出现,通信技术、信息技术、自适应控制理论、全球定位系统(GPS)等的应用,必将促进自适应保护的飞速发展。
3 结论
随着电力系统容量日益增大,范围越来越广,仅设置系统各元件的继电保护装置,远不能防止发生全电力系统长期大面积停电的严重事故。
为此必须从电力系统全局出发,进行电气设备继电保护的相关研究。
参考文献
[1]王维俭.电气主设备继电保护原理与应用[M].北京:中国电力出版社,1996.
[2]沈全荣,何雪峰.大型发变组微机保护双重化配置探讨[J].电力系统自动化,2002(10).。