重庆市一中2019届高三下学期4月模拟考试数学(文)试题

合集下载

2019年重庆一中高2019届高三下期第一次月考数学(文)试题及答案

2019年重庆一中高2019届高三下期第一次月考数学(文)试题及答案

2019年重庆一中高2019届高三下期第一次月考数学(文)试题及答案一、选择题(每题5分,共计50分)1.集合1A x y x ⎧⎫==⎨⎬⎩⎭,集合1B y x ⎧⎫==⎨⎬⎩⎭,则有( )A AB ⊆ B A B ⋂=∅C B A ⊆D 以上均错误2.一个半径为1球内切于一个正方体,切点为,,,,,A B C D E F ,那么多面体ABCDEF 的体积为( )A 112B 16C 23D 433.对于任意[1,5]x ∈,则x 满足不等式2340x x --<的概率为( )A 34B 15C 35D 454.(原创)直线cos sin 20x y θθ+-=与圆221(sin )(2cos ),()4x y R θθθ-+-=∈的位置关系为( )A 相交,相切或相离B 相切C 相切或相离D 相交或相切 5.已知:p “tan tan 1αβ=”, q :“cos()0αβ+=”,那么p 是q 的( )条件 A 充要 B 既不充分,也不必要 C 必要不充分 D 充分不必要6.向量(2,3),(1,)a b λ=-=-r r ,若,a b r r的夹角为钝角,则λ的取值范围为( )A23λ>B 23,32λλ>≠-且C 23,32λλ>-≠且D 23λ>-7.(原创)首项为1的正项等比数列{}n a 的前100项满足1=3S S 奇偶,那么数列3log n n a a ⎧⎫⎨⎬⎩⎭( )A 先单增,再单减B 单调递减C 单调递增D 先单减,再单增8x m=+没有实数根,则实数m 的取值范围为( )A (,)-∞⋃+∞B ⎡⎣C (,)-∞⋃+∞D9.式子的最大值为( )A 12 B 110.(原创)定义在实数集R 函数()f x 满足()()20f x f x ++=,且()1f x -为奇函数,现有以下三种叙述:(1)8是函数()f x 的一个周期;(2)()f x 的图像关于点(3,0)对称;(3)()f x 是偶函数.其中正确的是( ) A (2)(3) B (1)(2) C (1)(3) D (1)(2)(3)二、填空题(每题5分,共计25分)11.椭圆22221(a b 0)x y a b +=>>的左顶点为A ,左右焦点分别为12,F F ,且点1F 分2AF uuu r 的比为12,则该椭圆的离心率为12.三角形,6,4,8ABC AB BC AC ===中,则AB BC ∙=uu u r uu u r13.某小区共有2018人,其中少年儿童,老年人,中青年人数依次成等差数列,现用分层抽样的方法从中抽取60人,那么老年人被抽取了 人14.(原创)直线l 过定点(2,2)且与圆229x y +=交于点,A B ,当AB 最小时,直线l 恰好和抛物线29x ay =-(0a <)相切,则a 的值为15.(原创)集合{}3,[1,2]A y y x x ==∈,集合{}ln 20B x x ax =-+>,且A B ⊆,则实数a 的取值范围是三、解答题(共计75分) 16.(13分)现从两个文艺组中各抽一名组员完成一项任务,第一小组由甲,乙,丙三人组成,第二小组由丁,戊两人组成.(1)列举出所有抽取的结果; (2)求甲不会被抽到的概率.17.(13分)函数44()cos sin 2sin cos 2,()f x x x x x x R =-++∈ (1)求函数)2(x f 的最小正周期和对称轴;(2)求函数)8(π+x f 在区间⎥⎦⎤⎢⎣⎡3,0π的值域.18.(13分)数列}{n a 满足,11=a 且),1(*1N n n n a a n n ∈>+=-, (1)求数列}{n a 的通项公式;(2)数列}{n b 满足n n a b 1=,求数列}{n b 的前n 项的和n S .19.原创(12分)直三棱柱111ABC A B C -,棱1AA 上有一个动点E 满足1AE A E λ=.(1)求λ的值,使得三棱锥E ABC -的体积是三棱柱111ABC A B C -体积的19;(2)在满足(1)的情况下,若12AA AB BC AC ====,1CE AC M⋂=,确定BE 上一点N ,使得11//MN BCC B 面,求出此时BN 的值.20.(12分)已知函数()()2ln 20f x x ax bx a =-+>,且'(1)0f =(1)求函数()f x 的单调递增区间;(2)试问函数()f x 图像上是否存在两点()()1122,,,A x y B x y ,其中21x x >,使得函数()f x 在C 1B 1A 1MECB122x x x +=的切线与直线AB 平行?若存在,求出,A B 的坐标,不存在说明理由.21.原创(12分)点1F ,2F 是椭圆C 的22143x y +=左右焦点,过点1F 且不与x 轴垂直的直线交椭圆于,P Q 两点. (1)若22PF QF ⊥,求此时直线PQ 的斜率k ;(2)左准线l 上是否存在点A ,使得V PQA 为正三角形?若存在,求出点A ,不存在说明理由.出题人:廖桦 审题人:张伟2018年重庆一中高2018级高三下期第一次月考 数 学 答 案(文科)一、选择题(每题5分,共计50分) BDACD CACBD二、填空题(每题5分,共计25分)11.12; 12.6; 13. 2014.18- 15.2ln 8(,)8+-∞三、解答题(共计75分)16.(13分) 解:(1)结果有:甲丁,甲戊,乙丁,乙戊,丙丁,丙戊; (2)记A=“甲不会被抽到”,根据(1)有3264)(==A P17.(13分) 解:(1)44()cos sin 2sin cos 2cos 2sin 22)24f x x x x x x x x π=-++=++=++所以2)44sin(2)2(++=πx x f根据公式,其最小正周期242ππ==T ,要求其对称轴,则有Zk k x ∈+=+,244πππ,即对称轴为Z k k x ∈+=,164ππ(2)22cos 22)22sin(2)8(+=++=+x x x f ππ,根据单调性,其在⎥⎦⎤⎢⎣⎡3,0π的值域为⎥⎦⎤⎢⎣⎡+-22,22218.(13分)解:(1)由),1(*1N n n n a a n n ∈>+=-有n a a n n =--1,由叠加可得 121321(1)()()()12(2)2n n n n n a a a a a a a a n n -+=+-+-++-=+++=>L L ,当1=n 时,上式的值为1,满足条件,11=a所以,2)1(+=n n a n(2))111(2)1(2+-=+=n n n n b n ,所以12)1113121211(2+=+-++-+-=n n n n S n19.(12分)解:(1)根据条件,有11=39Sh Sh 锥柱,1=3h h 锥柱,即点E 到底面ABC 的距离是点1A 到底面ABC 距离的13,所以12λ=; (2)根据条件,易得112AE EM CC CM ==,则当13EM EN MC BN ==时//BC MN ,即有11//MN BCC B 面,即34BN BE=时,有,所以BN =20.(12分)解:(1)()'122f x ax b x =-+,又'(1)0f =,所以有221b a =-,所以()()'1122112,f x ax a x a x x ⎛⎫=-+-=--+ ⎪⎝⎭又0,0a x >>,所以()'0f x >有01x <<,所以()f x C 1B 1A 1ME CB的单调递增区间为(0,1) (2)根据条件()21111ln 21y x ax a x =-+-,()21222ln 21y x ax a x =-+-,所以()()1212121212ln ln 21AB y y x x k a x x a x x x x --==-++---,而()()'1212122212ABx x f a x x a k x x +⎛⎫=-++-= ⎪+⎝⎭,则整理可得121212ln ln 2x x x x x x -=-+,即有12121221ln 1x x xx x x ⎛⎫- ⎪⎝⎭=⎛⎫+ ⎪⎝⎭,令12(0t 1)x t x =<<,即4ln 201t t +-=+,令()4g ln 2(0t 1)1t t t =+-<≤+,则()()()2'21g 01t t t t -=≥+,则函数()g t 在(]0,1上单增,而()g 10=,所以在()0,1内,()g 0t <,即4ln 201t t +-=+在()0,1内无解,所以,不存在.21.(12分)解:(1)设直线PQ 为()1y k x =+,联立椭圆方程22143x y +=可得()22223484120k xk x k +++-=,设点()()1122,k ,,k P x x k Q x x k ++,则有221212228412,3434k k x x x x k k -+=-=++,又22PF QF ⊥,可得220PF QF ∙=uuu r uuu r,即有()()()22212121110kx x k x x k -+++++=,整理可得279,k k ==(2)记PQ 的中点为M ,要使得PQA 为正三角形,当且仅当点A 在PQ 的垂直平分线上且PQ MA 23=,现作l MM ⊥1于1M ,则123MM PQ >,根据第二定义可得PQePQ MM ==21,则有123>,显然不成立,即不能存在.。

重庆市第一中学校2019届高三下学期第三次月考数学(文)试题 Word版含解析

重庆市第一中学校2019届高三下学期第三次月考数学(文)试题 Word版含解析

2019年重庆一中高2019级高三下期5月月考数学(文科)测试试题卷一.选解题:在每个小题给出的四个选项中,有且只有一项是符合题目要求的. 1.已知集合|A x y ⎧==⎨⎩,{}2|230,B x x x x Z =--<∈,则A B ⋂=( ) A. {}0,1,2 B. ()0,2C. {}0D. ()0,1【答案】C 【解析】 【分析】先化简集合A 与集合B ,再求交集,即可得出结果. 【详解】因为{}|1A x y x x ⎧===<⎨⎩,{}{}2|230,0,1,2B x x x x Z =--<∈=, 则{}0AB =.故选C【点睛】本题主要考查集合的交集,熟记概念即可,属于常考题型.2.已知复数z 满足(12)1z i i -=+(i 是虚数单位),则z =( )A.5D.4【答案】B【解析】 【分析】先由复数的除法运算,求出z ,进而可求出结果. 【详解】因为(12)1z i i -=+,所以1(1)(12)1312(12)(12)5i i i iz i i i +++-+===--+,因此5z ==.故选B【点睛】本题主要考查求复数的模,熟记运算法则以及模的计算公式即可,属于常考题型.3.“p q ∧为真命题”是“p q ∨为真命题”( )的条件 A. 充分不必要 B. 必要不充分 C. 充要 D. 既不充分也不必要【答案】A 【解析】 【分析】根据充分条件与必要条件的概念,即可判断出结果.【详解】若“p q ∧为真命题”,则q p 、都为真命题;所以p q ∨为真命题; 若“p q ∨为真命题”,则q p 、至少有一个为真命题;所以p q ∧不一定为真命题. 所以,“p q ∧为真命题”是“p q ∨为真命题”的充分不必要条件. 故选A【点睛】本题主要考查充分不必要条件,熟记概念即可,属于常考题型.4.若0.22.1a =,0.40.6b =;lg 0.6c =,则实数a ,b ,c 的大小关系为( ) A. c b a >> B. a c b >> C. a c b >> D. b a c >> 【答案】A 【解析】 【分析】根据指数函数与对数函数的性质,分别确定a ,b ,c 的范围,即可得出结果. 【详解】因为0.202.1 2.11a =>=,0.4000.60.61b <=<=,lg 0.6lg10c =<=, 所以c b a >>. 故选A【点睛】本题主要考查对数与指数比较大小的问题,熟记对数函数与指数函数的性质即可,属于常考题型.5.已知直线1:(3)10l mx m y +-+=,直线2:(1)10l m x my ++-=,若12l l ⊥则m =( ) A. 0m =或1m =B. 1m =C. 32m =-D. 0m =或32m =-【答案】A 【解析】 【分析】根据直线垂直的充要条件,列出等式,求解,即可得出结果.【详解】因为直线1:(3)10l mx m y +-+=与直线2:(1)10l m x my ++-=垂直, 所以(1)(3)0m m m m ++-=,即0)1(=-m m ,解得0m =或1m =. 故选A【点睛】本题主要考查根据直线垂直求参数的问题,熟记直线垂直的充要条件即可,属于常考题型.6.轴截面为正方形的圆柱的外接球的体积与该圆柱的体积的比值为( )A.43B.23 D. 22【答案】C 【解析】 【分析】设圆柱的底面半径为R ,则圆柱的高为2R ,分别计算圆柱的体积和球的体积,可得答案. 【详解】设圆柱的底面半径为R ,则圆柱的高为2R ,圆柱的体积V =πR 2•2R =2πR 3,,故球的体积为:334)3R π=,. 故选:C .【点睛】本题考查的知识点是圆柱的体积,球的体积,难度不大,属于基础题.7.设函数()(1)1xf x x e =++,则( ) A. 2x =为()f x 的极大值点B. 2x =为()f x 的极小值点C. 2x =-为()f x 的极大值点D. 2x =-为()f x 的极小值点【答案】D 【解析】 【分析】先对函数()(1)1xf x x e =++求导,用导数方法研究其单调性,进而可得出其极值与极值点.【详解】因为()(1)1x f x x e =++,所以()(1)(2)x x xf x e x e x e ='+++=,由()(2)0xf x x e '+==得2x =-,所以,当2x >-时,()0f x '>,故()(1)1xf x x e =++单调递增; 当2x <-时,()0f x '<,故()(1)1xf x x e =++单调递减;所以函数()(1)1xf x x e =++在1a =-处取得极小值,无极大值. 故选D【点睛】本题主要考查导数的极值点,通常需要对函数求导,用导数的方法研究函数的单调性,进而可得极值点,属于常考题型.8.设实数x ,y 满足约束条件202300x y x y x y --≤⎧⎪-+≥⎨⎪+≤⎩,则46y x ++的取值范围是( )A. []4,1- B. 33,7⎡⎤-⎢⎥⎣⎦C. (][),31,-∞-+∞D. []3,1-【答案】D 【解析】画出约束条件202300x y x y x y --≤⎧⎪-+≥⎨⎪+≤⎩表示的可行域,46y x ++表示可行域内的点(),x y 与()6,4P --连线的斜率,由20230x y x y --=⎧⎪⎨⎪-+=⎩可得()5,73PA A k ,--=- ,由0230x y x y +=⎧⎪⎨⎪-+=⎩可得,()5,71PB B k --=,,所以46y x ++的取值范围是[]3,1-,故选D. 【方法点晴】本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二找、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移或旋转变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值9.执行下面的程序框图,若输出的S 的值为63,则判断框中可以填入的关于i 的判断条件是( )A. 5i ≤B. 6≤iC. 7i ≤D. 8i ≤【答案】B 【解析】 【分析】根据程序框图,逐步执行,直到S 的值为63,结束循环,即可得出判断条件. 【详解】执行框图如下: 初始值:0,1S i ==,第一步:011,112S i =+==+=,此时不能输出,继续循环; 第二步:123,213S i =+==+=,此时不能输出,继续循环; 第三步:347,314S i =+==+=,此时不能输出,继续循环; 第四步:7815,415S i =+==+=,此时不能输出,继续循环; 第五步:151631,516S i =+==+=,此时不能输出,继续循环; 第六步:313263,617S i =+==+=,此时要输出,结束循环; 故,判断条件为6≤i . 故选B【点睛】本题主要考查完善程序框图,只需逐步执行框图,结合输出结果,即可确定判断条件,属于常考题型.10.将函数2())sin 2sin 12f x x x x ππ⎛⎫=-++- ⎪⎝⎭图像向左平移ϕ(0)ϕ>个单位后图像关于点,03π⎛⎫⎪⎝⎭中心对称,则ϕ的值可能为( ) A.6πB.34π C.712π D.23π 【答案】B 【解析】 【分析】先将函数化简整理,再向左平移,根据平移后图像关于点,03π⎛⎫⎪⎝⎭中心对称,列出等式,即可得出结果.【详解】由题意可得:2())sin 2sin 12cos 22sin(2)26f x x x x x x x πππ⎛⎫=-++-=-=- ⎪⎝⎭,将函数()f x 图像向左平移ϕ个单位后,得到2sin(22)6y x πϕ=-+,又平移后图像关于点,03π⎛⎫⎪⎝⎭中心对称,所以22,36k k Z ππϕπ⨯-+=∈,因此,42k k Z ππϕ=-+∈,又因为0ϕ>,所以0,42k k Z ππ-+>∈,即1,2k k Z >∈, 当2k =时,34πϕ=.故选B【点睛】本题主要考查三角函数的图像变换,以及已知对称中心求参数的问题,熟记正弦函数的性质即可,属于常考题型.11.直线l 是抛物线y x 22=在点()2,2-处的切线,点P 是圆22420x y x y +--=上的动点,则点P 到直线l 的距离的最小值等于( )A. 25- C.5D.65【答案】C 【解析】 【分析】先由题意求出直线l 的方程,再求出圆22420x y x y +--=的圆心到直线的距离,减去半径,即为所求结果.【详解】因为y x 22=,所以y x '=,因此抛物线y x 22=在点()2,2-处的切线斜率为22x y x =-==-',所以直线l 的方程为)2(22+-=-x y ,即22y x =--, 又圆22420x y x y +--=可化为5)1()2(22=-+-y x ,所以圆心为)1,2(,半径r =则圆心到直线的距离为d ==又因点P 是圆22420x y x y +--=上的动点, 所以点P 到直线l的距离的最小值等于d r -=. 故选C【点睛】本题主要考查圆上的点到直线距离的最值问题,熟记直线与圆位置关系即可,属于常考题型.12.已知函数21,0()log ,0x x f x x x ⎧+≤⎪=⎨≥⎪⎩,若方程a x f =)(有四个不同的解1x ,2x ,3x ,4x ,且4321x x x x <<<,则()3122344x x x x x -++的取值范围是( ) A. (]6,9B. ()6,9C. ()+∞D.)⎡+∞⎣【答案】A 【解析】 【分析】先根据函数()f x 解析式,作出函数图像,根据方程a x f =)(有四个不同的解1x ,2x ,3x ,4x ,且4321x x x x <<<,求出12x x +与34x x ,化简所求式子,构造函数,再根据3x 的范围,用导数的方法研究新函数的单调性,即可得出结果.【详解】作出函数21,0()log ,0x x f x x x ⎧+≤⎪=⎨≥⎪⎩的图像如下:因为方程a x f =)(有四个不同的解1x ,2x ,3x ,4x ,且4321x x x x <<<, 所以有12x x 2+=-,q p ∨,故()31232343442x x x x x x x -++=+, 再由2log 1x =可得2x =或12x =, 即3112x ≤<, 令4()2g x x x =+,(112x ≤<),则24()2g x x'=-,因为112x ≤<,所以24()20g x x'=-<,即函数4()2g x x x =+1,12⎡⎫⎪⎢⎣⎭上单调递减, 又1()1892g =+=,(1)246g =+=, 所以(]()6,9g x ∈. 即()3122344x x x x x -++的取值范围是(]6,9 故选A【点睛】本题主要考查根据方程的根求取值范围的问题,通常需要结合函数图像求解,灵活运用数形结合的思想即可,属于常考题型.二.填空题.13.双曲线22:21C x y -=的渐近线方程是________.【答案】y = 【解析】 【分析】将双曲线化成标准方程,得到a 、b 值,即可得到所求渐近线方程.【详解】解:双曲线222x y 1-=的标准方程为:22x y 112-=21a 2∴=,2b 1=,可得a 2=,b 1= 又双曲线2222x y 1a b -=的渐近线方程是b y x a =±∴双曲线222x y 1-=的渐近线方程是y =故答案为:y =【点睛】本题考查双曲线渐近线方程的求法,属于基础题.14.已知平面向量a ,b 的夹角为3π,且1a =,12b ⎛= ⎝⎭r ,则(2)a b b +⋅=________. 【答案】52【解析】 【分析】,得到a b ⋅,进而可求出结果.【详解】因为12b ⎛= ⎝⎭r ,所以1b =,又向量a ,b 的夹角为3π,且1a =, 则1cos32b a b a π=⋅=, 所以21(2)52222a b b a b b +⋅=⋅+=+=. 故答案为52【点睛】本题主要考查平面向量的数量积运算,熟记概念与运算法则即可,属于常考题型.15.已知{}na 是等差数列,37a =,且2618a a +=.若nb ={}n b 的前n 项和n T =_____.【答案】12n T = 【解析】 【分析】先设等差数列{}n a 的公差为d ,根据题中条件,求出首项和公差,得到通项公式,进而得到n b ,再由分母有理化,用裂项相消的方法,即可求出结果. 【详解】设等差数列{}n a 的公差为d ,由37a =,2618a a +=可得31261272618a a d a a a d =+=⎧⎨+=+=⎩,解得 2,31==d a , 所以32(1)21n a n n =+-=+,因此12n b ===,所以,{}n b 的前n 项和n n b b b T +++= (21)1...2⎡⎤+++⎣=⎦12=.故答案为12【点睛】本题主要考查等差数列的通项公式、以及裂项相消法求和,熟记公式即可,属于常考题型.16.给出下列4个命题:①若函数()f x 在()2015,2019上有零点,则一定有(2015)(2019)0f f ⋅<;②函数y =③若函数()2()lg 54f x ax x =++的值域为R ,则实数a 的取值范围是250,16⎛⎤⎥⎝⎦;④若函数()f x 满足条件1()4(,0)f x f x x R x x ⎛⎫-=∈≠ ⎪⎝⎭,则()x f 的最小值为415.其中正确命题的序号是:_______.(写出所有正确命题的序号) 【答案】④ 【解析】 【分析】举出特例,如()2(2017)1f x x =--,即可判断①为假;根据定义域先将原函数化简,再根据奇偶性的定义,即可判断②为假;根据函数()2()lg 54f x ax x =++的值域为R ,可得二次函数254y ax x =++与x 轴必有交点,且开口向上,进而可判断③为假;用解方程组法,先求出()f x 的解析式,即可求出()x f 的最小值,判断出④为真.【详解】①若()2(2017)1f x x =--,则()f x 在()2015,2019上有零点,此时(2015)0f >,(2019)0f >,即(2015)(2019)0f f ⋅>,所以①错;②由290x ->得33x -<<,所以y ===,所以函数y =是偶函数,故②错;③若函数()2()lg 54f x ax x =++的值域为R , 当0a =时,显然成立.当0a ≠时,则二次函数254y ax x =++与x 轴必有交点,且开口向上,即251600a a ∆=-≥⎧⎨>⎩解得25016a <≤,所以实数a 的取值范围是25016a ≤≤.故③错; ④因1()4f x f x x ⎛⎫-= ⎪⎝⎭,所以有()114f f x x x ⎛⎫-= ⎪⎝⎭,联立消去⎪⎭⎫⎝⎛x f 1,可得14()15f x x x ⎛⎫=-+ ⎪⎝⎭(0x ≠),所以()1415f x x x=+,当0x >时,444x x x x +=+≥=;当0x <时,44()4x x x x ⎛⎫+=-+-≥= ⎪⎝⎭, 所以()1441515f x x x =+≥,即最小值为415.故④正确. 故答案为④【点睛】本题主要考查命题真假的判定,熟记零点存在性定理、函数奇偶性的概念、对数型函数的性质、以及解方程组法求函数解析式等即可,属于常考题型.三.解答题.17.V ABC 中,内角A ,B ,C 对应的边分别为a ,b ,c ,满足)(sin )sin A B B B A +=+.(Ⅰ)已知cos C =,3a =,求sin B 与b 的值; (Ⅱ)若0,3B π⎛⎫∈ ⎪⎝⎭,且4cos()5A B -=,求B sin .【答案】(Ⅰ)sin B =1b =+10334-【解析】 【分析】(Ⅰ)先由)(sin )sin A B B B A +=+化简整理得到sin A A =,求出3A π=,再由cos C =求出sin C ,根据sin sin()B A C =+求出sin B ,再由正弦定理,即可求出结果; (Ⅱ)先由4cos()5A B -=结合题中条件,求出3sin()5A B -=,再由sin sin(())B A A B =--展开,即可求出结果.【详解】)(sin )sin A B B B A +=+得cos sin sin sin sin A B A B B A B A =+,故sin A A =,因为(0,)A π∈,且cos 0A ≠,所以tan A =3A π=.因为cos C =,(0,)C π∈,所以sin C = 因此sin sin()sin cos cos sin B A C A C A C =+=+123236=+⋅=,由正弦定理知:AaB b sin sin =,即1b =+(Ⅱ)因为0,3B π⎛⎫∈ ⎪⎝⎭,所以0,33A B B ππ⎛⎫-=-∈ ⎪⎝⎭,又4cos()5A B -=,所以3sin()5A B -=, 所以sin sin(())sin cos()cos sin()B A A B A A B A A B =--=---310=【点睛】本题主要考查解三角形,熟记正弦定理、两角和与差的正弦公式等即可,属于常考题型.18.改革开放40年来,体育产业蓬勃发展反映了“健康中国”理念的普及.下图是我国2006年至2016年体育产业年增加值及年增速图.其中条形图表示体育产业年增加值(单位:亿元),折线图为体育产业年增长率(%).(Ⅰ)从2007年至2016年这十年中随机选出一年,求该年体育产业年增加值比前一年多500亿元以上的概率;(Ⅱ)从2007年至2011年这五年中随机选出两年,求至少有一年体育产业年增长率超过25%的概率;(Ⅲ)由图判断,从哪年开始连续三年的体育产业年增长率方差最大?从哪年开始连续三年的体育产业年增加值方差最大?(结论不要求证明) 【答案】(Ⅰ)25;(Ⅱ)CF BC ⊥;(Ⅲ)从2008年或2009年开始连续三年的体育产业年增长率方差最大.从2014年开始连续三年的体育产业年增加值方差最大. 【解析】 【分析】(Ⅰ)由图利用古典概型求值即可;(Ⅱ)求出任选两年的基本事件总数,列举满足条件的基本事件,即可求概率(Ⅲ)由题分析即可求解【详解】(Ⅰ)设A 表示事件“从2007年至2016年这十年中随机选出一年,该年体育产业年增加值比前一年多500亿元以上”. 根据题意,()42P A 105==. (Ⅱ)从2007年至2011年这五年中有两年体育产业年增长率超过25%,设这两年为A ,B ,其它三年设为C ,D ,E ,从五年中随机选出两年,共有10种情况:AB ,AC ,AD ,AE ,BC ,BD ,BE ,CD ,CE ,DE ,其中至少有一年体育产业年增长率超过25%有7种情况, 所以所求概率为710. (Ⅲ)从2008年或2009年开始连续三年的体育产业年增长率方差最大. 从2014年开始连续三年的体育产业年增加值方差最大.【点睛】本题考查条形图和折线图,古典概型,方差,准确识图是关键,是中档题19.如图,PAD △是边长为3的等边三角形,四边形ABCD 为正方形,平面PAD ⊥平面ABCD .点E ,F 分别为棱CD ,PD 上的点,且12PF CE FD ED ==,G 为棱AB 上一点,且AGGBλ=. (Ⅰ)当12λ=时,求证:PG P 平面AEF ; (Ⅱ)已知三棱锥A EFG -的体积为3,求λ的值.【答案】(Ⅰ)见证明;(Ⅱ)2λ= 【解析】 【分析】(Ⅰ)先连接CG ,根据面面平行的判定定理,先证明平面PCG 平面AEF ,进而可得出结论成立;(Ⅱ)取AD 的中点为O ,连接PO ,证明⊥PO 平面ABCD ;再过点F 作FH AD ⊥于点H ,得⊥FH 平面AEG ,再由A EFG F AGE V V --=求出AG ,进而可得出结果.【详解】解:(Ⅰ)连接CG ,当12λ=时,CE AG P 且CE AG =, ∴四边形AECG 平行四边形,.AE CG ∴P ,12PF CE FD ED ==Q,EF PC ∴P , AE EF E =Q I ,PC CG C =I ,∴平面PCG 平面AEF ,又PG ⊂平面PCG ,PG ∴P 平面AEF .(Ⅱ)取AD 的中点为O ,连接PO ,则PO AD ⊥, 平面PAD ⊥平面ABCD ,PO ∴⊥平面ABCD .过点F 作FH AD ⊥于点H ,则PO FH P ,⊥FH 平面AEG ,则2233h FH PO ====13A EFG F AGE AEG V V S --===Q △.1332AEG S AG ∴=⋅⋅=△,2AG ∴=.2AG GB∴=,即2λ=.【点睛】本题主要考查线面平行的判定、以及根据几何体体积的相关计算,熟记线面、面面平行的判定定理与性质定理,以及等体积法的运用即可,属于常考题型.20.如图,C ,D 是离心率为12的椭圆的左、右顶点,1F ,2F 是该椭圆的左、右焦点,A ,B 是直线4x =-上两个动点,连接AD 和BD ,它们分别与椭圆交于点E ,F 两点,且线段EF 恰好过椭圆的左焦点1F .当EF CD ⊥时,点E 恰为线段AD 的中点.(1)求椭圆的方程;(Ⅱ)判断以AB 为直径的圆与直线EF 位置关系,并加以证明.【答案】(Ⅰ)13422=+y x (Ⅱ)以AB 为直径的圆始终与直线EF 相切【解析】 【分析】(Ⅰ)由当EF CD ⊥时,点E 恰为线段AD 的中点,得到4a c c +=-,再由21==a c e ,即可求出,,a c b ,得到椭圆方程;(Ⅱ)先由题意可知直线EF 不可能平行于x 轴,设EF 的方程为:1x my =-,()11,E x y 、()22,F x y ,联立直线与椭圆方程,根据韦达定理、弦长公式等,结合题中条件,即可得出结论.【详解】解:(Ⅰ)当EF CD ⊥时,点E 恰为线段AD 的中点,4a c c ∴+=-,又21==a ce ,联立解得:1c =,2a =,b =∴椭圆的方程为13422=+y x .(Ⅱ)由题意可知直线EF 不可能平行于x 轴,设EF 的方程为:1x my =-,()11,E x y 、()22,F x y ,221431x y x my ⎧+=⎪⎨⎪=-⎩联立得: 22(34)690m y my +--=, ()22(6)36340m m ∴∆=-++>,122122634934m y y m y y m ⎧+=⎪⎪+∴⎨-⎪=⎪+⎩(*)又设()4,A A y -,由A 、E 、D 三点共线得11116623A y y y x my --==--, 同理可得2263B y y my -=-.()()1212122121212236663339A B my y y y y y y y my my m y y m y y ⎛⎫-+--+=+=- ⎪ ⎪---++⎝⎭22222962334346696393434m m m m m m m m m m -⎛⎫- ⎪++=-= ⎪- ⎪-+++⎝⎭()1212212121266183339A B y y y y y y my my m y y m y y ⎛⎫----=-= ⎪ ⎪---++⎝⎭∴22218393434m m m m ==-+ ⎪++ ⎪⎝⎭设AB 中点为M ,则M 坐标为4,2A B y y +⎛⎫- ⎪⎝⎭即(4,3)m -,∴点M 到直线EF的距离1122A B d y y AB ===-=. 故以AB 为直径的圆始终与直线EF 相切.【点睛】本题主要考查椭圆方程、以及直线与椭圆、直线与圆位置关系,熟记椭圆方程,韦达定理、以及直线与椭圆位置关系即可,属于常考题型.21.设函数()223(0)xf x e ax a a =-+>,对于x R ∀∈,都有()5f x a ≥成立.(Ⅰ)求实数a 的取值范围; (Ⅱ)证明:*1232ln(),23n n n en e n N n n n n+++++++>+∈L (其中e 是自然对数的底数).【答案】(Ⅰ)(]0,1(Ⅱ)见证明 【解析】 【分析】(Ⅰ)先对函数求导,再由导数的方法研究函数单调性,确定其最小值,结合题中条件列出不等式,即可得出结果;(Ⅱ)由(Ⅰ)可知:当1a =时,()5f x a ≥,即2235x e x -+≥,即e 1x x ≥+,进而可得当1x >-时,ln(1)x x ≥+,再令()*1x n N n =∈,可得11ln n n n +⎛⎫≥ ⎪⎝⎭,最后将123223n n n n n n n+++++++L 化简整理,即可得出结论成立. 【详解】解:(Ⅰ)()22()x f x e a x R '=-∈Q ,∴当0a >时,由()0f x '>,得ln x a >,由()0f x '<,得ln x a <,)(x f ∴在(ln ,)a +∞上单调递增,在(,ln )a -∞上单调递减.x R ∀∈,()5f x a ≥都成立,min ()5f x a ∴≥.又min ()(ln )2ln 5f x f a a a a ==-+,所以由2ln 55a a a a -+≥,得ln 0a a -≥.01a ∴<≤;a ∴的取值范围是(]0,1.(Ⅱ)当1a =时,()5f x a ≥,即2235x e x -+≥.1x e x ∴≥+.∴当1x >-时,ln(1)x x ≥+.令()*1x n N n =∈,则11ln n n n +⎛⎫≥ ⎪⎝⎭.且1n =时,1ln 2>.11123411ln ln ln ln 23123n n n +⎛⎫⎛⎫⎛⎫⎛⎫∴++++>++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭L L 2341ln ln(1)123n n n +⎛⎫=⨯⨯⨯⨯=+ ⎪⎝⎭L ,1111ln(1)23n n∴++++>+L .123223n n n n n n n+++++++L 1111112n n n n ⎛⎫⎛⎫⎛⎫=++++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭L 11111ln(1)1ln (1)23n e n n ⎛⎫=+++++>++=+ ⎪⎝⎭L ; 即()*1232ln (1)23n n n e n n N n n n n+++++++>+∈L 恒成立. 【点睛】本题主要考查导数的应用,通常需要对函数求导,用导数的方法研究函数单调性、最值等即可,属于常考题型.22.选修4-4:坐标系与参数方程.在直角坐标系xOy 中,直线l 的参数方程为cos sin x t y t αα=⎧⎨=⎩,(t 为参数),在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线1:2cos C ρθ=,2:2cos 3C πρθ⎛⎫=- ⎪⎝⎭. (Ⅰ)求1C 与2C 交点的直角坐标;(Ⅱ)若直线l 与曲线1C ,2C 分别相交于异于原点的点M ,N ,求MN 的最大值.【答案】(Ⅰ)()0,0,3,22⎛⎫ ⎪ ⎪⎝⎭.(Ⅱ)2【解析】【分析】 (Ⅰ)根据极坐标与直角坐标的互化公式,可直接得出1C 与2C 的直角坐标方程,两式联立,即可求出交点坐标; (Ⅱ)不妨设0απ≤<,点M ,N 的极坐标分别为()1,ρα,()2,ρα,用极坐标的方法得到122cos 2cos 3MN πρραα⎛⎫=-=-- ⎪⎝⎭,化简整理,即可得出结果. 【详解】解:(Ⅰ)曲线1C 的直角坐标方程为222x y x +=,曲线2C 的直角坐标方程为220x y x +-=.由222220x y x x y x ⎧+=⎪⎨+-=⎪⎩解得00x y =⎧⎨=⎩或32x y ⎧=⎪⎪⎨⎪=⎪⎩故1C 与2C 交点的直角坐标为()0,0,32⎛ ⎝⎭.(Ⅱ)不妨设0απ≤<,点M ,N 的极坐标分别为()1,ρα,()2,ρα 所以122cos 2cos 3MN πρραα⎛⎫=-=-- ⎪⎝⎭()2cos cos cos ααααα=-+= 2cos 3πα⎛⎫=+ ⎪⎝⎭ 所以当32πα=时,MN 取得最大值2. 【点睛】本题主要考查极坐标与直角坐标的互化,以及极坐标系下的弦长问题,熟记公式即可,属于常考题型.23.选修4-5:不等式选讲. 设函数()2122f x x x =-++.(Ⅰ)若存在0x R ∈,使得()205f x m m +≤-,求实数m 的取值范围; (Ⅱ)若m 是(Ⅰ)中的最大值,且正数a ,b 满足a b m +=,证明:122≥+ab b a . 【答案】(Ⅰ)21m -≤≤(Ⅱ)见证明【解析】【分析】(Ⅰ)先由函数解析式求出()f x 最小值,再由题意得到()2min 5f x m m +≤-,进而可求出结果;(Ⅱ)先由(Ⅰ)得到max m ,再结合基本不等式,即可证明结论成立.【详解】解:(Ⅰ)()()212121213f x x x x x =-++≥--+=Q存在0x R ∈,使得()205f x m m +≤-,235m m ∴+≤- 220m m ∴+-≤,21m ∴-≤≤.(Ⅱ)由(Ⅰ)知:max 1m =,1a b ∴+=2222a b a b a b b a ∴+++≥=+ 221a b a b b a∴+≥+=,当且仅当a b =时取“=”. 【点睛】本题主要考查含绝对值不等式,以及不等式的证明,熟记基本不等式,以及绝对值不等式的性质即可,属于常考题型.。

2019届重庆市一中高三第四次模拟考试数学(理)试题

2019届重庆市一中高三第四次模拟考试数学(理)试题

秘密★启用前2019届重庆市一中高三第四次模拟考试数学(理科)★祝考试顺利★ 注意事项:1、考试范围:高考范围。

2、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。

用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。

3、选择题的作答:每个小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。

4、主观题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。

如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

5、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。

答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。

6、保持卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。

7、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。

第Ⅰ卷一.选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知复数z 满足(1)1z i i -=+(i 是虚数单位),则||z =A .0B .12C .1D .322.已知集合{A x y ==,{}2230B x x x x Z =--<∈,,则()R C A B = A .{}1 B .{}2 C .{}21, D .{}321,, 3. 若4log 3=a ,4.06.0=b ,2log 21=c ,则实数c b a ,,的大小关系为A. c b a >> B .b c a >> C .a c b >> D .c a b >>4. 下列说法正确的是A . 设m 是实数,若方程12122=-+-mym x 表示双曲线,则2>m . B.“q p ∧为真命题”是“q p ∨为真命题”的充分不必要条件.C . 命题“R x ∈∃,使得0322<++x x ”的否定是:“R x ∈∀,0322>++x x ”.D . 命题“若0x 为()x f y =的极值点,则()00'=x f5. 执行右边的程序框图,若输出的S 的值为63,则判断框中可以填入的关于i 的判断条件是 A .5≤i B .6≤i C .7≤i D .8≤i6. 在数学兴趣课堂上,老师出了一道数学思考题,某小组的 三人先独立思考完成,然后一起讨论。

重庆市第一中学2019届高三下学期4月月考(理)数学试题(解析版)

重庆市第一中学2019届高三下学期4月月考(理)数学试题(解析版)

2019年重庆一中高2019级高三下期月考理科学数学一、选择题1.设集合2{log 1}A x x =≤,集合2{|20}B x x x =+-<,则A B U 为( )A. (0,1)B. (2,2]-C. (,2]-∞D. (2,1)- 【答案】B【分析】先通过解不等式得出集合,A B ,然后再求A B U .【详解】由2log 1x ≤得,02x <≤,即(]0,2A =.由220x x +-<得,21x -<<,即()2,1B =-.所以(]2,2A B =-U故选:B【点睛】本题考查解对数不等式和二次不等式以及集合的并集运算,属于基础题.2.已知复数z 满足()2201913z i i +=+,则||z =( )A. B. C. 14 D. 【答案】A【分析】由2019450433i i i i ⨯+==-=先求出复数z ,然后再求||z .【详解】由2019450433i i i i ⨯+==-=.所以由()2201913z i i +=+得:()213z i i -=+即()23z i i -=+,故:33122i i z i +-==-所以||2z == 故选:A【点睛】本题考查复数的运算,复数的模长的计算,属于基础题.3.设函数31log (1),1()1,12x x x f x x -->⎧⎪=⎨⎛⎫ ⎪⎪⎝⎭⎩…,则(1)f =( )A. 0B. 1-C. 1D. 2【答案】C 【分析】根据函数的表达式直接将(1)f 的值代出可求出答案. 【详解】由函数的表达式有111(1)12f -⎛⎫== ⎪⎝⎭故选:C 【点睛】本题考查分段函数求函数值,属于基础题.4.已知第一象限内抛物线24y x =上的一点Q 到y 轴的距离是该点到抛物线焦点距离的12,则点Q 的坐标为( )A. (1,2)-B. (1,2)C.D. 1,14⎛⎫ ⎪⎝⎭ 【答案】B【分析】设()(),0,0Q x y x y >>,根据抛物线的定义以及题目条件可得12x x +=,从而求出Q 点的坐标.【详解】抛物线24y x =的准线方程为:1x =-.设()(),0,0Q x y x y >>,则点Q 到y 轴的距离为x ,点Q 到准线的距离为1x +.根据抛物线的定义有:点Q 到焦点的距离为1x +.又点Q 到y 轴的距离是该点到抛物线焦点距离的12. 所以12x x +=,得1x = ,则2y =即(1,2)Q故选:B【点睛】本题考查抛物线的定义的运用,属于基础题.5.我国古代数学著作《孙子算经》中记有如下问题:“今有五等诸侯,其分橘子六十颗,人別加三颗”,问:“五人各得几何?”其意思为:“现在有5个人分60个橘子,他们分得的橘子个数成公差为3的等差数列,问5人各得多少橘子.”根据这个问题,下列说法错误的是( )A. 得到橘子最多的诸侯比最少的多12个B. 得到橘子的个数排名为正数第3和倒数第3的是同一个人C. 得到橘子第三多的人所得的橘子个数是12D. 所得橘子个数为倒数前3的诸侯所得的橘子总数为24。

2019届重庆市第一中学校高三下学期第三次月考数学(理)试题(含答案解析)

2019届重庆市第一中学校高三下学期第三次月考数学(理)试题(含答案解析)

2019届重庆市第一中学校高三下学期第三次月考数学(理)试题一、单选题1.已知复数z 满足(1)1z i i -=+(i 是虚数单位),则z =( ) A .0 B .12C .1D .32【答案】C【解析】先求出复数z,再求|z|得解. 【详解】由题得21(1)2,||11(1)(1)2i i iz i z i i i ++====∴=--+ 故选C 【点睛】本题主要考查复数的除法运算和复数的模的计算,意在考查学生对这些知识的理解掌握水平和分析推理能力. 2.已知集合{|A x y ==,2{|230,}B x x x x Z =--<∈,则()RC A B =I ( ) A .{1} B .{2}C .{1,2}D .{1,2,3}【答案】C【解析】先化简集合A,B ,再求()R C A B I 得解. 【详解】由题得A={x|x <1},B={x|-1<x <3,x ∈Z}={0,1,2}, 所以{|1}R C A x x =≥, 所以()={1,2}R C A B I . 故选:C 【点睛】本题主要考查集合的化简,考查集合的补集和交集的运算,意在考查学生对这些知识的理解掌握水平和分析推理能力.3.若,,,则实数,,的大小关系为( )A .B .C .D .【答案】A【解析】先求出a,b,c 的范围,再比较大小即得解. 【详解】 由题得,,所以a>b>c. 故选:A 【点睛】本题主要考查对数函数和指数函数的单调性的应用,考查实数大小的比较,意在考查学生对这些知识的理解掌握水平和分析推理能力. 4.下列说法正确的是( )A .设m 为实数,若方程22112x y m m+=--表示双曲线,则m >2.B .“p ∧q 为真命题”是“p ∨q 为真命题”的充分不必要条件C .命题“∃x ∈R ,使得x 2+2x +3<0”的否定是:“∀x ∈R ,x 2+2x +3>0”D .命题“若x 0为y =f (x )的极值点,则f ’(x )=0”的逆命题是真命题 【答案】B【解析】根据双曲线的定义和方程判断A ,复合命题真假关系以及充分条件和必要条件的定义判断B ,特称命题的否定是全称命题判断C ,逆命题的定义以及函数极值的性质和定义判断D. 【详解】对于A :若方程表示双曲线,则()()120m m --<,解得2m >或1m <,故A 错误; 对于B :若p q ∧为真命题,则p ,q 同时为真命题,则p q ∨为真命题,当p 真q 假时,满足p q ∨为真命题,但p q ∧为假命题,即必要性不成立,则“p q ∧为真命题”是“p q ∧为真命题”的充分不必要条件,故B 正确;对于C :命题“x R ∃∈,使得2230x x ++<”的否定是:“x R ∀∈,2230x x ++≥”,故C 错误;对于D :命题“若0x 为()y f x =的极值点,则()0f x '=”的逆命题是:“若()0f x '=,则0x 为()y f x =的极值点”,此逆命题为假命题,比如:在()3f x x =中,()23f x x '=,其中()00f '=,但0x =不是极值点,故D 错误. 故选:B. 【点睛】本题主要考查命题的真假判断,涉及知识点较多,综合性较强,难度不大,属于基础题. 5.执行下面的程序框图,若输出的S 的值为63,则判断框中可以填入的关于i 的判断条件是( )A .5i ≤B .6i ≤C .7i ≤D .8i ≤【答案】B【解析】根据程序框图,逐步执行,直到S 的值为63,结束循环,即可得出判断条件. 【详解】 执行框图如下: 初始值:0,1S i ==,第一步:011,112S i =+==+=,此时不能输出,继续循环; 第二步:123,213S i =+==+=,此时不能输出,继续循环; 第三步:347,314S i =+==+=,此时不能输出,继续循环; 第四步:7815,415S i =+==+=,此时不能输出,继续循环; 第五步:151631,516S i =+==+=,此时不能输出,继续循环;第六步:313263,617S i =+==+=,此时要输出,结束循环; 故,判断条件为6i ≤. 故选B 【点睛】本题主要考查完善程序框图,只需逐步执行框图,结合输出结果,即可确定判断条件,属于常考题型.6.在数学兴趣课堂上,老师出了一道数学思考题,某小组的三人先独立思考完成,然后一起讨论.甲说:“我做错了!”乙对甲说:“你做对了!”丙说:“我也做错了!”老师看了他们三人的答案后说:“你们三人中有且只有一人做对了,有且只有一人说对了.”请问下列说法正确的是( ) A .乙做对了 B .甲说对了C .乙说对了D .甲做对了【答案】B【解析】分三种情况讨论:甲说法对、乙说法对、丙说法对,通过题意进行推理,可得出正确选项. 【详解】分以下三种情况讨论:①甲的说法正确,则甲做错了,乙的说法错误,则甲做错了,丙的说法错误,则丙做对了,那么乙做错了,合乎题意;②乙的说法正确,则甲的说法错误,则甲做对了,丙的说法错误,则丙做对了,矛盾; ③丙的说法正确,则丙做错了,甲的说法错误,则甲做对了,乙的说法错误,则甲做错了,自相矛盾. 故选:B. 【点睛】本题考查简单的合情推理,解题时可以采用分类讨论法进行假设,考查推理能力,属于中等题.7.割补法在我国古代数学著作中称为“出入相补”,刘徽称之为“以盈补虚”,即以多余补不足,是数量的平均思想在几何上的体现.下图揭示了刘徽推导三角形面积公式的方法.在ABC ∆内任取一点,则该点落在标记“盈”的区域的概率为( )A .12B .13C .14D .15【答案】C【解析】根据题意可得该点落在标记“盈”的区域的面积为三角形面积的四分之一,即可得解. 【详解】 由题得1,=,22ABC ABC aS ah S h S S ∆∆=∴=矩形矩形. 所以“盈”的区域的面积等于“虚”的区域的面积. 而“虚”的区域占矩形区域的面积的四分之一,所以该点落在标记“盈”的区域的面积为三角形面积的四分之一, 故该点落在标记“盈”的区域的概率为14, 故选C . 【点睛】本题考查了几何概型的概率公式,考查了数学文化知识,属于基础题 8.将函数2()23)sin 2sin 12f x x x x ππ⎛⎫=-++- ⎪⎝⎭的图像向左平移(0)ϕϕ>个单位长度后,所得图像关于y 轴对称,则ϕ的值可能为( ) A .6π B .23π C .2π D .3π 【答案】D【解析】先化简函数的解析式,再平移得到函数2sin(22)6y x πϕ=+-,再根据函数的对称性得解. 【详解】由题得(x)23sin cos cos23sin 2cos22sin(2)6f x x x x x x π=-=-=-,将函数2()23)sin 2sin 12f x x x x ππ⎛⎫=-++- ⎪⎝⎭的图像向左平移(0)ϕϕ>个单位长度后得到2sin[2()]2sin(22)66y x x ππϕϕ=+-=+-,由题得2,,()6223k k k Z ππππϕπϕ-=+∴=+∈, 当k=0时,=3πϕ.故选D 【点睛】本题主要考查三角恒等变换和图像的变换,考查函数奇偶性的应用,考查三角函数的图像和性质,意在考查学生对这些知识的理解掌握水平和分析推理能力. 9.已知空间中不同直线m 、n 和不同平面α、β,下面四个结论: ①若m 、n 互为异面直线,m ∥α,n ∥α,m ∥β,n ∥β,则α∥β; ②若m ⊥n ,m ⊥α,n ∥β,则α⊥β; ③若n ⊥α,m ∥α,则n ⊥m ; ④若α⊥β,m ⊥α,n ∥m ,则n ∥β. 其中正确的是( ) A .①② B .②③C .③④D .①③【答案】D【解析】由线面和面面平行和垂直的判定定理和性质定理即可得解. 【详解】对于①,由面面平行的判定定理可得,若m 、n 互为异面直线,m ∥α,n ∥β,则α∥β或相交,又因为m ∥β,n ∥α,则α∥β,故①正确;对于②,若m ⊥n ,m ⊥α,n ∥β,则α⊥β或α∥β或α,β相交,故②错误, 对于③,若n ⊥α,m ∥α,则n ⊥m ;故③正确,对于④,若α⊥β,m ⊥α,n ∥m ,则n ∥β或n ⊂β,故④错误, 综上可得:正确的是①③, 故选D . 【点睛】本题考查了线面、面面的位置关系,考查了线面垂直、平行的判定及性质定理的应用,属中档题.10.在ABC ∆中,三内角A 、B 、C 对应的边分别为a 、b 、c ,且a =(sin )sin C B B A =,BC 边上的高为h ,则h 的最大值为( )A .12B .1C .32D .2【答案】C【解析】先化简已知得c 2sin()3B π=+,再求出1sin(2)62h B π=-+,再利用三角函数求h 最大值得解. 【详解】(sin )sin C B B A =+,(sin )(sin )B B a B B =+⋅=+所以c 2sin()3B π=+.所以1h csinB 2sin()sinB 2sinB(sinB )32B B π==+= 所以1sin(2)62h B π=-+, 所以当B=3π时,h 取最大值32. 故选C 【点睛】本题主要考查正弦定理解三角形,考查三角函数和三角恒等变换,意在考查学生对这些知识的理解掌握水平和分析推理能力.11.若一个四位数的各位数字相加和为10,则称该数为“完美四位数”,如数字“2017”.试问用数字0,1,2,3,4,5,6,7组成的无重复数字且大于2017的“完美四位数”有( )个. A .71 B .66C .59D .53【答案】A【解析】根据题意,分析可得四位数字相加和为10的情况有①0、1、3、6,②0、1、4、5,③0、1、2、7,④0、2、3、5,⑤1、2、3、4;共5种情况,据此分5种情况讨论,依次求出每种情况下大于2017的“完美四位数”的个数,将其相加即可得答案. 【详解】根据题意,四位数字相加和为10的情况有①0、1、3、6,②0、1、4、5,③0、1、2、7,④0、2、3、5,⑤1、2、3、4;共5种情况, 则分5种情况讨论:①、四个数字为0、1、3、6时,千位数字可以为3或6,有2种情况,将其余3个数字全排列,安排在百位、十位、个位,有336A =种情况,此时有2612⨯=个“完美四位数”,②、四个数字为0、1、4、5时,千位数字可以为4或5,有2种情况,将其余3个数字全排列,安排在百位、十位、个位,有336A =种情况,此时有2612⨯=个“完美四位数”,③、四个数字为0、1、2、7时,千位数字为7时,将其余3个数字全排列,安排在百位、十位、个位,有336A =种情况,千位数字为2时,有2071、2107、2170、2701、2710,共5种情况,此时有6511+=个“完 美四位数”,④、四个数字为0、2、3、5时,千位数字可以为2或3或5,有3种情况,将其余3个数字全排列,安排在百位、十位、个位,有336A =种情况,此时有1863=⨯个“完美四位数”,⑤、四个数字为1、2、3、4时,千位数字可以为3或4或2,有3种情况,将其余3个数字全排列,安排在百位、十位、个位,有336A =种情况,此时有1863=⨯个“完美四位数”,则一共有121211181871++++=个“完美四位数”, 故选:A . 【点睛】本题考查排列、组合的应用,涉及分类计数原理的运用,分类讨论注意做到不重不漏.12.设[]x 表示不大于实数x 的最大整数,函数2ln [ln ]1,0()(1),0xx x x f x e ax x ⎧-->=⎨+≤⎩,若关于x 的方程()1f x =有且只有5个解,则实数a 的取值范围为( )A .(,1)-∞-B .(,)e -∞-C .(,1]-∞-D .(,]e -∞-【答案】A【解析】根据分段函数的解析式,先讨论当x >0时,函数零点的个数为三个,再讨论当x≤0时,函数的零点的个数为2个,利用导数结合数形结合分析得解. 【详解】首先,确定在x >0上,方程f(x)=1的解.{0,1,2,3,4,}n ∈L 时,在(1)(1)[,)n n n n x e e e x e -+--+-∈≤<上,, (1)ln n x n -+≤<-,所以由取整意义有[lnx]=-(n+1), 又222ln (1),n x n <≤+22()31,n n f x n n ∴+<≤++即在(1)[,)n n x ee -+-∈上,恒有22()31,n nf x n n +<≤++221(x)1n 3,n n f n +-<-≤+取n=0,1()10f x -<-≤,令11,()1,x e f e --==此时有一根1x e -=, 当n≥1时,恒有f(x)-1>1, 此时在(1)[,)n n x e e -+-∈上无根.在1[,)nn x e e+∈上,1n n e x e +≤<,ln 1[ln ]n x n x n ≤<+=,,又222ln 1n x n ≤<+(),221()(1)1,n n f x n n ∴--≤<+--所以在1[,)nn x e e+∈上,恒有221()n n f x n n --≤<+,222()11n n f x n n ∴--≤-≤+-.n=1时,在2[,e e )上,有2f -≤≤(x)-11, n=2时,在23,)e [e 上, 有0()15,f x ≤-<()1,f x ∴=即2ln 11,x n --=2ln 2,,n x n x e+=+=所以此时有两根,32,.x e =x=e 这样在+∞(0,)上,f(x)=1, 有三根,132123,,x e x e -==x =e 在(,0]f(x)e (1),xx ax ∈-∞=+上, 显然(0)1,f =有一根4=0x ,所以在-0∞(,)上,f(x)=1有且仅有一根, →∞又x -时,由“洛必达法则” -lim ()lim (1)0.x x x f x e ax →∞→-∞=+=-0∴∞在(,)上,f(x)是先增后减,(1),0x ax a ''++f (x)=e f (x)=得101a x a a+=-<⇒<-或a >0. 1--)()a f x a +∞又在(,上,单调递增,()0f x '∴>即1e ()0,01,a aa a a +-⋅->⇒<<-又1.a ∴<-故选:A 【点睛】本题主要考查利用导数研究函数的零点问题,意在考查学生对这些知识的理解掌握水平和分析推理能力,难度较大.二、填空题13.若实数,满足约束条件,则的最大值是________.【答案】【解析】作出不等式组表示的平面区域,平移目标函数所表示的直线,可得出目标函数的最大值.【详解】画出不等式组表示的可行域如图阴影部分所示:可变形为,表示斜率为的直线,平移该直线,当直线经过点时,取得最大值,.【点睛】本题考查简单的线性规划问题.14.已知平面向量a r ,b r 的夹角为3π,且1a =r ,1322b ⎛⎫= ⎪ ⎪⎝⎭r ,则(2)a b b +⋅=r r r________.【答案】52【解析】先由题意求出b r ,得到a b ⋅r r,进而可求出结果.【详解】因为13,22b ⎛⎫= ⎪ ⎪⎝⎭r ,所以1b =r ,又向量a r ,b r 的夹角为3π,且1a =r ,则1cos 32b a b a π=⋅=r r r r ,所以21(2)52222a b b a b b +⋅=⋅+=+=r r r r r r .故答案为52【点睛】本题主要考查平面向量的数量积运算,熟记概念与运算法则即可,属于常考题型.15.在(0)na x a x ⎛⎫+> ⎪⎝⎭的二项展开式中,只有第5项的二项式系数最大,且所有项的系数和为256,则含6x 的项的系数为_________. 【答案】8.【解析】根据已知求出n=8和a=1,再求含6x 的项的系数. 【详解】因为只有第5项的二项式系数最大, 所以n=8.因为所有项的系数和为256, 所以81+a)256,1a =∴=(.设81x x ⎛⎫+ ⎪⎝⎭的通项为8821881()r r r r r r T C x C x x --+==,令8-2r=6,所以r=1.所以含6x 的项的系数为188C =.故答案为:8 【点睛】本题主要考查二项式的展开式的系数的求法,考查二项式系数问题,意在考查学生对这些知识的理解掌握水平和分析推理能力.16.已知抛物线C :24(0)y mx m =>与直线0x y m --=交于A 、B 两点(A 、B 两点分别在x 轴的上、下方),且弦长8AB =,则过A ,B 两点、圆心在第一象限且与直线50x y +-+=相切的圆的方程为____________. 【答案】22(1)(4)24x y -+-=.【解析】先求出圆的半径为1,4),即得圆的方程. 【详解】联立直线和抛物线的方程得2260,x mx m -+=由题得1,所以m=1.所以2610,x x -+=解之得A(3(3B ++--,所以AB 的垂直平分线方程为y=-x+5, 因为圆心在AB 的垂直平分线上, 所以设圆心(t,-t+5),因为AB的垂直平分线和直线50x y +-+=平行,因为两平行线间的距离为d ==所以圆的半径为因为点A (3++在圆上,所以22)(3)24,(05)t t t +-=<<(, 所以t=1.所以圆心为(1,4),所以圆的方程为22(1)(4)24x y -+-=. 故答案为:22(1)(4)24x y -+-= 【点睛】本题主要考查直线和抛物线的位置关系,考查圆的标准方程的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力.三、解答题17.已知数列{}n a 满足:()*111,2n n n a a n N a +≠=-∈,数列{}n b 中,11n n b a =-,且124,,b b b 成等比数列; (1)求证:{}n b 是等差数列;(2)n S 是数列{}n b 的前n 项和,求数列{1nS }的前n 项和n T . 【答案】(1)证明见解析 (2)21n nT n =+. 【解析】(1)根据递推式构造出111111n n a a +=+--,即11n n b b +=+,可得证;(2)先根据等差数列的前n 项和公式,求出n S ,可得1nS ,再运用裂项求和的方法可得解. 【详解】(1)证明:()*111,2n n n a a n a +≠=-∈N ,可得11111n n n na a a a +--=-=, 所以111111n n a a +=+--,因为11n n b a =-,所以得11n n b b +=+,所以{}n b 是公差为1的等差数列;(2)124,,b b b 成等比数列,可得2214b b b =,可得()()211113b b b +=+,解得11b =,即21(1)22n n nS n n n +=+-=,可得12112(1)1n S n n n n ⎛⎫==- ⎪++⎝⎭, 则前n 项和11111212231n T n n ⎛⎫=-+-++- ⎪+⎝⎭L 122111nn n ⎛⎫=-= ⎪++⎝⎭. 所以21n nT n =+. 【点睛】本题考查根据递推式证明数列是等差数列,等差数列的前n 项和,以及运用裂项相消法求数列的和的方法,在证明数列是等差数列时,需构造等差数列的定义式,属于中档题. 18.某蛋糕店制作并销售一款蛋糕,制作一个蛋糕成本3元,且以8元的价格出售,若当天卖不完,剩下的则无偿捐献给饲料加工厂。

重庆市2019届高三4月调研测试二诊数学文科试题含答案解析

重庆市2019届高三4月调研测试二诊数学文科试题含答案解析

2017年普通高等学校招生全国统一考试4月调研测试卷 文科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合{1,0,1,2,3}A =-,2{|30}B x x x =->,则()R A C B = ( ) A . {1}- B .{0,1,2} C .{1,2,3} D .{0,1,2,3}2.若复数z 满足2(1)1z i i +=-,其中i 为虚数单位,则z 在复平面内所对应的点位于( ) A . 第一象限 B .第二象限 C .第三象限 D .第四象限3.已知向量(,1)a x =-,(1b = ,若a b ⊥ ,则||a =( )A.2 D . 44.在平面直角坐标系xOy 中,不等式组130x y x x y ≥⎧⎪≥⎨⎪+-≤⎩所表示的平面区域的面积为( )A .29 B .14 C . 13 D .125. 《张丘建算经》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有女不善织,日减功迟,初日织五尺,末日织一尺,今共织九十尺,问织几日?”,已知“日减功迟”的具体含义是每天比前一天少织同样多的布,则此问题的答案是( ) A .10日 B . 20日 C . 30日 D .40日6. 设直线0x y a --=与圆224x y +=相交于,A B 两点,O 为坐标原点,若AOB ∆为等边三角形,则实数a 的值为( )A... 3± D .9±7. 方程22123x y m m +=-+表示双曲线的一个充分不必要条件是( ) A .30m -<< B .32m -<< C . 34m -<< D .13m -<< 8. 执行如图所示的程序框图,若输出的结果为3,则输入的数不可能是( )A .15B .18C . 19D .209. 如图1所示,是一个棱长为2的正方体被削去一个角后所得到的几何体的直观图,其中11DD =,12AB BC AA ===,若此几何体的俯视图如图2所示,则可以作为其正视图的是( )A .B .C .D .10. 已知函数2sin()y x ωϕ=+(0,0)ωϕπ><<的部分图象如图所示,则ϕ=( )A .6π B .4π C . 3π D .2π11. 设F 为双曲线C :22221(0,0)x y a b a b-=>>的右焦点,过坐标原点的直线依次与双曲线C 的左、右支交于点,P Q ,若||2||PQ QF =,60PQF ∠=,则该双曲线的离心率为( )A .1. 2.4+12.已知函数2()(3)x f x x e =-,设关于x 的方程2212()()0()f x mf x m R e --=∈有n 个不同的实数解,则n 的所有可能的值为( )A . 3B . 1或3C . 4或6D .3或4或6第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.若关于x 的不等式(2)()0a b x a b -++>的解集为{|3}x x >-,则ba= . 14.设ABC ∆中,角,,A B C 所对的边分别为,,a b c ,若ABC ∆222,则C = .15. 甲、乙两组数据的茎叶图如图所示,其中m 为小于10的自然数,已知甲组数据的中位数大于乙组数据的中位数,则甲组数据的平均数也大于乙组数据的平均数的概率为 .16. 设函数22log (),12()142,1333x x f x x x x ⎧-≤-⎪⎪=⎨⎪-++>-⎪⎩,若()f x 在区间[,4]m 上的值域为[1,2]-,则实数m 的取值范围为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知等差数列{}n a 的前n 项和为n S ,49a =,315S =. (1)求n S ; (2)设数列1{}nS 的前n 项和为n T ,证明:34n T <.18. “微信运动”已成为当下热门的健身方式,小王的微信朋友圈内也有大量好友参与了“微信运动”,他随机选取了其中的40人(男、女各20人),记录了他们某一天的走路步数,并将数据整理如下:(1)若采用样本估计总体的方式,试估计小王的所有微信好友中每日走路步数超过5000步的概率;(2)已知某人一天的走路步数超过8000步被系统评定“积极型”,否则为“懈怠型”,根据题意完成下面的22⨯列联表,并据此判断能否有95%以上的把握认为“评定类型”与“性别”有关?附:22()()()()()n ad bc k a b c d a c b d -=++++,19. 如图,矩形ABCD 中,AB =AD =M 为DC 的中点,将DAM ∆沿AM 折到'D AM ∆的位置,'AD BM ⊥.(1)求证:平面'D AM ⊥平面ABCM ;(2)若E 为'D B 的中点,求三棱锥'A D EM -的体积.20. 已知椭圆E :22221(0)x y a b a b+=>>的左顶点为A ,右焦点为(1,0)F ,过点A 且斜率为1的直线交椭圆E 于另一点B ,交y 轴于点C ,6AB BC =.(1)求椭圆E 的方程;(2)过点F 作直线l 与椭圆E 交于,M N 两点,连接MO (O 为坐标原点)并延长交椭圆E 于点Q ,求MNQ ∆面积的最大值及取最大值时直线l 的方程.21. 已知函数2ln ln 1()x x f x x ++=,2()x x g x e=.(1)分别求函数()f x 与()g x 在区间(0,)e 上的极值; (2)求证:对任意0x >,()()f x g x >.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,直线l 的参数方程为1cos 1sin 2x t y t αα=-+⎧⎪⎨=+⎪⎩(t 为参数),以坐标原点O 为极点,以x 轴正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为22244sin cos ρθθ=+.(1)写出曲线C 的直角坐标方程;(2)已知点P 的直角坐标为1(1,)2-,直线l 与曲线C 相交于不同的两点,A B ,求||||PA PB 的取值范围.23.选修4-5:不等式选讲已知函数()|||3|f x x a x a =-+-. (1)若()f x 的最小值为2,求a 的值;(2)若对x R ∀∈,[1,1]a ∃∈-,使得不等式2||()0m m f x --<成立,求实数m 的取值范围.试卷答案2017年普通高等学校招生全国统一考试4月调研测试卷 文科数学一、选择题 1~6 DCCBBC7~12 AAABBB第(11)题解析:︒=∠=60|,|2||PQF QF PQ ,︒=∠∴90PFQ ,设双曲线的左焦点为1F ,连接Q F P F 11,,由对称性可知,PFQ F 1为矩形,且||3|||,|2||11QF QF QF F F ==, 故13132||||||2211+=-=-==QF QF F F a c e .第(12)题解析:xx x x f +-='e )3)(1()(,)(x f ∴在)3,(--∞和),1(+∞上单增,)1,3(-上单减,又当-∞→x 时0)(→x f ,+∞→x 时+∞→)(x f ,故)(x f 的图象大致为:令t x f =)(,则方程0e 1222=--mt t 必有两根21,t t )(21t t <且221e 12-=t t , 当e 21-=t 时恰有32e 6-=t ,此时1)(t x f =有1个根,2)(t x f =有2个根; 当e 21-<t 时必有32e 60-<<t ,此时1)(t x f =无根,2)(t x f =有3个根; 当0e 21<<-t 时必有32e 6->t ,此时1)(t x f =有2个根,2)(t x f =有1个根; 综上,对任意R m ∈,方程均有3个根.二、填空题 (13)45(14)︒30(15)53 (16)]1,8[--第(15)题解析:由甲的中位数大于乙的中位数知,4,3,2,1,0=m ,又由甲的平均数大于乙的平均数知,3<m 即2,1,0=m ,故所求概率为53.第(16)题解析:函数)(x f 的图象如图所示,结合图象易得, 当]1,8[--∈m 时,]2,1[)(-∈x f . 三、解答题(17)解:(Ⅰ)5153223=⇒==a a S ,2224=-=∴a a d , 12+=∴n a n ,)2(2123+=⋅++=n n n n S n ; (Ⅱ))21151314121311(21)2(1421311+-++-+-+-=+++⨯+⨯=n n n n T n 43)2111211(21<+-+-+=n n .(18)解:(Ⅰ)由题知,40人中该日走路步数超过5000步的有34人,频率为3440,所以估计他的所有微信好友中每日走路步数超过5000步的概率为1720;(Ⅱ)841.3114018222020)861214(402<=⨯⨯⨯⨯-⨯⨯=K ,故没有95%以上的把握认为二者有关. (19)解:(Ⅰ)由题知,在矩形ABCD 中,︒=∠=∠45BMC AMD ,︒=∠∴90AMB ,又BM A D ⊥',⊥∴BM 面AM D ',∴面⊥ABCM 面AM D ';(Ⅱ)1111212663A D EM E AD MB AD M D AM V V V BM S ''''---∆===⋅⋅=⋅⋅=. (20)解:(Ⅰ)由题知),0(),0,(a C a A -,故)76,7(aa B -,代入椭圆E 的方程得1493649122=+ba ,又122=-b a , 故3,422==b a ,椭圆134:22=+y x E ; (Ⅱ)由题知,直线l 不与x 轴重合,故可设1:+=my x l ,由⎪⎩⎪⎨⎧=++=134122y x my x 得096)43(22=-++my y m ,设),(),,(2211y x N y x M ,则439,436221221+-=+-=+m y y m m y y ,由Q 与M 关于原点对称知,431124)(||2222122121++=-+=-==∆∆m m y y y y y y S S MON MNQ 11131222+++=m m ,1,4∴,即3M N Q S ∆≤,当且仅当0=m 时等号成立,MNQ ∆∴面积的最大值为3,此时直线l 的方程为1=x(21)解:(Ⅰ)2ln (ln 1)()x x f x x--'=,()01e f x x '>⇒<<,故()f x 在(0,1)和(e,)+∞上递减,在(1,e)上递增,)(x f ∴在e),0(上有极小值1)1(=f ,无极大值;xx x x g e)2()(-=',200)(<<⇒>'x x g ,故)(x g 在)2,0(上递增,在),2(+∞上递减,)(x g ∴在e),0(上有极大值2e4)2(=g ,无极小值; (Ⅱ)由(Ⅰ)知,当e),0(∈x 时,()1f x ≥,24()1eg x <≤,故)()(x g x f >; 当)[e,+∞∈x 时,2ln ln 11113x x ++++=≥,令x x x h e )(3=,则xx x x h e)3()(2-=', 故)(x h 在]3[e,上递增,在),3(+∞上递减,332727()(3)3e 2.7h x h ∴=<<≤,)(1ln ln 2x h x x >++;综上,对任意0>x ,)()(x g x f >.(22)解:(Ⅰ)14444cos sin 422222222=+⇒=+⇒=+y x x y θρθρ; (Ⅱ)因为点P 在椭圆C 的内部,故l 与C 恒有两个交点,即R ∈α,将直线l 的参数方程与椭圆C 的直角坐标方程联立,得4)sin 21(4)cos 1(22=+++-ααt t ,整理得 02)cos 2sin 4()sin 31(22=--++t t ααα,则]2,21[sin 312||||2∈+=⋅αPB PA . (23)解:(Ⅰ)|||3||()(3)||2|x a x a x a x a a -+----=≥,当且仅当x 取介于a 和a 3之间的数时,等号成立,故)(x f 的最小值为||2a ,1±=∴a ;(Ⅱ)由(Ⅰ)知)(x f 的最小值为||2a ,故]1,1[-∈∃a ,使||2||2a m m <-成立,即2||2<-m m ,0)2|)(|1|(|<-+∴m m ,22<<-∴m .。

2019届重庆市第一中学校高三下学期第四次月考数学(理)试题

2019届重庆市第一中学校高三下学期第四次月考数学(理)试题

2019届重庆市第一中学校高三下学期第四次月考数学(理)试题一、单选题1.已知集合{}220M x x x =-≥,{}2,1,0,1N =--,则M N ⋂的子集个数是( )A .1个B .3个C .4个D .8个【答案】C求出集合{|02}M x x =≤≤,则可得求出M N ⋂,进而可得子集个数. 解:解:由已知{}2|20{|02}M x x x x x =≥=-≤≤,又{}2,1,0,1N =--,{0,1}M N ∴=I ,则M N ⋂的子集个数是224=. 故选:C. 点评:本题考查集合交集的运算及集合子集个数的计算,是基础题.2.在复平面内,复数()12z i i =+(i 为虚数单位)对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】B将z 整理为2i -+,可得对应的点的坐标,从而得到结果. 解:()21222z i i i i i =+=+=-+Q∴复数z 所对应的点为()2,1-,位于第二象限本题正确选项:B 点评:本题考查复数对应复平面内的点的问题,属于基础题.3.已知平面向量(3,0)a =r ,2(1,a b +=r r ,则a r 与b r的夹角等于( )A .6π B .3π C .23π D .56π设(,)b x y =r,利用向量的坐标运算可得2(32,2)a b x y +=+rr,综合条件可列方程组求出b r ,再根据坐标运算可求a r 与b r的夹角. 解:解:设(,)b x y =r,则2(32,2)(1,a b x y +=+=rr,32112x x y y ⎧+==-⎧⎪⎪∴∴⎨⎨==⎪⎪⎩⎩(b ∴=-r,31cos ,322||||a b a b a b ⋅-∴〈〉===-⨯⋅r r r rr r ,则a r 与b r 的夹角等于23π.故选:C. 点评:本题考查向量坐标的线性运算及向量夹角的坐标求解,是基础题.4.已知双曲线22221x y a b-=(0,0a b >>)的一条渐近线与直线25y x =-平行,则双曲线的离心率等于( ) A .2 BC .5D【答案】D先根据渐近线与直线25y x =-平行可得双曲线的一条渐近线,再根据,,a b c 的关系可得离心率. 解:解:由已知,双曲线22221x y a b-=(0,0a b >>)的一条渐近线为2y x =,2ba∴=,c e a ∴====点评:本题考查双曲线离心率的求解,关键是要找到,,a b c 的关系,是基础题. 5.下列函数中,在其定义域内既是奇函数又是单调函数的是( ) A .3y x x =+ B .sin tan y x x =+ C .1y x=D .21x xy x -=-【答案】A根据函数的奇偶性和单调性逐一判断. 解:解:A. ()()()()33f x x x x x f x -=-+-==---,奇函数,又3y x =单调递增,y x=也单调递增,则3y x x =+单调递增,符合; B. ()sin tan f x x x =+,有0π>得()()0f f π=,则sin tan y x x =+不是单调函数,不符合; C. 1y x=,反比例函数不是单调函数,不符合; D. 21x xy x -=-,定义域为{}|0x x ≠,不是奇函数,不符合.故选:A. 点评:本题考查简单函数的单调性和奇偶性的判断,是基础题.6.等比数列{}n a 的前n 项和为n S ,且23a ,32a ,4a 成等差数列,则33S a =( ) A .139B .3或139C .3D .79【答案】B由等比数列通项公式可得2311143a q a q a q =+,可得1q =或3q =,将1q =和3q =分别代入33S a 求解即可.解:解:由已知2311143a q a q a q =+,整理得2430q q -+=,1q ∴=或3q =,当1q =时,313133S a a a ==; 当3q =时,()21323191139139a q q S a a q ++++===, 所以333S a =或139. 故选:B. 点评:本题考查等比数列的通项公式及其应用,是基础题.7.已知10个数的平均数为8,方差为6,现加入一个新数据8,这时这11个数的平均数记为()E X ,方差记为()D X ,则( ) A .()8E X <,()6D X > B .()8E X <,()6D X < C .()8E X =,()6D X > D .()8E X =,()6D X <【答案】D利用条件分别求出()E X ,()D X 即可. 解:解:由已知1088()811E x ⨯+==,2610(88)10()661111D x ⨯+-==⨯<. 故选:D. 点评:本题考查平均数及方差的运算,熟练掌握公式是关键,是基础题.8.阅读如下程序框图,运行相应的程序,则程序运行后输出的结果为( )A .7B .8C .9D .10【答案】C由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量i 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案. 解:解:当1,0i S ==时,有110lg lg 1,3123S i =+=>-=+, 当13,lg 5i S ==时,有131lg lg lg 1,5355S i =+=>-=,当15,lg 5i S ==时,有151lg lg lg 1,7577S i =+=>-=,当17,lg 7i S ==时,有171lg lg lg 1,9799S i =+=>-=,当19,lg 9i S ==时,有191lg lglg 191111S =+=<-,循环结束, 输出的结果为9i =. 故选:C. 点评:本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.9.将函数sin(2)3y x π=-图象上的点(,)4P t π向左平移s (0s >) 个单位长度得到点P',若P'位于函数sin 2y x =的图象上,则( ) A .12t =,s 的最小值为6πB .32t =,s的最小值为6πC .12t =,s 的最小值为3πD .3t =,s的最小值为3π【答案】A 解:由题意得,1sin(2)432t ππ=⨯-=, 可得,因为 P'位于函数sin 2y x =的图象上所以,可得,s 的最小值为,故选A.【名师点睛】三角函数图象的变换,有两种选择:一是先伸缩再平移,二是先平移再伸缩.特别注意:①平移变换时,当自变量x的系数不为1时,要将系数先提出;②翻折变换要注意翻折的方向;③三角函数名不同的图象变换问题,应先将三角函数名统一,再进行变换.10.如图所示,在正四棱锥S-ABCD中,E是BC的中点,P点在侧面△SCD内及其边界.则动点P的轨迹与△SCD组成的相关图形最有可上运动,并且总是保持PE AC有是图中的( )A.B.C.D.【答案】A如图:连BD交AC与o,F、G分别是SC、CD中点;易证SBD //,EFG AC SBD ⊥平面平面平面AC EFG ∴⊥平面;所以P 在FG 上.故选A11.已知过原点的直线与函数sin (0)y x x =≥的图像有且只有三个交点,α是交点中横坐标的最大值,则()21sin 2ααα+的值为( ) A .10 B .8 C .4 D .2【答案】D作出sin (0)y x x =≥的图像,根据图像可得切点(,sin )A αα-,利用导数的几何意义可得切线方程为cos ()sin y x ααα=---,代入点(0,0)得0cos sin ααα=-,整理后代入()21sin 2ααα+计算,则答案可得. 解:解:sin (0)y x x =≥的图像如图所示:由已知得当过原点的直线与函数sin (0)y x x =≥的图像相切与点A 时,有且只有三个交点,则切点(,sin )A αα-,设sin y x =-,则cos y x '=-,过点(,sin )A αα-的切线方程为:cos ()sin y x ααα=---, 代入点(0,0)得0cos sin ααα=-, 整理得sin cos ααα=,()2222sin 12sin cos 1sin 2cos 12cos 2sin cos cos ααααααααααα⎡⎤⎛⎫+⎢⎥ ⎪+⎝⎭⎢⎥⎣⎦==⋅=. 故选:D. 点评:本题考查正弦曲线的应用,考查导数的几何意义求切线方程,考查计算能力与分析能力,是中档题.12.已知平面向量,,a b c r r r,2a b ==r r ,1c =r ,()()0a c b c -⋅-=r r r r ,则a b -r r 的最大值是( ) A.1 B1C1D.1【答案】C由数量积运算展开,两边再平方,得出a b ⋅rr 的范围,从而得出结论. 解:解:()()0a c b c -⋅-=r r r rQ ,20a b a c b c c ∴⋅-⋅-⋅+=r r r r r r r ,即1()a b a b c ⋅+=+⋅r r r r r , |1||()|||a b a b c a b ∴⋅+=+⋅≤+r r r r r r r ,两边平方得:222()21282a b a b a b a b a b ⋅+⋅+≤++⋅=+⋅r r r r rr r r r r ,a b ≤⋅≤rr222||282a b a b a b a b -=+-⋅=-⋅r r r r r r r r Q ,2||8a b ∴-≤+r r||1a b ∴-≤rr .故选:C. 点评:本题考查了平面向量的数量积运算,属于中档题.二、填空题13.若实数,x y 满足约束条件103030x y x y x -+≥⎧⎪+-≥⎨⎪-≤⎩,则23x y -的最大值为__________.【答案】6先根据约束条件画出可行域,再利用几何意义求最值,23z x y =-表示直线在y 轴上截距的13-,只需求出直线在y 轴上的截距最小值即可. 解:解:不等式组表示的平面区域如图所示,当直线23z x y =-过点A 时, 在y 轴上截距最小,又()3,0A , 此时max 236z =⨯=. 故答案为:6. 点评:本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题. 14.()52x y -的展开式中23x y 的系数为________.【答案】-40二项式展开式的通项公式为:()()552rrrC x y --,令3r =可得:23x y 的系数为:()33252140C ⨯⨯-=-. 故答案为-40. 点睛:在T r +1=rn rr n C ab - 中,r n C 是该项的二项式系数,与该项的(字母)系数是两个不同的概念,前者只指rn C ,而后者是字母外的部分,前者只与n 和r有关,恒为正,后者还与a ,b 有关,可正可负.15.六位同学围成一圈依序循环报数,规定:①第一位同学首次报出的数为0.第二位同学首次报出的数为1,之后每位同学所报出的数都是前两位同学所报出的数之和:②若报出的是为3的倍数,则报该数的同学需拍手一次. 当第50个数被报出时,六位同学拍手的总次数为__________. 【答案】13这样得到的数列这是历史上著名的数列,叫斐波那契数列,首先求出这个数列的每一项除以3所得余数的变化规律,再求所求就比较简单了. 解:解:这个数列的变化规律是:从第三个数开始递增,且是前两项之和,那么有0、1、1、2、3、5、8、13、21、34、55、89、144、233、377、610、987、L , 分别除以3得余数分别是0、1、1、2、0、2、2、1、0、1、1、2、0、2、2、1、L , 由此可见余数的变化规律是按0、1、1、2、0、2、2、1循环, 循环周期是8.在这一个周期内第一个数和第五个数都是3的倍数, 当第50个数被报出时,其中包含6个周期再多2个数, 所以在6个周期内共有12个报出的数是三的倍数,后面2个报出的数中余数是0、1 ,只有一个是3的倍数,故3的倍数总共有13个, 也就是说拍手的总次数为13次. 故答案为:13. 点评:本题考查的知识点是带余除法,由已知我们不难得到数列为斐波那契数列,然后分析数列各项除3的余数,易得余数成周期变化.16.已知抛物线24x y =的焦点为F ,双曲线22221x y a b-=(0,0a b >>)的右焦点为1(,0)F c ,过点1,F F 的直线与抛物线在第一象限的交点为M ,且抛物线在点M 处的切线与直线y =垂直,则ab 的最大值为__________. 【答案】32先求出过点1,F F 的直线方程,再根据导数的几何意义和抛物线在点M 处的切线与直线y =垂直,求出c 的值,再根据基本不等式即可求出.解:解:抛物线24x y =的焦点为(0,1)F ,双曲线22221x y a b-=()0,0a b >>的右焦点为1(,0)F c ,∴过点1,F F 的直线为11y x c =+-,即11y x c=-+,∵抛物线在点M 处的切线与直线y =垂直,∴抛物线在点M 214y x =Q , 12y x '∴=,设点M 的坐标为()00,x y ,012x ∴=,解得0x =, 2001143y x ∴==,13M ⎫∴⎪⎪⎝⎭,1113c ∴=-+,解得c =2223a b c ∴+==, 2232a b ab ∴=+≥,即32ab ≤,当且仅当a b ==时取等号, 故答案为:32. 点评:本题考查了双曲线的简单性质,以及导数的几何意义和基本不等式,考查了运算能力和转化能力,属于中档题.三、解答题17.在ABC ∆中,内角,,A B C 对边的边长分别是,,a b c ,己知sin cos c A C =.(1)求内角C ;(2)若边2c =,且sin sin()2sin 2C B A A +-=,求ABC ∆的面积.【答案】(1)3C π=;(2)3(1)由正弦定理得sin sin cos C A A C =,结合范围0C π<<,即可得解C 的值;(2)利用三角形内角和定理,三角函数恒等变换的应用化简已知等式可得sinBcosA =2sinAcosA ,分类讨论分别求得a ,b 的值,利用三角形面积公式即可得解. 解:解:(1)由正弦定理得sin sin cos C A A C =,又sin 0A ≠,sin C C ∴=,即tan C =0C π<<3C π∴=;(2)∵sin sin()2sin 2C B A A +-=,可得:sin()sin()4sin cos B A B A A A ++-=,sin cos 2sin cos B A A A ∴=,∴当cos 0A =时,即2A π=时,,6B a b π===, 当cos 0A ≠时,可得sin 2sin B A =,由正弦定理可得:2b a =,联立方程组2242a b ab b a⎧+-=⎨=⎩,解得:33a b ==∴ABC ∆的面积11sin sin 223333S ab C π==⨯⨯⨯=. 点评:本题主要考查了二倍角的余弦函数公式,余弦定理,三角形内角和定理,三角函数恒等变换的应用,三角形面积公式在解三角形中的综合应用,考查了分类讨论的思想,属于中档题.18.如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,AD AB ⊥,//AB DC ,2AD DC AP ===,1AB =,点E 为棱PC 的中点(1)证明:BE DC ⊥;(2)若F 为棱PC 上一点,满足BF AC ⊥,求锐二面角F AB P --的余弦值. 【答案】(1)证明见详解;(2310(1)以A 为原点,AB 为x 轴,AD 为y 轴,AP 为z 轴,建立空间直角坐标系,利用向量法证明BE DC ⊥;(2)设(,,)F a b c ,由BF AC ⊥,求出113,,222F ⎛⎫⎪⎭⎝,求出平面ABF 的法向量和平面ABP 的法向量,利用向量法能求出二面角F AB P --的余弦值.解:证明:(1)∵在四棱锥P −ABCD 中,PA ⊥底面ABCD ,AD ⊥AB ,AB ∥DC ,AD =DC =AP =2,AB =1,点E 为棱PC 的中点.∴以A 为原点,AB 为x 轴,AD 为y 轴,AP 为z 轴,建立空间直角坐标系,B (1,0,0),P (0,0,2),C (2,2,0),E (1,1,1),D (0,2,0),(0,1,1)BE =u u u r,(2,0,0)DC =u u u r ,0BE DC ∴⋅=u u u r u u u r,∴BE DC ⊥;(2)∵F 为棱PC 上一点,满足BF AC ⊥,∴设(,,)F a b c ,,[0,1]PF PC λλ=∈u u u r u u u r,则(,,2)(2,2,2),(2,2,22)a b c F λλλλλλ-=-∴-,(21,2,22),(2,2,0)BF AC λλλ∴=--=u u u r u u u r, ∵BF AC ⊥,2(21)220BF AC λλ∴⋅=-+⋅=u u u r u u u r,解得1113,,,4222F λ⎛⎫=∴ ⎪⎝⎭,113(1,0,0),,,222AB AF⎛⎫== ⎪⎝⎭u u u r u u u r ,设平面ABF 的法向量(,,)n x y z =r,则0113222n AB x n AF x y z ⎧⋅==⎪⎨⋅=++=⎪⎩u u u v v u u u v v ,取1z =,得(0,3,1)n =-r , 平面ABP 的一个法向量(0,1,0)m =u r,设二面角F AB P --的平面角为θ,则||310cos 10||||10m n m n θ⋅===⋅u r r u r r ,∴二面角F AB P --的余弦值为310. 点评:本题考查线线垂直的证明,考查二面角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.19.人耳的听力情况可以用电子测听器检测,正常人听力的等级为025db -(分贝),并规定测试值在区间(0,5]为非常优秀,测试值在区间(5,10]为优秀,某班50名同学都进行了听力测试,所得测试值制成频率分布直方图:(Ⅰ)现从听力等级为(0,10]的同学中任意抽取出4人,记听力非常优秀的同学人数为X ,求X 的分布列与数学期望:(Ⅱ)现选出一名同学参加另一项测试,测试规则如下:四个音叉的发生情况不同,由强到弱的次序分别为1,2,3,4.测试前将音叉随机排列,被测试的同学依次听完后给四个音叉按发音的强弱标出一组序号1234,,,a a a a (其中1234,,,a a a a 为1,2,3,4的一个排列),记12341234Y a a a a =-+-+-+-,可用Y 描述两次排序的偏离程度,求2Y ≤的概率.【答案】(Ⅰ)分布列见解析,1.6;(Ⅱ)16. (Ⅰ)根据频率分布直方图可得到听力等级分别为(]0,5和(]5,10的人数,根据超几何分布的概率公式可分别求得X 所有可能的取值对应的概率,从而得到分布列;根据数学期望的计算公式可求得期望;(Ⅱ)首先确定所有排列总数,利用列举法列出Y 0=和2Y =的所有可能的情况,根据古典概型概率公式求得结果. 解:(Ⅰ)听力等级为(]0,5的有0.0165504⨯⨯=人;为(]5,10的有0.0245506⨯⨯=人 则X 的所有可能取值为:0,1,2,3,4()46410151021014C P X C ====;()1346410808121021C C P X C ====;()224641*********C C P X C ====,()3146410244321035C C P X C ====;()4441014210C P X C ===X ∴的分布列为:()341471********* 1.621210E X ∴=⨯+⨯+⨯+⨯+⨯=. (Ⅱ)序号1234,,,a a a a 的排列总数为4424A =种当Y 0=时,11a =,22a =,33a =,44a = 当123412342Y a a a a =-+-+-+-=时,1234,,,a a a a 的取值为11a =,22a =,34a =,43a =或11a =,23a =,32a =,44a =或12a =,21a =,33a =,44a =()412246P Y ∴≤== 点评:本题考查超几何分布的分布列与数学期望的求解、古典概型概率问题的求解,涉及到频率分布直方图的应用等知识;求解分布列问题的关键是能够结合频率分布直方图确定随机变量所有可能的取值,进而计算得到每个取值所对应的的概率,属于常考题型.20.椭圆2222:1x y C a b+=(0a b >>)的离心率等于12,它的一个长轴端点恰好是抛物线28y x =的焦点. (1)求椭圆C 的方程;(2)若直线l 与椭圆C 有且只有一个公共点,且直线l 与直线x a =和x a =-分别交于,M N 两点,试探究以线段MN 为直径的圆是否恒过定点?若恒过定点,求出该定点,若不恒过定点,请说明理由.【答案】(1)22143x y +=;(2)以线段MN 为直径的圆恒过定点,且定点为()()1,0,1,0- (1)由离心率及抛物线的焦点是椭圆长轴的端点即,,a b c 的关系可得椭圆的标准方程;(2)设:l y kx b =+,则由22143y kx bx y =+⎧⎪⎨+=⎪⎩消去y 得关于x 的二次方程,根据判别式等于0得2243b k -=,另外先求出点(2,2)M k b +,(2,2)N k b --+,则可求出以线段MN 为直径的圆的方程,整理得22224240x y by b k -+-+-=,将2243b k -=代入即可求出定点. 解:解:(1)由题意设椭圆C 的方程为22221x y a b+=(0a b >>),因为抛物线28y x =的焦点坐标为()2,0,则 2a =,由2221,2c e a b c a ===+,得23b = ∴椭圆C 的方程为22143x y +=;(2)明显直线l 的斜率存在, 设:l y kx b =+,则由22143y kx b x y =+⎧⎪⎨+=⎪⎩,消去y 得()2223484120k x kbx b x +++-=,()()2222644344120k b k b ∴∆=-+-=,整理得2243b k -=, 又由2y kx bx =+⎧⎨=⎩,得(2,2)M k b +,由2y kx b x =+⎧⎨=-⎩,得(2,2)N k b --+,所以以线段MN 为直径的圆为()()()()22220x x y k b y x b -+++---=, 整理得22224240x y by b k -+-+-=, 将2243b k -=代入得224230x y by -+-+=, 当0y =时,1x =±,所以以线段MN 为直径的圆恒过定点,且定点为()()1,0,1,0-. 点评:本题考查直线与椭圆相切的问题,考查圆过定点问题,关键是要求出圆的方程,注意以点()()1122,,,x y x y 连线为直径的圆的方程为:()()()()12120x x x x y y y y --+--=,本题考查了学生计算能力,是一道中档题. 21.已知函数()()22xf x esinx axa e =-+-,其中2.71828...a R e ∈=,为自然对数的底数.(1)当0a =时,讨论函数()f x 的单调性; (2)当112a ≤≤时,求证:对任意的[)()0,,0x f x ∈+∞<. 【答案】(1)()f x 在(),-∞+∞上单调递减. (2)证明见及解析. 解:分析:(1)将0a =代入()f x ,对函数求导即可判定函数的单调性. (2)将不等式转化为关于a 的一次函数,讨论在112a ≤≤时一次函数对任意的[)0,x ∈+∞两个端点都小于0,即可证明(),0f x <.详解:(1) ()()0,xa f x esinx e ==-()()'04x x f x e sinx cosx e e x e π⎤⎛⎫=+-=+-< ⎪⎥⎝⎭⎦;∴()f x 在(),-∞+∞上单调递减 (2)要证()220xesinx ax a e -+-<对[)0,x ∈+∞恒成立即证;220sinx ax a e -+-<对[)0,x ∈+∞恒成立 令()()22g a xa sinx e =-+-,即证当1,12a ⎡⎤∈⎢⎥⎣⎦时,()()220g a x a sinx e =-+-<恒成立即证;()()()2211101221202g sinx x e g sinx x e ⎧⎛⎫=-+-<⎪ ⎪⎝⎭⎨⎪=-+-<⎩成立 ∵sin 1x e +< ∴①式成立 现证明②式成立:令()()22,'2h x sinx x e h x cosx x =-+-=-设在[)00,x ∃+∞,使得()00'2,0h x cosx x --=,则006x π<<()h x 在()00,x 単调递增, 在[)0,x +∞単调递減∴()()220000cos 2sin 24x h x max h x sinx x e x e ==-+-=-+-,=200sin 7sin 44x x x e ++-∵006x π<<,∴01sin 0,2x ⎛⎫∈ ⎪⎝⎭ ∴200sin 737sin 04416x x x e e ++-<-<综上所述.在[)0,x ∈+∞, ()0f x <恒成立.点睛:函数与导数的综合应用,是高考的热点和难点,充分理解导数与单调性、极值、最值的关系,证明在一定条件下不等式成立,解不等式或求参数的取值情况,属于难题.22.在平面直角坐标系xOy 中,己知直线:x tl y at =⎧⎨=⎩(t 为参数),以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系.点A 在曲线21:8cos 120C ρρθ-+=上运动,点B 为线段OA 的中点.(1)求动点B 的运动轨迹2C 的参数方程; (2)若直线l 与2C 的公共点分别为,M N ,当3OMON=时,求a 的值. 【答案】(1)2cos 2:sin x C y αα=+⎧⎨=⎩,α为参数;(2)0a =(1)设(),B ρθ,则()2,A ρθ,将点A 代入曲线1C ,即可得动点B 的运动轨迹2C 的极坐标方程,利用公式222,cos x y x ρρθ=+=转化为普通方程,再写出参数方程即可;(2)设点()()12,,,M N ρθρθ,则123ρρ=,代入2C 的极坐标方程解得221cos 1ρθ=⎧⎨=⎩,再通过22222cos 1cos cos sin 1tan θθθθθ==++求出tan θ,即a 可得. 解:解:(1)设(),B ρθ,则()2,A ρθ,又点A 在曲线21:8cos 120C ρρθ-+=上运动,则()2282cos 120ρρθ-⨯+=,即24cos 30ρρθ-+=,由222,cos x y x ρρθ=+=得动点B 的运动轨迹2C 的普通方程为:22430x y x +-+=,即()2221x y -+=化为参数方程为2cos 2:sin x C y αα=+⎧⎨=⎩,α为参数;(2)直线:x t l y at=⎧⎨=⎩(t 为参数)普通方程为:y ax =,则极坐标方程为tan a θ=, 设点()()12,,,M N ρθρθ,因为3OMON=,则123ρρ=, 将点()()12,,,M N ρθρθ代入22:4cos 30C ρρθ-+=,得2112224cos 304cos 30ρρθρρθ⎧-+=⎨-+=⎩,即222222912cos 304cos 30ρρθρρθ⎧-+=⎨-+=⎩, 解得221cos 1ρθ=⎧⎨=⎩, 22222cos 1cos 1cos sin 1tan θθθθθ∴===++,解得tan 0θ=,即0a =. 点评:本题考查极坐标与直角坐标的互化,考查极坐标的应用,是中档题.23.已知a b c d ,,,均为实数. (1≥ (2)若0a >,0b >,222a b +=,证明:()55114a b a b ⎛⎫++≥ ⎪⎝⎭. 【答案】(1)证明见解析;(2)证明见解析 (1)将不等式两边平方后作差即可;(2)利用柯西不等式()25511a b a b ⎛⎫++≥ ⎪⎝⎭证明即可. 解: 证明:(1)22-()2222222222a b c d a c b d ac bd =+++++++++()22c a bd =+,又()22ac bd -+()()222222222222202abcd a c a d b c b d a c b d ad bc =-++=-+++≥,()220ac bd ∴+≥,220∴-≥,≥ (2)由柯西不等式可得()()225522114a b a b a b ⎛⎫++≥=+= ⎪⎝⎭.即()55114a b a b ⎛⎫++≥ ⎪⎝⎭. 点评:本题考查作差法证明不等式,考查利用柯西不等式证明不等式,考查学生计算能力,是基础题.。

2019届重庆市第一中学校高三下学期第三次月考数学(理)试题(解析版)

2019届重庆市第一中学校高三下学期第三次月考数学(理)试题(解析版)

2019届重庆市第一中学校高三下学期第三次月考数学(理)试题一、单选题1.已知复数z 满足(1)1z i i -=+(i 是虚数单位),则z =( ) A .0 B .12C .1D .32【答案】C【解析】先求出复数z,再求|z|得解. 【详解】由题得21(1)2,||11(1)(1)2i i iz i z i i i ++====∴=--+ 故选C 【点睛】本题主要考查复数的除法运算和复数的模的计算,意在考查学生对这些知识的理解掌握水平和分析推理能力. 2.已知集合{|A x y ==,2{|230,}B x x x x Z =--<∈,则()RC A B =I ( ) A .{1} B .{2}C .{1,2}D .{1,2,3}【答案】C【解析】先化简集合A,B ,再求()R C A B I 得解. 【详解】由题得A={x|x <1},B={x|-1<x <3,x ∈Z}={0,1,2}, 所以{|1}R C A x x =≥, 所以()={1,2}R C A B I . 故选:C 【点睛】本题主要考查集合的化简,考查集合的补集和交集的运算,意在考查学生对这些知识的理解掌握水平和分析推理能力.3.若,,,则实数,,的大小关系为( )A .B .C .D .【答案】A【解析】先求出a,b,c 的范围,再比较大小即得解. 【详解】 由题得,,所以a>b>c. 故选:A 【点睛】本题主要考查对数函数和指数函数的单调性的应用,考查实数大小的比较,意在考查学生对这些知识的理解掌握水平和分析推理能力. 4.下列说法正确的是( )A .设m 为实数,若方程22112x y m m+=--表示双曲线,则m >2.B .“p ∧q 为真命题”是“p ∨q 为真命题”的充分不必要条件C .命题“∃x ∈R ,使得x 2+2x +3<0”的否定是:“∀x ∈R ,x 2+2x +3>0”D .命题“若x 0为y =f (x )的极值点,则f ’(x )=0”的逆命题是真命题 【答案】B【解析】根据双曲线的定义和方程判断A ,复合命题真假关系以及充分条件和必要条件的定义判断B ,特称命题的否定是全称命题判断C ,逆命题的定义以及函数极值的性质和定义判断D. 【详解】对于A :若方程表示双曲线,则()()120m m --<,解得2m >或1m <,故A 错误; 对于B :若p q ∧为真命题,则p ,q 同时为真命题,则p q ∨为真命题,当p 真q 假时,满足p q ∨为真命题,但p q ∧为假命题,即必要性不成立,则“p q ∧为真命题”是“p q ∧为真命题”的充分不必要条件,故B 正确;对于C :命题“x R ∃∈,使得2230x x ++<”的否定是:“x R ∀∈,2230x x ++≥”,故C 错误;对于D :命题“若0x 为()y f x =的极值点,则()0f x '=”的逆命题是:“若()0f x '=,则0x 为()y f x =的极值点”,此逆命题为假命题,比如:在()3f x x =中,()23f x x '=,其中()00f '=,但0x =不是极值点,故D 错误. 故选:B. 【点睛】本题主要考查命题的真假判断,涉及知识点较多,综合性较强,难度不大,属于基础题. 5.执行下面的程序框图,若输出的S 的值为63,则判断框中可以填入的关于i 的判断条件是( )A .5i ≤B .6i ≤C .7i ≤D .8i ≤【答案】B【解析】根据程序框图,逐步执行,直到S 的值为63,结束循环,即可得出判断条件. 【详解】 执行框图如下: 初始值:0,1S i ==,第一步:011,112S i =+==+=,此时不能输出,继续循环; 第二步:123,213S i =+==+=,此时不能输出,继续循环; 第三步:347,314S i =+==+=,此时不能输出,继续循环; 第四步:7815,415S i =+==+=,此时不能输出,继续循环; 第五步:151631,516S i =+==+=,此时不能输出,继续循环;第六步:313263,617S i =+==+=,此时要输出,结束循环; 故,判断条件为6i ≤. 故选B 【点睛】本题主要考查完善程序框图,只需逐步执行框图,结合输出结果,即可确定判断条件,属于常考题型.6.在数学兴趣课堂上,老师出了一道数学思考题,某小组的三人先独立思考完成,然后一起讨论.甲说:“我做错了!”乙对甲说:“你做对了!”丙说:“我也做错了!”老师看了他们三人的答案后说:“你们三人中有且只有一人做对了,有且只有一人说对了.”请问下列说法正确的是( ) A .乙做对了 B .甲说对了C .乙说对了D .甲做对了【答案】B【解析】分三种情况讨论:甲说法对、乙说法对、丙说法对,通过题意进行推理,可得出正确选项. 【详解】分以下三种情况讨论:①甲的说法正确,则甲做错了,乙的说法错误,则甲做错了,丙的说法错误,则丙做对了,那么乙做错了,合乎题意;②乙的说法正确,则甲的说法错误,则甲做对了,丙的说法错误,则丙做对了,矛盾; ③丙的说法正确,则丙做错了,甲的说法错误,则甲做对了,乙的说法错误,则甲做错了,自相矛盾. 故选:B. 【点睛】本题考查简单的合情推理,解题时可以采用分类讨论法进行假设,考查推理能力,属于中等题.7.割补法在我国古代数学著作中称为“出入相补”,刘徽称之为“以盈补虚”,即以多余补不足,是数量的平均思想在几何上的体现.下图揭示了刘徽推导三角形面积公式的方法.在ABC ∆内任取一点,则该点落在标记“盈”的区域的概率为( )A .12B .13C .14D .15【答案】C【解析】根据题意可得该点落在标记“盈”的区域的面积为三角形面积的四分之一,即可得解. 【详解】 由题得1,=,22ABC ABC aS ah S h S S ∆∆=∴=矩形矩形. 所以“盈”的区域的面积等于“虚”的区域的面积. 而“虚”的区域占矩形区域的面积的四分之一,所以该点落在标记“盈”的区域的面积为三角形面积的四分之一, 故该点落在标记“盈”的区域的概率为14, 故选C . 【点睛】本题考查了几何概型的概率公式,考查了数学文化知识,属于基础题 8.将函数2()23)sin 2sin 12f x x x x ππ⎛⎫=-++- ⎪⎝⎭的图像向左平移(0)ϕϕ>个单位长度后,所得图像关于y 轴对称,则ϕ的值可能为( ) A .6π B .23π C .2π D .3π 【答案】D【解析】先化简函数的解析式,再平移得到函数2sin(22)6y x πϕ=+-,再根据函数的对称性得解. 【详解】由题得(x)23sin cos cos23sin 2cos22sin(2)6f x x x x x x π=-=-=-,将函数2()23)sin 2sin 12f x x x x ππ⎛⎫=-++- ⎪⎝⎭的图像向左平移(0)ϕϕ>个单位长度后得到2sin[2()]2sin(22)66y x x ππϕϕ=+-=+-,由题得2,,()6223k k k Z ππππϕπϕ-=+∴=+∈, 当k=0时,=3πϕ.故选D 【点睛】本题主要考查三角恒等变换和图像的变换,考查函数奇偶性的应用,考查三角函数的图像和性质,意在考查学生对这些知识的理解掌握水平和分析推理能力. 9.已知空间中不同直线m 、n 和不同平面α、β,下面四个结论: ①若m 、n 互为异面直线,m ∥α,n ∥α,m ∥β,n ∥β,则α∥β; ②若m ⊥n ,m ⊥α,n ∥β,则α⊥β; ③若n ⊥α,m ∥α,则n ⊥m ; ④若α⊥β,m ⊥α,n ∥m ,则n ∥β. 其中正确的是( ) A .①② B .②③C .③④D .①③【答案】D【解析】由线面和面面平行和垂直的判定定理和性质定理即可得解. 【详解】对于①,由面面平行的判定定理可得,若m 、n 互为异面直线,m ∥α,n ∥β,则α∥β或相交,又因为m ∥β,n ∥α,则α∥β,故①正确;对于②,若m ⊥n ,m ⊥α,n ∥β,则α⊥β或α∥β或α,β相交,故②错误, 对于③,若n ⊥α,m ∥α,则n ⊥m ;故③正确,对于④,若α⊥β,m ⊥α,n ∥m ,则n ∥β或n ⊂β,故④错误, 综上可得:正确的是①③, 故选D . 【点睛】本题考查了线面、面面的位置关系,考查了线面垂直、平行的判定及性质定理的应用,属中档题.10.在ABC ∆中,三内角A 、B 、C 对应的边分别为a 、b 、c ,且a =(sin )sin C B B A =,BC 边上的高为h ,则h 的最大值为( )A .12B .1C .32D .2【答案】C【解析】先化简已知得c 2sin()3B π=+,再求出1sin(2)62h B π=-+,再利用三角函数求h 最大值得解. 【详解】(sin )sin C B B A =+,(sin )(sin )B B a B B =+⋅=+所以c 2sin()3B π=+.所以1h csinB 2sin()sinB 2sinB(sinB )32B B π==+= 所以1sin(2)62h B π=-+, 所以当B=3π时,h 取最大值32. 故选C 【点睛】本题主要考查正弦定理解三角形,考查三角函数和三角恒等变换,意在考查学生对这些知识的理解掌握水平和分析推理能力.11.若一个四位数的各位数字相加和为10,则称该数为“完美四位数”,如数字“2017”.试问用数字0,1,2,3,4,5,6,7组成的无重复数字且大于2017的“完美四位数”有( )个. A .71 B .66C .59D .53【答案】A【解析】根据题意,分析可得四位数字相加和为10的情况有①0、1、3、6,②0、1、4、5,③0、1、2、7,④0、2、3、5,⑤1、2、3、4;共5种情况,据此分5种情况讨论,依次求出每种情况下大于2017的“完美四位数”的个数,将其相加即可得答案. 【详解】根据题意,四位数字相加和为10的情况有①0、1、3、6,②0、1、4、5,③0、1、2、7,④0、2、3、5,⑤1、2、3、4;共5种情况, 则分5种情况讨论:①、四个数字为0、1、3、6时,千位数字可以为3或6,有2种情况,将其余3个数字全排列,安排在百位、十位、个位,有336A =种情况,此时有2612⨯=个“完美四位数”,②、四个数字为0、1、4、5时,千位数字可以为4或5,有2种情况,将其余3个数字全排列,安排在百位、十位、个位,有336A =种情况,此时有2612⨯=个“完美四位数”,③、四个数字为0、1、2、7时,千位数字为7时,将其余3个数字全排列,安排在百位、十位、个位,有336A =种情况,千位数字为2时,有2071、2107、2170、2701、2710,共5种情况,此时有6511+=个“完 美四位数”,④、四个数字为0、2、3、5时,千位数字可以为2或3或5,有3种情况,将其余3个数字全排列,安排在百位、十位、个位,有336A =种情况,此时有1863=⨯个“完美四位数”,⑤、四个数字为1、2、3、4时,千位数字可以为3或4或2,有3种情况,将其余3个数字全排列,安排在百位、十位、个位,有336A =种情况,此时有1863=⨯个“完美四位数”,则一共有121211181871++++=个“完美四位数”, 故选:A . 【点睛】本题考查排列、组合的应用,涉及分类计数原理的运用,分类讨论注意做到不重不漏.12.设[]x 表示不大于实数x 的最大整数,函数2ln [ln ]1,0()(1),0xx x x f x e ax x ⎧-->=⎨+≤⎩,若关于x 的方程()1f x =有且只有5个解,则实数a 的取值范围为( )A .(,1)-∞-B .(,)e -∞-C .(,1]-∞-D .(,]e -∞-【答案】A【解析】根据分段函数的解析式,先讨论当x >0时,函数零点的个数为三个,再讨论当x≤0时,函数的零点的个数为2个,利用导数结合数形结合分析得解. 【详解】首先,确定在x >0上,方程f(x)=1的解.{0,1,2,3,4,}n ∈L 时,在(1)(1)[,)n n n n x e e e x e -+--+-∈≤<上,, (1)ln n x n -+≤<-,所以由取整意义有[lnx]=-(n+1), 又222ln (1),n x n <≤+22()31,n n f x n n ∴+<≤++即在(1)[,)n n x ee -+-∈上,恒有22()31,n nf x n n +<≤++221(x)1n 3,n n f n +-<-≤+取n=0,1()10f x -<-≤,令11,()1,x e f e --==此时有一根1x e -=, 当n≥1时,恒有f(x)-1>1, 此时在(1)[,)n n x e e -+-∈上无根.在1[,)nn x e e+∈上,1n n e x e +≤<,ln 1[ln ]n x n x n ≤<+=,,又222ln 1n x n ≤<+(),221()(1)1,n n f x n n ∴--≤<+--所以在1[,)nn x e e+∈上,恒有221()n n f x n n --≤<+,222()11n n f x n n ∴--≤-≤+-.n=1时,在2[,e e )上,有2f -≤≤(x)-11, n=2时,在23,)e [e 上, 有0()15,f x ≤-<()1,f x ∴=即2ln 11,x n --=2ln 2,,n x n x e+=+=所以此时有两根,32,.x e =x=e 这样在+∞(0,)上,f(x)=1, 有三根,132123,,x e x e -==x =e 在(,0]f(x)e (1),xx ax ∈-∞=+上, 显然(0)1,f =有一根4=0x ,所以在-0∞(,)上,f(x)=1有且仅有一根, →∞又x -时,由“洛必达法则” -lim ()lim (1)0.x x x f x e ax →∞→-∞=+=-0∴∞在(,)上,f(x)是先增后减,(1),0x ax a ''++f (x)=e f (x)=得101a x a a+=-<⇒<-或a >0. 1--)()a f x a +∞又在(,上,单调递增,()0f x '∴>即1e ()0,01,a aa a a +-⋅->⇒<<-又1.a ∴<-故选:A 【点睛】本题主要考查利用导数研究函数的零点问题,意在考查学生对这些知识的理解掌握水平和分析推理能力,难度较大.二、填空题13.若实数,满足约束条件,则的最大值是________.【答案】【解析】作出不等式组表示的平面区域,平移目标函数所表示的直线,可得出目标函数的最大值.【详解】画出不等式组表示的可行域如图阴影部分所示:可变形为,表示斜率为的直线,平移该直线,当直线经过点时,取得最大值,.【点睛】本题考查简单的线性规划问题.14.已知平面向量a r ,b r 的夹角为3π,且1a =r ,1322b ⎛⎫= ⎪ ⎪⎝⎭r ,则(2)a b b +⋅=r r r________.【答案】52【解析】先由题意求出b r ,得到a b ⋅r r,进而可求出结果.【详解】因为13,22b ⎛⎫= ⎪ ⎪⎝⎭r ,所以1b =r ,又向量a r ,b r 的夹角为3π,且1a =r ,则1cos 32b a b a π=⋅=r r r r ,所以21(2)52222a b b a b b +⋅=⋅+=+=r r r r r r .故答案为52【点睛】本题主要考查平面向量的数量积运算,熟记概念与运算法则即可,属于常考题型.15.在(0)na x a x ⎛⎫+> ⎪⎝⎭的二项展开式中,只有第5项的二项式系数最大,且所有项的系数和为256,则含6x 的项的系数为_________. 【答案】8.【解析】根据已知求出n=8和a=1,再求含6x 的项的系数. 【详解】因为只有第5项的二项式系数最大, 所以n=8.因为所有项的系数和为256, 所以81+a)256,1a =∴=(.设81x x ⎛⎫+ ⎪⎝⎭的通项为8821881()r r r r r r T C x C x x --+==,令8-2r=6,所以r=1.所以含6x 的项的系数为188C =.故答案为:8 【点睛】本题主要考查二项式的展开式的系数的求法,考查二项式系数问题,意在考查学生对这些知识的理解掌握水平和分析推理能力.16.已知抛物线C :24(0)y mx m =>与直线0x y m --=交于A 、B 两点(A 、B 两点分别在x 轴的上、下方),且弦长8AB =,则过A ,B 两点、圆心在第一象限且与直线50x y +-+=相切的圆的方程为____________. 【答案】22(1)(4)24x y -+-=.【解析】先求出圆的半径为1,4),即得圆的方程. 【详解】联立直线和抛物线的方程得2260,x mx m -+=由题得1,所以m=1.所以2610,x x -+=解之得A(3(3B ++--,所以AB 的垂直平分线方程为y=-x+5, 因为圆心在AB 的垂直平分线上, 所以设圆心(t,-t+5),因为AB的垂直平分线和直线50x y +-+=平行,因为两平行线间的距离为d ==所以圆的半径为因为点A (3++在圆上,所以22)(3)24,(05)t t t +-=<<(, 所以t=1.所以圆心为(1,4),所以圆的方程为22(1)(4)24x y -+-=. 故答案为:22(1)(4)24x y -+-= 【点睛】本题主要考查直线和抛物线的位置关系,考查圆的标准方程的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力.三、解答题17.已知数列{}n a 满足:()*111,2n n n a a n N a +≠=-∈,数列{}n b 中,11n n b a =-,且124,,b b b 成等比数列; (1)求证:{}n b 是等差数列;(2)n S 是数列{}n b 的前n 项和,求数列{1nS }的前n 项和n T . 【答案】(1)证明见解析 (2)21n nT n =+. 【解析】(1)根据递推式构造出111111n n a a +=+--,即11n n b b +=+,可得证;(2)先根据等差数列的前n 项和公式,求出n S ,可得1nS ,再运用裂项求和的方法可得解. 【详解】(1)证明:()*111,2n n n a a n a +≠=-∈N ,可得11111n n n na a a a +--=-=, 所以111111n n a a +=+--,因为11n n b a =-,所以得11n n b b +=+,所以{}n b 是公差为1的等差数列;(2)124,,b b b 成等比数列,可得2214b b b =,可得()()211113b b b +=+,解得11b =,即21(1)22n n nS n n n +=+-=,可得12112(1)1n S n n n n ⎛⎫==- ⎪++⎝⎭, 则前n 项和11111212231n T n n ⎛⎫=-+-++- ⎪+⎝⎭L 122111nn n ⎛⎫=-= ⎪++⎝⎭. 所以21n nT n =+. 【点睛】本题考查根据递推式证明数列是等差数列,等差数列的前n 项和,以及运用裂项相消法求数列的和的方法,在证明数列是等差数列时,需构造等差数列的定义式,属于中档题. 18.某蛋糕店制作并销售一款蛋糕,制作一个蛋糕成本3元,且以8元的价格出售,若当天卖不完,剩下的则无偿捐献给饲料加工厂。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

秘密★启用前
数学(文科)测试试题卷
注意事项:
1.答卷前,考生务必将自己的姓名考号填写在答题卡上;
2.作答时,务必将答案写在答题卡上,写在本试卷及草稿纸上无效;
3.考试结束后,将答题卡交回。

一.选择题:共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项是符合题目要求的.
1.已知集合,,则=( ) A. B. C. D.
2.已知复数满足(是虚数单位),则=( )
A. B. C. D.
3.“为真命题”是“为真命题”( ) 的条件
A.充分不必要
B.必要不充分
C.充要
D.既不充分也不必要
4.若,,,则实数的大小关系为()
A. B. C. D.
5.已知直线,直线为,若则
( )
A.或 B. C. D.或
6.轴截面为正方形的圆柱的外接球的体积与该圆柱的体积的比值为()
A. B. C. D.
7.设函数,则()
A.为的极大值点 B.为的极小值点
C.为的极大值点 D.为的极小值点
8.设实数满足约束条件,则的取值范围是( )
A. B. C.D.
9.执行右面的程序框图,若输出的的值为63,则判断框中可以填入的关于的
判断条件是()
A. B. C. D.
10.将函数图像向左平移
个单位后图像关于点中心对称,则的值可能为()
A. B. C. D.
11.直线是抛物线在点处的切线,点是圆上的动
点,则点到直线的距离的最小值等于( )
A. B. C. D.
12.已知函数,若方程有四个不同的解,且
,则的取值范围是( )
A. B. C. D.
二.填空题:本大题共4小题,每小题5分,共20分.
13.双曲线的渐近线方程是 .
14.平面向量的夹角为,且,则____
15.已知是等差数列,,且.若,则的前项和 .
16.给出下列4个命题:
①若函数在在上有零点,则一定有;
②函数既不是奇函数又不是偶函数;
③若函数的值域为,则实数的取值范围是;
④若函数满足条件则的最小值为.
其中正确命题的序号是: . (写出所有正确命题的序号)
三.解答题:本大题共6小题,共70分.
17.(本小题满分12分)中,内角对应的边分别为,满足
.
(Ⅰ)已知求与的值;
(Ⅱ)若且求.
18.(本小题满分12分)改革开放40年来,体育产业蓬勃发展反映了“健康中国”理念的普及.下图是我国2006年至2016年体育产业年增加值及年增速图.其中条形图表示体育产业年增加值(单位:亿元),折线图为体育产业年增长率(%).
(Ⅰ)从2007年至2016年这十年中随机选出一年,求该年体育产业年增加值比前一年多亿元以
上的概率;
(Ⅱ)从2007年至2011年这五年中随机选出两年,求至少有一年体育产业年增长率超过25%的概率;
(Ⅲ)由图判断,从哪年开始连续三年的体育产业年增长率方差最大?从哪年开始连续三年的体育产业年增加值方差最大?(结论不要求证明)
19.(本小题满分12分)如图,是边长为的等边三角形,四边形为正方形,平面⊥平面.点分别为棱上的点,且
,为棱上一点,且.
(Ⅰ)当时,求证:∥平面;
(Ⅱ)已知三棱锥的体积为,求的值.
20.(本小题满分12分)如图,是离心率为的椭圆的左、右顶点,是该椭圆的左、右焦点,是直线上两个动点,连接和,它们分别与椭圆交于点
两点,且线段恰好过椭圆的左焦点. 当时,点
恰为线段的中点.
(Ⅰ)求椭圆的方程;
(Ⅱ)判断以为直径的圆与直线位置关系,并加以证明.
21.(本小题满分12分)设函数,对于,都有
成立.
(Ⅰ)求实数的取值范围;
(Ⅱ)证明:(其中是自然对数的底数).
选考题:共10分。

请考生在第22、23两题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一题计分,作答时请用2B铅笔在答题卡上将所选题号后的方框涂黑.
22.(本小题满分10分)选修4-4:坐标系与参数方程.
在直角坐标系中,直线的参数方程为(为参数),在以坐标原点为极点,轴正半轴为极轴的极坐标系中,曲线,. (Ⅰ)求与交点的直角坐标;
(Ⅱ)若直线与曲线,分别相交于异于原点的点,求的最大值.
23.(本小题满分10分)选修4-5:不等式选讲.
设函数.
(Ⅰ)若存在,使得,求实数的取值范围;
(Ⅱ)若是中的最大值,且正数满足,证明:.
答案
一.选择题。

1-5 CBAAA 6-10 CDDCB 11-12CA
二.填空题。

16.④
三.解答题
17.解:,因为,且,
所以,所以..……………(4分)
(Ⅰ)因为,,所以
,....……………(6分)
由正弦定理知:,即..……………(8分)
(Ⅱ)因为,所以,所以,所以
..……(12分)18.解:(Ⅰ)设表示事件“从2007年至2016年这十年中随机选出一年,该年体育产业年增加值比前一年多亿元以上”.
根据题意,. ..……………(3分)
(Ⅱ)从2007年至2011年这五年中有两年体育产业年增长率超过25%,设这两年为,,其它三年设为,,,从五年中随机选出两年,共有10种情况:
,,,,,,,,,,其中至少有一年体育
产业年增长率超过25%有7种情况,所以所求概率为. ..……………(8分)
(Ⅲ)从年或年开始连续三年的体育产业年增长率方差最大...…(10分)
从年开始连续三年的体育产业年增加值方差最大. ..……………(12分)
19.解:(Ⅰ)连接,当时,,
∴四边形是平行四边形,∴,
∵,∴,∵,,
∴平面平面,又平面,∴平面..……………(6分)(Ⅱ)取的中点为,连接,则,
∵平面平面,∴平面.
过点作于点,连接,则平面,则
...……………………(8分)
...……………………(10分)
...……………………(12分)
20.解:(Ⅰ)∵当时,点恰为线段的中点,
∴,又,联立解得:,,,……………(3分)∴椭圆的方程为.………………………………(4分)
(Ⅱ)由题意可知直线不可能平行于轴,设的方程为:,()、(),
联立得:
∴,
∴……(*)………………………………(6分)
又设,由A、E、D三点共线得,
同理可得. ……………(8分)

. ………………………………(10分)
设中点为,则坐标为()即(),
∴点到直线的距离.
故以为直径的圆始终与直线相切. ………………………………(12分)
21.解:(Ⅰ)∵,
∴当时,由,得,由,得,∴在
上单调递增,在上单调递减..…………………………(3分)
∵,都成立,∴.
由(Ⅰ)知,当时,,由,得.
∴.∴的取值范围是..………………………………(5分)
(Ⅱ)当时,,即.
∴.∴当时,.
令,则.且时,..…………………………(8分)∴
,∴..………(10分)
恒成立..………………(12分)
22.解:(Ⅰ)曲线的直角坐标方程为曲线的直角坐标方程为
.由解得或故与交点
的直角坐标为,.………………………………(5分)
(Ⅱ)不妨设,点的极坐标分别为
所以…………………………7分
所以当时,取得最大值.………………………………10分
23.解:(Ⅰ)
存在,使得
.………………………………(5分)
(Ⅱ)由知:
当且仅当时取“=”.………………………………(10分)。

相关文档
最新文档