高三数学模拟试题(理科)

合集下载

四川省成都外国语学校2024届高三高考模拟(六)理科数学试题

四川省成都外国语学校2024届高三高考模拟(六)理科数学试题

四川省成都外国语学校2024届高三高考模拟(六)理科数学试题一、单选题1.已知集合{}||1|2,N A x x x =-<∈,1|1B y y x ⎧⎫==+⎨⎬⎩⎭,则A B =I ( )A .[]1,3B .[]0,2C .{}0,2D .{}1,22.若复数z满足(1i)i |z +=(其中i 为虚数单位),则z 的虚部是( ) A .iB .1-C .1D .i -3.已知x ,y 满足约束条件0401x y x y y -≥⎧⎪+-≤⎨⎪≥⎩,则2z x y =-+的最大值是( )A .1-B .2-C .5-D .14.若曲线2ln y x a x =-在点()1,1P 处的切线与直线2y x =-垂直,则实数a 的值为( ) A .1BC .2D .35.已知角α的终边经过点(1,3)P -,则()cos ππcos cos 2ααα+=⎛⎫+- ⎪⎝⎭( ) A .12B .12- C .14D .14-6.已知向量(2,2),(,3)a b x ==-r r ,则“a r 与b r的夹角为钝角”是“3x <”的( )A .充分不必要条件B .既不充分也不必要条件C .充要条件D .必要不充分条件7.如图,圆O 内接一个圆心角为60°的扇形ABC ,在圆O 内任取一点,则该点落在扇形ABC 内的概率为( )A .14B C .12D 8.地球生命来自外星吗?一篇发布在《生物学快讯》上的文章《基因库的增长是生命起源和演化的时钟》可能给出了一种答案.该论文的作者根据生物功能性基因组里的碱基排列数的大小定义了基因库的复杂度y (单位:1),通过研究各个年代的古代生物化石里基因库的复杂度,提出了一个有趣的观点:生物基因库的复杂度近似是随时间呈指数增长的,只要知道生物基因库的复杂度就可以推测该生物体出现的年代.如图是该论文作者根据生物化石(原核生物,真核生物,蠕虫,鱼类,哺乳动物)中的基因复杂度的常用对数lg y 与时间x (单位:十亿年)的散点图及回归拟合情况(其中回归方程为:lg 0.898.64y x =+,相关指数20.97R =).根据题干与图中的信息,下列说法错误的是( )A .根据信息生物基因库的复杂度近似是随时间呈指数增长的情况,不同于作者采取y 取常用对数的做法,我们也可采用函数模型$10ax y b k =⨯+$来拟合B .根据回归方程可以得到,每过10亿年,生物基因库的复杂度一定增加到原来的0.89107.76≈倍C .虽然拟合相关指数为0.97,但是样本点只有5个,不能很好地阐释其统计规律,所以增加可靠的样本点可以更好地完善回归方程D .根据物理界主流观点:地球的形成始于45亿年前,及拟合信息:地球在诞生之初时生物的复杂度大约为8.6410,可以推断地球生命可能并非诞生于地球 9.在ABC V 中,,,a b c 分别是角,,A B C 的对边,若2222024b c a +=,则()tan tan tan tan tan A B C B C+的值为( ) A .12023B .22023C .11012D .2202510.若函数222e ()2e e xx f x x x =-++,且,,a f b f c f ===⎝⎭⎝⎭⎝⎭,则( ) A .b c a >>B .b a c >>C .c b a >>D .c a b >>11.如图,在直三棱柱111ABC A B C -中,1,AC BC AC BC AA ⊥==,E 、F 、G 、H 分别为11AB BB CC AC 、、、的中点,则下列说法中错误的是( )A .E 、F 、G 、H 四点共面B .1EF GH AA 、、三线共点C .设2BC =,则平面1EFC 截该三棱柱所得截面的周长为1D .AC 与平面EFGH 所成角为45︒12.“肝胆两相照,然诺安能忘.”(《承左虞燕京惠诗却寄却寄》,明•朱察卿)若()1,1A 成中心对称,则称(),A B ,同时把(),A B 和(),B A 视为同一对“然诺点”.已知()()2e ,12,1x x x a x ax x -⎧-<∈=⎨->⎩Z 的图象上有两对“然诺点”,则a 等于( )A .2B .3C .4D .5二、填空题13.抛物线C :()220y px p =->经过点()1,2P -,则点P 到C 的焦点的距离为.14.611(1)x x ⎛⎫+- ⎪⎝⎭展开式中x 2的系数为.15.已知椭圆C :22221x y a b+=(()0a b >>),1F 、2F 为椭圆的左右焦点,A 为椭圆上一点,连接1AF 并延长交椭圆于另一点B ,若212AF AF =,213BF BF =,则椭圆C 的离心率为. 16.已知直线:10l x ay --=与⊙22:2440C x y x y +-+-=交于,A B 两点,设弦AB 的中点为M ,则OM 取值范围为.三、解答题17.已知数列{}n a 的前n 项和为n S ,且满足221n n S a n =+-. (1)求证:数列{}2n a -为等比数列; (2)已知()23n n n a b -=,求数列{}n b 的前n 项和.18.“阳马”是我国古代数学名著《九章算术》中《商功》章节研究的一种几何体,即其底面为矩形,一条侧棱垂直于底面的四棱锥.如图,四边形ABCD 是边长为3的正方形,SA AB ⊥,SA SC ==(1)证明:四棱锥S ABCD -是一个“阳马”;(2)已知点E 在线段AC 上,且AE EC λ=u u u r u u u r ,若二面角A SE D --的余弦值为λ的值.19.甲、乙两人准备进行台球比赛,比赛规定:一局中赢球的一方作为下一局的开球方.若甲开球,则本局甲赢的概率为23,若乙开球,则本局甲赢的概率为13,每局比赛的结果相互独立,且没有平局,经抽签决定,第1局由甲开球.(1)求第3局甲开球的概率;(2)设前4局中,甲开球的次数为X ,求X 的分布列及期望.20.已知双曲线2222:1(0,0)x y C a b a b-=>>的焦距为D 在C 上.(1)求C 的方程;(2)直线:1l x my +=与C 的右支交于,A B 两点,点E 与点A 关于x 轴对称,D 点在x 轴上的投影为G .①求m 的取值范围; ②求证:直线BE 过点G .21.已知函数()()()1x xf x e ae a x a R -=--+∈(其中常数 2.71828e =⋅⋅⋅,是自然对数的底数).(1)求函数()f x 极值点;(2)若对于任意01a <<,关于x 的不等式()()21a f x e a λ-<-⎡⎤⎣⎦在区间()1,a -+∞上存在实数解,求实数λ的取值范围.22.在平面直角坐标系xOy 中,直线l 的方程为21(151t x tt y t ⎧=-⎪⎪+⎨⎪=+⎪+⎩为参数),曲线221x y +=经过伸缩变换x xy '='=⎧⎪⎨⎪⎩后得到曲线C .以O 点为极点,x 轴的非负半轴为极轴建立极坐标系.(1)求直线l 的极坐标方程和曲线C 的普通方程;(2)设射线()0,02θαραπ=>≤<与直线l 和曲线C 分别交于点,A B ,求2241OAOB+的最大值.23.已知()|||3|()f x x a x a =--∈+R . (1)若1a =-,解不等式()2f x x ≥;(2)当a t =(0t >)时,()f x 的最小值为3,若正数m 、n 满足m n t +=,证明:6≤.。

2023届陕西省部分名校高三下学期高考仿真模拟理科数学试卷(word版)

2023届陕西省部分名校高三下学期高考仿真模拟理科数学试卷(word版)

2023届陕西省部分名校高三下学期高考仿真模拟理科数学试卷(word版)一、单选题(★★) 1. 已知集合,,则()A.B.C.D.(★) 2. 复数在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限(★★) 3. 在等差数列中,,则的公差()A.B.3C.D.4(★★★) 4. 若实数满足约束条件,则的取值范围为()A.B.C.D.(★) 5. 已知随机变量X的分布列为:m则()A.2B.C.D.1(★★★) 6. 函数在区间上的图象大致是()A.B.C.D.(★★★) 7. 在正方体中,,,分别为,,的中点,则异面直线与所成角的余弦值为()A.B.C.D.(★★) 8. 已知直线是函数()图象的一条对称轴,则在上的值域为()A.B.C.D.(★★) 9. 等比数列的各项均为正数,且,则()A.8B.6C.4D.3(★★★) 10. 设,,,则()A.B.C.D.(★★★) 11. 已知是坐标原点,是双曲线的左焦点,平面内一点满足是等边三角形,线段与双曲线交于点,且,则双曲线的离心率为()A.B.C.D.(★★★) 12. 在四棱锥P-ABCD中,底面ABCD为梯形,平面P AD⊥底面ABCD,,,,,则四棱锥P-ABCD外接球的表面积为()A.26πB.27πC.28πD.29π二、填空题(★★) 13. 已知向量,,若,则 ______ .(★★) 14. 南宋晚期的龙泉窑粉青釉刻花斗笠盏如图1所示,忽略杯盏的厚度,这只杯盏的轴截面如图2所示,其中光滑的曲线是抛物线的一部分,已知杯盏盛满茶水时茶水的深度为3cm,则该抛物线的焦点到准线的距离为 ______ cm.(★★) 15. 2023年杭州亚运会需招募志愿者,现从某高校的8名志愿者中任意选出3名,分别担任语言服务、人员引导、应急救助工作,其中甲、乙2人不能担任语言服务工作,则不同的选法共有 ___________ 种.(★★★★) 16. 已知函数,若恒成立,则的取值范围为 ______ .三、解答题(★★★) 17. 在中,内角,,所对的边分别为,,,已知,.(1)求的值;(2)若,求的面积.(★★★) 18. 赤霉素在幼芽、幼根、未成熟的种子中合成,其作用是促进细胞的生长,使得植株变高,每粒种子的赤霉素含量(单位:ng/g)直接影响该粒种子后天的生长质量.现通过生物仪器采集了赤霉素含量分别为10,20,30,40,50的种子各20粒,并跟踪每粒种子后天生长的情况,收集种子后天生长的优质数量(单位:粒),得到的数据如下表:赤霉素含量10后天生长的优2质数量(1)求关于的线性回归方程;(2)利用(1)中的回归方程,估计1000粒赤霉素含量为60ng/g的种子后天生长的优质数量. 附:回归直线的斜率和截距的最小二乘估计公式分别为,.(★★★) 19. 如图,在直三棱柱中,,,,D,E分别是棱,的中点.(1)证明:平面;(2)求二面角的余弦值.(★★★) 20. 已知函数.(1)设.①求曲线在点处的切线方程.②试问有极大值还是极小值?并求出该极值.(2)若在上恰有两个零点,求a的取值范围.(★★★) 21. 已知椭圆,斜率为2的直线l与椭圆交于A,B两点.过点B作AB的垂线交椭圆于另一点C,再过点C作斜率为-2的直线交椭圆于另一点D.(1)若坐标原点O到直线l的距离为,求△AOB的面积.(2)试问直线AD的斜率是否为定值?若是定值,求出此定值;若不是定值,说明理由.(★★★) 22. 在直角坐标系中,曲线的参数方程为(为参数).在以坐标原点为极点,轴正半轴为极轴的极坐标系中,曲线与极轴相交于,两点.(1)求曲线的极坐标方程及点的极坐标;(2)若直线的极坐标方程为,曲线与直线相交于,两点,求的面积. (★★) 23. 已知函数.(1)当时,求不等式的解集;(2)若不等式的解集非空,求的取值范围.。

高三数学模拟试卷10套精编(理科)含答案及解析

高三数学模拟试卷10套精编(理科)含答案及解析
5.若定义在 上的函数 满足:对任意 有 则下列说法一定正确的是
A. 为奇函数B. 为偶函数C. 为奇函数D. 为偶函数
【答案】C
【解析】
【详解】x1=x2=0,则 , ,
令x1=x,x2=-x,
则 ,
所以 ,
即 , 为奇函数,故选C.
6.在 中,“ ”是“ ”的()
A.充分而不必要条件B.必要而不充分条件
【答案】C
【解析】
因为向量 ,且a∥b,
∴ .
本题选择C选项.
3.已知 ,且 ,那么
A. B. C. D.
【答案】B
【解析】
【分析】
直接利用同角三角函数基本关系求出结果.
【详解】因为 , >0,故
即 ,
又 ,
解得:
故选:B
【点睛】本题考查的知识要点:同角三角函数基本关系,主要考查学生的运算能力和转换能力,属于基础题型.
【详解】作函数 , , , 的大致图象,如图所示,由三个等式可知,三个交点的横坐标从左向右依次为 、 、 ,所以 .
故选A.
【点睛】本题考查方程根的大小比较,利用数形结合思想转化为函数交点横坐标的大小关系是解题的关键,考查数形结合思想的应用,属于中等题.
8.设函数 =sin( )( >0),已知 在 有且仅有5个零点,下述四个结论:
10.已知函数 ,若将其图象向右平移 个单位长度后所得 图象关于原点对称,则 的最小值为_____.
【答案】
【解析】
【分析】
利用二倍角的正弦公式以及两角和的正弦公式将函数 的解析式化简为 ,并求出平移后的函数解析式,利用所得函数图象过原点,求出 的表达式,即可得出正数 的最小值.
【详解】 ,
将其图象向右平移 个单位长度后所得的图象的函数解析式为 ,

高三数学(理科)模拟试题及答案

高三数学(理科)模拟试题及答案

高三数学(理科)模拟试题及答案姓名: 班级: 座位号: 分数: 一、选择题:(每题 分,总计 分,把答案填在答题卡上。

)1、 10i2-i =A 、 -2+4iB 、 -2-4iC 、 2+4iD 、 2-4i 答案:解:原式10i(2+i)24(2-i)(2+i)i==-+、故选A 、2、 设集合{}1|3,|04x A x x B x x -⎧⎫=>=<⎨⎬-⎩⎭,则A B = A 、 ∅ B 、 ()3,4 C 、()2,1- D 、 ()4.+∞ 答案:解:{}{}1|0|(1)(4)0|144x B x x x x x x x -⎧⎫=<=--<=<<⎨⎬-⎩⎭、(3,4)A B ∴=、故选B 、3、 已知ABC ∆中,12cot 5A =-, 则cos A =A 、 1213B 、513C 、513-D 、 1213-答案:解:已知ABC ∆中,12cot 5A =-,(,)2A ππ∴∈、12cos 13A ===-故选D 、4、曲线21xy x =-在点()1,1处的切线方程为A 、 20x y --=B 、 20x y +-=C 、450x y +-=D 、 450x y --= 答案:解:111222121||[]|1(21)(21)x x x x x y x x ===--'==-=---,故切线方程为1(1)y x -=--,即20x y +-=故选B 、5、 已知正四棱柱1111ABCD A BCD -中,12AA AB =,E 为1AA 中点,则异面直线BE 与1CD 所成的角的余弦值为A 、B 、 15C 、D 、 35答案:解:令1AB =则12AA =,连1A B 1C D ∥1A B ∴异面直线BE 与1CD 所成的角即1A B与BE 所成的角。

在1A BE ∆中由余弦定理易得1cos 10A BE ∠=。

故选C6、 已知向量()2,1,10,||a a b a b =⋅=+=,则||b =A 、B 、C 、5D 、 25解:222250||||2||520||a b a a b b b =+=++=++||5b ∴=。

高三数学模拟考试试题

高三数学模拟考试试题

高三数学模拟试题〔理科〕班别: 姓名: .一.选择题〔12小题,每题5分共60分〕1、设集合},02|{},01|{2≤-=<-=x x x B x x A 那么=B A〔A 〕}21|{<<x x 〔B 〕}21|{≤<x x 〔C 〕1|{<x x 或}2≥x 〔D 〕1|{≤x x 或}2>x2、向量, ), ,2( ),3 ,5(b a x b x a⊥=-=且那么=x〔A 〕2或3 〔B 〕–1或6 〔C 〕6 〔D 〕23、假设x x x 44cos sin ,12-=则π的值为〔A 〕21 〔B 〕21- 〔C 〕23-〔D 〕23 4、i 是虚数单位,复数ii z -+=1)1(2等于〔A 〕i --1 〔B 〕 i +-1 〔C 〕i -1 〔D 〕i +1 5、以抛物线x y 82=的焦点为焦点,且离心率为21的椭圆的标准方程为〔A 〕1121622=+y x 〔B 〕1161222=+y x 〔C 〕141622=+y x 〔D 〕116422=+y x6、假设数列{}n a 的通项公式为=+++++=99531,32a a a a n a n 则 〔A 〕5150〔B 〕2700 〔C 〕9270 〔D 〕48607、设P 〔x ,y 〕是不等式组⎪⎩⎪⎨⎧≥≤≤+023y x y y x 所表示平面区域内任意一点,那么目标函数y x z +=2的最大值是 〔A 〕3〔B 〕4〔C 〕5〔D 〕68、从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同的工作,假设其中甲、乙两名志愿者都不能从事翻译工作,那么选派方案共有〔A 〕280种 〔B 〕240种 〔C 〕180种〔D 〕96种9、正三棱柱111C B A ABC -的侧棱长与底面边长相等,那么1AB 与侧面11A ACC 所成角的正切值是 〔A 〕515〔B 〕315 〔C 〕46 〔D 〕410 10、抛物线c bx x y ++=2在点〔1,2〕处的切线与其平行直线0=++c y bx 间的距离是〔A 〕42 〔B 〕22 〔C 〕223〔D 〕211、设函数1)( , )0( )0( 7)21()(<⎪⎩⎪⎨⎧≥<-=a f x x x x f x若,那么实数a 的取值范围是(A) )3,(--∞ (B)),1(+∞ (C))1,3(- (D)),1()3,(+∞--∞ 12、设|2|)(2x x f -=,假设b a <<0,且)()(b f a f =,那么ab 的取值范围是〔A 〕)2,0( 〔B ]3,0( 〔C 〕]4,0( 〔D 〕]2,2(二、填空题:本大题共4小题,每题5分,共20分.13、函数)1,0(log )(≠>=a a x x f a ,满足2)9(=f ,那么)1(1-f的值是 . 14、双曲线122=+my x 的一个焦点是)0 , 3(,那么实数m 的值是 . 15、)()13(6R a xax ∈-的展开式的常数项是–20,那么=++++∞→)(lim 32n n a a a a ;16、球O 的内接三棱锥P —ABC 底面的三个顶点A 、B 、C在球O 的同一个大圆上,如果AB=AC=5,BC=8,点P 在平面ABC 上的射影恰是球心O ,那么此三棱锥 的体积为 .三、解答题:本大题共6小题,共70分17、〔10分〕三角形ABC 中,a ,b ,c 分别是角A ,B ,C的对边,假设.3))((bc a c b c b a =-+++ 〔Ⅰ〕求角A 的值;〔Ⅱ〕在〔Ⅰ〕的结论下,假设.322cos =B 求)2sin(B A +的值.18、〔12分〕袋中装着标有数字1,2,3,4,5的小球各2个,从袋中任取3个小球,每个小球被取出的可能性都相等,用ξ表示取出的3个小球上的最大数字,求:〔Ⅰ〕取出的3个小球上的数字互不一样的概率; 〔Ⅱ〕随机变量ξ的概率分布列与数学期望;y19、(12分) 如图,三棱锥ABC V -中,VAB ∆是边长为2的正三角形,点V 在平面ABC 上的射影D 在AB 边上,ABC ∆是以B 为直角顶点的等腰直角三角形〔Ⅰ〕求证:面⊥VAB 面VBC ; 〔Ⅱ〕求二面角C VA B --的大小. 20、〔12分〕数列*).(212121:}{2221N n n n a a a a n n n ∈+=-++-+- 满足 求:〔Ⅰ〕数列}{n a 的通项公式; 〔Ⅱ〕数列}{n a 的前n 项与n S .21、〔12分〕).2()()(2≤++=-m e m mx x x f x〔Ⅰ〕当0=m 时,求)(x f 的单调区间; 〔Ⅱ〕证明:当0≥x 时,2)(≤x f 恒成立.22、〔12分〕如下图,圆8)1(:22=++y x C ,定点)0 , 1(A ,M 为圆上一动点,P 为AM 的中点,AM 的垂直平分线PN 交CM 于点N .〔Ⅰ〕求点N 的轨迹E 的方程;〔Ⅱ〕假设过定点)2 , 0(F 的直线交曲线E 于不同的两点G 、H 〔点G 在点F 、H 之间〕,且满足FG FH λ=,求实数λ的取值范围..M数学参考答案一、BDCBA ADBAC CA二、13、3 ;14、 81-;15、 21; 16、350三、17、〔Ⅰ〕由,1800212cos 222︒<<=-+=A bc a c b A 及 ∴A =60°〔Ⅱ〕由322cos =B 及0<B <90°, ∴sin B =3118、解:(Ⅰ)P 〔A 〕=3231012121235=C C C C C . 〔Ⅱ〕ξ有可能的取值为:2,3,4,5.103)4(31022161226=+==C C C C C P ξ,158)5(31022181228=+==C C C C C P ξ 随机变量ξ的概率分布〔略〕;ξ的数学期望为19、〔Ⅰ〕证明:⊥VD 面ABC ,⊂VD 面VAB ,∴面VAB ⊥面ABC ,交线为.ABAB BC ⊥ , ⊥∴BC 面VAB ,又VBC BC 面⊂, ∴面VAB ⊥面VBC〔Ⅱ〕解:过B 作VA BE ⊥于E ,连结CE ,,由〔Ⅰ〕知,CE VA ⊥,CEB ∠∴ 就是二面角CVA B --的平面角.VABAB ∆=,2 是正三角形3=∴BE .又AB BC ==2,332tan =∠∴CEB ,. 二面角的大小为332arctan. C20、解:〔Ⅰ〕*)(2121212221N n n n a a a n n ∈+=-++-+-在〔1〕中令适合有511==a n 〔3〕式,故*)(121N n n a n n ∈+=+〔Ⅱ〕设,21+=n n n b 其前n 项与为,n T 那么21、解:〔Ⅰ〕0=m 时,)2()(2/x x e x f x +-=-,由0)(/>x f 得:f (x )的单调递增区间为〔0,2〕,∴单调递减区间为〔-∞,0〕与〔2,+∞〕2=m 时,0)(2≤-='-x e x x f 0[)(在x f ,)∞+2)0()(=≤∴f x f 成立;2<m 时, 令mx x x f -==='20,0)(或得,2max )4()2()(--=-=m e m m f x f设2)4()(--=m e m m g ,0)3()(2/>-=-m e m m g ,∴)(m g 在]2,(-∞上是增函数,∴2)2()(=≤g m g ,∴0≥x 时,2)(≤x f 恒成立22、解:〔Ⅰ〕NP 为AM 的垂直平分线,∴|NA|=|NM|.∴222||||>=+AN CN ∴动点N 的轨迹是以点C 〔–1,0〕,A 〔1,0〕为焦点的椭圆,且椭圆长轴长为222=a ,焦距2c=2.1,1,22===b c a ∴点N的轨迹E 的方程为1222=+y x 〔Ⅱ〕当直线GH 的斜率存在时,GH 方程为2+=kx y 代入椭圆方程得:034)21(22=+++kx x k ,由0>∆得:232>k ,设),(11y x G ,),(22y x H 又→-→-=FH FG λ,∴)2,()2,(2211-=-y x y x λ,∴21x x λ=, ∴λλ22)1()121(316+=+k,由于232>k ,∴316)1(42<+<λλ,即331<<λ 又10<<λ,∴131<<λ,又当直线GH 的斜率不存在时,31=λ,∴)1,31[∈λ。

四川省成都市石室中学2023届高三高考模拟测试数学(理科)试题

四川省成都市石室中学2023届高三高考模拟测试数学(理科)试题

四川省成都市石室中学2023届高三高考模拟测试数学
(理科)试题
学校:___________姓名:___________班级:___________考号:___________
.甲的成绩的极差小于乙的成绩的极差
.甲的成绩的方差小于乙的成绩的方差
.甲的成绩的平均数等于乙的成绩的平均数
.甲的成绩的中位数小于乙的成绩的中位数
.设zÎC,则在复平面内35
££所表示的区域的面积是()
z
.B.C.D.

13
B .
23
C .
43
二、填空题
13.“五一”假期期间,小明和小红两位同学计划去卷上的圆锥曲线大题.如图,小红在街道E 处,小明14.已知点C 的坐标为()2,0,点,A B 是圆0AC BC ×=uuu r uuu r
,设P 为线段AB 的中点,则15.已知函数()()2e R x f x ax a =-Î有两个极值点围为___________.
三、双空题
信基站核心部件,下表统计了该科技集团近几年来在A部件上的研发投入x(亿元)与收益y(亿元)的数据,结果如下:。

2024届高三数学仿真模拟卷(全国卷)(理科)(考试版)

2024届高三数学仿真模拟卷(全国卷)(理科)(考试版)

2024年高考第三次模拟考试高三数学(理科)(考试时间:120分钟试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上.写在本试卷上无效.4.测试范围:高考全部内容5.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{}24A x x =-≤≤,{}260B x x x =-≥,则A B = ()A .[]2,0-B .[]0,4C .[]2,6-D .[]4,62.已知3i 2z a =(R a ∈,i 是虚数单位),若21322z =,则=a ()A .2B .1C .12D .143.如图,已知AM 是ABC 的边BC 上的中线,若AB a=,AC b = ,则AM 等于()A .()12a b- B .()12a b-- C .()12a b+ D .()12a b-+ 4.已知函数()()πtan 0,02f x x ωϕωϕ⎛⎫=+><< ⎝⎭的最小正周期为2π,直线π3x =是()f x 图象的一条对称轴,则()f x 的单调递减区间为()A .()π5π2π,2πZ 66k k k ⎛⎤-+∈ ⎥⎝⎦B .()5π2π2π,2πZ 33k k k ⎛⎤--∈ ⎥⎝⎦C .()4ππ2π,2πZ 33k k k ⎛⎤--∈ ⎥⎝⎦D .()π2π2π,2πZ 33k k k ⎛⎤-+∈ ⎥⎝⎦5.已知直线l 过点()1,1A 交圆22:4O x y +=于,C D 两点,则“CD =l 的斜率为0”的()A .必要而不充分条件B .充分必要条件C .充分而不必要条件D .即不充分也不必要条件6.甲、乙、丙、丁、戊共5名同学进行唱歌比赛,决出第一名到第五名.丙和丁去询问成绩,回答者对丙说:很遗憾,你和丁都没有得到冠军,对丁说:你当然不会是最差的从这两个回答分析,5人的名次排列方式共有()A .24种B .54种C .96种D .120种7.函数()πln sin 2x x f x x⎛⎫⋅- ⎪⎝⎭=的部分图象大致为()A .B .C.D.8.祖暅是我国南北朝时期伟大的数学家.祖暅原理用现代语言可以描述为“夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的面积总相等,那么这两个几何体的体积相等”.例如,可以用祖暅原理推导半球的体积公式,如图,底面半径和高都为R 的圆柱与半径为R 的半球放置在同一底平面上,然后在圆柱内挖去一个半径为R ,高为R 的圆锥后得到一个新的几何体,用任何一个平行于底面的平面α去截这两个几何体时,所截得的截面面积总相等,由此可证明半球的体积和新几何体的体积相等.若用平行于半球底面的平面α去截半径为R 的半球,且球心到平面α的距离为2R ,则平面α与半球底面之间的几何体的体积是()A3R B3R C3R D3R9.已知函数()21e 3ln ,ln ,ln ,ln 222f x x a f b f c f ⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则()A .a b c <<B .b a c <<C .c<a<bD .a c b<<10.已知数列{}n a 满足1,231,nn n n n a a a a a +⎧⎪=⎨⎪+⎩当为偶数时当为奇数时,若81a =,1a 的所有可能取值构成集合M ,则M 中的元素的个数是()A .7个B .6个C .5个D .4个11.如图,已知双曲线2222:1(0,0)x y C a b a b -=>>的左、右焦点分别为1(,0)F c -,2(,0)F c ,点A 在C 上,点B 在y 轴上,A ,2F ,B 三点共线,若直线1BF1AF的斜率为,则双曲线C 的离心率是()AB .32CD .312.已知()f x ,()g x 都是定义在R 上的函数,对任意x ,y 满足()()()()()f x y f x g y g x f y -=-,且()()210f f -=≠,则下列说法正确的是()A .()01f =B .函数()21g x +的图象关于点()1,0对称C .()()110g g +-=D .若()11f =,则()202311n f n ==∑第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分13.已知数列{}n a 的前n 项和2n S n n =+,当9n nS a +取最小值时,n =.14.若函数()sin 1f x x x ωω=-在[]0,2π上恰有5个零点,且在ππ[,415-上单调递增,则正实数ω的取值范围为.15.已知52345012345(23)x a a x a x a x a x a x +=+++++,则123452345a a a a a -+-+=.(用数字作答)16.已知定义在R 上的函数()f x 满足()4()0f x f x '+>,且(01f =),则下列说法正确的是.①()f x 是奇函数;②(0,),()0x f x ∃∈+∞>;③41(1)e f >;④0x ∀>时,41()e xf x <三、解答题:本大题共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)已知()sin ,5sin 5sin m B A C =+ ,()5sin 6sin ,sin sin n B C C A =--垂直,其中A ,B ,C 为ABC的内角.(1)求cos A 的大小;(2)若BC =ABC 的面积的最大值.18.(12分)2016年10月“蓝瘦香菇”等网络新词突然在网络流行,某社区每月都通过问卷形式进行一次网上调查,现从社区随机抽取了60名居民进行调查.已知上网参与问卷调查次数与参与人数的频数分布如下表:参与调查问卷次数[)0,2[)2,4[)4,6[)6,8[)8,10[]10,12参与调查问卷人数814814106(1)若将参与调查问卷不少于4次的居民称为“关注流行语居民”,请你根据频数分布表,完成22⨯列联表,据此调查你是否有99%的把握认为在此社区内“关注流行语与性别有关”?男女合计关注流行语8不关注流行语合计40(2)从被调查的人中按男女比例随机抽取6人,再从选取的6人中选出3人参加政府听证会,求选出的3人为2男1女的概率.附:参考公式()()()()()22n ad bc K a b c d a c b d -=++++及附表()2P K k ≥0.1000.0500.0100.001k2.7063.8416.63510.82819.(12分)在几何体中,底面ABC 是边长为2的正三角形.⊥AE 平面ABC ,若,5,4,3AE CD BF AE CD BF ===∥∥.(1)求证:平面DEF ⊥平面AEFB ;(2)是否在线段AE 上存在一点P ,使得二面角P DF E --的大小为π3.若存在,求出AP 的长度,若不存在,请说明理由.20.(12分)已知椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2P ⎛⎫ ⎪⎝⎭在椭圆C 上,且PF 垂直于x 轴.(1)求椭圆C 的方程;(2)直线l 斜率存在,交椭圆C 于,A B 两点,,,A B F 三点不共线,且直线AF 和直线BF 关于PF 对称.(ⅰ)证明:直线l 过定点;(ⅱ)求ABF △面积的最大值.21.(12分)已知函数()2,0eax x f x a =>.(1)当2a =时,求函数()f x 的单调区间和极值;(2)当0x >时,不等式()()2cos ln ln 4f x f x a x x ⎡⎤-≥-⎣⎦恒成立,求a 的取值范围.(二)选考题:共10分.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分.选修4-4:坐标系与参数方程22.在平面直角坐标系xOy 中,曲线C 的参数方程为12cos 2sin x y αα=+⎧⎨=⎩(α为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为sin 42πρθ⎛⎫-= ⎪⎝⎭.(1)求C 的普通方程和l 的直角坐标方程;(2)设直线l 与x 轴相交于点A ,动点B 在C 上,点M 满足AM MB =,点M 的轨迹为E ,试判断曲线C与曲线E 是否有公共点.若有公共点,求出其直角坐标;若没有公共点,请说明理由.选修4-5:不等式选讲23.已知()2122f x x x x =-+-+.(1)求()2f x ≥的解集;(2)记()f x 的最小值为t ,且2(0,0)3a b t a b +=>>,求证:11254a b a b ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭.。

高三数学模拟试题

高三数学模拟试题

高三数学模拟试题(理)一、选择题:本大题共10小题,每题5分,共50分.1. 设f x x →:是集合A 到集合B 的映射.若{}3,0,3A =-,则AB =( )A .{0}B .{0,3}C .{3}D .{3-,0}2. 已知等差数列{a n }满足:35111380a a a a +++=,则a 8 =( )A .18B .20C .22D .243. “a = 3”是“直线210ax y --=与直线640x y c -+=平行”的( )条件A .充要B .充分而不必要C .必要而不充分D .既不充分也不必要4. 00tan15cot15-的值为( )A .23-B .3-C .3D .235. 已知双曲线离心率为2,则它的两条渐近线的夹角为( )A .30°B .45°C .60°D .90°6. 若函数()cos 21f x x =+的图像按向量a 平移后,得到的图像关于原点对称,则向量a 可以是( ) A .(1,0)B .(1)2π-,C .(1)4π-,D .(1)4π,7. 关于x 的函数y =log 21(a 2-ax +2a )在[1,+∞)上为减函数,则实数a 的取值范围是( )A .(-∞,-1)B .(-∞,0)C .(1-,0)D .(0,2]8. 已知数列{a n }的通项为*1log (2)()n n a n n N +=+∈,我们把使乘积123n a a a a 为整数的n 叫做“优数”,则在(12010],内的所有“优数”的和为( ) A .1024B .2003C .2026D .20489. 已知椭圆22221x y a b+=的左、右焦点分别为F 1、F 2,则12||2F F c =,点A 在椭圆上且2112120AF F F AF AF c ==且,则椭圆的离心率为( ) A .33B .22C .312- D .512- 10. 定义函数()[[]]f x x x =,其中[]x 表示不超过x 的最大整数,如:[1.5]1[ 1.3]2=-=-,,当*[0)()x n n N ∈∈,时,设函数()f x 的值域为A ,记集合A 中的元素个数为a n ,则式子90n a n+的最小值为( ) A .10B .13C .14D .16二、填空题:本大题共5小题,每题5分,共25分.11. 不等式22log 1x x -≥的解集为______________. 12. 函数sin()(10)()3(1)(0)x x f x f x x π⎧-≤<⎪=⎨⎪-≥⎩,则(1)f =________________. 13. 设S n 为等差数列{a n }的前n 项和,若59611229a Sa S ==,则______________. 14. x 、y 满足约束条件:225040y x y x y ≥⎧⎪+-≥⎨⎪+-≤⎩,则1|5|2z x y =+-的最小值是______________.15. 已知集合{|18}M x x x N =≤≤∈,,对于它的非空子集A ,将A 中的每个元素k ,都乘以(1)k -再求和,(如A = {1,3,6},可求和得到136(1)1(1)3(1)62-+-+-=),则对M 的所有非空子集,这些和的总和是________________.三、解答题:本题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.16. (本小题满分13分)已知函数()sin 2sin 2cos 2(66f x x x x a a a ππ⎛⎫⎛⎫=++-++∈ ⎪ ⎪⎝⎭⎝⎭R ,为常数).求函数的最小正周期;求函数的单调递增区间;若02x π⎡⎤∈⎢⎥⎣⎦,时,()f x 的最小值为– 2 ,求a 的值.17. (本小题满分13分) 数列{a n }中,a 1 = 1,当2n ≥时,其前n 项和满足21()2n n n S a S =-求S n 的表达式; 设21nn S b n =+,数列{b n }的前n 项和为T n ,求T n .18. (本小题满分13分) 已知圆C :22(1)(2)25x y -+-=,直线l :(21)(1)740()m x m y m m +++--=∈R .证明:不论m 取什么实数时,直线l 与圆恒交于两点; 求直线l 被圆C 截得的线段的最短长度以及此时直线l 的方程.19. (本小题满分12分)已知2(1)()(0)2x p x pf x p x p+++=>+ 若p > 1时,解关于x 的不等式()0f x ≥; 若()2f x >对24x ≤≤时恒成立,求p 的范围.20. (本小题满分12分)已知点A (– 2,0),B (2,0),动点P 满足:2APB θ∠=,且2|||s i n2P A P B θ=.求动点P 的轨迹G 的方程;过点B 的直线l 与轨迹G 交于两点M 、N .试问在x 轴上是否存在定点C ,使得CM CN 为常数.若存在,求出点C 的坐标;若不存在,说明理由.21. (本小题满分12分)数列{a n }中a 1 = 2,111()2n n n a a a +=+,{b n }中*91log 11n n n a b n N a +=∈-,. 求证:数列{b n }为等比数列,并求出其通项公式; 当*3()n n N ≥∈时,证明:2312312337444414(1)(1)(1)(1)n nn b b b b ++++<+-+-+-+-.参考答案1.B 2.B 3.C 4.A 5.D 6.C 7.A 8.C 9.D 10.B 11.[20)-, 12.32- 13.2 14.3215.512 16.解: (1) ()2sin 2coscos 23sin 2cos 22sin 266f x x x a x x a x a ππ⎛⎫=++=++=++ ⎪⎝⎭ ∴()f x 的最小正周期22T ππ== (2) 当222262k x k πππππ-≤+≤+即()36k x k k Z ππππ-≤≤+∈时,函数()f x 单调递增,故所求区间为()36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦,(3) 02x π⎡⎤∈⎢⎥⎣⎦,时,72666x πππ⎡⎤+∈⎢⎥⎣⎦,2x π=∴时,()f x 取得最小值2sin(2)2126a a ππ⋅++=-=-∴∴17.解:(1) 当2n ≥时,1n n n a S S -=-代入已知得211()()2n n n n S S S S -=--化简得:111122n n n n S S S S --=- 两边同除以11112n n n n S S S S ---=得 ∴111(1)212(1)21n n n n S S =+-=+-=- ∴ 121n S n =- (2) ∵ 1111121()2121(21)(21)22121n n S n b n n n n n n -====-++-+-+ ∴ 12n n T b b b =+++111111(1)2335212111(1)221n n n =-+-++--+=-+21nn =+ 18.解:(1) 由(27)(4)0m x y x y +-++-=知直线l 恒过定点又27341x y x x y y +==⎧⎧⇒⎨⎨+==⎩⎩∴ 直线l 恒过定点A (3,1),且22(31)(12)525-+-=<⇒A (3,1)必在圆内,故直线l 与圆恒有两交点. (2) ∵ 圆心为C (1,2),定点为A (3,1) ∴ 211132AC k -==-- 由平面几何知识知,当直线l 与AC 垂直时所截线段最短,此时2l k = ∴ l 方程为:12(3)25y x y x -=-⇒=-,此时||415d AC ==+=∴ 最短弦长225545=-=19.解:(1) ()(1)()02x p x f x x p++=≥+ ①12{|1}2pp x p x x <<-≤≤->-时,解集为或② p = 2时,解集为{|21}x x x ≥-≠-且③ p > 2时,解集为{|1}2px p x x -≤<-≥-或(2)2(1)22x p x px p+++>+2(1)42x p x p x p +++>+ ∴ 2(3)024x p x p x +-->≤≤对恒成立∴ 232(2)2411x x p x x x x ->=--+≤≤--对恒成立∵ 2()(2)[24]1g x x x =--+-在,上递减 ∴max ()(2)2g x g == ∴ p > 2 20.解:(1) 由余弦定理得:222||||||2||||cos2AB PA PB PA PB θ=+-即16=222||||2||||(12sin )PA PB PA PB θ+--=222||||2||||4||||sin PA PB PA PB PA PB θ+-+2(||||)8PA PB =-+ 所以2(||||)8PA PB -=,即||||||224||PA PB AB -=<= (当动点P 与两定点A ,B 共线时也符合上述结论)所以动点P 的轨迹为以A ,B 为焦点,实轴长为22的双曲线 所以,轨迹G 的方程为222x y -= (2) 假设存在定点C (m ,0),使CM CN 为常数.①当直线l 不与x 轴垂直时,设直线l 的方程为22(2)2y k x x y =--=,代入整理得2222(1)4(42)0k x k x k -+-+=由题意知,1k ≠± 设1122()()M x y N x y ,,,,则212241k x x k +=-,2122421k x x k +=-于是()()()2222121212122224y y k x x k x x k x x k =--=-++∴21122121212()()()CM CN x m y x m y x x m x x y y m ⋅=--=-+++,, =()()()22221212124k x x k m x x m k +-++++=22222222(42)(1)4(2)411k k k k m m k k k +++-++-- 2222222242(24)211k k m k m m mk k -+-+=+=+--22222(1)(24)2244(1)2(12)11k m m m m m m k k --++--=+=++--- 要是使得CM CN 为常数,当且仅当1m =,此时1CM CN =- ②当直线l 与x 轴垂直时,(22)(22)M N -,,,,当1=m 时1CM CN =-.故,在x 轴上存在定点C (1,0),使得CM CN 为常数21.证明:(1) 由21191919111()1121log 1log 1log ()11111()12n n n n n n n n n n na a a ab b b a a a a +++++++++=⇒=⇒=--+-1912log 11n n n a b a ++⇒=- 又91log 11nn n a b a +=- ∴ 112n n b b += 又n = 1时,119111log 121a b b a +=⇒=- ∴ {}n b 为等比数列,b 1 = 2,12q =,∴ 12112()()22n n n b --== (2) ∵ 21141()4()2122()2n n n n nn b b -==⇒== ∴ 42(1)(1)n nnn nn n C b ==+-+- 先证:1(3)2(1)2n n nn n n +<≥+-当n 为偶数时,显然成立;当n 为奇数时,即证1222121212n n n n n nn n n n n n +<⇔<-+-⇔>+- 而当3n ≥时,21n n >+显然也成立,故1(3)2(1)2n n nn n n +<≥+-当4n ≥时,令45645645656712121212(1)2222n n nn n T +=++++<+++++-++- 又令45656712222nn A +=++++① 561156122222n n n n A ++=++++② ①-②:4561151111222222n n n A ++=++++-4345111[1()]5111151316212222282412n n n n n n A ---++⇒=++++-=+-<-∴ 34T <又123123123236412121215735C C C ++=++=++=-+- ∴ 所证式子左边6433693703735414014014<+=<=即2312312337444414(1)(1)(1)(1)nn n b b b b ++++<+-+-+-+-。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新教材高考数学模拟题精编详解名师猜题卷第一套试题第Ⅰ卷(选择题,共60分)一、本题共12小题,每小题5分,共60分,在每小题给出的四个选项中只有一个选项是符合题目要求的.1.若集合M ={x <|x |<1},N ={x |2x ≤x },则M N =( )A .}11|{<<-x xB .}10|{<<x xC .}01|{<<-x xD .}10|{<≤x x 2.若奇函数f (x )的定义域为R ,则有( )A .f (x )>f (-x ) C .f (x )≤f (-x )C .f (x )·f (-x )≤0D .f (x )·f (-x )>0 3.若a 、b 是异面直线,且a ∥平面α ,那么b 与平面α 的位置关系是( )A .b ∥aB .b 与α 相交C .b ⊂αD .以上三种情况都有可能4.(理)已知等比数列{n a }的前n 项和12-=n n S ,则++2221a a …2n a +等于( )A .2)12(-n B .)12(31-n C .14-nD .)14(31-n5.若函数f (x )满足)(21)1(x f x f =+,则f (x )的解析式在下列四式中只有可能是( ) A .2x B .21+x C .x -2 D .x 21log 6.函数y =sin x |cot x |(0<x <π )的图像的大致形状是( )7.若△ABC 的内角满足sin A +cos A >0,tan A -sin A <0,则角A 的取值范围是( ) A .(0,4π) B .(4π,2π) C .(2π,43π) D .(43π,π ) 8.(理)若随机变量ξ 的分布列如下表,则E ξ 的值为( )ξ0 1 2 3 4 5 P2x3x7x2x3xxA .181 B .9 C .9 D .209.(理)若直线4x -3y -2=0与圆01242222=-++-+a y ax y x 有两个不同的公共点,则实数a 的取值范围是( )A .-3<a <7B .-6<a <4C .-7<a <3D .-21<a <1910.我国发射的“神舟3号”宇宙飞船的运行轨道是以地球的中心2F 为一个焦点的椭圆,近地点A 距地面为m 千米,远地点B 距地面为n 千米,地球半径为R 千米,则飞船运行轨道的短轴长为( )A .))((2R n R m ++B .))((R n R m ++C .mnD .2mn 11.某校有6间不同的电脑室,每天晚上至少开放2间,欲求不同安排方案的种数,现有四位同学分别给出下列四个结果:①26C ;②665646362C C C C +++;③726-;④26A .其中正确的结论是( )A .仅有①B .仅有②C .②和③D .仅有③12.将函数y =2x 的图像按向量a →平移后得到函数y =2x +6的图像,给出以下四个命题:①a →的坐标可以是(-3.0);②a →的坐标可以是(0,6);③a →的坐标可以是(-3,0)或(0,6);④a →的坐标可以有无数种情况,其中真命题的个数是( ) A .1 B .2 C .3 D .4第Ⅱ卷(非选择题,共90分)二、填空题:本题共4小题,共16分,把答案填在题中的横线上13.已知函数)1(11)(2-<-=x x x f ,则=--)31(1f ________. 14.已知正方体ABCD -A'B'C'D',则该正方体的体积、四棱锥C'-ABCD 的体积以及该正方体的外接球的体积之比为________.15.(理)已知函数ax x x f +-=3)(在区间(-1,1)上是增函数,则实数a 的取值范围是________.16.(理)已知数列{n a }前n 项和nn n b ba S )1(11+-+-=其中b 是与n 无关的常数,且0<b <1,若∞→n n S lim 存在,则∞→=n n S lim ________.三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤.17.(12分)已知函数)R (2sin 3cos 2)(2∈++=a a x x x f .(1)若x ∈R ,求f (x )的单调递增区间;(2)若x ∈[0,2π]时,f (x )的最大值为4,求a 的值,并指出这时x 的值.18.(12分)设两个向量1e 、2e ,满足|1e |=2,|2e |=1,1e 、2e 的夹角为60°,若向量2172e te +与向量21te e +的夹角为钝角,求实数t 的取值范围.19甲.(12分)如图,平面VAD ⊥平面ABCD ,△VAD 是等边三角形,ABCD 是矩形,AB ∶AD =2∶1,F 是AB 的中点.(1)求VC 与平面ABCD 所成的角;(2)求二面角V -FC -B 的度数; (3)当V 到平面ABCD 的距离是3时,求B 到平面VFC 的距离.20.(12分)商学院为推进后勤社会化改革,与桃园新区商定:由该区向建设银行贷款500万元在桃园新区为学院建一栋可容纳一千人的学生公寓,工程于2002年初动工,年底竣工并交付使用,公寓管理处采用收费还贷偿还建行贷款(年利率5%,按复利计算),公寓所收费用除去物业管理费和水电费18万元.其余部分全部在年底还建行贷款. (1)若公寓收费标准定为每生每年800元,问到哪一年可偿还建行全部贷款; (2)若公寓管理处要在2010年底把贷款全部还清,则每生每年的最低收费标准是多少元(精确到元).(参考数据:lg1.7343=0.2391,lgl.05=0.0212,81.05=1.4774)21.(12分)已知数列{n a }中531=a ,112--=n n a a (n ≥2,+∈N n ),数列}{n b ,满足11-=n n a b (+∈N n )(1)求证数列{n b }是等差数列; (2)求数列{n a }中的最大项与最小项,并说明理由; (3)记++=21b b S n …n b +,求1)1(lim +-∞→n nS b n n .22.(14分)(理)设双曲线C :12222=-by a x (a >0,b >0)的离心率为e ,若准线l 与两条渐近线相交于P 、Q 两点,F 为右焦点,△FPQ 为等边三角形.(1)求双曲线C 的离心率e 的值;(2)若双曲线C 被直线y =ax +b 截得的弦长为ae b 22求双曲线c 的方程.参考答案1.D 2.C 3.D 4.(理)D (文)A 5.C 6.B 7.C 8.(理)C (文)A 9.(理)B (文)D 10.A 11.C 12.D13.-2 14.6∶2∶π33 15.(文)7 (理)a ≥3 16.(文)a ≥3(理)1 17.解析:(1)a x a x x x f +++=+++=1)6π2sin(212cos 2sin 3)(.解不等式2ππ26π22ππ2+≤+≤-k x k .得)Z (6ππ3ππ∈+≤≤-k k x k∴ f (x )的单调增区间为3ππ[-k ,)Z ](6ππ∈+k k .(2)∵ 0[∈x ,2π], ∴ 6π76π26π≤+≤x . ∴ 当2π6π2=+x 即6π=x 时,a x f +=3)(max .∵ 3+a =4,∴ a =1,此时6π=x .18.解析:由已知得421=e ,122=e ,160cos 1221=⨯⨯=⋅e e .∴ 71527)72(2)()72(222212212121++=+++=++⋅t t te e e t te te e e te .欲使夹角为钝角,需071522<++t t .得 217-<<-t . 设)0)((722121<+=+λte e i e te .∴ ⎩⎨⎧==λλt t 72,∴ 722=t .∴ 214-=t ,此时14-=λ.即214-=t 时,向量2172e te +与21te e +的夹角为π . ∴ 夹角为钝角时,t 的取值范围是(-7,214-) (214-,21-). 19.解析:(甲)取AD 的中点G ,连结VG ,CG .(1)∵ △ADV 为正三角形,∴ VG ⊥AD .又平面VAD ⊥平面ABCD .AD 为交线, ∴ VG ⊥平面ABCD ,则∠VCG 为CV 与平面ABCD 所成的角. 设AD =a ,则a VG 23=,a DC 2=.在Rt △GDC 中,a a a GD DC GC 23422222=+=+=.在Rt △VGC 中,33tan ==∠GC VG VCG . ∴30=∠VCG .即VC 与平面ABCD 成30°. (2)连结GF ,则a AF AG GF 2322=+=. 而 a BC FB FC 2622=+=.在△GFC 中,222FC GF GC +=. ∴ GF ⊥FC . 连结VF ,由VG ⊥平面ABCD 知VF ⊥FC ,则∠VFG 即为二面角V -FC -D 的平面角. 在Rt △VFG 中,a GF VG 23==.∴ ∠VFG =45°.二面角V -FC -B 的度数为135°. (3)设B 到平面VFC 的距离为h ,当V 到平面ABCD 的距离是3时,即VG =3. 此时32==BC AD ,6=FB ,23=FC ,23=VF .∴ 921==⋅∆FC VF S VFC ,2321==⋅∆BC FB S BFC .∵ VCF B FCB V V V --=, ∴ VFC FBC S h S VG ∆∆⋅⋅⋅⋅=3131.∴93123331⋅⋅=⨯⨯h . ∴ 2=h 即B 到面VCF 的距离为2.(乙)以D 为原点,DA 、DC 、1DD 所在的直线分别为x 、y 、z 轴,建立空间直角坐标系,设正方体1AC 棱长为a ,则D (0,0,0),A (a ,0,0),B (a ,a ,0),1D (0,0,a ),E (a ,a ,2a ),F (a ,2a ,0),G (2a,a ,0).(1)a F D (1=,2a ,-a ),2(a EG -=,0,)2a-, ∵ 0)2)((02)2(1=--+⨯+-=⋅aa a a a EG F D ,∴ EG F D ⊥1.(2)0(=AE ,a ,2a ),∴ 02201=⨯-⨯+⨯=⋅aa a a a AE F D .∴ AE F D ⊥1.∵ E AE EG = ,∴ ⊥F D 1平面AEG .(3)由0(=AE ,a ,2a),B D 1=(a ,a ,a -), ∴ AE <cos ,111B D ⋅>=155)(40212222222=-++++-=⋅a a a a a a a .20.解析:依题意,公寓2002年底建成,2003年开始使用.(1)设公寓投入使用后n 年可偿还全部贷款,则公寓每年收费总额为1000×80(元)=800000(元)=80万元,扣除18万元,可偿还贷款62万元. 依题意有 +++++2%)51(%)51(1[62 (11)%)51(500]%)51(+-+≥++n n .化简得105.125)105.1(62+⨯≥-n n.∴ 7343.105.1≥n.两边取对数整理得28.110212.02391.005.1lg 7343.1lg ==≥n .∴ 取n =12(年).∴ 到2014年底可全部还清贷款.(2)设每生和每年的最低收费标准为x 元,因到2010年底公寓共使用了8年, 依题意有+++++-2%)51(%)51(1)[18100001000(x…97%)51(500]%)51(+≥++.化简得9805.1500105.115.10)181.0(⨯≥---x . ∴ 992)2.8118(10)14774.14774.105.12518(10)105.105.12518(1089=+⨯=-⨯⨯+=-⨯+≥x (元) 故每生每年的最低收费标准为992元. 21.解析:(1)1112111111-=--=-=---n n n n n a a a a b ,而 1111-=--n n a b ,∴ 11111111=-=-=-----n n n n n a a a b b .)(+∈N n∴ {n b }是首项为251111-=-=a b ,公差为1的等差数列. (2)依题意有n n b a 11=-,而5.31)1(25-=-+-=⋅n n b n ,∴ 5.311-=-n a n . 对于函数5.31-=x y ,在x >3.5时,y >0,0<y',在(3.5,∞+)上为减函数.故当n =4时,5.311-+=n a n 取最大值3,而函数5.31-=x y 在x <3.5时,y <0,0)5.3(12<--=x y',在(∞-,3.5)上也为减函数.故当n =3时,取最小值,3a =-1.(3)2)5)(1(2)25225)(1(1-+=-+-+=+n n n n S n ,5.3-=n b n , ∴ ∞→+∞→=-+--=-n n n n n n n n S b n 2)5)(1()5.3)(1(2lim )1(lim1. 22.解析:(1)双曲线C 的右准线l 的方程为:x =c a 2,两条渐近线方程为:x aby ±=.∴ 两交点坐标为 c a P 2(,)c ab 、c a Q 2(,)cab-.∵ △PFQ 为等边三角形,则有||23||PQ MF =(如图). ∴)(232c ab c ab c a c +=-⋅,即c ab c a c 322=-.解得 a b 3=,c =2a .∴ 2==ac e . (2)由(1)得双曲线C 的方程为把132222=-ay a x .把a ax y 3+=代入得0632)3(2222=++-a x a x a .依题意 ⎪⎩⎪⎨⎧>--=∆≠-0)3(2412032242,a a a a ∴ 62<a ,且32≠a .∴ 双曲线C 被直线y =ax +b 截得的弦长为 ]4))[(1())(1()()(2122122212221221x x x x a x x a y y x x l -++=-+=-+-=222242)3()1(2412)1(---+=a a a a a∵ a ac b l 1222==.∴ 224222)3(1272)1(144--+=⋅a a a a a .整理得 0102771324=+-a a .∴ 22=a 或13512=a . ∴ 双曲线C 的方程为:16222=-y x 或115313511322=-y x . (文)(1)设B 点的坐标为(0,0y ),则C 点坐标为(0,0y +2)(-3≤0y ≤1), 则BC 边的垂直平分线为y =0y +1 ①)23(3200-=+x y y y ② 由①②消去0y ,得862-=x y .∵ 130≤≤-y ,∴ 2120≤+=≤-y y . 故所求的△ABC 外心的轨迹方程为:)22(862≤≤--=y x y . (2)将b x y +=3代入862-=x y 得08)1(6922=++-+b x b x .由862-=x y 及22≤≤-y ,得234≤≤x .所以方程①在区间34[,2]有两个实根.设8)1(69)(22++-+=b x b x x f ,则方程③在34[,2]上有两个不等实根的充要条件是:⎪⎪⎪⎩⎪⎪⎪⎨⎧≤--≤≥++-+=≥++-+=>+--=∆⋅⋅⋅⋅⋅⋅.,,,292)1(634082)1(629)2(0834)1(6)34(9)34(0)8(94)]1(6[222222b b b f b b f b b 之得34-≤≤-b . ∵ 7232984)]1(32[4)(||222122121--=+--=-+=-⋅b b b x x x x x x∴ 由弦长公式,得721032||1||212--=-+=⋅b x x k EF 又原点到直线l 的距离为10||b d =, ∴71)711(73202732072320||222++-=--=--=b b b b b d EF ∵ 34-≤≤-b ,∴ 41131-≤≤-b .∴ 当411-=b ,即4-=b 时,35||max =d EF .。

相关文档
最新文档