微积分基本定理与应用

合集下载

《微积分》讲义

《微积分》讲义

《微积分》讲义第一章极限一、函数极限的概念:f=A要点:⑴x 为变量;⑵A 为一常量。

二、函数极限存在的充分必要条件:f=A f=A,f=A 例:判定是否存在?三、极限的四则运算法则⑴=f±g⑵=f·g⑶=……g≠0⑷k·f=k·f四、例:⑴⑵⑶⑷五、两个重要极限⑴=1 =1⑵=e =e ………型理论依据:⑴两边夹法则:若f≤g≤h,且limf=limh=A,则:limg=A⑵单调有界数列必有极限。

例题:⑴=⑵=⑶=⑷=⑸=六、无穷小量及其比较1、无穷小量定义:在某个变化过程中趋向于零的变量。

2、无穷大量定义:在某个变化过程中绝对值无限增大的变量。

3、高阶无穷小,低阶无穷小,同阶无穷小,等价无穷小。

4、定理:f=A f=A+a (a=0)七、函数的连续性1、定义:函数y=f在点处连续……在点处给自变量x一改变量x:⑴x0时,y0。

即:y=0⑵f=f⑶左连续:f=f右连续:f=f2、函数y=f在区间上连续。

3、连续函数的性质:⑴若函数f和g都有在点处连续,则:f±g、f·g、(g()≠0)在点处连续。

⑵若函数u=j在点处连续,而函数y=f在点=j()处连续,则复合函数f(j(x)) 在点处连续。

例:===4、函数的间断点:⑴可去间断点:f=A,但f不存在。

⑵跳跃间断点:f=A ,f=B,但A≠B。

⑶无穷间断点:函数在此区间上没有定义。

5、闭区间上连续函数的性质:若函数f在闭区间上连续,则:⑴f在闭区间上必有最大值和最小值。

⑵若f与f异号,则方程f=0 在内至少有一根。

例:证明方程式-4+1=0在区间内至少有一个根。

第二章一元函数微分学一、导数1、函数y=f在点处导数的定义:x y=f-f=A f'=A ……y',,。

2、函数y=f在区间上可导的定义:f',y',,。

3、基本初等函数的导数公式:⑴=0⑵=n·⑶=,=⑷=·lnɑ,=⑸=cosx,=-sinx=x,=-=secx·tanx,=-cscx·cotx⑹=-=-4、导数的运算:⑴、四则运算法则:=±=·g(x)+f(x)·=例:求下列函数的导数y=2-5+3x-7f(x)=+4cosx-siny=⑵、复合函数的求导法则:y u,u v,v w,w x y x'=''''例:y=lntanxy=lny=arcsin⑶、隐函数的求导法则:把y看成是x的复合函数,即遇到含有y 的式子,先对y求导,然后y再对x求导。

《微积分的基本定理》课件

《微积分的基本定理》课件

物理
在物理学科中,该定理可以用来 解决各种物理量如质量、速度、 力等的积分问题,例如计算物体 的动量、动能等。
工程
在工程领域,该定理可以用来解 决各种实际问题的积分计算,例 如计算电路中的电流、求解流体 动力学中的压力分布等。
02 定理的证明
定理证明的思路
明确问题
首先,我们需要明确微积分的基本定理是关于什 么的,以及它要解决的问题是什么。
难点2
如何利用积分运算法则简化每个小部分的积 分。
关键点1
理解定积分的定义和性质,以及它们在证明 定理中的作用。
关键点2
掌握导数的定义和性质,以及它们在推导原 函数值增量中的应用。
03 定理的推论和扩 展
推论一:积分中值定理
总结词
积分中值定理是微积分中的一个重要定理,它表明在闭区间上连续的函数一定存在至少一个点,使得该函数在此 点的值为该区间上函数积分的平均值。
详细描述
积分中值定理是微积分中的一个基本定理,它表明如果一个函数在闭区间上连续,那么在这个区间内一定存在至 少一个点,使得该函数在这一点处的值等于该函数在整个区间上的平均值。这个定理在解决一些微积分问题时非 常有用,因为它可以帮助我们找到函数在某个点处的值,而不需要计算整个区间的积分。
推论二:洛必达法则
个定积分的值就是曲边梯形的面积。
应用实例二:求解不定积分
总结词
微积分的基本定理是求解不定积分的关 键工具。
VS
详细描述
不定积分是微分学的逆运算,其求解过程 需要用到微积分的基本定理。根据基本定 理,不定积分∫f(x)dx = F(x) + C,其中 F(x)是f(x)的一个原函数,C是常数。通过 基本定理,我们可以找到一个函数F(x), 使得F'(x) = f(x)。这样,我们就可以求解 不定积分了。

微积分基本定理与积分变换

微积分基本定理与积分变换

微积分基本定理与积分变换微积分是数学的重要分支之一,其核心概念之一就是微积分基本定理和积分变换。

本文将详细介绍微积分基本定理的原理和应用,并探讨积分变换在实际问题中的作用。

1. 微积分基本定理微积分基本定理是微积分的核心概念之一,由牛顿与莱布尼茨在17世纪分别独立发现。

其表述如下:定理1:对于连续函数f(x),如果F(x)是f(x)的一个原函数,则有∫[a,b]f(x)dx = F(b) - F(a)。

这个定理实际上是积分与求导的逆运算,意味着我们可以通过求导的方式来确定函数的不定积分。

基于微积分基本定理,我们可以解决各类函数的积分计算问题。

2. 第一类微积分基本定理第一类微积分基本定理是微积分基本定理的一个重要应用,也被称为牛顿-莱布尼茨公式。

它给出了确定函数F(x)的定积分的方法。

定理2:若f(x)是连续函数,则∫[a,b]f'(x)dx = F(b) - F(a)。

这个定理意味着我们可以通过求函数的原函数来确定其定积分。

这对于解决各类实际问题具有重要意义,比如计算曲线下的面积、求解物体的质量和重心等。

3. 第二类微积分基本定理第二类微积分基本定理是微积分基本定理的另一个重要应用。

它将定积分与不定积分联系在一起,可以用于积分计算和函数的性质分析。

定理3:对于连续函数f(x),设F(x)是f(x)的一个原函数,则∫[a,b]f(x)dx = F(x)|[a,b] = F(x)|[a,b] - F(x)|[a,b]。

这个定理将定积分转化为函数的不定积分,并通过原函数在区间[a,b]两端求值的差来确定。

利用这个定理,我们可以对函数在特定区间上的积分性质进行研究,比如函数值的大小、连续性等。

4. 积分变换积分变换是微积分的一个重要应用领域,它通过对函数进行积分的方式转换函数本身或者函数的性质,从而简化问题或者获得更有用的信息。

常见的积分变换包括拉普拉斯变换和傅里叶变换。

拉普拉斯变换将函数从时域转换到频域,广泛应用于信号与系统分析、控制系统等领域。

微积分基本定理

微积分基本定理

GMmh W R( R h )
其中 G 是地球引力常数, M 是地球的质量, R 是地球的半径.
例 2:一物体从 5000m 高空落下, .其下落速度为
g -1 2 kt v(t ) (1 e ) ,其中 g=9.8m/s ,k=0.2s k 问经过大约多少秒后该物体将接触到地面?
定积分在物理中的应用
例 3:证明:把质量为 m(单位:kg)的物体从地球 表面升高 h(单位:m)所作的功为
2
例 3:计算由曲线 y x 5 ,直线 y=x
2
-7 以及 x 轴所围图形的面积 S.
定积分在几何中的应用
例 3:直线 y=kx 分抛物线 y=x-x 与 x 轴 所围成图形为面积相等的两部分, 求 k 的值.
y
2
x
O
定积分在物理中的应用
例 1:有一个质量非均匀分布的细棒,已知其线密度 为 ( x ) (2 x 1)( x 1) (取细棒所在直线为 x 轴, 细棒的一端为原点),棒长为 l,求细棒的质量 m.
微积分基本定理
微积分基本定理
定理: 对于被积函数 f(x), 如果 F’(x)=f(x), 则 f ( x )dx F (b) F (a ) .
a b
这里 f(x)是 F(x)的导函数,我们把 F(x) 叫做 f(x)的原函数.
例1 计算定积分
(1)

3
1
2 dx(2)Biblioteka | x|3 2
x 1 (3) e 2 dx 1 x
2
(2 x 1)(2 x 3) dx 2x 1
cos 2 x (4) 2 dx 0 cos x sin x

微积分学基本定理

微积分学基本定理


x ln x ln a
x
(8) sin xdx cos x C (9) cos xdx sin x C
计算不定积分:
(1) ( x 3)( x 2)dx;
(2)
( x 1)( x 2)dx; x
(3)
cos 2x dx cos x sin x
b a
f
( x)dx

F ( x) |ba
F (b)
F (a)
计算定积分的方法:
b
f ( x)dx
a
(1)定 义 法
( 2)面 积 法(曲 边 梯 形 面 积)
(3)公式法(微积分基本定理)F / ( x) f ( x)
b a
f
( x)dx

F ( x) |ba
F (b)
例1:计算由曲线y2=x,y=x2所围图形 的面积S
例2:计算由直线y=x-4,曲线 y 2 x
以及x轴所围图形的面积S.
作业:P67A#1(注意画图)
;杏耀平台 / 杏耀平台注册 ;
智,或者仅存最高等级の六品妖智,全部双眼血红,丧失了理智,只是知道将眼前の人类撕成碎片.十万白家军更是全部精锐,在刀山火海中走出来の强者,悍不畏死. 战争没有丝毫の情面可讲,不是你呀死就是俺亡,无比惨烈,漫山遍野都是鲜血,都是残尸,天空更是一片腥风血雨.炽火城外,处处 是战场,神力在四面八方飙射,无比灿烂. 白重炙神识扫了一下,放心下来,这十万白家军估计是雷震这数百年时候召集の,白重炙不清楚战力如何.此刻交战已经不咋大的半个时辰了,但是死伤却并不多,妖智已经被斩杀了数十万万,却只是死伤了数百人,并且还是受伤居多.彻底放心下来,和妖 姬两人化作道道残影,专对六品妖智下手.这漫山遍野の妖智虽然多,但

1.6微积分

1.6微积分

π 0
π 0
(4) |1-x|dx= (1-x)dx+ (x-1)dx
0 0 1
2
1
2
1 2 1 1 2 | = x-2x 0+ 2x -x |2 1 1 1 1 2 2 =1-2-0+2×2 -2-2×1 -1=1.
3
悟·技法 1.利用定积分求平面图形面积的步骤 (1)根据题意画出图形. (2)借助图形确定出被积函数,求出交点坐标,确定积分的上、下限. (3)把曲边梯形的面积表示成若干个定积分的和.
(4)计算定积分,写出答案.
2.根据平面图形的面积求参数的求解策略
先利用定积分求出平面图形的面积,再据条件构建方程(不等式)求解.
b v t dt a (v(t)≥0)在时间区间[a,b]上的定积分,即s=_________.
注: 设函数f(x)在闭区间[-a,a]上连续,则有 (1)若f(x)是偶函数,则 f(x)dx=2 f(x)dx.
a a 0 a a
(2)若f(x)是奇函数,则 f(x)dx=0.
3 2
(4)如图,圆O:x2+y2=π 2内的正弦曲线y=sin x与x轴围成的区域记 为M(图中阴影部分),随机向圆O内投一个点A,则点A落在区域M内的概 率是 .
【解析】阴影部分的面积为 2 sin xdx 2(cos x) |0 4, 圆的面积为 3, 0

所以点A落在区域M内的概率是 4 . 3 答案: 4
1 2 2 1 3 | x - x - ln x (2) 1= -ln 2. xdx=2 2 1
2
(3) (sin x-cos x)dx= sin xdx- cos xdx=

《微积分学基本定理》课件

《微积分学基本定理》课件

解决微分方程
通过微积分学基本定理,我们可以将复杂的微分方 程转化为易于处理的积分方程,从而找到微分方程 的解。
分析函数的极值
利用微积分学基本定理,可以分析函数的极 值条件,这对于优化问题、经济模型等实际 问题具有重要意义。
在实数理论中的应用
实数完备性
微积分学基本定理在实数理论中发挥了关键作用,它证明了实数系 的完备性,为实数理论的发展奠定了基础。
PART 02
微积分学基本定理的表述
REPORTING
定理的数学表达
总结词
简洁明了地表达了微积分学基本定理的数学形式。
详细描述
微积分学基本定理通常用积分形式和微分形式两种方式表达。积分形式表述为 :∫(f(x))dx = F(b) - F(a),其中∫代表积分,f(x)是待积分的函数,F(x)是f(x)的 原函数;微分形式表述为:∫(dy/dx) dx = y。
详细描述
02 习题一主要考察学生对微积分学基本定理的基础概念
理解,包括定理的表述、公式记忆以及简单应用。
解答
03
通过解析和证明,帮助学生深入理解微积分学基本定
理,并掌握其应用方法。
习题二及解答
总结词:复杂应用
详细描述:习题二涉及微积分学基本定理的复杂应用,包括多步骤推导、 不同定理的综合运用等,旨在提高学生的解题能力和思维灵活性。
揭示函数性质
通过应用微积分学基本定理,我 们可以研究函数的积分与函数的 性质之间的关系,从而深入了解 函数的特性。
证明积分不等式
利用微积分学基本定理,可以证 明各种积分不等式,这些不等式 在数学分析和实际问题中都有广 泛的应用。
在微分学中的应用
导数的定义
微积分学基本定理实际上给出了导数的定义 ,它描述了函数值随自变量变化的规律,是 研究函数局部行为的关键。

微积分学基本定理

微积分学基本定理

计算不定积分: (1) ( x 2)( x 2)dx;
2 2
( 2)
x x5 dx; 2 x
4 2
( 3) ( x 2) x dx (4) (sin x cos x ) sin 2 xdx
2
( 5)
xx e dx 3 x
3 x
计算不定积分: (1) ( x 1) dx;
v ( t )dt s(T2 ) s(T1 ). 其中 s(t ) v(t ). T
1
T2
三、牛顿—莱布尼茨公式
微积分基本定理
[a , b ] 上 如果F ( x ) 是连续函数 f ( x ) 在区间
的一个原函数,则a f ( x )dx F (b) F (a ) .
b a b b a a
(4)性质 : 1) Cf ( x )dx C f ( x )dx 2) f ( x ) g ( x )dx
a b

b
a
f ( x )dx g ( x )dx
a b c
b
3) f ( x )dx
a
b

c
a
f ( x )dx f ( x )dx

2
2 2 x 0 x 1 例2 设 f ( x ) , 求 0 f ( x )dx . 1 x 2 5
3 . 2

0
2
f ( x )dx 0 f ( x )dx 1 f ( x )dx
1
2
y
在[1,2]上规定当x 1 时, f ( x ) 5 ,

面积 A sin xdx
0

y
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§3.4定积分与微积分基本定理一、明确复习目标1. 直观了解微积分基本定理的含义. 2. 会求简单的定积分.3. 会用定积分的知识解决一些简单的应用问题.二.建构知识网络1.定积分的定义如果函数()f x 在区间[,]a b 上连续,用分点011i i n a x x x x x b -=<<<<<<=将区间[,]a b 等分成n 个小区间,在每个小区间[]1,i i x x -上任取一点(1,2,,)i i n ξ=作和式____________________________.当n →∞时,上述和式无限接近于某个常数,这个常数叫做函数()f x 在区间[,]a b 上的定积分,记作___________,在()b af x dx ⎰中,___ 和___ 分别叫做积分下限和积分上限,_______叫做被积函数, 叫做积分变量,___________叫做被积式. 2.定积分的性质 (1)()b ak f x dx ⎰=_______________________________(k 为常数);(2)12[()()]b af x f x dx ±=⎰_______________________________;(3)()b af x dx ⎰=_______________________________(其中a c b <<).3.微积分基本定理一般地,如果()f x 是闭区间[,]a b 上的连续函数,并且()()F x f x '=,那么()b af x dx ⎰=__________________,这个结论叫做微积分基本定理,又叫做牛顿——莱布尼兹公式,可以把()()F b F a -记作________,即()b af x dx ⎰=___________=___________.4.通过定积分的运算可以发现,定积分的值可能取正值也可能取负值,还可能是0.(1)当对应的曲边梯形位于x 轴上方时,定积分的值取正值,且等于____________________; (2)当对应的曲边梯形位于x 轴下方时,定积分的值取负值,且等于____________________; (3)当位于x 轴上方的曲边梯形的面积等于当位于x 轴下方的曲边梯形的面积时,定积分的值为__;定积分的值等于位于x 轴上方的曲边梯形的面积______位于x 轴下方的曲边梯形的面积.4.定积分求曲边梯形面积如右图所示,由三条直线:()x a x b a b x ==<,,轴及一条曲线()()()0y f x f x =≥围成的曲边梯形的面积为S =____________:⑴ 若在 区间[],a b 上,()0f x ≤,则S =____________⑵ 若在 区间[],a c 上,()0f x ≥,在 区间[],c b 上,()0f x ≤,则S =____________5.匀变速运动的路程公式:作变速直线运动的物体所经过的路程s ,等于其速度函数()()()0v v t v t =≥在时间区间[],a b 上的定积分,即s =____________6.变力作功公式 :一物体在变力()F x (单位:N )的作用下作直线运动,如果物体沿着()F x 与F 相同的方向从x a =移动()x b a b =<(单位:m ),则力F 所做的功为W =____________三、双基题目练练手1.下列值等于1的积分是( )1.A xdx ⎰ ()10.1B x dx +⎰ 10.1C dx ⎰ 101.2D dx ⎰2.()22sin cos x x dx ππ-+⎰的值 ( ).0..2.44A B C D π3.如图,直线1y =与抛物线2y x =相交,则阴影部分面积为( )24..1..233A B C D4. 211ln xdx x ⎰= ( )( )A .21ln 22B .C.2ln 2D .ln25. 若11(2)3ln 2a x dx x+=+⎰,且a >1,则a 的值为 ( )A .6B .4C .3D .26. 已知自由落体运动的速率v gt =,则落体运动从0t =到0t t =所走的路程为 ( )A .203gtB .20gtC .202gtD .206gt7.()0d x F't t =⎰.四、经典例题做一做【例1】(1)221(21)x x dx ++⎰ (2)0(sin cos )x x dx π-⎰(3)2211()x x dx x-+⎰ (4)0(cos )x x e dx π-+⎰【例2】求两曲线2y x =和2y x =所围成图形的面积.【例3】一物体在做变速直线运动,其v t -曲线如图所示,求该物体在12s ~6s 间的运动路程.【例4】如图,阴影部分的面积是 ( )A .32B .329-C .332 D .335 【例5】抛物线:()220y x ax a =->,若过原点的直线l 与抛物线所围成的图形面积为329a ,求直线l 的方程.五. 提炼总结以为师1.用定积分的定义求定积分的一般步骤:分割、近似代替、求和、取极限.要借助于求曲边梯形的面积和求变速直线运动的路程去体会定积分的基本思想.2.用微积分基本定理求定积分:关键是找到()()F x f x '=满足的函数()F x ,即找被积函数的原函数,利用求导运算与求原函数运算互为逆运算,运用基本初等函数求导公式和四则运算法则从反方向上求出()F x .3.利用微积分基本定理求定积分,有时需先化简,再积分.4.在利用定积分求平面图形的面积时,一般要先画出它的草图,再借助图形的直观地确定出被积函数以及积分的上、下限.5.要把定积分和用定积分计算平面图形的面积这两个概念区分开,定积分是一种积分和的极限,可为正,也可为负或零;而平面图形的面积在一般意义下总为正,因此当()f x 0≤时要通过绝对值处理为正,一般情况下是借助定积分求出两个曲边梯形的面积,然后相加起来,例如:当函数()f x 在区间[],a b 上恒为正时,定积分()b af x dx ⎰的几何意义是以曲线()f x 为曲边梯形的面积,一般情况下,定积分()baf x dx ⎰的几何意义是介于x 轴、函数()f x 的图象以及之间各部分面积的代数和,在轴上方的面积取正号,在轴下方和面积取负号.6.体会定积分的化归和逼近的思想方法.同步练习1. 下列有定义的定积分为( )A .111dx x-⎰B .221cos dx x-⎰C .42(2)dxx -⎰D .2ln xdx ⎰2.(2007年山东潍坊)20sin xdx π=⎰( )A .0B .πC .2πD .4π 3.设a > 0,a ≠1,若⎰-=2022xx a dx a ,则a 等于( )A .2-eB .2eC .21-e D .21e4.(2007年广东潮州)已知()f x 为偶函数且60()8f x dx =⎰,则66()f x dx -=⎰( )A .0B .4C .8D .16 5.42xe dx -⎰的值等于 ( )A . 42e e --B . 42e e +C . 422e e +-D . 422e e -+-6.(2007年广东汕头)220(42)(43)x x dx --=⎰7.使1()n F x x -'=成立的所有()F x 可以表示为()___________.F x =8.(2006年山东潍坊)汽车从A 处起以速度0()(/)v t v at m s =-(其中0,v a 均为正的常数)开始减速度行驶,至B 点停止,则A 、B 之间的距离____________().s m =9.由3x y =及x y 2=围成平面图形的面积,若选x 为积分变量,利用定积分应表达为 ;若选y 为积分变量,利用定积分应表达为 . 10.求下列定积分的值.(1)220|1|x dx -⎰; (2)0⎰;11.已知1220()(2)f a ax a x dx =-⎰,求()f a 的最大值.12.一质点在直线上从时刻0()t s =开始以速度243(/)v t t m s =-+运动.求(1)在4t s =的位置; (2)在4t s =内运动的路程.§3.3 定积分1.当n 无限趋近于+∞时,n 1(sin n π+sin nπ2+…+sinnn π)1(-)写成定积分的形式,可记为 . 答案π1π⎰sin x d x 2.10⎰1d x = . 答案 13.由曲线y =e x,x =0,y =2所围成的曲边梯形的面积为 (用定积分表示).答案 21⎰ln y d y 或2ln 0⎰(2-e x)d x4.已知f (x )为偶函数且60⎰f (x )d x =8,则66-⎰f (x )d x = .答案 165.已知-1≤a ≤1,f (a )=10⎰(2ax 2-a 2x )d x ,求f (a )的值域.解 f (a )= 10⎰(2ax 2-a 2x )d x=(332x a -222x a )|1=-22a +32a =-21(a -32)2+92.∵-1≤a ≤1,∴-67≤f (a )≤92故f (a )的值域为⎥⎦⎤⎢⎣⎡-92,67例1 计算下列定积分(1)20⎰x (x +1)d x ;(2) 21⎰(e 2x+x1)d x ; (3) π0⎰sin 2x d x.基础自测解 (1)∵x (x +1)=x 2+x 且(31x 3)′=x 2,(21x 2)′=x , ∴20⎰x (x +1)d x =20⎰(x 2+x )d x=20⎰x 2d x +20⎰x d x =31x 3|20+21x 2|20 =(31×23-0)+(21×22-0)=314. (2)∵(ln x )′=x1,(e 2x )′=e 2x ·(2x )′=2e 2x, 得e 2x=(21e 2x)′ 所以21⎰(e 2x+x 1)d x =21⎰e 2x d x +21⎰x 1d x =21e 2x |21+ln x |21 =21e 4-21e 2+ln2-ln1=21e 4-21e 2+ln2. (3)由(sin2x )′=cos2x ·(2x )′=2cos2x ,得 cos2x =(21sin2x )′, 所以π0⎰sin 2x d x =π0⎰(21-21cos2x )d x =π0⎰21d x -21π0⎰cos2x d x =21x |π0-21(21sin2x )|π0 =(2π-0)-21(21sin2π -21sin0)=2π. 例2 计算下列定积分(1)π20⎰|sin x |d x ;(2)20⎰|x 2-1|d x .解 (1)∵(-cos x )′=sin x ,∴π20⎰|sin x |d x =π0⎰|sin x |d x +ππ2⎰|sin x |d x =π0⎰sin x d x -ππ2⎰sin x d x =-cos x |π0+cos x |ππ2=-(cos π-cos0)+(cos2π-cos π)=4.(2)∵0≤x ≤2,于是|x 2-1|=⎪⎩⎪⎨⎧≤≤-≤<-)10(1)21(122x x x x∴20⎰|x 2-1|d x =10⎰(1-x 2)d x +21⎰(x 2-1)d x=⎪⎭⎫ ⎝⎛-331x x |10+(31x 3-x )|21=(1-31)+(31×23-2)-(31-1)=2. 例3 求函数f (x )=⎪⎪⎩⎪⎪⎨⎧∈∈∈]3,2(2]2,1(]1,0[23x x x x x x 在区间[0,3]上的积分. 解 由积分性质知30⎰f (x )d x =10⎰f (x )d x +21⎰f (x )d x +32⎰f (x )d x =10⎰x 3d x +21⎰x 2d x +32⎰2xd x=44x |10+31x 3|21+2ln 2x |32=41+38-31+2ln 8-2ln 4 =2ln 4+1231. 例4 (14分)求定积分32-⎰2616x x -+d x .解 设y =2616x x -+, 即(x -3)2+y 2=25 (y ≥0). 5分 ∵32-⎰2616x x -+d x 表示以5为半径的圆的四分之一面积. 10分 ∴32-⎰2616x x -+d x =π425.14分1. 求0π-⎰(cos x +e x)d x .解 0π-⎰(cos x +e x)d x =0π-⎰cos x d x +0π-⎰e xd x=sin x |0π-+e x|0π-=1-πe 1.2.求40⎰(|x -1|+|x -3|)d x .解 设y =|x -1|+|x -3|=⎪⎩⎪⎨⎧≥-<<≤+-)3(42)31(2)1(42x x x x x ∴40⎰(|x -1|+|x -3|)d x=10⎰(-2x +4)d x +31⎰2d x +43⎰(2x -4)d x =(-x 2+4x )|10+2x |31+(x 2-4x )|43=-1+4+6-2+16-16-9+12=10.3.已知函数:f (x )=⎪⎪⎩⎪⎪⎨⎧≤≤<≤<≤+--)32()2()21()10()1(211x x xx x x 求30⎰f (x )d x .解 30⎰f (x )d x =10⎰2(x +1)-1 d x +21⎰x d x +32⎰(2)x -1d x=2ln(x +1)|10+323x |21+ 321|)2(2ln 1-x=2ln2+32(22-1)+ )22(2ln 1-. 4. 10⎰(2)1(1--x -x )d x = .答案42-π一、填空题1.定积分π30⎰x cos 1-d x = .答案 622.若y =f (x )与y =g (x )是[a ,b ]上的两条光滑曲线的方程,则这两条曲线及直线x =a ,x =b 所围成的平面区域的面积为 (用定积分表示). 答案b a ⎰|f (x )-g (x )|d x3.定积分10⎰(32x+3x )d x = .答案23ln 4+ 4.设函数f (x )=⎪⎩⎪⎨⎧≤<-≤≤+,21,3,10,12x x x x 则20⎰f (x )d x = .答案617 5.定积分22-⎰2(x 3+5x 5)d x = . 答案 06.根据π20⎰sin x d x =0推断,直线x =0,x =2π,y =0和正弦曲线y =sin x 所围成的曲边梯形的面积时,曲边梯形在x 轴上方的面积 在x 轴下方的面积.(用“大于”,“小于”,“等于”填空) 答案 等于7.若10⎰f (x )d x =1, 20⎰f (x )d x =-1,则21⎰f (x )d x = .答案 -2 8.定积分10⎰21x x +d x 的值是 .答案21ln2 二、解答题 9.求下列定积分的值 (1) 30⎰29x -d x ;(2)已知f (x )=⎪⎩⎪⎨⎧<<≤≤-10112x x x ,求11-⎰f (x )d x 的值.解 (1)30⎰29x -d x 表示以y =29x -与x =0,x =3所围成图形的面积,而y =29x -与x =0,x =3围成的图形为圆x 2+y 2=9在第一象限内的部分,因此所求的面积为49π. (2)∵f (x )=⎪⎩⎪⎨⎧<<≤≤-10112x x x∴11-⎰f (x )d x =01-⎰x 2d x +10⎰1d x=31x 3|01-+x |10=31+1=34. 10.已知f (x )=ax 2+bx +c ,且f (-1)=2,f ′(0)=0,10⎰f (x )d x =-2,求a 、b 、c 的值. 解 由f (-1)=2,得a -b +c =2, ① 又f ′(x )=2ax +b , 由f ′(0)=0得b =0,②10⎰f (x )d x =10⎰(ax 2+bx +c )d x=(31ax 3+2b x 2+cx )|10 =31a +21b +c . 即31a +21b +c =-2, ③由①②③得:a =6,b =0,c =-4.11.已知f (a )= 10⎰(2ax 2-a 2x )d x ,求f (a )的最大值.解 10⎰(2ax 2-a 2x )d x =(32ax 3-21a 2x 2)|10=32a -21a 2即f (a )= 32a -21a 2=-21(a 2-34a +94)+92 =-21(a -32)2+92. 所以当a =32时,f (a )有最大值92. 12.(2009·青岛模拟)对于函数f (x )=bx 3+ax 2-3x .(1)若f (x )在x =1和x =3处取得极值,且f (x )的图象上每一点的切线的斜率均不超过2sin t cos t -23cos 2t +3,试求实数t 的取值范围;(2)若f (x )为实数集R 上的单调函数,且b ≥-1,设点P 的坐标为(a ,b ),试求出点P 的轨迹所围成的图形的面积S .解 (1)由f (x )=bx 3+ax 2-3x , 则f ′(x )=3bx 2+2ax -3,∵f (x )在x =1和x =3处取得极值, ∴x =1和x =3是f ′(x )=0的两个根且b ≠0.⎪⎪⎩⎪⎪⎨⎧-=⨯-=+b ba 33313231⇒⎪⎩⎪⎨⎧-==312b a .∴f ′(x )=-x 2+4x -3.∵f (x )的图象上每一点的切线的斜率不超过2sin t cos t -23cos 2t +3,∴f ′(x )≤2sin t cos t -23cos 2t +3对x ∈R 恒成立,而f ′(x )=-(x -2)2+1,其最大值为1.故2sin t cos t -23cos 2t +3≥1⇒2sin(2t -3π)≥1⇒2k π+6π≤2t -3π≤2k π+65π,k ∈Z ⇒k π+4π≤t ≤k π+127π,k ∈Z . (2)当b =0时,由f (x )在R 上单调,知a =0. 当b ≠0时,由f (x )在R 上单调⇔f ′(x )≥0恒成立,或者f ′(x )≤0恒成立. ∵f ′(x )=3bx 2+2ax -3, ∴Δ=4a 2+36b ≤0可得b ≤-91a 2. 从而知满足条件的点P (a ,b )在直角坐标平面aOb 上形成的轨迹所围成的图形是由曲线b =-91a 2与直线b =-1所围成的封闭图形, 其面积为S =33-⎰(1-91a 2)d a =4. §3.4 定积分的简单应用1.将由y =cos x ,x =0,x =π,y =0所围图形的面积写成定积分形式为 .答案 20π⎰cos x d x +|ππ2⎰cos x d x | 2.一物体沿直线以v =3t +2 (t 单位:s,v 单位:m/s )的速度运动,则该物体在 3 s ~6 s 间的运动路程为 m.答案 46.53.用力把弹簧从平衡位置拉长10 cm,此时用的力是200 N ,变力F 做的功W 为 J. 答案 104.曲线y =cos x ( 0≤x ≤23π)与坐标轴所围成的面积是 . 基础自测答案 35.有一质量非均匀分布的细棒,已知其线密度为ρ(x )=x 3(取细棒的一端为原点,所在直线为x 轴),棒长为1,则棒的质量M 为 . 答案41例1 求抛物线y 2=2x 与直线y =4-x 围成的平面图形的面积.解 由方程组⎪⎩⎪⎨⎧-==x y xy 422解出抛物线和直线的交点为(2,2)及(8,-4).方法一 选x 作为积分变量,由图可看出S =A 1+A 2 在A 1部分:由于抛物线的上半支方程为y =x 2,下半支方程为y =-2x ,所以 S1A =20⎰[x 2-(-x 2)]d x =2220⎰x21d x=22·32x23|20=316, S 2A =82⎰[4-x -(-x 2)]d x =(4x -21x 2+322x23)|82=338, 于是:S =316+338=18. 方法二 选y 作积分变量,将曲线方程写为x =22y 及x =4-y .S =24-⎰[(4-y )-22y ]d y =(4y -22y -63y )|24- =30-12=18.例2 (14分)如图所示,直线y =kx 分抛物线y =x -x 2与x 轴所围图形为面积相等的两部分,求k 的值.解 抛物线y =x -x 2与x 轴两交点的横坐标x 1=0,x 2=1,所以抛物线与x 轴所围图形的面积 S =10⎰(x -x 2)d x =(3232x x -)|1=21-31=61. 6分抛物线y =x -x 2与y =kx 两交点的横坐标为 x 1′=0,x 2′=1-k ,9分所以2S =k -⎰10(x -x 2-kx )d x =⎪⎪⎭⎫ ⎝⎛--32132x x k |k-10 =61(1-k )3, 12分又知S =61,所以(1-k )3=21, 于是k =1-321=1-243. 14分例3 一辆汽车的速度—时间曲线如图所示,求此汽车在这1 min 内所行驶的路程.解 由速度—时间曲线易知,v (t )=⎪⎩⎪⎨⎧∈+-∈∈]60,40[905.1)40,10[30)10,0[3t t t t t由变速直线运动的路程公式可得s =100⎰3t d t +4010⎰30d t +6040⎰(-1.5t +90)d t=23t 2|100+30t |4010+(-43t 2+90t )|6040 =1 350 (m).答 此汽车在这1 min 内所行驶的路程是1 350 m.1.求抛物线y 2=x 与直线x -2y -3=0所围成的平面图形的面积S .解 方法一 由⎪⎩⎪⎨⎧=--=0322y x x y 得抛物线与直线的交点为P (1,-1),Q (9,3)(如图).∴S =10⎰[x -(-x )]d x +91⎰(x -23-x )d x =210⎰x d x +91⎰(x -2x +23)d x =343x|10+(32x 23-42x +x 23|91=34+328=332.方法二 若选取积分变量为y ,则两个函数分别为x =y 2,x =2y +3.由方法一知上限为3,下限为-1. ∴S =31-⎰(2y +3-y 2)d y =(y 2+3y -31y 3)|31- =(9+9-9)-(1-3+31)=332. 2.如图所示,阴影部分的面积是 .答案332 3.一物体按规律x =bt 3做直线运动,式中x 为时间t 内通过的距离,媒质的阻力与速度的平方成正比,试求物体由x =0运动到x =a 时,阻力做的功. 解 物体的速度v =x ′(t )=(bt 3)′=3bt 2,媒质阻力f 阻=kv 2=k ·(3bt 2)2=9kb 2t 4.(其中k 为比例常数,k >0)当x =0时,t =0,当x =a 时,t =t 1=31⎪⎭⎫ ⎝⎛b a ,∴阻力做的功是:W 阻=a 0⎰f 阻d x =10t⎰kv 2·v d t=k 10t⎰v 3d t =k 10t⎰(3bt 2)3d t=727kb 371t =727k 327b a =727ka 232ab .一、填空题1.如图所示,阴影部分面积为 .答案 c a ⎰[g (x )-f (x )]d x +bc ⎰[f (x )-g (x )]d x2.设f (x )=⎪⎩⎪⎨⎧∈-∈],2,1(,2],1,0[,2x x x x 则20⎰f (x )d x = .答案65 3.设f (x )=x0⎰sin t d t ,则f (f (2π))= . 答案 1-cos14.一物体在力F (x )=⎩⎨⎧>+≤≤)2(43)20(10x x x (单位:N )的作用下沿与力F 相同的方向,从x =0处运动到x =4(单位:m)处,则力F (x )做的功为 J.答案 465.一物体在变力F (x )=5-x 2(力单位:N,位移单位:m)作用下,沿与F (x )成30°方向作直线运动,则由x =1运动到x =2时F (x )做的功为 J. 答案334 6.函数F (x )=x0⎰t (t -4)d t 在[-1,5]上的最大值为 ,最小值为 .答案 0 -3327.汽车以v =3t +2 (单位:m/s )作变速直线运动时,在第1 s 至第2 s 间的1 s 内经过的路程是 m. 答案 6.58.若f (x )是一次函数,且10⎰f (x )d x =5, 10⎰xf (x )d x =617,那么函数f (x )的解析式是 . 答案 f (x )=4x +3 二、解答题9.证明:把质量为m (单位:kg )的物体从地球的表面升高h (单位:m)处所做的功W =G ·)(h Mmh+k k ,其中G 是地球引力常数,M 是地球的质量,k 是地球的半径.证明 根据万有引力定律:知道对于两个距离为r ,质量分别为m 1、m 2的质点,它们之间的引力为f (r )=G ·221r m m ,其中G 为引力常数.则当质量为m 的物体距地面高度为x (0≤x ≤h )时,地心对它的引力f (x )=G ·2)(x Mm +k .故该物体从地面升到h 高处所做的功为W =h 0⎰f (x )d x =h 0⎰G ·2)(x Mm +k ·d x=GMm h 0⎰2)(1x +k d (k +x )=GMm ⎪⎭⎫ ⎝⎛+-x k 1|h 0=GMm ⎪⎭⎫ ⎝⎛++-k k 11h=G ·)(h Mmh+k k .10.设函数f (x )=x 3+ax 2+bx 在点x =1处有极值-2. (1)求常数a ,b 的值;(2)求曲线y =f (x )与x 轴所围成的图形的面积. 解 (1)由题意知f ′(x )=3x 2+2ax +b , f (1)=-2且f ′(1)=0,即⎩⎨⎧=++-=++02321b a b a ,解得a =0,b =-3, 即f (x )=x 3-3x .(2)作出曲线y =x 3-3x 的草图,所求面积为阴影部分的面积,由x 3-3x =0得曲线y =x 3-3x 与x 轴的交点坐标是(-3,0),(0,0)和(3,0),而y =x 3-3x 是R 上的奇函数,函数图象关于原点中心对称.所以(-3,0)的阴影面积与(0, 3)的阴影面积相等. 所以所求图形的面积为 S =230⎰[0-(x 3-3x )]d x=-2(41x 4-23x 2)|30=29. 11.如图所示,抛物线y =4-x 2与直线y =3x 的两交点为A 、B ,点P 在抛物线上从A 向B 运动. (1)求使△PAB 的面积最大的P 点的坐标(a ,b );(2)证明由抛物线与线段AB 围成的图形,被直线x =a 分为面积相等的两部分. (1)解 解方程组⎪⎩⎪⎨⎧=-=x y x y 342,得x 1=1,x 2=-4.∴抛物线y =4-x 2与直线y =3x 的交点为 A (1,3),B (-4,-12),∴P 点的横坐标a ∈(-4,1). 点P (a ,b )到直线y =3x 的距离为d =22313+-b a ,∵P 点在抛物线上,∴b =4-a 2,a d '=101·(4-3a -a 2)′=101 (-2a -3)=0,∴a =-23,即当a =-23时,d 最大, 这时b =4-49=47, ∴P 点的坐标为(-23,47)时,△PAB 的面积最大. (2)证明 设上述抛物线与直线所围成图形的面积为S , 位于x =-23右侧的面积为S 1. S =14-⎰(4-x 2-3x )d x =6125, S 1=123-⎰(4-x 2-3x )d x =12125, ∴S =2S 1,即直线x =-23平分抛物线与线段AB 围成的图形的面积. 12.在区间[0,1]上给定曲线y =x 2,试在此区间内确定点t 的值,使图中阴影部分的面积S 1与S 2之和最小. 解 S 1面积等于边长为t 与t 2的矩形面积去掉曲线y =x 2与x 轴、直线x =t 所围成的面积,即S 1=t ·t 2-t 0⎰x 2d x =32t 3. S 2的面积等于曲线y =x 2与x 轴、x =t ,x =1围成的面积减去矩形面积, 矩形边长分别为t 2,(1-t ),即 S 2=1t ⎰x 2d x -t 2(1-t )=32t 3-t 2+31. 所以阴影部分的面积S 为 S =S 1+S 2=34t 3-t 2+31(0≤t ≤1). ∵S ′(t )=4t 2-2t =4t (t -21)=0时,得t =0,t =21. 当t =21时,S 最小,∴最小值为S (21)=41.。

相关文档
最新文档