微积分基本定理

合集下载

微积分三大定理

微积分三大定理

微积分三大定理
微积分是数学中的重要分支,它研究的是函数的变化与求和。

微积分的发展离不开三大定理,它们分别是导数的基本定理、中值定理和积分的基本定理。

这三个定理是微积分的核心,为我们解决各种实际问题提供了重要的工具和方法。

导数的基本定理是微积分中最基本的定理之一。

它告诉我们如何求函数的导数。

导数是描述函数在某一点上的变化率的概念,它决定了函数的增减性和曲线的斜率。

导数的基本定理使我们能够通过求导来研究函数的性质,例如函数的最值、凹凸性等。

它是微积分中理论和实际应用的基础。

中值定理是导数的一个重要应用。

它的核心思想是函数在某个区间内的平均变化率等于某个点上的瞬时变化率。

中值定理为我们提供了一种刻画函数变化的方法,它能够帮助我们找到函数在某个区间内的极值点和临界点。

中值定理的应用广泛,不仅在数学中有重要地位,还在物理、经济等领域中有着深远的影响。

积分的基本定理是微积分的重要组成部分。

它告诉我们如何求函数的积分。

积分是求解曲线下面的面积或计算曲线的总变化量的工具。

积分的基本定理使我们能够通过求积分来计算函数的面积、体积、质量等物理量,它在科学研究和工程实践中起着重要的作用。

微积分三大定理的发展与应用,不仅丰富了数学理论,也推动了科
学技术的进步。

它们为我们解决实际问题提供了强有力的工具和方法,使我们能够更好地理解和描述自然界的现象。

无论是在自然科学、社会科学还是工程技术领域,微积分的应用都是不可或缺的。

通过学习和应用微积分三大定理,我们能够更好地理解和解决复杂的实际问题,为人类的发展和进步做出贡献。

选修2-2——微积分基本定理

选修2-2——微积分基本定理

1.6 微积分基本定理1.问题导航(1)微积分基本定理的内容是什么? (2)定积分的取值符号有哪些? 2.例题导读 通过P 53例1,学会利用微积分基本定理求简单定积分的步骤和方法,通过P 53例2的学习,理解定积分的几何意义和定积分的取值符号.1.微积分基本定理(1)内容:一般地,如果f (x )是区间[a ,b ]上的连续函数,并且F ′(x )=f (x ),那么⎠⎛ab f (x )d x=F (b )-F (a ).这个结论叫做微积分基本定理,又叫做牛顿-莱布尼茨公式.(2)表示:为了方便,常常把F (b )-F (a )记成F (x )⎪⎪⎪b a ,即⎠⎛ab f (x )d x =F (x )⎪⎪⎪ba =F (b )-F (a ). 2.定积分的符号由定积分的意义与微积分基本定理可知,定积分的值可能取正值也可能取负值,还可能是0.(1)当对应的曲边梯形位于x 轴上方时(如图1),定积分的值取正值,且等于曲边梯形的面积.(2)当对应的曲边梯形位于x 轴下方时(如图2),定积分的值取负值,且等于曲边梯形的面积的相反数.(3)当位于x 轴上方的曲边梯形面积等于位于x 轴下方的曲边梯形面积时(如图3),定积分的值为0,且等于位于x 轴上方的曲边梯形面积减去位于x 轴下方的曲边梯形面积..1.判断(正确的打“√”,错误的打“×”)(1)微积分基本定理中,被积函数f (x )是原函数F (x )的导数.( )(2)应用微积分基本定理求定积分的值时,为了计算方便通常取原函数的常数项为0.( )(3)应用微积分基本定理求定积分的值时,被积函数在积分区间上必须是连续函数.( )答案:(1)√ (2)√ (3)√2.若a =⎠⎛01(x -2)d x ,则被积函数的原函数为( )A .f (x )=x -2B .f (x )=x -2+C C .f (x )=12x 2-2x +CD .f (x )=x 2-2x答案:C3.⎠⎛0πsin x d x =________.解析:⎠⎛0πsin x d x =-cos x ⎪⎪⎪π0=(-cos π)-(-cos 0)=2.答案:21.应用微积分基本定理求定积分的注意事项(1)微积分基本定理沟通了定积分与导数的关系,揭示了被积函数与函数的导函数之间的互逆运算关系,为计算定积分提供了一个简单有效的方法——转化为计算函数F (x )在积分区间上的增量.(2)用微积分基本定理求定积分的关键是找到满足F ′(x )=f (x )的函数F (x )再计算F (b )-F (a ).(3)利用微积分基本定理求定积分,有时需先化简被积函数,再求定积分. 2.常见函数的定积分公式(1)⎠⎛ab C d x =Cx ⎪⎪⎪ba (C 为常数). (2)⎠⎛ab x n d x =1n +1x n +1⎪⎪⎪ba (n ≠-1).(3)⎠⎛a b sin x d x =-cos x ⎪⎪⎪ba .(4)⎠⎛ab cos x d x =sin x ⎪⎪⎪ba . (5)⎠⎛ab 1xd x =ln x ⎪⎪⎪ba (b >a >0). (6)⎠⎛a b e x d x =e x⎪⎪⎪ba. (7)⎠⎛ab a x d x =a x ln a ⎪⎪⎪ba(a >0且a ≠1).利用微积分基本定理求定积分求下列定积分的值. (1)⎠⎛12(x +1)(x -2)d x ;(2)⎠⎛14x (1+x )d x ;(3)∫π20sin 2x d x ;(4)⎠⎛24x 2-x +1x -1d x . [解] (1)⎠⎛12(x +1)(x -2)d x=⎠⎛12(x 2-x -2)d x=⎝⎛⎭⎫13x 3-12x 2-2x ⎪⎪⎪21 =⎝⎛⎭⎫13×23-12×22-2×2-⎝⎛⎭⎫13×13-12×12-2×1 =-76.(2)⎠⎛14x (1+x )d x=⎠⎛14(x +x )d x =⎝⎛⎭⎫23x 32+12x 2⎪⎪⎪41=⎝⎛⎭⎫23×432+12×42-⎝⎛⎭⎫23×132+12×12=736. (3)∫π2sin 2x d x =∫π21-cos 2x2d x =12∫π20(1-cos 2x )d x =12⎝⎛⎭⎫x -12sin 2x ⎪⎪⎪π2=π4. (4)⎠⎛24x 2-x +1x -1d x =⎠⎛24x (x -1)+1x -1d x =⎠⎛24⎝ ⎛⎭⎪⎫x +1x -1d x =⎝⎛⎭⎫12x 2+ln (x -1)⎪⎪⎪42 =⎝⎛⎭⎫12×42+ln 3-⎝⎛⎭⎫12×22+ln 1=6+ln 3.(1)当被积函数为两个函数的乘积(分式)时,一般要先化简被积函数将其转化为和的形式,便于求得函数F (x ),再计算定积分,具体步骤如下:第一步:求被积函数f (x )的一个原函数F (x ); 第二步:计算函数的增量F (b )-F (a ).(2)利用微积分基本定理求定积分的关键是找出被积函数的原函数,若被积函数的原函扫一扫 进入91导学网()微积分基本定理1.(1)若⎠⎛01(kx +1)d x =2,则k 的值为( )A .1B .2C .3D .4解析:选B.⎠⎛01(kx +1)d x =⎝⎛⎭⎫12kx 2+x ⎪⎪⎪10=12k +1=2. ∴k =2.(2)⎠⎛12x -1x2d x =________. 解析:⎠⎛12x -1x 2d x =⎠⎛12⎝⎛⎭⎫1x -1x 2d x =⎝⎛⎭⎫ln x +1x ⎪⎪⎪21=⎝⎛⎭⎫ln 2+12-()ln 1+1=ln 2-12. 答案:ln 2-12求分段函数的定积分求下列定积分的值. (1)⎠⎛-12|x -1|d x ;(2)⎠⎛-12e |x |d x ;(3)若f (x )=⎩⎪⎨⎪⎧x 2,x ≤0cos x -1,x >0求∫π2-1f (x )d x .[解] (1)⎠⎛-12|x -1|d x=⎠⎛-11|x -1|d x +⎠⎛12|x -1|d x=⎠⎛-11(-x +1)d x +⎠⎛12(x -1)d x=⎝⎛⎭⎫-12x 2+x ⎪⎪⎪1-1+⎝⎛⎭⎫12x 2-x ⎪⎪⎪21=2+12=52.(2)⎠⎛-12e |x |d x =⎠⎛-10e |x |d x +⎠⎛02e |x |d x=⎠⎛-10e -x d x +⎠⎛02e x d x=-e -x ⎪⎪⎪0-1+e x ⎪⎪⎪2=e -1+e 2-1=e 2+e -2.(3)∫π2-1f (x )d x =⎠⎛-1f (x )d x +∫π20f (x )d x =⎠⎛-1x 2d x +∫π20(cos x -1)d x=13x 3⎪⎪⎪-1+(sin x -x )⎪⎪⎪π2=13+⎝ ⎛⎭⎪⎫1-π2=43-π2.求分段函数的定积分(1)由于分段函数在各区间上的函数式不同,所以被积函数是分段函数时,常常利用定积分的性质(3),转化为各区间上定积分的和计算.(2)当被积函数含有绝对值时,常常去掉绝对值号,转化为分段函数的定积分再计算.2.(1)设f (x )=⎩⎪⎨⎪⎧x 2,0≤x <1,2-x ,1<x ≤2,则⎠⎛02f (x )d x =( )A.23B.34C.45D.56 解析:选D.⎠⎛02f (x )d x =⎠⎛01x 2d x +⎠⎛12(2-x )d x=13x 3⎪⎪⎪10+⎝⎛⎭⎫2x -12x 2⎪⎪⎪21 =13+12=56. (2)⎠⎛0π|cos x |d x =________.解析:⎠⎛0π|cos x |d x =∫π20|cos x |d x +∫ππ2|cos x |d x=∫π20cos x d x +∫ππ2(-cos x )d x=sin x ⎪⎪⎪π20-sin x ⎪⎪⎪⎪ππ2=1+1=2.答案:2(3)计算⎠⎛02|x 2-x |d x .解:∵|x 2-x |=⎩⎪⎨⎪⎧-x 2+x ,0≤x ≤1,x 2-x ,1<x ≤2,∴⎠⎛02|x 2-x |d x =⎠⎛01(-x 2+x )d x +⎠⎛12(x 2-x )d x=⎝⎛⎭⎫-13x 3+12x 2⎪⎪⎪10+⎝⎛⎭⎫13x 3-12x 2⎪⎪⎪21 =16+56=1.微积分基本定理的综合应用(1)已知x ∈(0,1],f (x )=⎠⎛01(1-2x +2t )d t ,则f (x )的值域是________.[解析] ⎠⎛01(1-2x +2t )d t =[(1-2x )t +t 2]⎪⎪⎪10 =2-2x ,即f (x )=-2x +2,因为x ∈(0,1],所以f (1)≤f (x )<f (0),即0≤f (x )<2,所以函数f (x )的值域是[0,2).[答案] [0,2)(2)已知⎠⎛01[(3ax +1)(x +b )]d x =0,a ,b ∈R ,试求ab 的取值范围.[解] ⎠⎛01[(3ax +1)(x +b )]d x=⎠⎛01[3ax 2+(3ab +1)x +b ]d x=⎣⎡⎦⎤ax 3+12(3ab +1)x 2+bx ⎪⎪⎪10 =a +12(3ab +1)+b =0,即3ab +2(a +b )+1=0.法一:由于(a +b )2=a 2+b 2+2ab ≥4ab .所以⎝⎛⎭⎪⎫-3ab +122≥4ab ,即9(ab )2-10ab +1≥0,得(ab -1)(9ab -1)≥0,解得ab ≤19或ab ≥1.所以ab 的取值范围是⎝⎛⎦⎤-∞,19∪[1,+∞). 法二:设ab =t ,得a +b =-3t +12,故a ,b 为方程x 2+3t +12x +t =0的两个实数根,所以Δ=(3t +1)24-4t ≥0,整理得9t 2-10t +1≥0,即(t -1)(9t -1)≥0,解得t ≤19或t ≥1.所以ab 的取值范围是⎝⎛⎦⎤-∞,19∪[1,+∞). [互动探究] 本例(1)中原已知条件改为f (t )=⎠⎛01(1-2x +2t )d x ,则f (t )=________.解析:f (t )=⎠⎛01(1-2x +2t )d x=[(1+2t )x -x 2]⎪⎪⎪1=2t . 答案:2t含有参数的定积分问题的处理办法与注意点 (1)含有参数的定积分可以与方程、函数或不等式综合起来考查,先利用微积分基本定理计算定积分是解决此类综合问题的前提.(2)计算含有参数的定积分,必须分清积分变量与被积函数f (x )、积分上限与积分下限、积分区间与函数F (x )等概念.3.(1)设函数f (x )=ax 2+c (a ≠0),若⎠⎛01f (x )d x =f (x 0),0≤x 0<1,则x 0的值为________.解析:⎠⎛01f (x )d x =⎠⎛01(ax 2+c )d x =13ax 3+cx ⎪⎪⎪10 =a 3+c =ax 20+c ,又0≤x 0<1,∴x 0=33. 答案:33(2)已知f (a )=⎠⎛01(2ax 2-a 2x )d x ,求f (a )的最大值.解:∵⎠⎛01(2ax 2-a 2x )d x=⎝⎛⎭⎫23ax 3-12a 2x 2⎪⎪⎪1=23a -12a 2, ∴f (a )=23a -12a 2=-12⎝⎛⎭⎫a 2-43a +49+29 =-12⎝⎛⎭⎫a -232+29.∴当a =23时,f (a )有最大值为29.数学思想 利用函数的奇偶性巧解定积分问题已知⎠⎛-11(x 3+ax +3a -b )d x =2a +6,且f (t )=⎠⎛0为偶函数,求a ,b .[解] ∵f (x )=x 3+ax 为奇函数, ∴⎠⎛-11(x 3+ax )d x =0.∴⎠⎛-11(x 3+ax +3a -b )d x =⎠⎛-11(x 3+ax )d x +⎠⎛-11(3a -b )d x=0+(3a -b )[1-(-1)]=6a -2b . ∴6a -2b =2a +6,即2a -b =3.① 又f (t )=⎣⎡⎦⎤x 44+a 2x 2+(3a -b )x ⎪⎪⎪t0 =t 44+at 22+(3a -b )t 为偶函数, ∴3a -b =0.②由①②,得a =-3,b =-9. [感悟提高](1)在求对称区间上的定积分时,应该首先考虑函数性质与积分的性质,使解决问题的方法尽可能简便.(2)奇、偶函数在区间[-a ,a ]上的定积分:①若奇函数y =f (x )的图象在[-a ,a ]上连续,则⎠⎛-aaf (x )d x=0. ②若偶函数y =g (x )的图象在[-a ,a ]上连续,则⎠⎛-aag (x )d x =2⎠⎛0a g (x )d x ,如本例为偶函数,可用该结论计算.1.下列各式中,正确的是( )A.⎠⎛ab F ′(x )d x =F ′(b )-F ′(a )B.⎠⎛a b F ′(x )d x =F ′(a )-F ′(b )C.⎠⎛ab F ′(x )d x =F (b )-F (a ) D.⎠⎛ab F ′(x )d x =F (a )-F (b )答案:C2.⎠⎛12(e x -1)d x =________.解析:⎠⎛12(e x-1)d x =(e x-x )⎪⎪⎪21=(e 2-2)-(e 1-1) =e 2-e -1.答案:e 2-e -13.求定积分∫π20cos 2xsin x +cos xd x 的值.解:∫π20cos 2xsin x +cos xd x=∫π20cos2x -sin 2x cos x +sin xd x=∫π20(cos x -sin x )d x=()sin x +cos x ⎪⎪⎪π2=⎝ ⎛⎭⎪⎫sin π2+cos π2-()sin 0+cos 0=0.[A.基础达标]1.⎠⎛1e 1xd x 的值为( ) A .1 B .2 C .ln 2D .e 2解析:选A.⎠⎛1e 1x d x =ln x ⎪⎪⎪e1=ln e -ln 1=1.2.⎠⎛1e x d x 的值为( )A .eB .e -1 C.1eD .1解析:选B.⎠⎛01e x d x =e x ⎪⎪⎪10=e 1-e 0=e -1. 3.已知⎠⎛1m (2x -1)d x =2,则m 的值为( )A .5B .4C .3D .2解析:选D.∵⎠⎛1m (2x -1)d x =(x 2-x )⎪⎪⎪m1=m 2-m =2, ∴m 2-m -2=0,∴m =-1(舍去)或m =2.4.⎠⎛23x x -1d x =( ) A .5+ln 2 B .5-ln 2 C .1+ln 2 D .1-ln 2解析:选C.⎠⎛23xx -1d x =⎠⎛23x -1+1x -1d x=⎠⎛23⎝ ⎛⎭⎪⎫1+1x -1d x =[]x +ln (x -1)⎪⎪⎪32 =(3+ln 2)-(2+ln 1)=1+ln 2.5.若f (x )=x 2+2⎠⎛01f (x )d x ,则⎠⎛01f (x )d x =( )A .-1B .-13C.13D .1解析:选B.∵⎠⎛01f (x )d x =⎠⎛01x 2d x +⎠⎛01⎣⎡⎦⎤2⎠⎛01f (x )d x d x=13x 3⎪⎪⎪10+⎣⎢⎡⎦⎥⎤2⎠⎛01f (x )d x x ⎪⎪⎪10=13+2⎠⎛01f (x )d x , ∴⎠⎛01f (x )d x =-13.故选B.6.已知f (x )=⎩⎪⎨⎪⎧x ,(x ≤0)e x ,(x >0)则⎠⎛-12f (x )d x =________.解析:∵f (x )=⎩⎪⎨⎪⎧x ,(x ≤0)e x ,(x >0).∴⎠⎛-12f (x )d x =⎠⎛-10x d x +⎠⎛02e x d x=12x 2⎪⎪⎪0-1+e x ⎪⎪⎪2=-12+e 2-1=e 2-32.答案:e 2-327.设f (x )=kx +b ,若⎠⎛01f (x )d x =2,⎠⎛12f (x )d x =3.则f (x )的解析式为________.解析:由⎠⎛01(kx +b )d x =2,得⎝⎛⎭⎫12kx 2+bx ⎪⎪⎪1=2, 即12k +b =2,① 由⎠⎛12(kx +b )d x =3,得⎝⎛⎭⎫12kx 2+bx ⎪⎪⎪21=3, 即(2k +2b )-⎝⎛⎭⎫12k +b =3.∴32k +b =3,② 由①②联立得,k =1,b =32,∴f (x )=x +32.答案:f (x )=x +328.⎠⎛03x 2-4x +4d x =________.解析:⎠⎛03x 2-4x +4d x =⎠⎛03(x -2)2d x=⎠⎛03|x -2|d x=⎠⎛02|x -2|d x +⎠⎛23|x -2|d x=⎠⎛02(2-x )d x +⎠⎛23(x -2)d x=⎝⎛⎭⎫-12x 2+2x ⎪⎪⎪20+⎝⎛⎭⎫12x 2-2x ⎪⎪⎪32=2+12=52. 答案:529.计算⎠⎛02x1+x 2d x .解:∵f (x )=1+x 2的导函数为f ′(x )=x 1+x 2. ∴⎠⎛02x 1+x 2d x =1+x 2⎪⎪⎪20=5-1. 10.若f (x )是一次函数,且⎠⎛01f (x )d x =5,⎠⎛01xf (x )d x =176.求⎠⎛12f (x )xd x 的值. 解:设f (x )=kx +b ,k ≠0,则⎠⎛01(kx +b )d x =⎝⎛⎭⎫k 2x 2+bx ⎪⎪⎪10=k 2+b =5.① ⎠⎛01xf (x )d x =⎠⎛01(kx 2+bx )d x =⎝⎛⎭⎫kx 33+bx 22⎪⎪⎪10=k 3+b 2=176,② 联立①②可得⎩⎪⎨⎪⎧k =4.b =3. ∴f (x )=4x +3.则⎠⎛12f (x )x d x =⎠⎛124x +3x d x =⎠⎛12⎝⎛⎭⎫4+3x d x =(4x +3ln x )⎪⎪⎪21 =(8+3ln 2)-(4+3ln 1)=4+3ln 2.[B.能力提升]1.若S 1=⎠⎛12x 2d x ,S 2=⎠⎛121x d x ,S 3=⎠⎛12e x d x ,则S 1,S 2,S 3的大小关系为( ) A .S 1<S 2<S 3 B .S 2<S 1<S 3C .S 2<S 3<S 1D .S 3<S 2<S 1解析:选B.S 1=⎠⎛12x 2d x =13x 3⎪⎪⎪21=73, S 2=⎠⎛121x d x =ln x ⎪⎪⎪21=ln 2, S 3=⎠⎛12e x d x =e x ⎪⎪⎪21=e 2-e =e(e -1)>e>73, 所以S 2<S 1<S 3,故选B.2.若函数f (x ),g (x )满足⎠⎛-11f (x )g (x )d x =0,则称f (x ),g (x )为区间[-1,1]上的一组正交函数.给出三组函数: ①f (x )=sin 12x ,g (x )=cos 12x ;②f (x )=x +1,g (x )=x -1;③f (x )=x ,g (x )=x 2. 其中为区间[-1,1]上的正交函数的组数是( )A .0B .1C .2D .3解析:选C.对于①,⎠⎛-11sin 12x ·cos 12x d x=⎠⎛-1112sin x d x =12⎠⎛-11sin x d x =12(-cos x )⎪⎪⎪1-1=12(-cos 1+cos 1)=0. 故①为区间[-1,1]上的一组正交函数;对于②,⎠⎛-11(x +1)(x -1)d x =⎠⎛-11(x 2-1)d x =⎝⎛⎭⎫13x 3-x ⎪⎪⎪1-1=13-1-⎝⎛⎭⎫-13+1 =23-2=-43≠0, 故②不是区间[-1,1]上的一组正交函数;对于③,⎠⎛-11x ·x 2d x =⎠⎛-11x 3d x =⎝⎛⎭⎫14x 4⎪⎪⎪1-1=0. 故③为区间[-1,1]上的一组正交函数,故选C.3.若⎠⎛0t cos θd θ=32,且t ∈(0,2π),则t 的值为________. 解析:∵⎠⎛0t cos θd θ=sin θ⎪⎪⎪t 0 =sin t =32, ∵t ∈(0,2π),∴t =π3或23π. 答案:π3或23π 4.已知f (x )=⎩⎪⎨⎪⎧x -1,x ≤11-ln x x 2,x >1,则⎠⎛0e f (x )d x =________. 解析:∵f (x )=⎩⎨⎧x -1,x ≤11-ln x x 2,x >1, ∴⎠⎛0e f (x )d x =⎠⎛01(x -1)d x +⎠⎛1e 1-ln x x 2d x =⎝⎛⎭⎫12x 2-x ⎪⎪⎪10+ln x x ⎪⎪⎪e 1=-12+1e =2-e 2e. 答案:2-e 2e5.已知f (x )=ax 2+bx +c (a ≠0),且f (-1)=2,f ′(0)=0,⎠⎛01f (x )d x =-2,求a 、b 、c 的值.解:由f (-1)=2,得a -b +c =2,①又f ′(x )=2ax +b ,∴f ′(0)=b =0,② 而⎠⎛01f (x )d x =⎠⎛01(ax 2+c )d x =⎝⎛⎭⎫13ax 3+cx ⎪⎪⎪10 =13a +c =-2,③ 联立①②③得a =6,c =-4.6.设f (x )是一次函数,且⎠⎛01f (x )d x =1,求证:⎠⎛01f 2(x )d x >1. 证明:设f (x )=kx +b (k ≠0,b ,k 为常数).⎠⎛01f (x )d x =⎠⎛01(kx +b )d x =⎝⎛⎭⎫k 2x 2+bx ⎪⎪⎪10=k 2+b , 即k 2+b =1,k =2(1-b ). ⎠⎛01f 2(x )d x =⎠⎛01(kx +b )2d x =⎠⎛01(k 2x 2+2kbx +b 2)d x =⎝⎛⎭⎫13k 2x 3+kbx 2+b 2x ⎪⎪⎪10=13k 2+kb +b 2 =43(1-b )2+2b (1-b )+b 2=13(b -1)2+1>1. 即⎠⎛01f 2(x )d x >1得证.。

微积分学基本定理

微积分学基本定理
微积分学基本定理
一、问题的提出
变速直线运动中位置函数与速度函数的联系
设某物体作直线运动,已知速度v v(t )是时
间间隔[T1 ,T2 ]上t 的一个连续函数,且v(t ) 0 ,
求物体在这段时间内所经过的路程.
变速直线运动中路程为
T2 v(t )dt
T1
另一方面这段路程可表示为 s(T2 ) s(T1 )

F (b)

F (a)

F ( x)ba
微积分基本公式表明:
一个连续函数在区间[a, b]上的定积分等于 它的任意一个原函数在区间[a, b]上的增量.
求定积分问题转化为求原函数的问题.
注意
当a

b时, b a
f
(
x)dx

F
(b)

F
(a ) 仍成立.
; 快速阅读加盟 阅读加盟
2 x
解 当 x 0时,1 的一个原函数是ln | x |,
x
1
2
1dx x
ln |
x
|
1 2

ln1 ln 2 ln 2.
例 4 计算曲线 y sin x在[0, ]上与 x轴所围
计算: (1)
21 dx;
1x
3
1
(2) 1 (2x x2 )dx

(3)0 sin xdx;
2
(4) sin xdx;
2
(5)0 sin xdx;

例1

2 0
(
2
cos
x

sin
x

1)dx
.

原式

积分基本定理

积分基本定理

积分基本定理
积分基本定理是微积分中的基本定理之一,它描述了一个函数的积分与其原函数的关系。

该定理的一个表述是:设函数 f(x) 在闭区间 [a,b] 上连续,函数 F(x) 在开区间(a,b) 上可导并且 f(x) 是 F(x) 的导函数,则有:
∫[a, b] f(x)dx = F(b) - F(a)
其中∫表示对函数 f(x) 在闭区间 [a, b] 上的积分,f(x)dx 表示积分元,F(x)表示f(x) 的一个原函数。

这个定理意味着,对于一个连续函数 f(x) 而言,求解其在闭区间上的定积分可以通
过求解其在该闭区间上的一个原函数值的差来实现。

我们可以通过找到 f(x) 的一个原函
数 F(x),并计算 F(b) - F(a) 来求解∫[a, b] f(x)dx。

积分基本定理是微积分中非常重要的一个基础定理,它建立了定积分与原函数之间的
联系,为计算定积分提供了一个有效的方法。

在实际应用中,积分基本定理可以用于求解
曲线下面的面积、计算物理量等问题。

需要注意的是,以上是积分基本定理的一般表述,实际上它有多个等价的形式和扩展。

在高等数学中,还有其他与积分基本定理相关的重要定理,如牛顿—莱布尼茨公式等。

积分基本定理是微积分中一个重要且基础的定理,它将积分与导数联系起来,为计算
定积分提供了一个简洁而有效的方法。

微积分基本定理

微积分基本定理

2 2 (2 1) ( 2 ln 2 ln 1) 1 2 ln 2 x |1 2(ln x) |1
公式 1: 公式:

b
a
1 b dx = lnx|a x

b
a
f ( x)dx F ( x) | F (b) F (a)
b a
例 4.计算下列定积分 3 1 2 1 (3x - x2 )dx 解:∵ (x ) = 3x ,
1
x
1dx e ___ e 1
初等函数
练习 2:求下列定积分: (1) (x2+2x+3)dx; (2) (3)
0 - π 2 1
(cos x-ex)dx;
x 2 sin2 dx. 0 2
练习3:求下列定积分:
(练习) A.π
(1+cosx)dx等于 B.2 C.π-2
微积分基本定理:
设函数f(x)在区间[a,b]上连续,并且F’(x)=f(x),则,

b
a
f ( x)dx F (b) F (a)
这个结论叫微积分基本定理(fundamental theorem of calculus),又叫牛顿-莱布尼茨公式(Newton-Leibniz Formula).
5.在曲线y=x2(x≥0)上某一点A处作一切线使之与曲线以及x 轴所围的面积为 线方程. 解:如右图.设切点A(x0,y0),由 .试求:切点A的坐标及过切点A的切
y′=2x,得过点A的切线方程为
y-y0=2x0(x-x0),即y=2x0x- 令y=0,得x= .即C( ,0). .
设由曲线和过A点的切线及x轴所围成图形面积为S,
C.3
答案:D
D.2

4 微积分基本原理

4 微积分基本原理

微积分基本定理1.直观了解并掌握微积分基本定理的含义. 2.会利用微积分基本定理求函数的积分.1.微积分基本定理如果f (x )是区间[a ,b ]上的连续函数,并且F ′(x )=f (x ),那么ʃba f (x )d x =F (b )-F (a ).2.定积分和曲边梯形面积的关系设曲边梯形在x 轴上方的面积为S 上,x 轴下方的面积为S 下,则(1)当曲边梯形的面积在x 轴上方时,如图(1),则ʃb a f (x )d x =S 上. (2)当曲边梯形的面积在x 轴下方时,如图(2),则ʃb a f (x )d x =-S 下.(3)当曲边梯形的面积在x 轴上方、x 轴下方均存在时,如图(3),则ʃb a f (x )d x =S 上-S 下,若S上=S 下,则ʃb a f (x )d x =0.[情境导学]从前面的学习中可以发现,虽然被积函数f (x )=x 3非常简单,但直接用定积分的定义计算ʃ10x 3d x 的值却比较麻烦.有没有更加简便、有效的方法求定积分呢?另外,我们已经学习了两个重要的概念——导数和定积分,这两个概念之间有没有内在的联系呢?我们能否利用这种联系求定积分呢?探究点一微积分基本定理问题你能用定义计算ʃ211x d x吗?有没有更加简便、有效的方法求定积分呢?思考1如下图,一个做变速直线运动的物体的运动规律是y=y(t),并且y(t)有连续的导数,由导数的概念可知,它在任意时刻t的速度v(t)=y′(t).设这个物体在时间段[a,b]内的位移为s,你能分别用y(t),v(t)表示s吗?答由物体的运动规律是y=y(t)知:s=y(b)-y(a),通过求定积分的几何意义,可得s=ʃb a v(t)d t=ʃb a y′(t)d t,所以ʃb a v(t)d t=ʃb a y′(t)d t=y(b)-y(a).其中v(t)=y′(t).小结(1)一般地,如果f(x)是区间[a,b]上的连续函数,并且F′(x)=f(x),那么ʃb a f(x)d x=F(b)-F(a).这个结论叫做微积分基本定理,又叫做牛顿—莱布尼茨公式.(2)运用微积分基本定理求定积分ʃb a f(x)d x很方便,其关键是准确写出满足F′(x)=f(x)的F(x).思考2对一个连续函数f(x)来说,是否存在唯一的F(x),使F′(x)=f(x)?若不唯一,会影响微积分基本定理的唯一性吗?答不唯一,根据导数的性质,若F′(x)=f(x),则对任意实数c,[F(x)+c]′=F′(x)+c′=f(x).不影响,因为ʃb a f(x)d x=[F(b)+c]-[F(a)+c]=F(b)-F(a)例1计算下列定积分:(1)ʃ211x d x;(2)ʃ31(2x-1x2)d x;(3)ʃ-π(cos x-e x)d x.反思与感悟 求简单的定积分关键注意两点:(1)掌握基本函数的导数以及导数的运算法则,正确求解被积函数的原函数,当原函数不易求时,可将被积函数适当变形后再求解;(2)精确定位积分区间,分清积分下限与积分上限.跟踪训练1 若S 1=ʃ21x 2d x ,S 2=ʃ211xd x ,S 3=ʃ21e xd x ,则S 1,S 2,S 3的大小关系为( ) A .S 1<S 2<S 3 B .S 2<S 1<S 3 C .S 2<S 3<S 1 D .S 3<S 2<S 1探究点二 分段函数的定积分例2 已知函数f (x )=⎩⎪⎨⎪⎧sin x ,0≤x ≤π2,1,π2≤x ≤2,x -1,2≤x ≤4.先画出函数图象,再求这个函数在[0,4]上的定积分.反思与感悟 求分段函数的定积分,分段标准是使每一段上的函数表达式确定,按照原分段函数的分段情况即可;对于含绝对值的函数,可转化为分段函数.跟踪训练2 设f (x )=⎩⎪⎨⎪⎧x 2, x ≤0,cos x -1, x >0,求ʃ1-1f (x )d x .探究点三 定积分的应用 例3 计算下列定积分:ʃπ0sin x d x ,ʃ2ππsin x d x ,ʃ2π0sin x d x .由计算结果你能发现什么结论?试利用曲边梯形的面积表示所发现的结论.反思与感悟 可以发现,定积分的值可能取正值也可能取负值,还可能是0:定积分的值与曲边梯形面积之间的关系:(1)位于x 轴上方的曲边梯形的面积等于对应区间的积分;(2)位于x 轴下方的曲边梯形的面积等于对应区间的积分的相反数;(3)定积分的值就是位于x 轴上方曲边梯形面积减去位于x 轴下方的曲边梯形面积.跟踪训练3 求曲线y =sin x 与直线x =-π2,x =54π,y =0所围图形的面积(如图所示).1.π2π2-⎰(1+cos x )d x 等于( )A .πB .2C .π-2D .π+22.若ʃa1(2x +1x )d x =3+ln 2,则a 的值是( ) A .5 B .4 C .3 D .2 3.ʃ20(x 2-23x )d x =________.4.已知f (x )=⎩⎨⎧4x -2π,0≤x ≤π2,cos x ,π2<x ≤π,计算ʃπ0f (x )d x .[呈重点、现规律]1.求定积分的一些常用技巧(1)对被积函数,要先化简,再求积分.(2)若被积函数是分段函数,依据定积分“对区间的可加性”,分段积分再求和. (3)对于含有绝对值符号的被积函数,要去掉绝对值符号才能积分.2.由于定积分的值可取正值,也可取负值,还可以取0,而面积是正值,因此不要把面积理解为被积函数对应图形在某几个区间上的定积分之和,而是在x 轴下方的图形面积要取定积分的相反数.一、基础过关1.已知物体做变速直线运动的位移函数s =s (t ),那么下列命题正确的是( ) ①它在时间段[a ,b ]内的位移是s =s (t )|b a ; ②它在某一时刻t =t 0时,瞬时速度是v =s ′(t 0); ③它在时间段[a ,b ]内的位移是s =lim n→∞∑='-ni i s n ab 1)(ξ; ④它在时间段[a ,b ]内的位移是s =ʃba s ′(t )d t .A .①B .①②C .①②④D .①②③④2.若F ′(x )=x 2,则F (x )的解析式不正确的是( ) A .F (x )=13x 3B .F (x )=x 3C .F (x )=13x 3+1D .F (x )=13x 3+c (c 为常数)3.ʃ10(e x +2x )d x 等于( )A .1B .e -1C .eD .e +14.已知f (x )=⎩⎪⎨⎪⎧x 2,-1≤x ≤0,1,0<x ≤1,则ʃ1-1f (x )d x 的值为( )A.32B.43C.23 D .-23 5.π20⎰sin 2x2d x 等于( )A.π4B.π2-1 C .2D.π-246.若ʃ10(2x +k )d x =2,则k =________.二、能力提升7.设函数f (x )=ax 2+c (a ≠0),若ʃ10f (x )d x =f (x 0),0≤x 0≤1,则x 0的值为________.8.设f (x )=⎩⎪⎨⎪⎧lg x ,x >0x +a 03t 2d t ,x ≤0,若f [f (1)]=1,则a =________. 9.设f (x )是一次函数,且ʃ10f (x )d x =5,ʃ10xf (x )d x =176,则f (x )的解析式为________. 10.计算下列定积分:(1)ʃ21(e x +1x )d x ; (2)ʃ91x (1+x )d x ;(3)ʃ200(-0.05e-0.05x +1)d x ; (4)ʃ211x (x +1)d x .11.若函数f (x )=⎩⎪⎨⎪⎧x 3,x ∈[0,1],x ,x ∈(1,2],2x ,x ∈(2,3].求ʃ30f (x )d x 的值.12.已知f (a )=ʃ10(2ax 2-a 2x )d x ,求f (a )的最大值.三、探究与拓展13.求定积分ʃ3-4|x +a |d x ..。

微积分基本定理的证明

微积分基本定理的证明

微积分基本定理的证明证明微积分基本定理主要涉及到两个方面:第一,证明积分在导数中的逆运算;第二,证明求导在积分中的逆运算。

即证明:1.若函数F(x)在[a,b]区间上连续,则F(x)在[a,b]区间上可导,且导函数f(x)满足f(x)=F'(x),即F(x)是f(x)的一个原函数。

2. 若函数f(x)在[a, b]区间上连续,则函数F(x) = ∫[a,x]f(t)dt 是f(x)的一个原函数。

定理一的证明:设F(x) = ∫[a, x]f(t)dt,我们要证明F(x)是f(x)的一个原函数,即证明F'(x) = f(x)。

令h(x) = ∫[a, x+h]f(t)dt - ∫[a, x]f(t)dt = ∫[x,x+h]f(t)dt。

根据积分的定义,h(x)是x的函数,并且有以下性质:1.h(x)在[a,b]区间上连续;2.h(x)在(x,x+h)区间上的可导,并且导函数为h'(x)=f(x)。

现在,我们考虑以下两个极限:1. 当h趋近于0时,即lim(h→0)h(x) = 0;2. 当h趋近于0时,即lim(h→0)h'(x) = f(x)。

由于h(x)和h'(x)满足以上两个性质,根据极限的性质,我们可以推断出F'(x)存在,并且F'(x)=f(x)。

这就证明了定理一定理二的证明:设F(x)是函数f(x)的一个原函数,我们要证明∫[a,x]f(t)dt =F(x)。

根据定积分的定义:1. ∫[a,x]f(t)dt = lim(n→∞)∑[i=1, n]f(xi)Δxi,Δxi = x - xi,ξi ∈ [xi, xi+1];2. F(x) = F(a) + ∫[a,x]F'(t)dt = F(a) +lim(n→∞)∑[i=1, n]F'(ξi)Δxi,Δxi = x - xi,ξi ∈ [xi, xi+1]。

我们需要证明通过引入一个分割P = {a = x0 < x1 < ... < xn = x},并取分割上每个子区间上的任意一点ξi,满足lim(n→∞)∑[i=1, n]f(xi)Δxi = lim(n→∞)∑[i=1, n]F'(ξi)Δxi。

微积分基本公式和基本定理

微积分基本公式和基本定理

x
sec2
xdx
tan
x
C
(9)
d sin
x
2
x
csc 2
xdx
cot
x
C
(10) sec x tan xdx sec x C
(11) csc x cot xdx csc x C
(12) ex dx ex C (13) a xdx a x C
ln a
(14) sh xdx ch x C
2
xdx.
2
2
0
0
例9

明2 e
1 4
2 e x2 xdx 2e2 .
0
第二节
第三章
微积分基本公式与基本定理
一、微积分基本公式 二、微积分基本定理 三、不定积分
一、微积分基本公式
在变速直线运动中, s(t) v(t) 物体在时间间隔
内经过的路程为 vT2 (t)d t s(T2 ) s(T1 ) T1
例10
1 et2 dt

lim
x0
cos x
x2
.
解 d 1 et2dt d cos x et2dt,
dx cos x
dx 1
ecos2 x (cos x) sin x ecos2 x ,
1 et2 dt
lim
x0
cos x
x2
lim sin x ecos2 x
x0
2x
1. 2e
ln
x
C
x 0时 ( ln x ) [ ln(x) ] 1
(4)
1
dx x
2
arctan
x
C
x
或 arccot x C
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

微积分基本定理(教案)(总4
页)
-CAL-FENGHAI.-(YICAI)-Company One1
-CAL-本页仅作为文档封面,使用请直接删除
微积分基本定理
一:教学目标
知识与技能目标
通过实例,直观了解微积分基本定理的内容,会用牛顿-莱布尼兹公式求简单的定积分
过程与方法
通过实例探求微分与定积分间的关系,体会微积分基本定理的重要意义 情感态度与价值观
通过微积分基本定理的学习,体会事物间的相互转化、对立统一的辩证关系,培养学生辩证唯物主义观点,提高理性思维能力。

二:教学重难点
重点:通过探究变速直线运动物体的速度与位移的关系,使学生直观了解微积
分基本定理的含义,并能正确运用基本定理计算简单的定积分。

难点:了解微积分基本定理的含义
三:教学过程:
1、知识链接:
定积分的概念:
用定义计算的步骤:
2、合作探究:
⑴导数与积分的关系;
我们讲过用定积分定义计算定积分,但其计算过程比较复杂,所以不是求定积分的一般方法。

有没有计算定积分的更直接方法,也是比较一般的方法呢?
下面以变速直线运动中位置函数与速度函数之间的联系为例:
设一物体沿直线作变速运动,在时刻t 时物体所在位置为S(t),速度为v(t)(()v t o ≥),
则物体在时间间隔12[,]T T 内经过的路程可用速度函数表示为2
1()T T v t dt ⎰。

另一方面,这段路程还可以通过位置函数S (t )在12[,]T T 上的增量12()()S T S T -来表达,即
2
1()T T v t dt ⎰=12()()S T S T - 而()()S t v t '=。

说出你的发现 ⑵ 微积分基本定理
对于一般函数()f x ,设()()F x f x '=,是否也有
()()()b
a f x dx F
b F a =-⎰?
若上式成立,我们就找到了用()f x 的原函数(即满足()()F x f x '=)的数值差()()F b F a -来计算()f x 在[,]a b 上的定积分的方法。

设()()F x f x '=则在[,]a b 上,⊿y=()()F b F a -
将[,]a b 分成n 等份,在第i 个区间[x i-1,x i ]上,记⊿yi=F(x i )-F(x i-1),则
⊿y=∑⊿y i 如下图,因为⊿h i =f(x i-1) ⊿x 而⊿y i ≈⊿h i 所以
⊿y ≈∑⊿h i =∑f(x i-1) ⊿x 故
⊿y=lim ∑⊿h i =∑f(x i-1) ⊿x=
⎰b a dx x f )(
即⎰b a dx x f )(=()()F b F a -
所以有微积分基本定理: 如果函数()F x 是[,]a b 上的连续函数()f x 的任意一个原函数,则
()()()b a f x dx F b F a =-⎰
⎰b a dx x f )( (此处并不要求学生理解证明的过程) 为了方便起见,还常用()|b a F x 表示()()F b F a -,即
()()|()()b b a a f x dx F x F b F a ==-⎰
该式称之为微积分基本公式或牛顿—莱布尼兹公式。

它指出了求连续函数定积分的一般方法,把求定积分的问题,转化成求原函数的问题,是微分学与积分学之间联系的桥梁。

它不仅揭示了导数和定积分之间的内在联系,同时也提供计算定积分的一种有效方法,为后面的学习奠定了基础。

因此它在教
材中处于极其重要的地位,起到了承上启下的作用,不仅如此,它甚至给微积分学的发展带来了深远的影响,是微积分学中最重要最辉煌的成果。

⑶应用举例
例1.计算下列定积分:
(1)211dx x ⎰; (2)3211(2)x dx x
-⎰。

解:(1)因为'1(ln )x x
=, 所以22111ln |ln 2ln1ln 2dx x x
==-=⎰。

(2))因为2''211()2,()x x x x
==-, 所以3332211111(2)2x dx xdx dx x
x -=-⎰⎰⎰ 233111122||(91)(1)33
x x =+=-+-=。

练习:计算1
20x dx ⎰ 解:由于313
x 是2x 的一个原函数,所以根据牛顿—莱布尼兹公式有 120x dx ⎰=3101|3x =33111033⋅-⋅=13
例2.计算下列定积分:
2200sin ,sin ,sin xdx xdx xdx π
ππ
π⎰⎰⎰。

由计算结果你能发现什么结论?试利用曲边梯形的面积表示所发现的结论。

解:因为'(cos )sin x x -=,
所以
00sin (cos )|(cos )(cos 0)2xdx x ππ
π=-=---=⎰,
22sin (cos )|(cos 2)(cos )2xdx x ππππ
ππ=-=---=-⎰, 2
200sin (cos )|(cos 2)(cos 0)0xdx x πππ=-=---=⎰. 可以发现,定积分的值可能取正值也可能取负值,还可能是0:
( l )当对应的曲边梯形位于 x 轴上方时(图一3 ) ,定积分的值取正值,且等于曲边梯形的面积;
图1 . 6 一 3 ( 2 )
(2)当对应的曲边梯形位于 x 轴下方时(图 1 . 6 一 4 ) ,定积分的值取负值,且等于曲边梯形的面积的相反数;
( 3)当位于 x 轴上方的曲边梯形面积等于位于 x 轴下方的曲边梯形面
积时,定积分的值为0(图 1 . 6 一 5 ) ,且等于位于 x 轴上方的曲边梯形面积减去位于 x 轴下方的曲边梯形面积.
例3.汽车以每小时32公里速度行驶,到某处需要减速停车。

设汽车以等减速度a =米/秒2刹车,问从开始刹车到停车,汽车走了多少距离?
解:首先要求出从刹车开始到停车经过了多少时间。

当t=0时,汽车速度
0v =32公里/小时=3210003600
⨯米/秒≈米/秒,刹车后汽车减速行驶,其速度为0(t)=t=8.88-1.8t v v a -当汽车停住时,速度(t)=0v ,故从(t)=8.88-1.8t=0v 解得
8.88t= 4.931.8
≈秒 于是在这段时间内,汽车所走过的距离是
4.93 4.9300(t)(8.88 1.8t)s v dt dt ==-⎰⎰= 4.9320
1(8.88 1.8t )21.902-⨯≈米,即在刹车后,汽车需走过米才能停住.
微积分基本定理揭示了导数和定积分之间的内在联系,同时它也提供了计算定积分的一种有效方法.微积分基本定理是微积分学中最重要的定理,它使微积分学蓬勃发展起来,成为一门影响深远的学科,可以毫不夸张地说,微积分基本定理是微积分中最重要、最辉煌的成果.
⑷课堂练习
课本p55练习⑴----⑻
四:课堂小结:
本节课借助于变速运动物体的速度与路程的关系以及图形得出了特殊情况下的牛顿-莱布尼兹公式.成立,进而推广到了一般的函数,得出了微积分基本定理,得到了一种求定积分的简便方法,运用这种方法的关键是找到被积函数的原函数,这就要求大家前面的求导数的知识比较熟练,希望,不明白的同学,回头来多复习!
五:教学后记:
从教以来,一直困惑于一个问题:课堂上如何突出重点并突破难点。

当然,理论方面自己早已烂熟于心,关键是缺乏实践方面的体验及感悟。

在今天的课堂上,本来一个相当简单的问题,可在课堂上却花费了大量时间,更严重的是学生却听得更为糊涂。

一个主要原因在于,对相关知识结构理解不到位,眉毛胡子一把抓,而难点又无法解决。

相关文档
最新文档