浅谈移动通信中的天线.
移动通信基站天线基础知识

移动通信基站天线基础知识移动通信基站天线基础知识1. 天线的作用天线是基站中的关键元件,它起到了接收和发送无线信号的作用。
天线将无线信号转化为电信号,并将电信号转发到通信系统的其他部分。
2. 天线类型根据不同的应用需求和技术标准,移动通信基站天线可分为几种不同的类型。
2.1 基站天线基站天线是用来收发无线电信号的设备。
它们安装在基站上方,并通过天线馈线与其他设备连接。
基站天线可以分为定向天线和非定向天线。
定向天线:定向天线主要用于指定方向上的通信,其发射和接收角度相对较窄。
这种类型的天线在无线通信覆盖面积较小的场景中应用较多。
非定向天线:非定向天线主要用于覆盖较大面积的通信。
它们具有较大的发射和接收角度。
2.2 室内天线室内天线主要用于室内无线覆盖。
与基站天线不同,室内天线更小、更灵活,并且安装在建筑物内部。
它们可以提供室内覆盖,从而增强无线信号的传输质量。
2.3 手持设备天线手持设备天线是安装在移动设备上的一种小型天线。
它们通常用于方式、平板电脑等移动设备中。
手持设备天线能够接收和发送信号,使移动设备能够进行无线通信。
3. 天线参数在选择和使用天线时,需要考虑一些重要的参数。
3.1 增益增益是衡量天线性能的一个重要指标。
增益越高,天线能够发送和接收的信号强度就越大。
3.2 方向图方向图显示了天线在不同方向上的辐射模式。
通过分析方向图,可以了解天线在不同方向上的信号强度和覆盖范围。
3.3 频率范围天线的频率范围是指天线能够支持的频率范围。
不同的通信系统工作在不同的频段,天线需要根据通信系统的频段选择。
3.4 驻波比驻波比是衡量天线匹配性能的指标。
较低的驻波比意味着天线能够更有效地将信号发送到传输线上。
4. 天线安装与调试天线的正确安装和调试对于保证通信系统的正常工作至关重要。
在安装和调试天线时,需要考虑以下几个方面:天线的安装高度和方向应该合适,以实现最佳的通信性能。
天线应与其他设备正确连接,并进行必要的线缆调试。
无线移动通信中的天线

➢ 在空间一点天线的功率密度与平均辐射功率密度
之比
L 3.4 2 4 2l0 d g (k)m 2l0 g f(M )Hz
➢ 分为定向天线(Directional Antenna)与全向天线
(Omni-directional Antenna)
➢ 与各向同性天线比较
➢ 自由空间传播损耗 L 3.4 2 4 2l0 d g (k)m 2f( 0 M)H
编辑ppt
15
辐射方向图(Radiation pattern)
➢ 描述天线在远区辐射场空间分布特性 ➢ 所有的天线都有三维方向图,测试困难 ➢ 实际中使用两维方向图是三维方向图的切面 ➢ 用E面与H面表示 ➢ 辐射方向图是互易的
编辑ppt
16
编辑ppt
17
方向性(D)
➢ 描述了天线在特定方向聚集电磁波的能力
编辑ppt
21
➢ 国际非电离辐射防护委员会已于1998年发布了 《 0 - 300 GHz电磁场安全限值导则》,并已被 世界上大多数国家采纳为电磁辐射安全标准
➢ 国际电信联盟于2000年发布的 ITU-T K.52建议 (ITU标准)是基于ICNIRP导则的,并建议各 国采用该导则的安全限值
➢ 世界卫生组织(WHO)也支持采用ICNIRP导 则规定的安全限值 ,并积极着手电磁辐射标准 的协调工作,希望全球采用统一的标准和测量 方法
编辑ppt
6
移动通信对手机天线 的要求
编辑ppt
7
编辑ppt
8
编辑ppt
9
GSM频带分配表
编辑ppt
10
编辑ppt
11
手机天线设计需要考虑
➢ 天线作为一个系统,而不是孤立的发射/接受终端;
移动通信基站天线基础知识[1]简版
![移动通信基站天线基础知识[1]简版](https://img.taocdn.com/s3/m/fa6e33ed77a20029bd64783e0912a21615797f7f.png)
移动通信基站天线基础知识移动通信基站天线基础知识简介在移动通信领域,基站是通信网络的核心组成部分,它负责接收和发送信号,实现移动用户间的通信。
而在基站中的重要组成部分就是天线。
天线作为基站的“眼睛和耳朵”,起到接收和发射无线信号的作用。
本文将介绍移动通信基站天线的基础知识。
天线类型移动通信基站天线按照不同的分类标准可以分为多种类型,其中常见的有以下几种:1. 方向性天线:这种天线主要用于提高信号的传输距离和覆盖范围。
它将信号聚焦在一个特定方向上,减少信号的散射和干扰。
2. 扇形天线:这种天线主要用于扇面覆盖区域内的通信。
它将信号均匀地辐射到扇形区域内,以满足移动用户的需求。
3. 定向天线:这种天线主要用于长距离通信,如城市间的通信。
它将信号集中在一个狭窄的方向上,提高信号的传输距离和质量。
4. 室内天线:这种天线主要用于室内覆盖,如商场、办公楼等场景。
它可以增强信号在室内的传输强度,提高信号覆盖的质量。
天线性能参数了解天线的性能参数对于实现高质量的移动通信至关重要,下面是一些常见的天线性能参数:1. 增益:天线的增益是指天线辐射或接收信号的能力。
增益值越高,天线的辐射、接收和传输的功率就越大,覆盖范围也就越广。
2. 波束宽度:波束宽度是指天线辐射信号的主要方向范围。
波束宽度越窄,天线的覆盖范围也就越小,但传输距离和质量会更好。
3. 前后比:前后比描述了天线在主波束方向上辐射信号的强度与背向波束方向上辐射信号强度之间的比值。
前后比越大,天线的方向性就越明显。
4. 横向波束宽度:横向波束宽度是指天线辐射信号的水平范围。
横向波束宽度越大,天线的覆盖范围也就越广。
5. 竖向波束宽度:竖向波束宽度是指天线辐射信号的垂直范围。
竖向波束宽度越大,天线的覆盖范围也就越广。
天线安装和调整天线的安装和调整是保证通信质量的关键步骤。
以下是一些常见的注意事项:1. 安装位置:天线的安装位置应尽量避免遮挡,以确保信号的传输效果。
通讯天线原理及应用

通讯天线原理及应用通信天线是指将电磁波转换为电信号或者将电信号转换为电磁波的设备。
它是无线通信系统中的核心部件之一,起着传输电磁波信号的关键作用。
本文将从通信天线的原理和应用两个方面进行介绍。
一、通信天线的原理通信天线的工作原理基于电磁波的辐射和接收。
当需要发送电磁波信号时,通信天线将电信号转换为电磁波信号并辐射到空间中;而当需要接收电磁波信号时,通信天线将接收到的电磁波信号转换为电信号。
通信天线的辐射和接收能力受到以下几个因素的影响:1. 天线形状和结构:天线形状和结构会对电磁波的辐射和接收产生影响。
不同形状和结构的天线会有不同的辐射和接收特性,例如,定向天线可以将信号集中辐射到某个方向,而全向天线则可以在所有方向上辐射。
2. 天线长度和尺寸:天线长度和尺寸的选择也会影响天线的工作特性。
一般来说,较长的天线可以产生更方向性的辐射和接收特性,而较短的天线则更适合产生全向辐射和接收。
3. 材料和电气特性:天线的材料和电气特性也对其辐射和接收性能产生影响。
通过选择特定的材料和调整电气特性,可以改变天线的频率响应、增益和阻抗匹配等工作特性。
二、通信天线的应用通信天线广泛应用于无线通信系统中,包括移动通信、卫星通信、雷达、广播电视等领域。
以下是通信天线在不同应用中的一些典型案例:1. 移动通信天线:在移动通信系统中,通信天线被用于将基站发送的信号覆盖到特定区域内,或者将手机发送的信号传输到基站。
常见的移动通信天线包括基站天线、手机天线、车载天线等。
2. 卫星通信天线:卫星通信系统使用天线将射向地球的卫星信号接收到地面,或者将地面的信号发送到卫星。
卫星通信天线一般具有较高的方向性和增益,以保证信号的传输效果。
3. 雷达天线:雷达系统使用天线辐射出电磁波,并通过接收回波信号来探测目标物体。
雷达天线一般具有较高的方向性和灵敏度,以增强目标物体的探测能力。
4. 广播电视天线:广播电视系统使用天线将信号辐射到空中,供广大听众和观众接收。
移动通信天线性能及对网络的影响

(dBi ) +
Gr
(dBi )
−
Lo (dBi )
式中:Pr(dBm)表示覆盖范围内手机接收的辐射功率。 PT(dBm)表示基站辐射的功率。 S 表示手机距基站的距离。
λmin 表示基站工作的最短波长。 GT(dBi)表示基站天线的增益。 Gr(dBi)表示手机天线的增益。 Lo(dBi)表示传播中的其它损耗(含馈线损耗)
功率(dB)
百分比
2.15
40%
0.86
18%
0.67
14%
0.36
பைடு நூலகம்
8%
0.21
4.7%
0.13
2.9%
0.07
1.1%
从上表可以看出当 VSWR 较大时,功率损耗较大,如当 VSWR=3.0 时,减小辐射功率 2.15dB;但是当 VSWR 降低到某一程度时,它对辐射功率的影响就不十分明显,当 VSWR=1.5 时减小辐射功率 0.39dB,VSWR=1.3 时功率减少 0.13dB,这 0.28dB 的功率损耗在无线的衰落 信道中影响可以忽略不计,但是要制造 VSWR 很低的天线成本会大幅升高,所以一般选择 VSWR=1.5 的基本可以满足要求(有的性能较好的天线可以达到 1.3)。
Γ(z)= V0-ejβz∕V0+e-jβz 由于存在反射波,所以从信号源来的有效功率没有全部送到负载,有一部分被反射,这种 损耗称之为“回波损耗”,用 dB 定义为:
RL=-20lg∣Γ∣ dB。 驻波比ρ定义为沿着传输线上的电压最大值(波腹电压)与最小值(波节电压)的比值,即:
网络优化中心 宋锴 第 3 页 共 8 页
(1) 对话务量高密集区,基站间距离 300-500 米,计算得出 a 大约在 10°~19°之间。 采用内置电下倾 9°的+45°双极化水平半功率瓣宽 65°定向天线 。再加上机械可变 15°的倾 角,可以保证方向图水平半功率宽度在主瓣下倾 10°~19°内无变化,可满足对高密集市区覆 盖且不干扰的要求。
中国移动移动通信基站天线(内部资料)

因此,无线电波在空 气中的传播速度略小于光速 ,通常我们就认为它等于光 速。
电磁波的传播
振 子
电场
磁场
电场 电波传输方向
磁场
电场
无线电波的波长、频率和传播速度的关系
可用式 λ=V/f 表示。 式中,V为速度,单位为米/秒;f 为频率,单位为赫兹; λ为波长,单位为米。 由上述关系式不难看出,同一频率的无线电波在不同的媒 质中传播时,速度是不同的,因此波长也不一样。 我们通常使用的聚四氟乙烯型绝缘同轴射频电缆其相对介 电常数ε约为2.1,因此,Vε≈C/1.44 ,λε≈λ/1.44 。
当接收天线的极化方向(例如水平或右旋圆极化) 与来波的极化方向(相应为垂直或左旋圆极化)完全正 交时,接收天线也就完全接收不到来波的能量,这时称 来波与接收天线极化是隔离的。
3.(极化)隔离
隔离代表馈送到一种极化的信号在另外一种极 化中出现的比例
1000mW (即1W)
在这种情况下的隔离为 10log(1000mW/1mW) = 30dB
反射面天线,则由于有效照射效率因素的影响,
故
G(dBi )
10
log
2
27000
2 0.5 E
0.5 H
八. 关于传输线的几个基本概念
连接天线和发射(或接收)机输出(或输入)端的导线称 为传输线或馈线。传输线的主要任务是有效地传输信号能量。
因此它应能将天线接收的信号以最小的损耗传送到接收机输 入端,或将发射机发出的信号以最小的损耗传送到发射天线的输 入端,同时它本身不应拾取或产生杂散干扰信号。这样,就要求 传输线必须屏蔽或平衡。
移动基站天线有关概念及选型原则
移动通信基站天线基础知识

移动通信基站天线基础知识移动通信基站天线是移动通信系统中的重要组成部分,其作用是将电信号转化为电磁波,并进行无线传输。
本文将介绍移动通信基站天线的基础知识,包括天线的类型、工作原理、性能指标等内容。
一、天线的类型移动通信基站天线可以根据不同的分类方式进行分类。
根据天线的工作频段,可以分为以下几类:1. 宽频段天线:适用于多频段的通信系统,能够覆盖不同频段的通信需求。
2. 扇形覆盖天线:用于小区域通信,形状呈扇形,信号覆盖范围有限。
3. 定向天线:用于长距离通信,信号传输更远且更稳定,但只能在特定方向进行通信。
4. 等向天线:信号传输范围广且均匀,适用于城市通信等环境。
根据天线的形状和结构,还可以分为以下几类:1. 竖直天线:天线的辐射方向主要朝向地面,适用于城市通信等场景。
2. 水平天线:天线的辐射方向主要朝向水平方向,适用于山区等场景。
3. 室内天线:适用于室内信号覆盖,可提供稳定的室内信号传输环境。
4. 中心天线:用于高速列车、高速公路等移动环境下的通信需求。
二、天线的工作原理移动通信基站天线的工作原理是将电信号转化为电磁波,并进行无线传输。
具体工作原理如下:1. 输入信号处理:接收来自基站设备的电信号,并进行处理,使其符合天线的输入要求。
2. 电信号转换:将输入信号转换为高频电磁波,以便进行无线传输。
3. 辐射和传输:将转换后的电磁波通过天线辐射出去,在空间中传输到指定的接收器。
4. 接收器接收:接收器接收到天线辐射出的电磁波,并将其转换为电信号。
三、天线的性能指标移动通信基站天线的性能指标直接影响着通信系统的性能。
常见的天线性能指标包括:1. 增益:衡量天线的辐射效率,增益越高,传输距离越远。
2. 驻波比:衡量天线的匹配程度,驻波比越小,能量传输效率越高。
3. 方向性:衡量天线在不同方向上的辐射效果,方向性越强,信号传输精度越高。
4. 波瓣宽度:衡量天线在空间中的覆盖范围,波瓣宽度越大,覆盖范围越广。
浅谈智能天线技术在移动通信中的应用

浅谈智能天线技术在移动通信中的应用摘要:对于移动通信设备而言,天线是关键核心部件之一,在移动通信设备的正常应用中发挥着重要作用。
传统天线在信号传输质量和信号传输速度上都难以满足通信要求,研发新一代适合移动通信设备的智能天线成为了必然选择。
当前,智能天线在移动通信中得到了应用和普及,对提高移动通信设备功能起到积极的促进作用。
从当前智能天的技术属于附加领域研究,其功能远远没有被完善,有更为广阔的开发空间。
关键词:智能天线技术;多波束智能天线;自适应智能天线1智能天线概述1.1智能天线的基本原理智能天线是一种能够根据所处的电磁环境来调节或选择自身参数,从而使通信系统保持最佳性能的天线技术。
智能天线技术是在阵列天线理论、微波和射频技术、自动控制理论、自适应天线技术、数字信号处理技术、软件无线电技术和集成电路技术等多个研究领域的基础上综合发展而成的一门新技术。
智能天线采用空分多址技术(SDMA),利用信号在传输方向上的差异,将同频率或同时隙、同码道的信号区分开来,最大限度地利用有限的信道资源。
1.2智能天线的分类根据智能天线工作原理的不同,智能天线可以分为:多波束智能天线和自适应智能天线。
(1)多波束智能天线多波束智能天线主要采用波束转换技术,因此,也称为波束转换天线。
它在对用户区进行分区(扇区)的基础上,使天线的每个波束固定指向不同的分区,使用多个并行波束就能覆盖整个用户区,从而形成了形状基本不变的天线方向图。
当用户在小区中移动时,根据测量各个波束的信号强度来跟踪移动用户,并能在移动用户移动时适当地转换波束,使接收信号最强,同时较好地抑制了干扰,提高了服务质量。
可以说,多波束天线是介于扇形定向天线与自适应智能天线之间的一种技术。
(2)自适应智能天线自适应智能天线原名叫自适应天线阵列,是一种安装在基站现场的双向(既可接收又可发送)天线。
它基于自适应天线原理,采用现代自适应空间数字处理技术,通过选择合适的自适应算法,利用天线阵的波束赋形技术动态地形成多个独立的高增益窄波束,使天线主波束对准用户信号到达方向,同时旁瓣或零陷对准干扰信号到达方向,以增强有用信号、减少甚至抵消干扰信号,提高接收信号的载干比,同时增加系统的容量和频谱效率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浅谈移动通信中的天线移动通信系统是有线与无线的综合体,它是移动网络在其覆盖范围内,通过空中接口(无线)将移动台与基站联系起来,并进而与移动交换机相联系(有线)的一个综合的复合体。
而在移动通信系统中,空间无线信号的发射和接收都是依*移动天线来实现的。
因此,天线对于移动通信网络来说,起着举足轻重的作用,如果天线的选择不好,或者天线的参数设置不当,都会直接影响到整个移动通信网络的运行质量。
尤其在基站数量多,站距小,载频数量多的高话务量地区,天线选择及参数设置是否合适,对移动通信网络的干扰,覆盖率,接通率及全网服务质量有很大影响。
本文将向读者介绍一些有关天线的基本知识,并联系本人实际,谈谈天线在日常维护及网络优化中的作用。
一、天线的几个重要参数介绍1.天线的输入阻抗天线的输入阻抗是天线馈电端输入电压与输入电流的比值。
天线与馈线的连接,最佳情形是天线输入阻抗是纯电阻且等于馈线的特性阻抗,这时馈线终端没有功率反射,馈线上没有驻波,天线的输入阻抗随频率的变化比较平缓。
天线的匹配工作就是消除天线输入阻抗中的电抗分量,使电阻分量尽可能地接近馈线的特性阻抗。
匹配的优劣一般用四个参数来衡量,即反射系数,行波系数,驻波比和回波损耗,四个参数之间有固定的数值关系,使用那一个纯出于习惯。
在我们日常维护中,用的较多的是驻波比和回波损耗。
驻波比:它是行波系数的倒数,其值在1到无穷大之间。
驻波比为1,表示完全匹配;驻波比为无穷大表示全反射,完全失配。
在移动通信系统中,一般要求驻波比小于 1.5。
回波损耗:它是反射系数绝对值的倒数,以分贝值表示。
回波损耗的值在0dB的到无穷大之间,回波损耗越大表示匹配越差,回波损耗越大表示匹配越好。
0表示全反射,无穷大表示完全匹配。
在移动通信系统中,一般要求回波损耗大于14dB。
2.天线的极化方式所谓天线的极化,就是指天线辐射时形成的电场强度方向。
当电场强度方向垂直于地面时,此电波就称为垂直极化波;当电场强度方向平行于地面时,此电波就称为水平极化波。
由于电波的特性,决定了水平极化传播的信号在贴近地面时会在大地表面产生极化电流,极化电流因受大地阻抗影响产生热能而使电场信号迅速衰减,而垂直极化方式则不易产生极化电流,从而避免了能量的大幅衰减,保证了信号的有效传播。
因此,在移动通信系统中,一般均采用垂直极化的传播方式。
另外,随着新技术的发展,最近又出现了一种双极化天线。
就其设计思路而言,一般分为垂直与水平极化和±45°极化两种方式,性能上一般后者优于前者,因此目前大部分采用的是±45°极化方式。
双极化天线组合了+45°和-45°两副极化方向相互正交的天线,并同时工作在收发双工模式下,大大节省了每个小区的天线数量;同时由于±45°为正交极化,有效保证了分集接收的良好效果。
(其极化分集增益约为5dB,比单极化天线提高约2dB。
)3.天线的增益天线增益是用来衡量天线朝一个特定方向收发信号的能力,它是选择基站天线最重要的参数之一。
一般来说,增益的提高主要依*减小垂直面向辐射的波瓣宽度,而在水平面上保持全向的辐射性能。
天线增益对移动通信系统的运行质量极为重要,因为它决定蜂窝边缘的信号电平。
增加增益就可以在一确定方向上增大网络的覆盖范围,或者在确定范围内增大增益余量。
任何蜂窝系统都是一个双向过程,增加天线的增益能同时减少双向系统增益预算余量。
4.天线的波瓣宽度波瓣宽度是定向天线常用的一个很重要的参数,它是指天线的辐射图中低于峰值3dB处所成夹角的宽度(天线的辐射图是度量天线各个方向收发信号能力的一个指标,通常以图形方式表示为功率强度与夹角的关系)。
天线垂直的波瓣宽度一般与该天线所对应方向上的覆盖半径有关。
因此,在一定范围内通过对天线垂直度(俯仰角)的调节,可以达到改善小区覆盖质量的目的,这也是我们在网络优化中经常采用的一种手段。
二、移动通信系统中几种天线的比较及选择移动通信天线的技术发展很快,最初中国主要使用普通的定向和全向型移动天线,后来普遍使用机械天线,现在一些省市的移动网已经开始使用电调天线和双极化移动天线。
由于目前移动通信系统中使用的各种天线的使用频率,增益和前后比等指标差别不大,都符合网络指标要求,我们将重点从移动天线下倾角度改变对天线方向图及无线网络的影响方面,对上述几种天线进行分析比较。
1.机械天线。
所谓机械天线,即指使用机械调整下倾角度的移动天线。
机械天线与地面垂直安装好以后,如果因网络优化的要求,需要调整天线背面支架的位置改变天线的倾角来实现。
在调整过程中,虽然天线主瓣方向的覆盖距离明显变化,但天线垂直分量和水平分量的幅值不变,所以天线方向图容易变形。
实践证明:机械天线的最佳下倾角度为1°-5°;当下倾角度在5°-10°变化时,其天线方向图稍有变形但变化不大;当下倾角度在10°-15°变化时,其天线方向图变化较大;当机械天线下倾15°后,天线方向图形状改变很大,从没有下倾时的鸭梨形变为纺锤形,这时虽然主瓣方向覆盖距离明显缩短,但是整个天线方向图不是都在本基站扇区内,在相邻基站扇区内也会收到该基站的信号,从而造成严重的系统内干扰。
另外,在日常维护中,如果要调整机械天线下倾角度,整个系统要关机,不能在调整天线倾角的同时进行监测;机械天线调整天线下倾角度非常麻烦,一般需要维护人员爬到天线安放处进行调整;机械天线的下倾角度是通过计算机模拟分析软件计算的理论值,同实际最佳下倾角度有一定的偏差;机械天线调整倾角的步进度数为1°,三阶互调指标为-120dBc。
2.电调天线。
所谓电调天线,即指使用电子调整下倾角度的移动天线。
电子下倾的原理是通过改变共线阵天线振子的相位,改变垂直分量和水平分量的幅值大小,改变合成分量场强强度,从而使天线的垂直方向性图下倾。
由于天线各方向的场强强度同时增大和减小,保证在改变倾角后天线方向图变化不大,使主瓣方向覆盖距离缩短,同时又使整个方向性图在服务小区扇区内减小覆盖面积但又不产生干扰。
实践证明,电调天线下倾角度在1°-5°变化时,其天线方向图与机械天线的大致相同;当下倾角度在5°-10°变化时,其天线方向图较机械天线的稍有改善;当下倾角度在10°-15°变化时,其天线方向图较机械天线的变化较大;当机械天线下倾15°后,其天线方向图较机械天线的明显不同,这时天线方向图形状改变不大,主瓣方向覆盖距离明显缩短,整个天线方向图都在本基站扇区内,增加下倾角度,可以使扇区覆盖面积缩小,但不产生干扰,这样的方向图是我们需要的,因此采用电调天线能够降低呼损,减小干扰。
另外,电调天线允许系统在不停机的情况下对垂直方向性图下倾角进行调整,实时监测调整的效果,调整倾角的步进精度也较高(为0.1°),因此可以对网络实现精细调整;电调天线的三阶互调指标为-150dBc,较机械天线相差30dBc,有利于消除邻频干扰和杂散干扰。
3.双极化天线。
双极化天线是一种新型天线技术,组合了+45°和-45°两副极化方向相互正交的天线并同时工作在收发双工模式下,因此其最突出的优点是节省单个定向基站的天线数量;一般GSM数字移动通信网的定向基站(三扇区)要使用9根天线,每个扇形使用3根天线(空间分集,一发两收),如果使用双极化天线,每个扇形只需要1根天线;同时由于在双极化天线中,±45°的极化正交性可以保证+45°和-45°两副天线之间的隔离度满足互调对天线间隔离度的要求(≥30dB),因此双极化天线之间的空间间隔仅需20-30cm;另外,双极化天线具有电调天线的优点,在移动通信网中使用双极化天线同电调天线一样,可以降低呼损,减小干扰,提高全网的服务质量。
如果使用双极化天线,由于双极化天线对架设安装要求不高,不需要征地建塔,只需要架一根直径20cm的铁柱,将双极化天线按相应覆盖方向固定在铁柱上即可,从而节省基建投资,同时使基站布局更加合理,基站站址的选定更加容易。
对于天线的选择,我们应根据自己移动网的覆盖,话务量,干扰和网络服务质量等实际情况,选择适合本地区移动网络需要的移动天线:在基站密集的高话务地区,应该尽量采用双极化天线和电调天线,在边、郊等话务量不高,基站不密集地区和只要求覆盖的地区,可以使用传统的机械天线。
我国目前的移动通信网在高话务密度区的呼损较高,干扰较大,其中一个重要原因是机械天线下倾角度过大,天线下倾角度过大,天线方向图严重变形。
要解决高话务区的容量不足,必须缩短站距,加大天线下倾角度,但是使用机械天线,下倾角度大于5°时,天线方向图就开始变形,超过10°时,天线方向图严重变形,因此采用机械天线,很难解决用户高密度区呼损高、干扰大的问题。
因此建议在高话务密度区采用电调天线或双极化天线替换机械天线,替换下来的机械天线可以安装在农村,郊区等话务密度低的地区。
三、天线调整在移动通信系统中的应用天线是无线信号与基站之间的接口,在整个无线网络中起着很重要的作用。
天线的正确安装,天线参数的正确调整(包括天线高度、俯仰角、方位角),对无线网络的信号质量有着很大的影响,能够较为有效的改善系统的掉话率,接通率。
阻塞率等运行质量指标,改善无线信号及无线环境。
1.天线的安装由于移动通信的迅猛发展,目前全国许多地区存在多网并存的局面,即A、B、G三网并存,其中有些地区的G网还包括GSM9000和GSM1800。
为充分利用资源,实现资源共享,我们一般采用天线共塔的形式。
这就涉及到天线的正确安装问题,即如何安装才能尽可能地减少天线之间的相互影响。
在工程中我们一般用隔离度指标来衡量,通常要求隔离度应至少大于30dB,为满足该要求,常采用使天线在垂直方向隔开或在水平方向隔开的方法,实践证明,在天线间距相同时,垂直安装比水平安装能获得更大的隔离度。
总的来说,天线的安装应注意以下几个问题:(1)定向天线的塔侧安装:为减少天线铁塔对天线方向性图的影响,在安装时应注意:定向天线的中心至铁塔的距离为λ/4或3λ/4时,可获得塔外的最大方向性。
(2)全向天线的塔侧安装:为减少天线铁塔对天线方向性图的影响,原则上天线铁塔不能成为天线的反射器。
因此在安装中,天线总应安装于棱角上,且使天线与铁塔任一部位的最近距离大于λ。
(3)多天线共塔:要尽量减少不同网收发信天线之间的耦合作用和相互影响,设法增大天线相互之间的隔离度,最好的办法是增大相互之间的距离。
天线共塔时,应优先采用垂直安装。