2018年 中考数学总复习 实验操作类问题 专题综合训练题 含答案
精品-2018年中考数学真题分类汇编第一期专题37操作探究试题含解析

操作探究一、选择题1.(2018•湖北荆门•3分)如图,等腰Rt△ABC中,斜边AB的长为2,O为AB的中点,P为AC边上的动点,OQ⊥OP交BC于点Q,M为PQ的中点,当点P从点A运动到点C时,点M所经过的路线长为()A.B.C.1 D.2【分析】连接OC,作PE⊥AB于E,MH⊥AB于H,QF⊥AB于F,如图,利用等腰直角三角形的性质得AC=BC=,∠A=∠B=45°,OC⊥AB,OC=OA=OB=1,∠OCB=45°,再证明Rt△AOP≌△COQ得到AP=CQ,接着利用△APE和△BFQ都为等腰直角三角形得到PE=AP=CQ,QF=BQ,所以PE+QF=BC=1,然后证明MH为梯形PEFQ的中位线得到MH=,即可判定点M到AB的距离为,从而得到点M的运动路线为△ABC的中位线,最后利用三角形中位线性质得到点M所经过的路线长.【解答】解:连接OC,作PE⊥AB于E,MH⊥AB于H,QF⊥AB于F,如图,∵△ACB为到等腰直角三角形,∴AC=BC=AB=,∠A=∠B=45°,∵O为AB的中点,∴OC⊥AB,OC平分∠ACB,OC=OA=OB=1,∴∠OCB=45°,∵∠POQ=90°,∠COA=90°,∴∠AOP=∠COQ,在Rt△AOP和△COQ中,∴Rt△AOP≌△COQ,∴AP=CQ,易得△APE和△BFQ都为等腰直角三角形,∴PE=AP=CQ,QF=BQ,∴PE+QF=(CQ+BQ)=BC=×=1,∵M点为PQ的中点,∴MH为梯形PEFQ的中位线,∴MH=(PE+QF)=,即点M到AB的距离为,而CO=1,∴点M的运动路线为△ABC的中位线,∴当点P从点A运动到点C时,点M所经过的路线长=AB=1.故选:C.【点评】本题考查了轨迹:通过计算确定动点在运动过程中不变的量,从而得到运动的轨迹.也考查了等腰直角三角形的性质.2.(2018·浙江临安·3分)如图,正方形硬纸片ABCD的边长是4,点E、F分别是AB、BC的中点,若沿左图中的虚线剪开,拼成如图的一座“小别墅”,则图中阴影部分的面积是()A.2 B.4 C.8 D.10【考点】阴影部分的面积【分析】本题考查空间想象能力.【解答】解:阴影部分由一个等腰直角三角形和一个直角梯形组成,由第一个图形可知:阴影部分的两部分可构成正方形的四分之一,正方形的面积=4×4=16,∴图中阴影部分的面积是16÷4=4.故选:B.【点评】解决本题的关键是得到阴影部分的组成与原正方形面积之间的关系.3(2018·浙江舟山·3分)将一张正方形纸片按如图步骤①,②沿虚线对折两次,然后沿③中平行于底边的虚线剪去一个角,展开铺平后的图形是()A. B.C. D.【考点】剪纸问题【解析】【解答】解:沿虚线剪开以后,剩下的图形先向右上方展开,缺失的部分是一个等腰直角三角形,用直角边与正方形的边是分别平行的,再沿着对角线展开,得到图形A。
【中考复习】2018届甘肃中考数学《专题聚焦》总复习练习题含答案

题型一 规律探索类型一 数与式规律探索 1.(2017·百色)观察以下一列数的特点:0,1,-4,9,-16,25,…,则第11个数是(B )A .-121B .-100C .100D .121 2.(2017·武汉)按照一定规律排列的n 个数:-2、4、-8、16、-32、64、…,若最后三个数的和为768,则n 为(导学号 35694235)(B )A .9B .10C .11D .123.古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,它有一定的规律性,若把第一个三角形数记为x 1,第二个三角形数记为x 2,…,第n 个三角形数记为x n ,则x n +x n+1=__(n +1)2__.4.若x 是不等于1的实数,我们把11-x 称为x 的差倒数,如2的差倒数是11-2=-1,-1的差倒数为11-(-1)=12,现已知x 1=-13,x 2是x 1的差倒数,x 3是x 2的差倒数,x 4是x 3的差倒数,…,以此类推,则x 2018=__34__.5.观察下列等式:1=12,1+3=22,1+3+5=32,1+3+5+7=42,…,则1+3+5+7+…+2015=__1016064__.6.小明写出如下一组数:15,-39,717,-1533,…,请用你发现的规律,猜想第2014个数为__-22014-122015+1__.7.(2017·云南)观察下列各个等式的规律: 第一个等式:22-12-12=1,第二个等式:32-22-12=2,第三个等式:42-32-12=3,…请用上述等式反映出的规律解决下列问题: (1)直接写出第四个等式;(2)猜想第n 个等式(用n 的代数式表示),并证明你猜想的等式是正确的. 解:(1)第四个等式为:52-42-12=4;(2)第n 个等式为:(n +1)2-n 2-12=n;证明如下:∵(n +1)2-n 2-12=n 2+2n +1-n 2-12=2n 2=n ,∴左边=右边,等式成立.类型二 图形规律探索 1.(2017·德州)观察下列图形,它是把一个三角形分别连接这个三角形三边的中点,构成4个小三角形,挖去中间的一个小三角形(如图①);对剩下的三个小三角形再分别重复以上做法,…将这种做法继续下去(如图②,图③…),则图⑥中挖去三角形的个数为(导学号 35694236)(C )A .121B .362C .364D .7292.如图,在△ABC 中,BC =1,点P 1,M 1分别是AB ,AC 边的中点,点P 2,M 2分别是AP 1,AM 1的中点,点P 3,M 3分别是AP 2,AM 2的中点,按这样的规律下去,P n M n 的长为__12n__(n 为正整数).3.如图,在△ABC 中,∠A =m °,∠ABC 和∠ACD 的平分线交于点A 1,得∠A 1;∠A 1BC 和∠A 1CD 的平分线交于点A 2,得∠A 2;…∠A 2016BC 和∠A 2016CD 的平分线交于点A 2017,则∠A 2017=__m22017__°.4.如图,是一组按照某种规律摆放成的图案,则图⑤中三角形的个数是(C )A .8B .9C .16D .17 5.如图,下列图案均是长度相同的火柴按一定的规律拼搭而成:第1个图案需7根火柴,第2个图案需13根火柴,依此规律,第11个图案需(B )根火柴.A .156B .157C .158D .1596.观察下列图形中点的个数,若按其规律再画下去,可以得到第n 个图形中所有点的个数为__(n +1)2__(用含n 的代数式表示).(导学号 35694237)类型三 与坐标系结合的规律探索1.如图,在平面直角坐标系中,将△ABO 绕点A 顺指针旋转到△AB 1C 1的位置,点B 、O 分别落在点B 1、C 1处,点B 1在x 轴上,再将△AB 1C 1绕点B 1顺时针旋转到△A 1B 1C 2的位置,点C 2在x 轴上,将△A 1B 1C 2绕点C 2顺时针旋转到△A 2B 2C 2的位置,点A 2在x 轴上,依次进行下去…,若点A (53,0),B (0,4),则点B 2016的横坐标为(D )A .5B .12C .10070D .100802.如图,在平面直角坐标系中有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,1),(3,0),(3,-1)…,根据这个规律探索可得第100个点的坐标为(D )A .(14,0)B .(14,-1)C .(14,1)D .(14,2)3.如图,已知菱形OABC 的两个顶点O (0,0),B (2,2),若将菱形绕点O 以每秒45°的速度逆时针旋转,则第2017秒时,菱形两对角线交点D 的坐标为.4.(2017·赤峰)在平面直角坐标系中,点P (x ,y )经过某种变换后得到点P ′(-y +1,x +2),我们把点P ′(-y +1,x +2)叫做点P (x ,y )的终结点.已知点P 1的终结点为P 2,点P 2的终结点为P 3,点P 3的终结点为P 4,这样依次得到P 1、P 2、P 3、P 4、…P n 、…,若点P 1的坐标为(2,0),则点P 2017的坐标为__(2,0)__.(导学号 35694238)5.如图,在平面直角坐标系中有一菱形OABC,且∠A=120°,点O、B在y轴上,OA =1,现在把菱形向右无滑动翻转,每次翻转60°,点B的落点依次为B1、B2、B3…,连续翻转2017次,则B2017的坐标为__(1345.5,2)__.题型二尺规作图类型一作与两条直线距离有关的点1.(2017·陕西)如图,在钝角△ABC中,过钝角顶点B作BD⊥BC交AC于点D.请用尺规作图法在BC边上求作一点P,使得点P到AC的距离等于BP的长.(保留作图痕迹,不写作法)(导学号35694239)解:如解图,点P即为所求.2.如图,两条公路OA和OB相交于O点,在∠AOB的内部有工厂C和D,现要修建一个货站P,使货站P到两条公路OA、OB的距离相等,且到两工厂C、D的距离相等,用尺规作出货站P的位置.(要求:不写作法,保留作图痕迹,写出结论)解:如解图所示,作CD的垂直平分线,∠AOB的平分线的交点P即为所求,此时货站P到两条公路OA、OB的距离相等.P和P1都是所求的点.3.(2017·绥化)如图,A、B、C为某公园的三个景点,景点A和景点B之间有一条笔直的小路,现要在小路上建一个凉亭P,使景点B、景点C到凉亭P的距离之和等于景点B到景点A的距离,请用直尺和圆规在所给的图中作出点P.(不写作法和证明,只保留作图痕迹)解:如解图,连接AC,作线段AC的垂直平分线MN,直线MN交AB于点P.点P即为所求的点.4.如图,Rt△ABC中,∠C=90°,用直尺和圆规在边BC上找一点D,使D到AB的距离等于CD.(保留作图痕迹,不写作法)解:如解图,点D即为所求.类型二作角平分线和垂直平分线1.(2017·福建)如图,△ABC中,∠BAC=90°,AD⊥BC,垂足为D,求作∠ABC的平分线,分别交AD,AC于P,Q两点;并证明AP=AQ.(要求:尺规作图,保留作图痕迹,不写作法)解:BQ就是所求的∠ABC的平分线,P、Q就是所求作的点.证明:∵AD⊥BC,∴∠ADB=90°,∴∠BPD+∠PBD=90°.∵∠BAC=90°,∴∠AQP+∠ABQ=90°.∵∠ABQ=∠PBD,∴∠BPD=∠AQP.∵∠BPD=∠APQ,∴∠APQ=∠AQP,∴AP=AQ.2.(2017·赤峰)已知平行四边形ABCD.(1)尺规作图:作∠BAD的平分线交直线BC于点E,交DC延长线于点F(要求:尺规作图,保留作图痕迹,不写作法);(2)在(1)的条件下,求证:CE=CF.(1)解:如解图所示,AF即为所求;(2)证明:∵四边形ABCD是平行四边形,∴AB∥DC,AD∥BC,∴∠1=∠2,∠3=∠4.∵AF平分∠BAD,∴∠1=∠3,∴∠2=∠4,∴CE=CF.3.如图,△ABC中,AB=AC,∠A=40°.(1)作边AB的垂直平分线MN;(保留作图痕迹,不写作法)(2)在已知的图中,若MN交AC于点D,连接BD,求∠DBC的度数.(导学号35694240)解:(1)如解图①即为所求垂直平分线MN;(2)如解图②,连接BD,∵AB的垂直平分线MN交AC于点D,∴AD=BD,∵∠A=40°,∴∠ABD=∠A=40°,∵AB=AC,∴∠ABC =∠C =12(180°-∠A)=70°,∴∠DBC =∠ABC -∠ABD =70°-40°=30°. 4.如图,已知△ABC 中,∠ABC =90°.(1)尺规作图:按下列要求完成作图(保留作图痕迹,请标明字母)①作线段AC 的垂直平分线l ,交AC 于点O ;②连接BO 并延长,在BO 的延长线上截取OD ,使得OD =OB ; ③连接DA 、DC ;(2)判断四边形ABCD 的形状,并说明理由. (1)①②③如解图所示; (2)四边形ABCD 是矩形,理由:∵在Rt △ABC 中,∠ABC =90°,BO 是AC 边上的中线, ∴BO =12AC ,∵BO =DO ,AO =CO ,∴AO =CO =BO =DO ,∴四边形ABCD 是矩形.类型三 作圆1.如图,在图中求作⊙P ,使⊙P 满足以线段MN 为弦且圆心P 到∠AOB 两边的距离相等.(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔加黑)解:如解图所示,⊙P 即为所作的圆.2.如图,已知在△ABC 中,∠A =90°.(1)请用圆规和直尺作出⊙P ,使圆心P 在AC 边上,且与AB ,BC 两边都相切(保留作图痕迹,不写作法和证明);(2)若∠B =60°,AB =3,求⊙P 的面积.解:(1)如解图所示, ⊙P 为所求作的圆; (2)∵∠B =60°, BP 平分∠ABC ,∴∠ABP =30°, ∵tan ∠ABP =AP AB, ∴AP =3, ∴S ⊙P =3π.3.(2017·舟山)如图,已知△ABC ,∠B =40°.(1)在图中,用尺规作出△ABC 的内切圆O ,并标出⊙O 与边AB ,BC ,AC 的切点D ,E ,F(保留痕迹,不必写作法);(2)连接EF ,DF ,求∠EFD 的度数. 解:(1)如解图①,⊙O 即为所求;(2)如解图②,连接OD ,OE , ∴OD ⊥AB ,OE ⊥BC , ∴∠ODB =∠OEB =90°, ∵∠B =40°,∴∠DOE =140°,∴∠EFD =70°.4.已知△ABC 中,∠A =25°,∠B =40°.(1)求作:⊙O ,使得⊙O 经过A 、C 两点,且圆心O 落在AB 边上(要求尺规作图,保留作图痕迹,不必写作法);(2)求证:BC 是(1)中所作⊙O 的切线. (1)解:作图如解图①;(2)证明:如解图②,连接OC ,∵OA =OC ,∠A =25°,∴∠BOC =50°, 又∵∠B =40°,∴∠BOC +∠B =90°, ∴∠OCB =90°,∴OC ⊥BC ,∴BC 是⊙O 的切线.5.如图,在直角三角形ABC 中,∠ABC =90°. (1)先作∠ACB 的平分线,设它交AB 边于点O ,再以点O 为圆心OB 为半径作⊙O(尺规作图,保留作图痕迹,不写作法);(2)证明:AC 是所作⊙O 的切线;(3)若BC =3,sin A =12,求△AOC 的面积.(1)解:作图如解图所示:(2)证明:过点O 作OE ⊥AC 于点E , ∵FC 平分∠ACB ,∴OB =OE ,∴AC 是所作⊙O 的切线;(3)解:∵sin A =12,∠ABC =90°,∴∠A =30°,∴∠ACO =∠OCB =12∠ACB =30°,∵BC =3,∴AC =23,BO =BC tan 30°=3³33=1, ∴S △AOC =12AC·OE =12³23³1= 3.题型三 与三角形、四边形有关的证明与计算类型一 与三角形有关的证明与计算 1.(2017·黄冈)已知:如图,∠BAC =∠DAM ,AB =AN ,AD =AM ,求证:∠B =∠ANM.证明:∵∠BAC =∠DAM ,∠BAC =∠BAD +∠DAC ,∠DAM =∠DAC +∠NAM , ∴∠BAD =∠NAM , 在△BAD 和△NAM 中,⎩⎨⎧AB =AN ,∠BAD =∠NAM ,AD =AM ,∴△BAD ≌△NAM(SAS ),∴∠B =∠ANM. 2.(2017·孝感)如图,已知AB =CD ,AE ⊥BD ,CF ⊥BD ,垂足分别为E ,F ,BF =DE ,求证:AB ∥CD.证明:∵AE ⊥BD , CF ⊥BD ,∴∠AEB =∠CFD =90°, ∵BF =DE ,∴BF +EF =DE +EF , ∴BE =DF.在Rt △AEB 和Rt △CFD 中,⎩⎨⎧AB =CD ,BE =DF ,∴Rt △AEB ≌Rt △CFD(HL ), ∴∠B =∠D ,∴AB ∥CD. 3.(2017·连云港)如图,已知等腰三角形ABC 中,AB =AC ,点D 、E 分别在边AB 、AC 上,且AD =AE ,连接BE 、CD ,交于点F.(1)判断∠ABE 与∠ACD 的数量关系,并说明理由;(2)求证:过点A 、F 的直线垂直平分线段BC.(1)解:∠ABE =∠ACD ;理由如下:在△ABE 和△ACD 中,⎩⎨⎧AB =AC ,∠A =∠A ,AE =AD ,∴△ABE ≌△ACD(SAS ),∴∠ABE =∠ACD ; (2)证明:∵AB =AC , ∴∠ABC =∠ACB ,由(1)可知∠ABE =∠ACD , ∴∠FBC =∠FCB , ∴FB =FC , ∵AB =AC ,∴点A 、F 均在线段BC 的垂直平分线上,即直线AF 垂直平分线段BC. 4.(2017·荆门)已知:如图,在Rt △ACB 中,∠ACB =90°,点D 是AB 的中点,点E 是CD 的中点,过点C 作CF ∥AB 交AE 的延长线于点F.(1)求证:△ADE ≌△FCE ;(2)若∠DCF =120°,DE =2,求BC 的长.(1)证明:∵点E 是CD 的中点, ∴DE =CE , ∵AB ∥CF ,∴∠BAF =∠AFC , 在△ADE 与△FCE 中,⎩⎨⎧∠DAF =∠AFC ,∠AED =∠FEC ,DE =CE ,∴△ADE ≌△FCE(AAS ); (2)解:由(1)得,CD =2DE , ∵DE =2,∴CD =4.∵点D 为AB 的中点,∠ACB =90°, ∴AB =2CD =8,AD =CD =12AB.∵AB ∥CF ,∴∠BDC =180°-∠DCF =180°-120°=60°, ∴∠DAC =∠ACD =12∠BDC =12³60°=30°,∴BC =12AB =12³8=4.5.(2017·重庆A )在△ABM 中,∠ABM =45°,AM ⊥BM ,垂足为M ,点C 是BM 延长线上一点,连接AC.(1)如图①,若AB =32,BC =5,求AC 的长;(2)如图②,点D 是线段AM 上一点,MD =MC ,点E 是△ABC 外一点,EC =AC ,连接ED 并延长交BC 于点F ,且点F 是线段BC 的中点,求证:∠BDF =∠CEF.(导学号 35694241)(1)解:AC =13;(2)证明:如解图,延长EF 到点G ,使得FG =EF ,连接BG. ∵DM =MC ,∠BMD =∠AMC , BM =AM ,∴△BMD ≌△AMC(SAS ), ∴AC =BD ,又∵CE =AC ,∴BD =CE , ∵BF =FC ,∠BFG =∠CFE , FG =FE ,∴△BFG ≌△CFE(SAS ),∴BG =CE ,∠G =∠CEF ,∴BD =CE =BG ,∴∠BDG =∠G =∠CEF. 6.(2017·呼和浩特)如图,等腰三角形ABC 中,BD ,CE 分别是两腰上的中线. (1)求证:BD =CE ;(2)设BD 与CE 相交于点O ,点M ,N 分别为线段BO 和CO 的中点,当△ABC 的重心到顶点A 的距离与底边长相等时,判断四边形DEMN 的形状,无需说明理由.(1)证明:由题意得,AB =AC , ∵BD ,CE 分别是两腰上的中线, ∴AD =12AC ,AE =12AB ,∴AD =AE ,在△ABD 和△ACE 中,⎩⎨⎧AB =AC ,∠A =∠A ,AD =AE ,∴△ABD ≌△ACE(SAS ).∴BD =CE ; (2)解:四边形DEMN 是正方形,证明:略7.△ABC 的三条角平分线相交于点I ,过点I 作DI ⊥IC ,交AC 于点D. (1)如图①,求证:∠AIB =∠ADI ;(2)如图②,延长BI ,交外角∠ACE 的平分线于点F. ①判断DI 与CF 的位置关系,并说明理由; ②若∠BAC =70°,求∠F 的度数.(1)证明:∵AI 、BI 分别平分∠BAC ,∠ABC , ∴∠BAI =12∠BAC ,∠ABI =12∠ABC ,∴∠BAI +∠ABI =12(∠BAC +∠ABC)=12(180°-∠ACB)=90°-12∠ACB ,∴在△ABI 中,∠AIB =180°-(∠BAI +∠ABI)=180°-(90°-12∠ACB)=90°+12∠ACB ,∵CI 平分∠ACB ,∴∠DCI =12∠ACB ,∵DI ⊥IC ,∴∠DIC =90°,∴∠ADI =∠DIC +∠DCI =90°+12∠ACB ,∴∠AIB =∠ADI ;(2)解:①结论:DI ∥CF.理由:∵∠IDC =90°-∠DCI =90°-12∠ACB ,∵CF 平分∠ACE ,∴∠ACF =12∠ACE =12(180°-∠ACB)=90°-12∠ACB ,∴∠IDC =∠ACF ,∴DI ∥CF ;②∵∠ACE =∠ABC +∠BAC ,∴∠ACE -∠ABC =∠BAC =70°, ∵∠FCE =∠FBC +∠F , ∴∠F =∠FCE -∠FBC ,∵∠FCE =12∠ACE ,∠FBC =12∠ABC ,∴∠F =12∠ACE -12∠ABC =12(∠ACE -∠ABC)=35°.8.(8分)(2017·北京)在等腰直角△ABC 中,∠ACB =90°,P 是线段BC 上一动点(与点B 、C 不重合),连接AP ,延长BC 至点Q ,使得CQ =CP ,过点Q 作QH ⊥AP 于点H ,交AB 于点M.(1)若∠PAC =α,求∠AMQ 的大小(用含α的式子表示);(2)用等式表示线段MB 与PQ 之间的数量关系,并证明.(导学号 35694242)解:(1)∠AMQ =45°+α;理由如下:∵∠PAC =α,△ACB 是等腰直角三角形, ∴∠BAC =∠B =45°,∠PAB =45°-α, ∵QH ⊥AP , ∴∠AHM =90°, ∴∠AMQ =180°-∠AHM -∠PAB =45°+α;(2)PQ =2MB.理由如下:如解图,连接AQ ,作ME ⊥QB , ∵AC ⊥QP ,CQ =CP , ∴∠QAC =∠PAC =α, ∴∠QAM =45°+α=∠AMQ ,∴AP =AQ =QM , 在△APC 和△QME 中,⎩⎨⎧∠MQE =∠PAC ,∠ACP =∠QEM ,AP =QM ,∴△APC ≌△QME(AAS ),∴PC =ME , ∴△MEB 是等腰直角三角形,∴12PQ =22MB ,∴PQ=2MB.类型二 与四边形有关的证明与计算1.在▱ABCD 中,点E 、F 分别在AB 、CD 上,且AE =CF. (1)求证:△ADE ≌△CBF ;(2)若DF =BF ,求证:四边形DEBF 为菱形.证明:(1)∵四边形ABCD 是平行四边形, ∴AD =BC ,∠A =∠C , 在△ADE 和△CBF 中,⎩⎨⎧AD =BC ,∠A =∠C ,AE =CF ,∴△ADE ≌△CBF(SAS );(2)∵四边形ABCD 是平行四边形, ∴AB ∥CD ,AB =CD , ∵AE =CF ,∴DF =EB ,∴四边形DEBF 是平行四边形,又∵DF =FB ,∴四边形DEBF 为菱形.2.如图,四边形ABCD 中,BD 垂直平分AC ,垂足为点F ,E 为四边形ABCD 外一点,且∠ADE =∠BAD ,AE ⊥AC.(1)求证:四边形ABDE 是平行四边形;(2)如果DA 平分∠BDE ,AB =5,AD =6,求AC 的长. (导学号 35694243)(1)证明:∵AE ⊥AC ,BD 垂直平分AC , ∴AE ∥BD ,∵∠ADE =∠BAD , ∴DE ∥AB ,∴四边形ABDE 是平行四边形; (2)解:∵DA 平分∠BDE , ∴∠BAD =∠ADB , ∴AB =BD =5,设BF =x ,则52-x 2=62-(5-x)2, 解得x =75,∴AF =AB 2-BF 2=245,∴AC =2AF =485. 3.(2017·上海)已知:如图,四边形ABCD 中,AD ∥BC ,AD =CD ,E 是对角线BD 上一点,且EA =E C .(1)求证:四边形ABCD 是菱形;(2)如果BE =BC ,且∠CBE ∶∠BCE =2∶3,求证:四边形ABCD 是正方形.证明:(1)在△ADE 和△CDE 中,⎩⎨⎧AD =CD ,DE =DE ,EA =EC ,∴△ADE ≌△CDE(SSS ), ∴∠ADE =∠CDE ,∵AD ∥BC ,∴∠ADE =∠CBD , ∴∠CDE =∠CBD ,∴BC =CD , ∵AD =CD ,∴BC =AD ,∴四边形ABCD 为平行四边形,∵AD =CD ,∴四边形ABCD 是菱形; (2)∵BE =BC ,∴∠BCE =∠BEC , ∵∠CBE ∶∠BCE =2∶3, ∴∠CBE =180°³22+3+3=45°,∵四边形ABCD 是菱形,∴∠ABE =45°, ∴∠ABC =90°,∴四边形ABCD 是正方形.4.如图,在▱ABCD 中,∠BAD 的平分线交CD 于点E ,交BC 的延长线于点F ,连接BE ,∠F =45°.(1)求证:四边形ABCD 是矩形;(2)若AB =14,DE =8,求sin ∠AEB 的值.(1)证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,∴∠DAF =∠F =45°.∵AE 是∠BAD 的平分线, ∴∠EAB =∠DAE =45°, ∴∠DAB =90°,又∵四边形ABCD 是平行四边形, ∴四边形ABCD 是矩形;(2)解:如解图,过点B 作BH ⊥AE 于点H , ∵四边形ABCD 是矩形, ∴AB =CD ,AD =BC , ∠DCB =∠D =90°,∵AB =14,DE =8,∴CE =6. 在Rt △ADE 中,∠DAE =45°, ∴AD =DE =8,∴BC =8. 在Rt △BCE 中,由勾股定理得BE =BC 2+CE 2=10, 在Rt △AHB 中,∠HAB =45°, ∴BH =AB·sin 45°=72, ∵在Rt △BHE 中,∠BHE =90°, ∴sin ∠AEB =BH BE =7210.5.(2017·大庆)如图,以BC 为底边的等腰△ABC ,点D ,E ,G 分别在BC ,AB ,AC 上,且EG ∥BC ,DE ∥AC ,延长GE 至点F ,使得BE =BF.(1)求证:四边形BDEF 为平行四边形; (2)当∠C =45°,BD =2时,求D ,F 两点间的距离.(导学号 35694244) (1)证明:∵△ABC 是等腰三角形, ∴∠ABC =∠C ,∵EG ∥BC ,DE ∥AC , ∴∠AEG =∠ABC =∠C ,∴四边形CDEG 是平行四边形, ∴∠DEG =∠C , ∵BE =BF ,∴∠BFE =∠BEF =∠AEG =∠ABC , ∴∠F =∠DEG ,∴BF ∥DE , ∴四边形BDEF 为平行四边形; (2)解:∵∠C =45°,∴∠ABC =∠BFE =∠BEF =45°, ∴△BDE 、△BEF 是等腰直角三角形,∴BF =BE =22BD =2, 作FM ⊥BD 于点M ,连接DF ,如解图所示,则△BFM 是等腰直角三角形, ∴FM =BM =22BF =1, ∴DM =3,在Rt △DFM 中,由勾股定理得: DF =12+32=10,即D ,F 两点间的距离为10. 6.(2017·张家界)如图,在平行四边形ABCD 中,边AB 的垂直平分线交AD 于点E ,交CB 的延长线于点F ,连接AF ,BE.(1)求证:△AGE ≌△BGF ;(2)试判断四边形AFBE 的形状,并说明理由.(1)证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,∴∠AEG =∠BFG , ∵EF 垂直平分AB , ∴AG =BG ,在△AGE 和△BGF 中,⎩⎨⎧∠AEG =∠BFG ,∠AGE =∠BGF ,AG =BG ,∴△AGE ≌△BGF(AAS );(2)解:四边形AFBE 是菱形,理由如下: ∵△AGE ≌△BGF ,∴AE =BF ,∵AD ∥BC ,∴四边形AFBE 是平行四边形, 又∵EF ⊥AB ,∴四边形AFBE 是菱形.7.如图,四边形ABCD 中,对角线AC 、BD 相交于点O ,AO =CO ,BO =DO ,且∠ABC +∠ADC =180°.(1)求证:四边形ABCD 是矩形.(2)若∠ADF ∶∠FDC =3∶2,DF ⊥AC ,则∠BDF 的度数是多少?(1)证明:∵AO =CO ,BO =DO∴四边形ABCD 是平行四边形, ∴∠ABC =∠ADC ,∵∠ABC +∠ADC =180°, ∴∠ABC =∠ADC =90°,∴四边形ABCD 是矩形;(2)解:∵∠ADC =90°,∠ADF ∶∠FDC =3∶2, ∴∠FDC =36°,∵DF ⊥AC ,∴∠DCO =90°-36°=54°, ∵四边形ABCD 是矩形, ∴OC =OD ,∴∠ODC =54°,∴∠BDF =∠ODC -∠FDC =18°. 8.(2017·娄底)如图,在▱ABCD 中,各内角的平分线分别相交于点E ,F ,G ,H. (1)求证:△ABG ≌△CDE ;(2)猜一猜:四边形EFGH 是什么样的特殊四边形?证明你的猜想; (3)若AB =6,BC =4,∠DAB =60°,求四边形EFGH 的面积.(1)证明:∵GA 平分∠BAD ,EC 平分∠BCD , ∴∠BAG =12∠BAD ,∠DCE =12∠DCB ,∵在▱ABCD 中,∠BAD =∠DCB ,AB =CD ,∴∠BAG =∠DCE ,同理可得,∠ABG =∠CDE ,∵在△ABG 和△CDE 中,⎩⎨⎧∠BAG =∠DCE ,AB =CD ,∠ABG =∠CDE ,∴△ABG ≌△CDE(ASA ); (2)解:四边形EFGH 是矩形.证明:∵GA 平分∠BAD ,GB 平分∠ABC , ∴∠GAB =12∠BAD ,∠GBA =12∠ABC ,∵在▱ABCD 中,∠DAB +∠ABC =180°,∴∠GAB +∠GBA =12(∠DAB +∠ABC)=90°,即∠AGB =90°,同理可得,∠DEC =90°,∠AHD =90°=∠EHG , ∴四边形EFGH 是矩形;(3)解:依题意得:∠BAG =12∠BAD =30°,∵AB =6,∴BG =12AB =3,AG =33=CE ,∵BC =4,∠BCF =12∠BCD =30°,∴BF =12BC =2,CF =23,∴EF =33-23=3,GF =3-2=1, ∴S 矩形EFGH 的面积=EF·GF = 3.题型四解直角三角形的实际应用1.(2017·镇江)如图,小明在教学楼A处分别观测对面实验楼CD底部的俯角为45°,顶部的仰角为37°,已知教学楼和实验楼在同一平面上,观测点距地面的垂直高度AB为15 m,求实验楼的垂直高度即CD长.(精确到1 m,参考值:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)解:作AE⊥CD于E,如解图,∵AB=15 m,∴DE=AB=15 m,∵∠DAE=45°,∴AE=DE=15 m,在Rt△ACE中,tan∠CAE=CE AE,则CE=AE·tan37°=15³0.75≈11 m,∴CD=CE+DE=11+15=26 m.答:实验楼的垂直高度CD长为26 m.2.(2017·宜宾)如图,为了测量某条河的宽度,现在河边的一岸边任意取一点A,又在河的另一岸边取两点B、C测得∠α=30°,∠β=45°,量得BC长为100米,求河的宽度.(结果保留根号)解:过点A作AD⊥BC于点D,如解图,∵∠β=45°,∠ADC=90°,∴AD=DC,设AD=DC=x m,则tan 30°=x x +100=33, 解得x =50(3+1).答:河的宽度为50(3+1) m . 3.(2017·宿迁)如图所示,飞机在一定高度上沿水平直线飞行,先在点A 处测得正前方小岛C 的俯角为30°,面向小岛方向继续飞行10 km 到达B 处,发现小岛在其正后方,此时测得小岛的俯角为45°,如果小岛高度忽略不计,求飞机飞行的高度.(结果保留根号)(导学号 35694245)解:过点C 作CD ⊥AB 于点D ,如解图,设CD =x , ∵∠CBD =45°, ∴BD =CD =x ,在Rt △ACD 中, ∵tan ∠CAD =CDAD,∴AD =CD tan ∠CAD =x tan 30°=x33=3x ,由AD +BD =AB 可得3x +x =10,解得x =53-5.答:飞机飞行的高度为(53-5) km . 4.(2016·菏泽)南沙群岛是我国固有领土,现在我南海渔民要在南沙某海岛附近进行捕鱼作业,当渔船航行至B 处时,测得该岛位于正北方向20(1+3)海里的C 处,为了防止某国海巡警干扰,就请求我A 处的渔监船前往C 处护航,已知C 位于A 处的北偏东45°方向上,A 位于B 的北偏西30°的方向上,求A 、C 之间的距离.解:如解图,作AD ⊥BC ,垂足为D ,由题意得,∠ACD =45°, ∠ABD =30°.设CD=x,在Rt△ACD中,可得AD=x,在Rt△ABD中,可得BD=3x,又∵BC=20(1+3),CD+BD=BC,即x+3x=20(1+3),解得:x=20,∴AC=2x=202(海里).答:A、C之间的距离为20 2 海里.5.(2017·荆门)金桥学校“科技体艺节”期间,八年级数学活动小组的任务是测量学校旗杆AB的高,他们在旗杆正前方台阶上的点C处,测得旗杆顶端A的仰角为45°,朝着旗杆的方向走到台阶下的点F处,测得旗杆顶端A的仰角为60°,已知升旗台的高度BE为1米,点C距地面的高度CD为3米,台阶CF的坡角为30°,且点E、F、D在同一条直线上,求旗杆AB的高度.(计算结果精确到0.1米,参考数据:2≈1.41,3≈1.73)解:如解图,过点C作CM⊥AB于M.则四边形MEDC是矩形,∴ME=DC=3,CM=ED,在Rt△AEF中,∠AFE=60°,设EF=x,则AF=2x,AE=3x,在Rt△FCD中,CD=3,∠CFD=30°,∴DF=33,在Rt △AMC 中, ∠ACM =45°,∴∠MAC =∠ACM =45°,∴MA =MC , ∵ED =CM ,∴AM =ED ,∵AM =AE -ME ,ED =EF +DF , ∴3x -3=x +33,解得x =6+33, ∴AE =3(6+33)=63+9,∴AB =AE -BE =9+63-1≈18.4米. 答:旗杆AB 的高度约为18.4米. 6.(2016·贺州)如图,是某市一座人行天桥的示意图,天桥离地面的高BC 是10米,坡面10米处有一建筑物HQ ,为了方便使行人推车过天桥,市政府部门决定降低坡度,使新坡面DC 的倾斜角∠BDC =30°,若新坡面下D 处与建筑物之间需留下至少3米宽的人行道,问该建筑物是否需要拆除(计算最后结果保留一位小数.参考数据:2≈1.414,3≈1.732)(导学号 35694246)解:由题意得,AH =10米,BC =10米, 在Rt △ABC 中,∠CAB =45°, ∴AB =BC =10,在Rt △DBC 中,∠CDB =30°, ∴DB =BCtan ∠CDB=103,∴DH =AH -AD =AH -(DB -AB)=10-103+10=20-103≈2.7(米), ∵2.7米<3米,∴该建筑物需要拆除.7.(2017·鄂州)小明想要测量学校食堂和食堂正前方一棵树的高度,他从食堂楼底M 处出发,向前走3米到达A 处,测得树顶端E 的仰角为30°,他又继续走下台阶到达C 处,测得树的顶端E 的仰角是60°,再继续向前走到大树底D 处,测得食堂楼顶N 的仰角为45°.已知A 点离地面的高度AB =2米,∠BCA =30°,且B 、C 、D 三点在同一直线上.(1)求树DE 的高度;(2)求食堂MN 的高度. 解:(1)如解图,设DE =x ,∵AB =DF =2,∴EF =DE -DF =x -2, ∵∠EAF =30°, ∴AF =EFtan ∠EAF =x -233=3(x -2),又∵CD =DE tan ∠DCE =x 3=33x ,BC =AB tan ∠ACB =233=23,∴BD =BC +CD =23+33x , 由AF =BD 可得3(x -2)=23+33x , 解得:x =6,∴树DE 的高度为6米;(2)延长NM 交DB 延长线于点P ,如解图,则AM =BP =3, 由(1)知CD =33x =33³6=23,BC =23, ∴PD =BP +BC +CD =3+23+23=3+43,∵∠NDP =45°,且MP =AB =2, ∴NP =PD =3+43,∴NM =NP -MP =3+43-2=1+43, ∴食堂MN 的高度为1+4 3 米.题型五 与圆有关的证明与计算类型一 与切线判定有关的证明与计算1.如图,在△ABC 中,AB =AC ,以AB 为直径的⊙O 分别与BC 、AC 交于点D 、E ,过点D 作DF ⊥AC 于点F.(1)求证:DF 是⊙O 的切线;(2)若⊙O 的半径为2,BC =22,求DF 的长. (导学号 35694247)(1)证明:连接OD ,如解图,∵OB =OD ,∴∠ABC =∠ODB , ∵AB =AC ,∴∠ABC =∠ACB , ∴OD ∥AC ,∵DF ⊥AC ,∴DF ⊥OD ,∴DF 是⊙O 的切线;(2)解:连接AD ,如解图, ∵AB 是⊙O 的直径, ∴AD ⊥BC ,又∵AB =AC ,∴BD =DC =2,∴AD =AB 2-BD 2=42-(2)2=14, ∵DF ⊥AC ,∴△ADC ∽△DFC ,∴AD DF =AC DC ,∴14DF =42,∴DF =72. 2.如图,在△ABC 中,以BC 为直径的⊙O 交AC 于点D ,∠ABD =∠ACB. (1)求证:AB 是⊙O 的切线;(2)若点E 是BC 上一点,已知BE =4,tan ∠AEB =53,AB ∶BC =2∶3,求⊙O 的直径.(1)证明:∵BC 是直径, ∴∠BDC =90°,∴∠ACB +∠DBC =90°,∵∠ABD =∠ACB , ∴∠ABD +∠DBC =90°, ∴∠ABC =90°, ∴AB ⊥BC , ∴AB 是⊙O 的切线;(2)解:在Rt △AEB 中,tan ∠AEB =53,∴AB BE =53,即AB =53BE =203, 在Rt △ABC 中,AB BC =23,∴BC =32AB =10,∴⊙O 的直径为10.3.如图,AB 为⊙O 的直径,C 为⊙O 上一点,点D 是BC ︵的中点,DE ⊥AC 于点E ,DF ⊥AB 于点F.(1)求证:DE 是⊙O 的切线; (2)若OF =2,求AC 的长度.(导学号 35694248)(1)证明:如解图①,连接OD 、AD , ∵点D 是BC ︵的中点,∴BD ︵=CD ︵,∴∠DAO =∠DAC , ∵OA =OD ,∴∠DAO =∠ODA ,图①∴∠DAC =∠ODA ,∴OD ∥AE , ∵DE ⊥AE ,∴∠AED =90°, ∴∠AED =∠ODE =90°, ∴OD ⊥DE , ∴DE 是⊙O 的切线;图②(2)解:如解图②,连接BC,∵AB是⊙O的直径,∴∠ACB=90°,∵OD∥AE,∴∠DOB=∠EAB,∵∠DFO=∠ACB=90°,∴△DFO∽△BCA,∴OFAC=ODAB=12,即2AC=12,∴AC=4.4.(2017·张家界)在等腰△ABC中,AC=BC,以BC为直径的⊙O分别与AB,AC相交于点D,E,过点D作DF⊥AC,垂足为点F.(1)求证:DF是⊙O的切线;(2)分别延长CB,FD,相交于点G,∠A=60°,⊙O的半径为6,求阴影部分的面积.(1)证明:连接OD,如解图所示,∵AC=BC,OB=OD,∴∠ABC=∠A,∠ABC=∠ODB,∴∠A=∠ODB,∴OD∥AC,∵DF⊥AC,∴DF⊥OD,∵OD是⊙O的半径,∴DF是⊙O的切线;(2)解:∵AC=BC,∠A=60°,∴△ABC是等边三角形,∴∠ABC=60°,∵OD=OB,∴△OBD是等边三角形,∴∠BOD =60°,∵DF ⊥OD ,∴∠ODG =90°,∴∠G =30°, ∴DG =3OD =63,∴S 阴影部分=S △ODG -S 扇形OBD =12³6³63-60π³62360=183-6π.5.(2017·安顺)如图,AB 是⊙O 的直径,C 是⊙O 上一点,OD ⊥BC 于点D ,过点C 作⊙O 的切线,交OD 的延长线于点E ,连接BE.(1)求证:BE 与⊙O 相切;(2)设OE 交⊙O 于点F ,若DF =1,BC =23,求阴影部分的面积.(1)证明:连接OC ,如解图, ∵CE 为切线,∴OC ⊥CE , ∴∠OCE =90°,∵OD ⊥BC ,∴CD =BD , 即OD 垂中平分BC , ∴EC =EB ,在△OCE 和△OBE 中,⎩⎨⎧OC =OB ,OE =OE ,EC =EB ,∴△OCE ≌△OBE ,∴∠OBE =∠OCE =90°, ∴OB ⊥BE ,∴BE 与⊙O 相切;(2)解:设⊙O 的半径为r ,则OD =r -1, 在Rt △OBD 中,BD =CD =12BC =3,∴(r -1)2+(3)2=r 2,解得r =2, ∵tan ∠BOD =BDOD =3,∴∠BOD =60°,∴∠BOC =2∠BOD =120°, 在Rt △OBE 中,BE =3OB =23, ∴S 阴影部分=S 四边形OBEC -S 扇形BOC =2S △OBE -S 扇形BOC=2³12³2³23-120π³22360=43-43π.类型二 与切线性质有关的证明与计算 1.(2017·绵阳)如图,已知AB 是⊙O 的直径,弦CD ⊥AB ,垂足为H ,与AC 平行的⊙O 的一条切线交CD 的延长线于点M ,交AB 的延长线于点E ,切点为F ,连接AF 交CD 于点N.(1)求证:CA =CN ;(2)连接OF ,若cos ∠DFA =45,AN =210,求⊙O 的直径的长度.(1)证明:连接OF ,则∠OAF =∠OFA ,如解图①所示, ∵ME 与⊙O 相切, ∴OF ⊥ME. ∵CD ⊥AB ,∴∠M +∠FOH =180°.∵∠BOF =∠OAF +∠OFA =2∠OAF ,∠FOH +∠BOF =180°, ∴∠M =2∠OAF. ∵ME ∥AC ,∴∠M =∠C =2∠OAF.∵CD ⊥AB ,∴∠ANC +∠OAF =∠BAC +∠C =90°, ∴∠ANC =90°-∠OAF ,∠BAC =90°-∠C =90°-2∠OAF , ∴∠CAN =∠OAF +∠BAC =90°-∠OAF =∠ANC , ∴CA =CN ;(2)解:连接OC ,如解图②所示. ∵cos ∠DFA =45,∠DFA =∠ACH , ∴CH AC =45. 设CH =4a ,则AC =5a ,AH =3a , ∵CA =CN ,∴NH =a ,∴AN =AH 2+NH 2=(3a )2+a 2=10a =210, ∴a =2,AH =3a =6,CH =4a =8. 设⊙O 的半径为r ,则OH =r -6,在Rt △OCH 中,OC =r ,CH =8,OH =r -6, ∴OC 2=CH 2+OH 2,r 2=82+(r -6)2, 解得:r =253,∴⊙O 的直径的长度为2r =503.2.(2017·大连)如图,AB 是⊙O 直径,点C 在⊙O 上,AD 平分∠CAB ,BD 是⊙O 的切线,AD 与BC 相交于点E.(1)求证:BD =BE ;(2)若DE =2,BD =5,求CE 的长. (导学号 35694249)(1)证明:设∠BAD =α,∵AD 平分∠BAC ,∴∠CAD =∠BAD =α,∵AB 是⊙O 的直径,点C 在⊙O 上,∴∠ACB =90°, ∴∠ABC =90°-2α,∵BD 是⊙O 的切线,∴BD ⊥AB ,∴∠DBE =2α,∠BED =∠BAD +∠ABC =90°-α, ∴∠D =180°-∠DBE -∠BED =90°-α, ∴∠D =∠BED ,∴BD =BE ;(2)解:设AD 交⊙O 于点F ,CE =x ,则AC =2x ,连接BF ,如解图, ∵AB 是⊙O 的直径, ∴∠AFB =90°,∵BD =BE ,DE =2,∴FE =FD =1,∵BD =5,∴BF =2, ∵∠BAD +∠D =90°,∠D +∠FBD =90°, ∴∠FBD =∠BAD =α,∴tan α=FD BF =12,∴AB =BF sin α=255=25,在Rt △ABC 中,由勾股定理可知(2x)2+(x +5)2=(25)2, 解得x =-5(舍去)或x =355,∴CE =355.3.(2017·南京)如图,PA ,PB 是⊙O 的切线,A ,B 为切点,连接AO 并延长,交PB 的延长线于点C ,连接PO ,交⊙O 于点D.(1)求证:PO 平分∠APC ; (2)连接DB ,若∠C =30°,求证:DB ∥AC.证明:(1)如解图,连接OB , ∵PA ,PB 是⊙O 的切线, ∴OA ⊥AP ,OB ⊥BP , 又OA =OB ,∴PO 平分∠APC ;(2)∵OA ⊥AP ,OB ⊥BP , ∴∠CAP =∠OBP =90°,∵∠C =30°, ∴∠APC =90°-30°=60°, ∵PO 平分∠APC ,∴∠OPC =12∠APC =12³60°=30°,∴∠POB =90°-∠OPC =90°-30°=60°,又∵OD =OB ,∴△ODB 是等边三角形, ∴∠OBD =60°,∴∠DBP =∠OBP -∠OBD =90°-60°=30°, ∴∠DBP =∠C ,∴DB ∥AC.4.如图,直线l 经过点A(4,0),B(0,3).(1)求直线l 的函数表达式;(2)若圆M 的半径为2,圆心M 在y 轴上,当圆M 与直线l 相切时,求点M 的坐标.(1)∵A(4,0),B(0,3),∴直线l 的解析式为:y =-34x +3;(2)作MH ⊥AB ,垂足为H ,如解图所示, ∵M 在y 轴上,∴设M(0,t),2S △ABM =BM·AO =AB·MH , ∴|3-t|³4=5³2, 解得t 1=12,t 2=112,∴M 1(0,12),M 2(0,112).题型六 二次函数与几何图形综合题类型一 探究特殊三角形的存在性问题 1.(2017·乌鲁木齐)如图,抛物线y =ax 2+bx +c(a ≠0)与直线y =x +1相交于A(-1,0),B(4,m)两点,且抛物线经过点C(5,0).(1)求抛物线的解析式;(2)点P 是抛物线上的一个动点(不与点A 、点B 重合),过点P 作直线PD ⊥x 轴于点D ,交直线AB 于点E.①当PE =2ED 时,求P 点坐标;②是否存在点P ,使△BEC 为等腰三角形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.(导学号 35694250)解:(1)∵点B(4,m)在直线y =x +1上, ∴m =4+1=5,∴B(4,5),把A 、B 、C 三点坐标代入抛物线解析式可得 ⎩⎨⎧a -b +c =0,16a +4b +c =5,25a +5b +c =0, 解得⎩⎨⎧a =-1,b =4,c =5,∴抛物线的解析式为y =-x 2+4x +5;(2)①设P(x ,-x 2+4x +5),则E(x ,x +1),D(x ,0),则PE =|-x 2+4x +5-(x +1)|=|-x 2+3x +4|,DE =|x +1|, ∵PE =2ED ,∴|-x 2+3x +4|=2|x +1|,当-x 2+3x +4=2(x +1)时,解得x =-1或x =2,但当x =-1时,P 与A 重合不合题意,舍去,∴P(2,9);当-x 2+3x +4=-2(x +1)时,解得x =-1或x =6,但当x =-1时,P 与A 重合,不合题意,舍去,∴P(6,-7);综上可知,P 点坐标为(2,9)或(6,-7);②点P 的坐标为(34,11916)或(4+13,-413-8)或(4-13,413-8)或(0,5)时,△BEC 为等腰三角形.2.(2017·阜新)如图,抛物线y =-x 2+bx +c 的图象与x 轴交于A(-5,0),B(1,0)两点,与y 轴交于点C ,抛物线的对称轴与x 轴交于点D.(1)求抛物线的函数表达式;(2)如图①,点E(x ,y)为抛物线上一点,且-5<x<-2,过点E 作EF ∥x 轴,交抛物线的对称轴于点F ,作EH ⊥x 轴于点H ,得到矩形EHDF ,求矩形EHDF 周长的最大值;(3)如图②,点P 为抛物线对称轴上一点,是否存在点P ,使以点P ,A ,C 为顶点的三角形是直角三角形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.解:(1)把A(-5,0),B(1,0)代入y =-x 2+bx +c ,得到⎩⎨⎧-25-5b +c =0,-1+b +c =0,解得⎩⎪⎨⎪⎧b =-4,c =5.∴抛物线的函数表达式为y =-x 2-4x +5;(2)如解图①,∵抛物线的对称轴为直线x =-2,E(x ,-x 2-4x +5), ∴EH =-x 2-4x +5, EF =-2-x ,∴矩形EFDH 的周长=2(EH +EF)=2(-x 2-5x +3)=-2(x +52)2+372,∵-2<0,∴x =-52时,矩形EHDF 的周长最大,最大值为372;(3) 如解图②,设P(-2,m),①当∠ACP =90°时, AC 2+PC 2=PA 2,∴(52)2+22+(m -5)2=32+m 2, 解得m =7, ∴P 1(-2,7).②当∠CAP =90°时, AC 2+PA 2=PC 2,∴(52)2+32+m 2=22+(m -5)2, 解得m =-3,∴P 2(-2,-3).③当∠APC =90°时,PA 2+PC 2=AC 2,∴32+m 2+22+(m -5)2=(52)2, 解得m =6或m =-1,∴P 3(-2,6),P 4(-2,-1),综上所述,满足条件的点P 坐标为(-2,7)或(-2,-3)或(-2,6)或(-2,-1). 3.(2017·重庆A )如图,在平面直角坐标系中,抛物线y =33x 2-233x -3与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,对称轴与x 轴交于点D ,点E(4,n)在抛物线上.(1)求直线AE 的解析式;(2)点P 为直线CE 下方抛物线上的一点,连接PC ,PE.当△PCE 的面积最大时,连接CD ,CB ,点K 是线段CB 的中点,点M 是CP 上的一点,点N 是CD 上的一点,求KM +MN +NK 的最小值;(3)点G 是线段CE 的中点,将抛物线y =33x 2-233x -3沿x 轴正方向平移得到抛物线y′,y ′经过点D ,y ′的顶点为点F.在新抛物线y′的对称轴上,是否存在点Q ,使得△FGQ为等腰三角形?若存在,直接写出点Q 的坐标;若不存在,请说明理由.解:(1)直线AE 的解析式为y =33x +33.(2)设直线CE 的解析式为y =mx -3, ∴直线CE 的解析式为y =233x - 3. 过点P 作PF ∥y 轴,交CE 于点F.如解图①, 设点P 的坐标为(x ,33x 2-233x -3), 则点F(x ,233x -3),则FP =-33x 2+433x.∴△EPC 的面积=-233x 2+833x.∴当x =2时,△EPC 的面积最大.∴P(2,-3).如解图②,作点K 关于CD 和CP 的对称点G 、H ,连接G 、H 交CD 和CP 于N 、M.∵K 是CB 的中点,∴K(32,32).∴tan ∠KCP =33.∵OD =1,OC =3, ∴tan ∠OCD =33. ∴∠OCD =∠KCP =30°. ∴∠KCD =30°.∵K 是BC 的中点,∠OCB =60°, ∴OC =CK.∴点O 与点K 关于CD 对称. ∴点G 与点O 重合. ∴点G(0,0).∵点H 与点K 关于CP 对称,∴点H 的坐标为(32,-332).∴KM +MN +NK =MH +MN +GN.当点G 、N 、M 、H 在一条直线上时,KM +MN +NK 有最小值,最小值=GH. ∴GH =(32)2+(332)2=3. ∴KM +MN +NK 的最小值为3.(3)点Q 的坐标为(3,-43+2213)或(3,-43-2213)或(3,23)或(3,-235).类型二 探究特殊四边形的存在性问题1.(2017·宜宾)如图,抛物线y =-x 2+bx +c 与x 轴分别交于A(-1,0),B(5,0)两点. (1)求抛物线的解析式;(2)在第二象限内取一点C ,作CD 垂直x 轴于点D ,连接AC ,且AD =5,CD =8,将Rt △ACD 沿x 轴向右平移m 个单位,当点C 落在抛物线上时,求m 的值;(3)在(2)的条件下,当点C 第一次落在抛物线上记为点E ,点P 是抛物线对称轴上一点.试探究:在抛物线上是否存在点Q ,使以点B 、E 、P 、Q 为顶点的四边形是平行四边形?若存在,请求出点Q 的坐标;若不存在,请说明理由.(导学号 35694251)解:(1)抛物线的解析式为y =-x 2+4x +5; (2)∵AD =5,且OA =1,∴OD =6, 又∵CD =8,∴C(-6,8),设平移后的点C 的对应点为C′,则C′点的纵坐标为8,代入抛物线解析式可得8=-x 2+4x +5,解得x =1或x =3,∴C ′点的坐标为(1,8)或(3,8), ∵C(-6,8),∴当点C 落在抛物线上时,向右平移了7或9个单位,∴m 的值为7或9;(3)Q 点的坐标为(-2,-7)或(6,-7)或(4,5)时,以点B 、E 、P 、Q 四点为顶点的四边形为平行四边形.。
专题27 实践操作问题-决胜2018中考数学压轴题全揭秘精品(解析版)

一、选择题1.(2017江苏省南通市,第9题,3分)已知∠AOB,作图.步骤1:在OB上任取一点M,以点M为圆心,MO长为半径画半圆,分别交OA、OB于点P、Q;步骤2:过点M作PQ的垂线交PQ于点C;步骤3:画射线OC.则下列判断:①PC CQ=;②MC∥OA;③OP=PQ;④OC平分∠AOB,其中正确的个数为()A.1B.2C.3D.4【答案】C.【分析】由OQ为直径可得出OA⊥PQ,结合MC⊥PQ可得出OA∥MC,结论②正确;根据平行线的性质可得出∠P AO=∠CMQ,结合圆周角定理可得出∠COQ=12∠POQ=∠BOQ,进而可得出PC CQ=,OC平分∠AOB,结论①④正确;由∠AOB的度数未知,不能得出OP=PQ,即结论③错误.综上即可得出结论.点睛:本题考查了作图中的复杂作图、角平分线的定义、圆周角定理以及平行线的判定及性质,根据作图的过程逐一分析四条结论的正误是解题的关键.考点:作图—复杂作图;圆周角定理.2.(2017河北,第16题,2分)已知正方形MNOK和正六边形ABCDEF边长均为1,把正方形放在正六边形中,使OK边与AB边重合,如图所示,按下列步骤操作:将正方形在正六边形中绕点B顺时针旋转,使KM边与BC边重合,完成第一次旋转;再绕点C顺时针旋转,使MN边与CD边重合,完成第二次旋转;…在这样连续6次旋转的过程中,点B,M间的距离可能是()A.1.4B.1.1C.0.8D.0.5点睛:本题考查正六边形、正方形的性质等知识,解题的关键作出点M的运动轨迹,利用图象解决问题,题目有一定的难度.考点:正多边形和圆;旋转的性质;操作型;综合题.3.(2017湖北省武汉市,第10题,3分)如图,在Rt△ABC中,∠C=90°,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的不同的等腰三角形的个数最多为()A.4B.5C.6D.7【答案】D.【分析】①以B为圆心,BC长为半径画弧,交AB于点D,△BCD就是等腰三角形;②以A为圆心,AC长为半径画弧,交AB于点E,△ACE就是等腰三角形;③以C为圆心,BC长为半径画弧,交AC于点F,△BCF就是等腰三角形;④作AC的垂直平分线交AB于点H,△ACH就是等腰三角形;⑤作AB的垂直平分线交AC于G,则△AGB是等腰三角形;⑥作BC的垂直平分线交AB于I,则△BCI是等腰三角形.⑦以C为圆心,BC长为半径画弧,交AB于点K,△BCK就是等腰三角形;【解析】如图:故选D.点睛:本题考查了等腰三角形的判定的应用,主要考查学生的理解能力和动手操作能力.考点:等腰三角形的判定与性质;分类讨论;综合题;操作型.学科.网4.(2016四川省达州市)如图,将一张等边三角形纸片沿中位线剪成4个小三角形,称为第一次操作;然后,将其中的一个三角形按同样方式再剪成4个小三角形,共得到7个小三角形,称为第二次操作;再将其中一个三角形按同样方式再剪成4个小三角形,共得到10个小三角形,称为第三次操作;…根据以上操作,若要得到100个小三角形,则需要操作的次数是()A.25B.33C.34D.50【答案】B.【分析】由第一次操作后三角形共有4个、第二次操作后三角形共有(4+3)个、第三次操作后三角形共有(4+3+3)个,可得第n次操作后三角形共有4+3(n﹣1)=3n+1个,根据题意得3n+1=100,求得n的值即可.【解析】∵第一次操作后,三角形共有4个;第二次操作后,三角形共有4+3=7个;第三次操作后,三角形共有4+3+3=10个;…∴第n次操作后,三角形共有4+3(n﹣1)=3n+1个;当3n+1=100时,解得:n=33,故选B.考点:规律型:图形的变化类;操作型.5.(2016山东省淄博市)小明用计算器计算(a+b)c的值,其按键顺序和计算器显示结果如表:这时他才明白计算器是先做乘法再做加法的,于是他依次按键:从而得到了正确结果,已知a是b的3倍,则正确的结果是()A.24B.39C.48D.96【答案】C.【分析】根据题意得出关于a,b,c的方程组,进而解出a,b,c的值,进而得出答案.【解析】由题意可得:21393a bcb aca b+=⎧⎪+=⎨⎪=⎩,则:321339b bcb bc+=⎧⎨+=⎩,解得:934abc=⎧⎪=⎨⎪=⎩,故(9+3)×4=48.故选C.考点:计算器—基础知识;操作型.6.(2016江苏省扬州市)如图,矩形纸片ABCD中,AB=4,BC=6.将该矩形纸片剪去3个等腰直角三角形,所有剪法中剩余部分面积的最小值是()A.6B.3C.2.5D.2【答案】C.【分析】以BC为边作等腰直角三角形△EBC,延长BE交AD于F,得△ABF是等腰直角三角形,作EG⊥CD 于G,得△EGC是等腰直角三角形,在矩形ABCD中剪去△ABF,△BCE,△ECG得到四边形EFDG,此时剩余部分面积的最小【解析】如图以BC为边作等腰直角三角形△EBC,延长BE交AD于F,得△ABF是等腰直角三角形,作EG⊥CD于G,得△EGC是等腰直角三角形,在矩形ABCD中剪去△ABF,△BCE,△ECG得到四边形EFDG,此时剩余部分面积的最小=4×6﹣12×4×4﹣12×3×6﹣12×3×3=2.5.故选C.考点:矩形的性质;等腰直角三角形;操作型;最值问题;几何问题的最值.7.(2016福建省莆田市)如图,在平面直角坐标系中,点A(0,2),在x轴上任取一点M,完成以下作图步骤:①连接AM.作线段AM的垂直平分线l1,过点M作x轴的垂线l2,记l1,l2的交点为P;②在x轴上多次改变点M的位置,用①的方法得到相应的点P,把这些点用平滑的曲线顺次连接起来,得到的曲线是()A.直线B.抛物线C.双曲线D.双曲线的一支【答案】B.【分析】按照给定的作图步骤作图,根据图形中曲线的特征即可得出该曲线为抛物线.【解析】根据作图步骤作图,如图所示.由此即可得出该曲线为抛物线.故选B.考点:二次函数图象上点的坐标特征;线段垂直平分线的性质;作图—基本作图.8.(2016黑龙江省绥化市)把一张正方形纸片如图①、图②对折两次后,再按如图③挖去一个三角形小孔,则展开后图形是()A.B.C.D.【答案】C.【分析】结合空间思维,分析折叠的过程及剪三角形的位置,注意图形的对称性,易知展开的形状.【解析】当正方形纸片两次沿对角线对折成为一直角三角形时,在直角三角形中间的位置上剪三角形,则直角顶点处完好,即原正方形中间无损,且三角形关于对角线对称,三角形的AB边平行于正方形的边.再结合C点位置可得答案为C.故选C.考点:剪纸问题;操作型.9.(2016黑龙江省龙东地区)为了丰富学生课外小组活动,培养学生动手操作能力,王老师让学生把5m 长的彩绳截成2m或1m的彩绳,用来做手工编织,在不造成浪费的前提下,你有几种不同的截法()A.1B.2C.3D.4【答案】C.【分析】截下来的符合条件的彩绳长度之和刚好等于总长9米时,不造成浪费,设截成2米长的彩绳x根,1米长的y根,由题意得到关于x与y的方程,求出方程的正整数解即可得到结果.【解析】截下来的符合条件的彩绳长度之和刚好等于总长5米时,不造成浪费,设截成2米长的彩绳x根,1米长的y根,由题意得,2x+y=5,因为x,y都是正整数,所以符合条件的解为:5 xy=⎧⎨=⎩,13xy=⎧⎨=⎩,21xy=⎧⎨=⎩,则共有3种不同截法,故选C.考点:二元一次方程的应用;方案型;操作型.10.(2015荆州)如图所示,将正方形纸片三次对折后,沿图中AB线剪掉一个等腰直角三角形,展开铺平得到的图形是()A.B.C.D.【答案】A.【解析】试题分析:找一张正方形的纸片,按上述顺序折叠、裁剪,然后展开后得到的图形如图所示:故选A.考点:剪纸问题.11.(2015深圳)如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得P A+PC=BC,则下列选项正确的是()A.B.C.D.【答案】D.考点:作图—复杂作图.12.(2015三明)如图,在△ABC中,∠ACB=90°,分别以点A和B为圆心,以相同的长(大于12AB)为半径作弧,两弧相交于点M和N,作直线MN交AB于点D,交BC于点E,连接CD,下列结论错误的是()A.AD=BD B.BD=CD C.∠A=∠BED D.∠ECD=∠EDC【答案】D.【解析】试题分析:∵MN为AB的垂直平分线,∴AD=BD,∠BDE=90°;∵∠ACB=90°,∴CD=BD;∵∠A+∠B=∠B+∠BED=90°,∴∠A=∠BED;∵∠A≠60°,AC≠AD,∴EC≠ED,∴∠ECD≠∠EDC.故选D.考点:1.作图—基本作图;2.线段垂直平分线的性质;3.直角三角形斜边上的中线.13.(2015潍坊)如图,在△ABC中,AD平分∠BAC,按如下步骤作图:第一步,分别以点A、D为圆心,以大于12AD的长为半径在AD两侧作弧,交于两点M、N;第二步,连接MN分别交AB、AC于点E、F;第三步,连接DE、DF.若BD=6,AF=4,CD=3,则BE的长是()A.2B.4C.6D.8【答案】D.考点:1.平行线分线段成比例;2.菱形的判定与性质;3.作图—基本作图.学科.网14.(2015嘉兴)数学活动课上,四位同学围绕作图问题:“如图,已知直线l和l外一点P,用直尺和圆规作直线PQ,使PQ⊥l于点Q.”分别作出了下列四个图形.其中作法错误的是()A.B.C.D.【答案】A.【解析】试题分析:A.根据作法无法判定PQ⊥l;B.以P为圆心大于P到直线l的距离为半径画弧,交直线l,于两点,再以两点为圆心,大于它们的长为半径画弧,得出其交点,进而作出判断;C.根据直径所对的圆周角等于90°作出判断;D.根据全等三角形的判定和性质即可作出判断.从以上分析可知,选项B、C、D都能够得到PQ⊥l于点Q;选项A不能够得到PQ⊥l于点Q.故选A.考点:作图—基本作图.二、填空题15.(2017北京市,第16题,3分)图1是“作已知直角三角形的外接圆”的尺规作图过程已知:Rt△ABC,∠C=90°,求作Rt△ABC的外接圆.作法:如图2.(1)分别以点A和点B为圆心,大于12的长为半径作弧,两弧相交于P,Q两点;(2)作直线PQ,交AB于点O;(3)以O为圆心,OA为半径作⊙O.⊙O即为所求作的圆.请回答:该尺规作图的依据是.【答案】到线段两端点的距离相等的点在这条线段的垂直平分线上;90°的圆周角所的弦是直径.点睛:本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.考点:作图—复杂作图;三角形的外接圆与外心;作图题.16.(2017天津,第18题,3分)如图,在每个小正方形的边长为1的网格中,点A ,B ,C 均在格点上.(1)AB 的长等于 ;(2)在△ABC 的内部有一点P ,满足S △P S △P S △PCA =1:2:3,请在如图所示的网格中,用无刻度...的直尺,画出点P ,并简要说明点P 的位置是如何找到的(不要求证明)【答案】(117;(2)答案见解析.【分析】(1)利用勾股定理即可解决问题;(2)如图AC 与网格相交,得到点D 、E ,取格点F ,连接FB 并且延长,与网格相交,得到M ,N ,G .连接DN ,EM ,DG ,DN 与EM 相交于点P ,点P 即为所求.【解析】(1)AB 2214 1717.(2)如图AC 与网格相交,得到点D 、E ,取格点F ,连接FB 并且延长,与网格相交,得到M ,N ,G .连接DN ,EM ,DG ,DN 与EM 相交于点P ,点P 即为所求.理由:平行四边形ABME的面积:平行四边形CDNB的面积:平行四边形DEMG的面积=1:2:3,△P AB的面积=12平行四边形ABME的面积,△PBC的面积=12平行四边形CDNB的面积,△P AC的面积=△PNG的面积=12△DGN的面积=12平行四边形DEMG的面积,∴S△P S△P S△PCA=1:2:3.点睛:本题考查作图﹣应用与设计、勾股定理、三角形的面积等知识,解题的关键是利用数形结合的思想解决问题,求出△P AB,△PBC,△P AC的面积,属于中考常考题型.考点:作图—应用与设计作图;勾股定理;综合题.17.(2017安徽省,第14题,5分)在三角形纸片ABC中,∠A=90°,∠C=30°,AC=30cm,将该纸片沿过点B的直线折叠,使点A落在斜边BC上的一点E处,折痕记为BD(如图1),减去△CDE后得到双层△BDE(如图2),再沿着过△BDE某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为cm.【答案】40或33.【分析】解直角三角形得到AB=3∠ABC=60°,根据折叠的性质得到∠ABD=∠EBD=12∠ABC=30°,BE=AB=3求得DE=10,BD=20,如图1,平行四边形的边是DF,BF,如图2,平行四边形的边是DE,EG,于是得到结论.【解析】∵∠A=90°,∠C=30°,AC=30cm,∴AB=103ABC=60°,∵△ADB≌△EDB,∴∠ABD=∠EBD=12∠ABC=30°,BE=AB=103,∴DE=10,BD=20,如图1,平行四边形的边是DF,BF,且DF=BF=2033,∴平行四边形的周长=8033;如图2,平行四边形的边是DE,EG,且DF=BF=10,∴平行四边形的周长=40.综上所述:平行四边形的周长为40或8033,故答案为:40或8033.点睛:本题考查了剪纸问题,平行四边形的性质,解直角三角形,正确的理解题意是解题的关键.考点:剪纸问题;操作型;分类讨论;综合题.18.(2017山东省烟台市,第18题,3分)如图1,将一圆形纸片向右、向上两次对折后得到如图2所示的扇形AOB.已知OA=6,取OA的中点C,过点C作CD⊥OA交AB于点D,点F是AB上一点.若将扇形BOD沿OD翻折,点B恰好与点F重合,用剪刀沿着线段BD,DF,F A依次剪下,则剪下的纸片(形状同阴影图形)面积之和为.【答案】36π﹣108.【分析】先求出∠ODC=∠BOD=30°,作DE⊥OB可得DE=12OD=3,先根据S弓形BD=S扇形BOD﹣S△BOD求得弓形的面积,再利用折叠的性质求得所有阴影部分面积.【解析】如图,∵CD⊥OA,∴∠DCO=∠AOB=90°,∵OA=OD=OB=6,OC=12OA=12OD,∴∠ODC=∠BOD=30°,作DE⊥OB于点E,则DE=12OD=3,∴S弓形BD=S扇形BOD﹣S△BOD=2306360π⨯﹣12×6×3=3π﹣9,则剪下的纸片面积之和为12×(3π﹣9)=36π﹣108,故答案为:36π﹣108.点睛:本题主要考查扇形面积的计算,熟练掌握扇形的面积计算公式及折叠的性质是解题的关键. 考点:扇形面积的计算;剪纸问题;操作型.19.(2017黑龙江省绥化市,第21题,3分)如图,顺次连接腰长为2的等腰直角三角形各边中点得到第1个小三角形,再顺次连接所得的小三角形各边中点得到第2个小三角形,如此操作下去,则第n 个小三角形的面积为 .【答案】2112n -.【分析】记原来三角形的面积为s ,第一个小三角形的面积为s 1,第二个小三角形的面积为s 2,…,求出s 1,s 2,s 3,探究规律后即可解决问题.【解析】记原来三角形的面积为s ,第一个小三角形的面积为s 1,第二个小三角形的面积为s 2,…,∵ s 1=14•s =212•s ,s 2=14•14s =412 •s ,s 3=612•s ,∴s n =212n •s =2211222n ⋅⋅=2112n -,故答案为:2112n -. 点睛:本题考查三角形的中位线定理,三角形的面积等知识,解题的关键是循环从特殊到一般的探究方法,寻找规律,利用规律即可解决问题.考点:三角形中位线定理;等腰直角三角形;综合题;规律型;操作型.20.(2017黑龙江省齐齐哈尔市,第16题,3分)如图,在等腰三角形纸片ABC 中,AB =AC =10,BC =12,沿底边BC 上的高AD 剪成两个三角形,用这两个三角形拼成平行四边形,则这个平行四边形较长的对角线的长是 .【答案】10cm ,73,13.【分析】利用等腰三角形的性质,进而重新组合得出平行四边形,进而利用勾股定理求出对角线的长.【解析】如图:,过点A 作AD ⊥BC 于点D ,∵△ABC 边AB =AC =10cm ,BC =12cm ,∴BD =DC =6cm ,∴AD =8cm ,如图①所示:可得四边形ACBD 是矩形,则其对角线长为:10cm ,如图②所示:AD =8cm ,连接BC ,过点C 作CE ⊥BD 于点E ,则EC =8cm ,BE =2BD =12cm ,则BC =413cm ,如图③所示:BD =6cm ,由题意可得:AE =6cm ,EC =2BE =16cm ,故AC =22616 =273cm ,故答案为:10cm ,273cm ,413cm .点睛:此题主要考查了图形的剪拼以及勾股定理和等腰三角形的性质等知识,利用分类讨论得出是解题关键.考点:图形的剪拼;分类讨论;操作型.学科.网21.(2016北京市)下面是“经过已知直线外一点作这条直线的垂线”的尺规作图过程:已知:直线l 和l 外一点P .(如图1)求作:直线l 的垂线,使它经过点P .作法:如图2(1)在直线l 上任取两点A ,B ;(2)分别以点A ,B 为圆心,AP ,BP 长为半径作弧,两弧相交于点Q ;(3)作直线PQ .所以直线PQ 就是所求的垂线.请回答:该作图的依据是 .【答案】到线段两个端点的距离相等的点在线段的垂直平分线上(A、B都在线段PQ的垂直平分线上).【分析】只要证明直线AB是线段PQ的垂直平分线即可.【解析】到线段两个端点的距离相等的点在线段的垂直平分线上(A、B都在线段PQ的垂直平分线上),理由:如图,∵P A=PQ,PB=PB,∴点A、点B在线段PQ的垂直平分线上,∴直线AB垂直平分线段PQ,∴PQ⊥AB.考点:作图—基本作图.22.(2016天津市)如图,在每个小正方形的边长为1的网格中,A,E为格点,B,F为小正方形边的中点,C为AE,BF的延长线的交点.(1)AE的长等于________;(2)若点P在线段AC上,点Q在线段BC上,且满足AP = PQ = QB,请在如图所示的网格中,用无刻度的直尺,画出线段PQ,并简要说明点P,Q的位置是如何找到的(不要求证明)________.【答案】(1)5;(2)答案见解析. 【分析】(1)利用格点,根据勾股定理求出AB 的长;(2)如图,AC 与网格线相交,得点P ;取个点M ,连接AM 并延长与BC 相交,得点Q ,连接PQ 即可.【解析】(1)AE =2212+=5;(2)如图,AC 与网格线相交,得点P ;取个点M ,连接AM 并延长与BC 相交,得点Q ,连接PQ .线段PQ 即为所求.证明如下:以A 为坐标原点建立直角坐标系,使点B 、C 都在第一象限.则A (0,0),P (1.5,3),M (3,3),B (6,1.5),F (5,3.5).可求出直线AM 的解析式为:y =x ,直线BF 的解析式为:y =-2x +13.5,则由213.5y x y x =⎧⎨=-+⎩,得:x =y =4.5,∴Q (4.5,4.5),则AP =221.53+=352, PQ =22(4.5 1.5)(4.53)-+-=352,QB =22(6 4.5)(1.5 4.5)-+-=352,∴AP = PQ = QB .考点:勾股定理;作图题.23.(2016山东省青岛市)如图,以边长为20cm 的正三角形纸板的各顶点为端点,在各边上分别截取4cm 长的六条线段,过截得的六个端点作所在边的垂线,形成三个有两个直角的四边形.把它们沿图中 虛线剪掉,用剩下的纸板折成一个底为正三角形的无盖柱形盒子,则它的容积为 cm 3.【答案】1443.【分析】由题意得出△ABC为等边三角形,△OPQ为等边三角形,得出∠A=∠B=∠C=60°,AB=BC=AC.∠POQ=60°,连结AO,作QM⊥OP于M,在Rt△AOD中,∠OAD=∠OAK=30°,得出OD 的长,求出OP,无盖柱形盒子的容积=底面积×高,即可得出结果.【解析】如图由题意得:△ABC为等边三角形,△OPQ为等边三角形,AD=AK=BE=BF=CG=CH=4CM,∴∠A=∠B=∠C=60°,AB=BC=AC,∠POQ=60°,∴∠ADO=∠AKO=90°.连结AO,作QM⊥OP于M,在Rt△AOD中,∠OAD=∠OAK=30°,∴OD=33AD=433cm,∵PQ=OP=DE=20﹣2×4=12(cm),∴QM=OP•sin60°=12×32=63(cm),∴无盖柱形盒子的容积=1126342⨯⨯⨯=1443(cm3);故答案为:1443.考点:剪纸问题.24.(2016广东省深圳市)如图,在▱ABCD中,AB=3,BC=5,以点B的圆心,以任意长为半径作弧,分别交BA、BC于点P、Q,再分别以P、Q为圆心,以大于12PQ的长为半径作弧,两弧在∠ABC内交于点M,连接BM并延长交AD于点E,则DE的长为.【答案】2.【分析】根据作图过程可得得AE平分∠ABC;再根据角平分线的性质和平行四边形的性质可证明∠AEB=∠CBE,证出AE=AB=3,即可得出DE的长.【解析】根据作图的方法得:A E平分∠ABC,∴∠ABE=∠CBE∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=5,∴∠AEB=∠CBE,∴∠ABE=∠AEB,∴AE=AB=3,∴DE=AD﹣AE=5﹣3=2;故答案为:2.考点:平行四边形的性质;等腰三角形的判定;作图—复杂作图;操作型.25.(2016浙江省湖州市)如图,在Rt △ABC 中,∠ACB =90°,BC =6,AC =8,分别以点A ,B 为圆心,大于线段AB 长度一半的长为半径作弧,相交于点E ,F ,过点E ,F 作直线EF ,交AB 于点D ,连结CD ,则CD 的长是 .【答案】5.【分析】首先说明AD =DB ,利用直角三角形斜边中线等于斜边一半,即可解决问题.【解析】由题意EF 是线段AB 的垂直平分线,∴AD =DB ,Rt △ABC 中,∵∠ACB =90°,BC =6,AC =8,∴AB =22AC BC +=2268+=10,∵AD =DB ,∠ACB =90°,∴CD =12AB =5.故答案为:5.考点:作图—基本作图;直角三角形斜边上的中线;勾股定理.学科.网26.(2016山东省淄博市)由一些相同的小正方体搭成的几何体的左视图和俯视图如图所示,请在网格中涂出一种该几何体的主视图,且使该主视图是轴对称图形.【答案】答案见解析.【分析】根据俯视图和左视图可知,该几何体共两层,底层有9个正方体,上层中间一行有正方体,若使主视图为轴对称图形可使中间一行、中间一列有一个小正方体即可.【解析】如图所示:考点:作图-三视图;轴对称图形;由三视图判断几何体.27.(2016四川省眉山市)已知:如图△ABC三个顶点的坐标分别为A(0,﹣3)、B(3,﹣2)、C(2,﹣4),正方形网格中,每个小正方形的边长是1个单位长度.(1)画出△ABC向上平移6个单位得到的△A1B1C1;(2)以点C为位似中心,在网格中画出△A2B2C2,使△A2B2C2与△ABC位似,且△A2B2C2与△ABC的位似比为2:1,并直接写出点A2的坐标.【答案】(1)作图见解析;(2)作图见解析,A2坐标(﹣2,﹣2).【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)利用位似图形的性质得出对应点位置进而得出.【解析】(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求,A2坐标(﹣2,﹣2).考点:作图-平移变换;作图-位似变换.28.(2016四川省达州市)如图,在▱ABCD中,已知AD>AB.(1)实践与操作:作∠BAD的平分线交BC于点E,在AD上截取AF=AB,连接EF;(要求:尺规作图,保留作图痕迹,不写作法)(2)猜想并证明:猜想四边形ABEF的形状,并给予证明.【答案】(1)作图见解析;(2)四边形ABEF是菱形.【分析】(1)由角平分线的作法容易得出结果,在AD上截取AF=AB,连接EF;画出图形即可;(2)由平行四边形的性质和角平分线得出∠BAE=∠AEB,证出BE=AB,由(1)得:A F=AB,得出BE=AF,即可得出结论.考点:平行四边形的性质;作图—基本作图.29.(2016山东省枣庄市)P n 表示n 边形的对角线的交点个数(指落在其内部的交点),如果这些交点都不重合,那么P n 与n 的关系式是:P n =2(1)()24n n n an b -⋅-+(其中a ,b 是常数,n ≥4) (1)通过画图,可得:四边形时,P 4= ;五边形时,P 5= ;(2)请根据四边形和五边形对角线交点的个数,结合关系式,求a ,b 的值.【答案】(1)1;5;(2)a =5,b =6.【分析】(1)依题意画出图形,数出图形中对角线交点的个数即可得出结论;(2)将(1)中的数值代入公式可得出关于a 、b 的二元一次方程组,解方程组即可得出结论.【解析】(1)画出图形如下.由画形,可得:当n =4时,P 4=1;当n =5时,P 5=5.故答案为:1;5.(2)将(1)中的数值代入公式,得:224(41)1(44)245(51)5(55)24a b a b ⨯-⎧=⋅-+⎪⎪⎨⨯-⎪=⋅-+⎪⎩,解得:a =5,b =6.考点:作图—应用与设计作图;二元一次方程的应用;多边形的对角线.30.(2016山东省聊城市)如图,在平面直角坐标系中,已知△ABC 的三个顶点的坐标分别为A (﹣3,5),B (﹣2,1),C (﹣1,3).(1)若△ABC 经过平移后得到△A 1B 1C 1,已知点C 1的坐标为(4,0),写出顶点A 1,B 1的坐标;(2)若△ABC 和△A 1B 2C 2关于原点O 成中心对称图形,写出△A 1B 2C 2的各顶点的坐标;(3)将△ABC 绕着点O 按顺时针方向旋转90°得到△A 2B 3C 3,写出△A 2B 3C 3的各顶点的坐标.【答案】(1)A1(2,2),B1(3,﹣2);(2)A2(3,﹣5),B2(2,﹣1),C2(1,﹣3);(3)A3(5,3),B3(1,2),C3(3,1).【分析】(1)利用点C和点C1的坐标变化得到平移的方向与距离,然后利用此平移规律写出顶点A1,B1的坐标;(2)根据关于原点对称的点的坐标特征求解;(3)利用网格和旋转的性质画出△A2B3C3,然后写出△A2B3C3的各顶点的坐标.【解析】(1)如图,△A1B1C1为所作,因为点C(﹣1,3)平移后的对应点C1的坐标为(4,0),所以△ABC 先向右平移5个单位,再向下平移3个单位得到△A1B1C1,所以点A1的坐标为(2,2),B1点的坐标为(3,﹣2);(2)因为△ABC和△A1B2C2关于原点O成中心对称图形,所以A2(3,﹣5),B2(2,﹣1),C2(1,﹣3);(3)如图,△A2B3C3为所作,A3(5,3),B3(1,2),C3(3,1);考点:坐标与图形变化-旋转;坐标与图形变化-平移;作图题.31.(2016山东省青岛市)已知:线段a及∠ACB.求作:⊙O,使⊙O在∠ACB的内部,CO=a,且⊙O与∠ACB的两边分别相切.【答案】作图见解析.【分析】首先作出∠ACB的平分线CD,再截取CO=a得出圆心O,作OE⊥CA,由角平分线的性质和切线的判定作出圆即可.【解析】①作∠ACB的平分线CD,②在CD上截取CO=a,③作OE⊥CA于E,以O我圆心,OE长为半径作圆;如图所示:⊙O即为所求.考点:作图—复杂作图.学科.网32.(2016山西省)综合与实践问题情境在综合与实践课上,老师让同学们以“菱形纸片的剪拼”为主题开展数学活动,如图1,将一张菱形纸片ABCD(∠BAD>90°)沿对角线AC剪开,得到△ABC和△ACD.操作发现(1)将图1中的△ACD以A为旋转中心,按逆时针方向旋转角α,使α=∠BAC,得到如图2所示的△AC′D,分别延长BC和DC′交于点E,则四边形ACEC′的形状是;(2)创新小组将图1中的△ACD以A为旋转中心,按逆时针方向旋转角α,使α=2∠BAC,得到如图3所示的△AC′D,连接DB,C′C,得到四边形BCC′D,发现它是矩形,请你证明这个结论;实践探究(3)缜密小组在创新小组发现结论的基础上,量得图3中BC=13cm,AC=10cm,然后提出一个问题:将△AC′D沿着射线DB方向平移acm,得到△A′C′D′,连接BD′,CC′,使四边形BCC′D恰好为正方形,求a的值,请你解答此问题;(4)请你参照以上操作,将图1中的△ACD 在同一平面内进行一次平移,得到△A ′C ′D ,在图4中画出平移后构造出的新图形,标明字母,说明平移及构图方法,写出你发现的结论,不必证明.【答案】(1)菱形;(2)证明见解析;(3)7113或40913;(4)答案见解析. 【分析】(1)利用旋转的性质结合菱形的性质得出:∠1=∠2,∠2=∠3,∠1=∠4,AC =AC ′,进而利用菱形的判定方法得出答案;(2)利用旋转的性质结合菱形的性质得出,四边形BCC ′D 是平行四边形,进而得出四边形BCC ′D 是矩形;(3)首先求出CC ′的长,分别利用①点C ″在边C ′C 上,②点C ″在C ′C 的延长线上,求出a 的值;(4)利用平移的性质以及平行四边形的判定方法得出答案.【解析】(1)如图2,由题意可得:∠1=∠2,∠2=∠3,∠1=∠4,AC =AC ′,故AC ′∥EC ,AC ∥C ′E ,则四边形ACEC ′是平行四边形,故四边形ACEC ′的形状是菱形;故答案为:菱形;(2)证明:如图3,作AE ⊥CC ′于点E ,由旋转得:A C ′=AC ,则∠CAE =∠C ′AE =12α=∠BAC ,∵四边形ABCD 是菱形,∴BA =BC ,∴∠BCA =∠BAC ,∴∠CAE =∠BCA ,∴AE ∥BC ,同理可得:A E ∥DC ′,∴BC ∥DC ′,则∠BCC ′=90°,又∵BC =DC ′,∴四边形BCC ′D 是平行四边形,∵∠BCC ′=90°,∴四边形BCC ′D 是矩形;(3)如图3,过点B 作BF ⊥AC ,垂足为F ,∵BA =BC ,∴CF =AF =12AC =12×10=5,在Rt △BCF 中,BF 22BC CF -22135-12,在△ACE 和△CBF 中,∵∠CAE =∠BCF ,∠CEA =∠BFC =90°,∴△ACE ∽△CBF ,∴CE AC BF BC =,即101213CE =,解得:EC =12013,∵AC =AC ′,AE ⊥CC ′,∴CC ′=2CE =2×12013=24013,当四边形BCC ′D ′恰好为正方形时,分两种情况: ①点C ″在边C ′C 上,a =C ′C ﹣13=24013﹣13=7113; ②点C ″在C ′C 的延长线上,a =C ′C +13=24013+13=40913.综上所述:a 的值为:7113或40913; (4)答案不唯一,例:如图4,画出正确图形,平移及构图方法:将△ACD 沿着射线CA 方向平移,平移距离为12AC 的长度,得到△A ′C ′D ′,连接A ′B ,D ′C ,结论:∵BC =A ′D ′,BC ∥A ′D ′,∴四边形A ′BCD ′是平行四边形.考点:几何变换综合题;操作型;分类讨论;压轴题.33.(2016山西省)综合与探究如图,在平面直角坐标系中,已知抛物线28y ax bx =+-与x 轴交于A ,B 两点,与y 轴交于点C ,直线l 经过坐标原点O ,与抛物线的一个交点为D ,与抛物线的对称轴交于点E ,连接CE ,已知点A ,D 的坐标分别为(﹣2,0),(6,﹣8).(1)求抛物线的函数表达式,并分别求出点B 和点E 的坐标;(2)试探究抛物线上是否存在点F ,使△FOE ≌△FCE ?若存在,请直接写出点F 的坐标;若不存在,请说明理由;(3)若点P 是y 轴负半轴上的一个动点,设其坐标为(0,m ),直线PB 与直线l 交于点Q ,试探究:当m 为何值时,△OPQ 是等腰三角形.【答案】(1)21382y x x =--,B (8,0),E (3,﹣4);(2)(317+,﹣4)或(3174);(3)m =83-或323-. 【分析】(1)根据待定系数法求出抛物线解析式即可求出点B 坐标,求出直线OD 解析式即可解决点E 坐。
2018年中考数学专题训练—整式、分式的化简及求值(含答案)

2018年中考数学专题复习—整式、分式的化简及求值一.解答题(共30小题)1.计算:(1)(x﹣y)2﹣(x﹣2y)(x+y)(2)÷(2x﹣)2.化简:(1)(a+b)2﹣(a+2b)(a﹣2b)﹣2a(a+3b)(2)(﹣)÷.3.化简下列各式(1)(a﹣b)2+(2a﹣b)(a﹣2b)(2).4.化简:(1)(2a+1)(1﹣2a)﹣(a﹣3)(a+2)+2(a+1)2 (2)(﹣)÷.(1)(a﹣2b)(a+2b)﹣(2a﹣b)2(2)(﹣)÷.6.化简:(1)(a+b)2+(a﹣b)(2a+b)﹣3a2;(2)(x+1﹣).7.化简:(1)a(2﹣a)+(a+1)(a﹣1)(2)﹣÷.8.化简:(1)a(1﹣a)+(a+1)2﹣1 (2)(﹣)÷.(1)(a+3b)2+a(a﹣6b);(2)÷(﹣a﹣b).10.化简下列各式:(1)(a+b)(a﹣2b)﹣(a﹣b)2(2).11.计算:(1)(2x﹣y)2+2x(2y﹣x)+(x﹣y)(x+y)(2)(﹣)÷.12.化简:(1)(a﹣2b)2﹣(2a+b)(b﹣2a)﹣4a(a﹣b)(2)÷(﹣a﹣b)13.化简下列各式:(1)(a﹣b)2﹣a(a﹣2b)+(2a+b)(2a﹣b)(2).14.计算:(1)x(x+2y)﹣(x﹣y)2+y2(2)(﹣x+3)÷.15.化简:(1)(x+2)2+(x+2)(x﹣2)﹣2(2x+1)(3﹣x)(2).16.(1)(a+b)(a﹣2b)﹣(a﹣b)2﹣b(a﹣b).(2).17.化简:(1)(2a+b)2﹣(5a+b)(a﹣b)+2(a﹣b)(a+b)(2)÷(﹣x﹣1)﹣.18.计算:(1)(x+1)2﹣x(1﹣x)﹣2x2;(2)(1﹣)÷.19.先化简,再求值:(﹣)÷(﹣),其中x=,y=1.20.先化简,再求值:÷(x﹣2﹣)﹣,其中x为方程5x+1=2(x﹣1)的解.21.先化简,再求值:(a﹣)÷﹣a2,其中a是方程2x2﹣2x﹣9=0的解.22.先化简,再求值:(a﹣)÷﹣a2,其中a是方程x2﹣x﹣3=0的解.23.先化简,再求值:﹣÷(﹣),其中x满足x2﹣2x+4=0.24.先化简,再求值,其中.25.化简求值:.26.先化简,再求值:÷(1+)﹣,其中x是不等式组的整数解.27.先化简,再求值:,其中a=2sin45°﹣tan30°,b=tan45°.28.先化简,再求值:÷(1﹣x+),其中x为方程(x﹣1)2=3(x﹣1)的解.29.先化简,再求值:,其中x是不等式组的整数解.30.先化简,再求值:,其中x,y满足.中考数学专题复习-整式、分式的化简及求值参考答案与试题解析一.解答题(共30小题)1.计算:(1)(x﹣y)2﹣(x﹣2y)(x+y)(2)÷(2x﹣)【分析】(1)根据平方差公式、多项式乘多项式法则进行计算;(2)根据分式混合运算法则进行计算.【解答】解:(1)(x﹣y)2﹣(x﹣2y)(x+y)=x2﹣2xy+y2﹣x2+xy+2y2=﹣xy+3y2;(2)÷(2x﹣)=×=.【点评】本题考查的是整式的混合运算、分式的混合运算,掌握平方差公式、多项式乘多项式法则、分式的混合运算法则是解题的关键.2.化简:(1)(a+b)2﹣(a+2b)(a﹣2b)﹣2a(a+3b)(2)(﹣)÷.【分析】(1)根据完全平方公式、平方差公式、单项式乘以多项式可以对本题化简;(2)先化简括号内的式子,再根据分式的除法进行计算即可解答本题.【解答】解:(1)(a+b)2﹣(a+2b)(a﹣2b)﹣2a(a+3b)=a2+2ab+b2﹣a2+4b2﹣2a2﹣6ab=﹣2a2﹣4ab+5b2;(2)(﹣)÷====.【点评】本题考查分式的混合运算、整式的混合运算,解题的关键是明确它们各自的计算方法.3.化简下列各式(1)(a﹣b)2+(2a﹣b)(a﹣2b)(2).【分析】(1)利用乘法公式展开,然后合并同类项即可;(2)先把括号内通分后进行同分母的减法运算,再把分子分母因式分解和除法运算化为乘法运算,然后约分即可.【解答】解:(1)原式=a2﹣2ab+b2+2a2﹣ab﹣4ab+2b2=3a2﹣7ab+3b2;(2)原式=、====.【点评】本题考查了分式的混合运算:分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的.最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.也考查了整式的混合运算.4.化简:(1)(2a+1)(1﹣2a)﹣(a﹣3)(a+2)+2(a+1)2(2)(﹣)÷.【分析】(1)根据平方差公式、完全平方公式、多项式乘多项式法则化简即可.(2)先通分,除法转化为乘法,约分化简即可.【解答】解:(1)原式=1﹣4a2﹣(a2﹣a﹣6)+2(a2+2a+1)=1﹣4a2﹣a2+a+6+2a2+4a+2=﹣3a2+5a+9.(2)原式=•=.【点评】本题考查分式的混合运算、乘法公式等知识,解题的关键是熟练应用乘法公式,掌握分式混合运算法则,属于中考常考题型.5.化简:(1)(a﹣2b)(a+2b)﹣(2a﹣b)2(2)(﹣)÷.【分析】(1)根据平方差公式和完全平方公式可以解答本题;(2)先化简括号内的式子,然后根据分式的除法可以解答本题.【解答】解:(1)(a﹣2b)(a+2b)﹣(2a﹣b)2=a2﹣4b2﹣4a2+4ab﹣b2=﹣3a2﹣5b2+4ab;(2)(﹣)÷====.【点评】本题考查分式的混合运算、完全平方公式、平方差公式,解题的关键是明确它们各自的计算方法.6.化简:(1)(a+b)2+(a﹣b)(2a+b)﹣3a2;(2)(x+1﹣).【分析】(1)先利用乘法公式展开,然后合并即可;(2)先把括号内通分和除法运算化为乘法运算,然后把分子分母因式分解后约分即可.【解答】解:(1)原式=a2+2ab+b2+2a2+ab﹣2ab﹣b2﹣3a2=ab;(2)原式=•=﹣•=﹣.【点评】本题考查了分式的混合运算:分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的.(2)最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.也考查了整式的运算.7.化简:(1)a(2﹣a)+(a+1)(a﹣1)(2)﹣÷.【分析】(1)根据单项式乘以多项式和平方差公式可以化简本题;(2)根据分式的除法和减法可以化简本题.【解答】解:(1)a(2﹣a)+(a+1)(a﹣1)=2a﹣a2+a2﹣1=2a﹣1;(2)﹣÷===.【点评】本题考查分式的混合运算、单项式乘以多项式、平方差公式,解题的关键是明确它们各自的计算方法.8.化简:(1)a(1﹣a)+(a+1)2﹣1(2)(﹣)÷.【分析】(1)根据完全平方公式、单项式乘多项式法则最快化简即可.(2)先通分,除法转化为乘法,约分化简即可.【解答】解:(1)原式=a﹣a2+a2+2a+1﹣1=3a.(2)原式=•=•=【点评】本题考查分式的混合运算、乘法公式等知识,解题的关键是熟练应用乘法公式,掌握分式混合运算法则,属于中考常考题型.9.化简:(1)(a+3b)2+a(a﹣6b);(2)÷(﹣a﹣b).【分析】(1)先利用乘法公式展开,然后合并即可;(2)先把括号内通分,再把分子分母因式分解和除法转化为乘法运算,然后约分即可.【解答】解:(1)原式=a2+6ab+9b2+a2﹣6ab=2a2+9b2;(2)原式=÷=•=﹣.【点评】本题考查了分式的混合运算:分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的.(2)最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.也考查了整式的运算.10.化简下列各式:(1)(a+b)(a﹣2b)﹣(a﹣b)2(2).【分析】(1)根据多项式乘以多项式、完全平方公式可以对原式进行化简;(2)先化简括号内的式子,然后根据分式的除法进行计算即可解答本题.【解答】解:(1)(a+b)(a﹣2b)﹣(a﹣b)2=a2﹣ab﹣2b2﹣a2+2ab﹣b2=ab﹣3b2;(2)=[﹣]÷=×===.【点评】本题考查分式的混合运算、多项式乘以多项式、完全平方公式,解题的关键是明确它们各自的计算方法.11.计算:(1)(2x﹣y)2+2x(2y﹣x)+(x﹣y)(x+y)(2)(﹣)÷.【分析】(1)根据完全平方公式、平方差公式、单项式乘多项式法则展开化简即可.(2)先括号内通分,除法转化为乘法,再约分化简即可.【解答】解:(1)原式=4x2﹣4xy+y2+4xy﹣2x2+x2﹣y2=3x2.(2)原式=•=﹣.【点评】本题考查分式的混合运算、乘法公式、整式的混合运算法则等知识解题的关键是正确应用乘法公式,掌握分式混合运算法则,属于中考常考题型.12.化简:(1)(a﹣2b)2﹣(2a+b)(b﹣2a)﹣4a(a﹣b)(2)÷(﹣a﹣b)【分析】(1)原式利用完全平方公式,平方差公式,以及单项式乘以多项式法则计算,去括号合并即可得到结果;(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:(1)原式=a2﹣4ab+4b2﹣b2+4a2﹣4a2+4ab=a2+3b2;(2)原式=÷=•=.【点评】此题考查了分式的混合运算,以及整式的混合运算,熟练掌握运算法则是解本题的关键.13.化简下列各式:(1)(a﹣b)2﹣a(a﹣2b)+(2a+b)(2a﹣b)(2).【分析】(1)根据完全平方公式和单项式乘以多项式、平方差公式将原式展开,然后再合并同类项即可解答本题;(2)先化简括号内的式子,再根据分式的除法即可解答本题.【解答】解:(1)(a﹣b)2﹣a(a﹣2b)+(2a+b)(2a﹣b)=a2﹣2ab+b2﹣a2+2ab+4a2﹣b2=4a2;(2)====.【点评】本题考查分式的混合运算、整式的混合运算,解题的关键是明确它们各自的计算方法.14.计算:(1)x(x+2y)﹣(x﹣y)2+y2(2)(﹣x+3)÷.【分析】(1)先去括号,再合并同类项即可解答本题;(2)先化简括号内的式子,再根据分式的除法即可解答本题.【解答】解:(1)x(x+2y)﹣(x﹣y)2+y2=x2+2xy﹣x2+2xy﹣y2+y2=4xy;(2)(﹣x+3)÷====.【点评】本题考查分式的混合运算、单项式乘多项式、完全平方公式,解题的关键是明确它们各自的计算方法.15.)化简:(1)(x+2)2+(x+2)(x﹣2)﹣2(2x+1)(3﹣x)(2).【分析】(1)原式利用完全平方公式,平方差公式,以及多项式乘多项式法则计算,去括号合并即可得到结果;(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:(1)原式=x2+4x+4+x2﹣4﹣12x+4x2﹣6+2x=6x2﹣6x﹣6;(2)原式=•=•=﹣.【点评】此题考查了分式的混合运算,以及整式的混合运算,熟练掌握运算法则是解本题的关键.16.(1)(a+b)(a﹣2b)﹣(a﹣b)2﹣b(a﹣b).(2).【分析】(1)根据完全平方公式、多项式乘多项式法则化简即可.(2)先通分,除法转化为乘法,约分化简即可.【解答】解:(1)原式=a2﹣2ab+ab﹣2b2﹣a2+2ab﹣b2﹣ab+b2=ab﹣2b2.(2)原式=•=•=﹣1.【点评】本题考查分式的混合运算、乘法公式等知识,解题的关键是熟练应用乘法公式,掌握分式混合运算法则,属于中考常考题型.17.化简:(1)(2a+b)2﹣(5a+b)(a﹣b)+2(a﹣b)(a+b)(2)÷(﹣x﹣1)﹣.【分析】(1)先去括号,再合并同类项即可;(2)先算括号里面的,再算除法,最后算减法即可.【解答】解:(1)原式=4a2+b2+4ab﹣(5a2﹣5ab+ab﹣b2)﹣2(a2﹣b2)=4a2+b2+4ab﹣5a2+4ab+b2﹣2a2+2b2=4b2+4ab﹣3a2;(2)原式=÷﹣=•﹣=﹣﹣==﹣.【点评】本题考查的是分式的混合运算,熟知分式混合运算的法则是解答此题的关键.18.计算:(1)(x+1)2﹣x(1﹣x)﹣2x2;(2)(1﹣)÷.【分析】(1)根据平方差公式、完全平方公式、多项式乘多项式法则最快化简即可.(2)先通分,除法转化为乘法,约分化简即可.【解答】解:(1)原式=x2+2x+1﹣x+x2﹣2x2=x+1;(2)原式=•=.【点评】本题考查分式的混合运算、乘法公式等知识,解题的关键是熟练应用乘法公式,掌握分式混合运算法则,属于中考常考题型.19.先化简,再求值:(﹣)÷(﹣),其中x=,y=1.【分析】先根据分式混合运算的法则把原式进行化简,再把x=,y=1代入进行计算即可.【解答】解:原式=[﹣][﹣]=•=•=﹣,当x=,y=1是,原式=﹣=2﹣3.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.20.先化简,再求值:÷(x﹣2﹣)﹣,其中x为方程5x+1=2(x﹣1)的解.【分析】先根据分式混合运算的法则把原式进行化简,再求出x的值,代入原式进行计算即可.【解答】解:原式=÷﹣=•﹣=﹣=﹣,由方程5x+1=2(x﹣1),解得:x=﹣1,∴当x=﹣1时,原式=﹣=.【点评】本题主要考查分式的化简求值及解方程的能力,熟练运用分式的运算法则与分式的性质化简原式是解题的关键.21.先化简,再求值:(a﹣)÷﹣a2,其中a是方程2x2﹣2x﹣9=0的解.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分后合并得到最简结果,把x=a代入方程【解答】解:原式=•﹣a2=﹣(a2﹣a),把x=a代入已知方程得:2a2﹣2a﹣9=0,即a2﹣a=,则原式=﹣.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.22.先化简,再求值:(a﹣)÷﹣a2,其中a是方程x2﹣x﹣3=0的解.【分析】先对原式化简,再根据a是方程x2﹣x﹣3=0的解,可以求得出a的值,代入化简后的式子即可解答本题.【解答】解:(a﹣)÷﹣a2==﹣a2=﹣a2=a﹣a2,∵x2﹣x﹣3=0,解得,x==,∵a是方程x2﹣x﹣3=0的解,∴a=,∴当a=时,原式==﹣3,当a=时,原式==﹣3,即原式=﹣3.【点评】本题考查分式的化简求值,解题的关键是明确分式的化简求值的方法.23.先化简,再求值:﹣÷(﹣),其中x满足x2﹣2x+4=0.【分析】原式括号中第两项中括号第二项变形后,利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,通分并利用同分母分式的减法法则计算得到最简结果,求出x的值代入计算即可求出值.【解答】解:原式=﹣=﹣=,由x2﹣2x+4=0,得到x2﹣2x=﹣4,则原式=﹣.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.24.先化简,再求值,其中.【分析】先算除法,再算减法,最后把x的值代入进行计算即可.【解答】解:原式=﹣•=﹣==,当x=﹣1时,原式==1.【点评】本题考查的是分式的化简求值,在解答此类题目时要注意把分式化为最简形式,再代入求值.25.化简求值:.【分析】先算括号里面的,再算除法,最后把x、y的值代入进行计算即可.【解答】解:原式=x2••=x2••=﹣.当x=1+,y=1﹣时,原式=﹣3﹣2.【点评】本题考查的是分式的化简求值,分式求值题中比较多的题型主要有三种:转化已知条件后整体代入求值;转化所求问题后将条件整体代入求值;既要转化条件,也要转化问题,然后再代入求值.26.先化简,再求值:÷(1+)﹣,其中x是不等式组的整数解.【分析】先对题目中的分式进行约分化简,然后根据x是不等式组的整数解,求出x的值,代入化简后的式子即可解答本题.【解答】解:÷(1+)﹣====,解不等式组得,1≤x<3,∵x是不等式组的整数解,∴x=1或x=2,∴当x=1时,原式=﹣1;当x=2时,原式无意义.【点评】本题考查分式的化简求值、一元一次不等式组的整数解,解题的关键是明确题意,找出所求问题需要的条件.27.先化简,再求值:,其中a=2sin45°﹣tan30°,b=tan45°.【分析】先利用分式混合运算的法则化简,然后求出a、b的值代入即可.【解答】解:原式=÷=•=.∵a=2sin45°﹣tan30°=﹣1,b=tan45°=1∴原式===.【点评】本题考查分式的化简求值、特殊角的三角函数值,需要熟练掌握分式的混合运算法则,注意运算顺序先括号后乘除最后加减有乘方的先计算乘方,属于中考常考题型.28.先化简,再求值:÷(1﹣x+),其中x为方程(x﹣1)2=3(x﹣1)的解.【分析】先根据分式混合运算的法则把原式进行化简,再根据x为方程(x﹣1)2=3(x﹣1)的解求出x的值,代入原式进行计算即可.【解答】解:原式=÷=÷=•=﹣∵x为方程(x﹣1)2=3(x﹣1)的解,∴x1=1,x2=4,∵当x=1时原式无意义,∴当x=4时,原式=﹣.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.29.先化简,再求值:,其中x是不等式组的整数解.【分析】先把除法转化成乘法,再利用乘法的分配律进行化简,然后解不等式组,求出不等式组的整数解,再把所得的结果代入即可.【解答】解:=×﹣×=1﹣=,∵,由①得:x≤2,由②得:x>﹣,∴原不等式组的解集是:﹣<x≤2∴原不等式组的整数解是:﹣1,0,1,2,又∵(x﹣1)(x+1)x≠0∴x≠±1且x≠0∴x=2,∴原式==.【点评】此题考查了分式的化简求值、一元一次不等式组,在化简时要注意简便方法的运用和结果的符号,注意分式有意义的条件.30.先化简,再求值:,其中x,y满足.【分析】原式括号中通分并利用同分母分式的减法法则计算,利用除法法则变形,约分后两项通分并利用同分母分式的加法法则计算得到最简结果,求出方程组的解得到x与y的值,代入计算即可求出值.【解答】解:原式=+÷=+•==,解方程组得:,代入上式得:原式=.【点评】此题考查了分式的化简求值,以及解二元一次方程组,熟练掌握运算法则是解本题的关键.。
7.5操作型问题(第1部分)-2018年中考数学试题分类汇编(word解析版)

第七部分专题拓展7.5 操作型问题【一】知识点清单操作型问题能让学生经历观察,操作,实验,猜想,验证的探究过程.不仅能考查学生的空间观念,对图形的认识,图形的变换,图形的设计,图形的直觉判断能力,而且还能考查学生的分析综合,抽象概括逻辑推理的能力,是学生展示个体思维发散创新的好平台.操作型问题一般包括作图问题,分割组合图形问题,图形的折叠问题和图形移动等问题.解决这类问题,要理解掌握轴对称轴、中心对称及点的轨迹的基本性质,审清题意,学会运用图形的平移变换、翻折变换和旋转变换. 注意运用分类讨论、类比猜想、验证归纳等数学思想方法,灵活地解决问题.在平时的学习中,要注重操作习题解题训练,提高思维的开放性,培养创新能力。
【二】分类试题及参考答案与解析一、选择题1.(2018年海南省-第14题-3分)如图1,分别沿长方形纸片ABCD和正方形纸片EFGH的对角线AC,EG剪开,拼成如图2所示的▱KLMN,若中间空白部分四边形OPQR恰好是正方形,且▱KLMN 的面积为50,则正方形EFGH的面积为()A.24 B.25 C.26 D.27【知识考点】平行四边形的判定与性质;矩形的性质;正方形的性质;图形的剪拼.【思路分析】如图,设PM=PL=NR=AR=a,正方形ORQP的边长为b,构建方程即可解决问题;【解答过程】解:如图,设PM=PL=NR=AR=a,正方形ORQP的边长为b.由题意:a2+b2+(a+b)(a﹣b)=50,∴a2=25,∴正方形EFGH的面积=a2=25,故选:B.【总结归纳】本题考查图形的拼剪,矩形的性质,正方形的性质等知识,解题的关键是学会利用参数构建方程解决问题,学会利用数形结合的思想解决问题,属于中考选择题中的压轴题.二、填空题1.(2018年湖北省黄冈市-第13题-3分)如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为cm(杯壁厚度不计).【知识考点】平面展开﹣最短路径问题.【思路分析】将杯子侧面展开,建立A关于EF的对称点A′,根据两点之间线段最短可知A′B的长度即为所求.【解答过程】解:如图:将杯子侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离,A′B===20(cm).故答案为20.【总结归纳】本题考查了平面展开﹣﹣﹣最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.三、解答题1.(2018年吉林省-第20题-7分)如图是由边长为1的小正方形组成的8×4网格,每个小正方形的顶点叫做格点,点A,B,C,D均在格点上,在网格中将点D按下列步骤移动:第一步:点D绕点A顺时针旋转180°得到点D1;。
2018年中考数学真题分类汇编(第三期)专题37操作探究试题(含解析)

操作探究一.填空题1.(2018·辽宁大连·3分)如图,矩形ABCD中,AB=2,BC=3,点E为AD上一点,且∠ABE=30°,将△ABE沿BE翻折,得到△A′BE,连接CA′并延长,与AD相交于点F,则DF的长为.解:如图作A′H⊥BC于H.∵∠ABC=90°,∠ABE=∠EBA′=30°,∴∠A′BH=30°,∴A′H=BA′=1,BH=A′H=,∴CH=3﹣.∵△CDF∽△A′HC,∴ =,∴ =,∴DF=6﹣2.故答案为:6﹣2.二.解答题1. (2018·湖北江汉·10分)问题:如图①,在Rt△ABC中,AB=AC,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC,则线段BC,DC,EC 之间满足的等量关系式为BC=DC+EC ;探索:如图②,在Rt△ABC与Rt△ADE中,AB=AC,AD=AE,将△ADE绕点A旋转,使点D落在BC边上,试探索线段AD,BD,CD之间满足的等量关系,并证明你的结论;应用:如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD的长.【分析】(1)证明△BAD≌△CAE,根据全等三角形的性质解答;(2)连接CE,根据全等三角形的性质得到BD=CE,∠ACE=∠B,得到∠DCE=90°,根据勾股定理计算即可;(3)作AE⊥AD,使AE=AD,连接CE,DE,证明△BAD≌△CAE,得到BD=CE=9,根据勾股定理计算即可.【解答】解:(1)BC=DC+EC,理由如下:∵∠BAC=∠DAE=90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE,∴BD=CE,∴BC=BD+CD=EC+CD,故答案为:BC=DC+EC;(2)BD2+CD2=2AD2,理由如下:连接CE,由(1)得,△BAD≌△CAE,∴BD=CE,∠ACE=∠B,∴∠DCE=90°,∴CE2+CD2=ED2,在Rt△ADE中,AD2+AE2=ED2,又AD=AE,∴BD2+CD2=2AD2;(3)作AE⊥AD,使AE=AD,连接CE,DE,∵∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAD′,在△BAD与△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE=9,∵∠ADC=45°,∠EDA=45°,∴∠EDC=90°,∴DE==6,∵∠DAE=90°,∴AD=AE=DE=6.2.(2018·辽宁省阜新市)如图,在△ABC中,∠BAC=90°,AB=AC,AD⊥BC于点D.(1)如图1,点E,F在AB,AC上,且∠EDF=90°.求证:BE=AF;(2)点M,N分别在直线AD,AC上,且∠BMN=90°.①如图2,当点M在AD的延长线上时,求证:AB+AN=AM;②当点M在点A,D之间,且∠AMN=30°时,已知AB=2,直接写出线段AM的长.【解答】解:(1)∵∠BAC=90°,AB=AC,∴∠B=∠C=45°.∵AD⊥BC,∴BD=CD,∠BAD=∠CAD=45°,∴∠CAD=∠B,AD=BD.∵∠EDF=∠ADC=90°,∴∠BDE=∠ADF,∴△BDE≌△ADF(ASA),∴DE=DF;(2)①如图1,过点M作MP⊥AM,交AB的延长线于点P,∴∠AMP=90°.∵∠PAM=45°,∴∠P=∠PAM=45°,∴AM=PM.∵∠BMN=∠AMP=90°,∴∠BMP=∠AMN.∵∠DAC=∠P=45°,∴△AMN≌△PMB(ASA),∴AN=PB,∴AP=AB+BP=AB+AN.在Rt△AMP中,∠AMP=90°,AM=MP,∴AP=AM,∴AB+AN=AM;②在Rt△ABD中,AD=BD=AB=.∵∠BMN=90°,∠AMN=30°,∴∠BMD=90°﹣30°=60°.在Rt△BDM中,DM==,∴AM=AD﹣DM=﹣.3. (2018•广安•10分)如图,抛物线y=x2+bx+c与直线y=x+3交于A,B两点,交x轴于C.D两点,连接AC.BC,已知A(0,3),C(﹣3,0).(1)求抛物线的解析式;(2)在抛物线对称轴l上找一点M,使|MB﹣MD|的值最大,并求出这个最大值;(3)点P为y轴右侧抛物线上一动点,连接PA,过点P作PQ⊥PA交y轴于点Q,问:是否存在点P使得以A,P,Q为顶点的三角形与△ABC相似?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.【分析】(1)根据待定系数法,可得函数解析式;(2)根据对称性,可得MC=MD,根据解方程组,可得B点坐标,根据两边之差小于第三边,可得B,C,M共线,根据勾股定理,可得答案;(3)根据等腰直角三角形的判定,可得∠BCE,∠ACO,根据相似三角形的判定与性质,可得关于x的方程,根据解方程,可得x,根据自变量与函数值的对应关系,可得答案.【解答】解:(1)将A(0,3),C(﹣3,0)代入函数解析式,得,解得,抛物线的解析式是y=x2+x+3;(2)由抛物线的对称性可知,点D与点C关于对称轴对称,∴对l上任意一点有MD=MC,联立方程组,解得(不符合题意,舍),,∴B(﹣4,1),当点B,C,M共线时,|MB﹣MD|取最大值,即为BC的长,过点B作BE⊥x轴于点E,在Rt△BEC中,由勾股定理,得BC==,|MB﹣MD|取最大值为;(3)存在点P使得以A,P,Q为顶点的三角形与△ABC相似,在Rt△BEC中,∵BE=CE=1,∴∠BCE=45°,在Rt△ACO中,∵AO=CO=3,∴∠ACO=45°,∴∠ACB=180°﹣45°﹣45°=90°,过点P作PQ⊥y轴于Q点,∠PQA=90°,设P点坐标为(x,x2+x+3)(x>0)①当∠PAQ=∠BAC时,△PAQ∽△CAB,∵∠PGA=∠ACB=90°,∠PAQ=∠CAB,∴△PGA∽△BCA,∴=,即==,∴=,解得x1=1,x2=0(舍去),∴P点的纵坐标为×12+×1+3=6,∴P(1,6),②当∠PAQ=∠ABC时,△PAQ∽△CBA,∵∠PGA=∠ACB=90°,∠PAQ=∠ABC,∴△PGA∽△ACB,∴=,即==3,∴=3,解得x1=﹣(舍去),x2=0(舍去)∴此时无符合条件的点P,综上所述,存在点P(1,6).【点评】本题考查了二次函数综合题,解(1)的关键是利用待定系数法求函数解析式;解(2)的关键是利用两边只差小于第三边得出M,B,C共线;解(3)的关键是利用相似三角形的判定与性质得出关于x的方程,要分类讨论,以防遗漏.4.(2018·湖北咸宁·10分)定义:我们知道,四边形的一条对角线把这个四边形分成了两个三角形,如果这两个三角形相似(不全等),我们就把这条对角线叫做这个四边形的“相似对角线”.理解:(1)如图1,已知Rt△ABC在正方形网格中,请你只用无刻度的直尺在网格中找到一点D,使四边形ABCD是以AC为“相似对角线”的四边形(保留画图痕迹,找出3个即可);(2)如图2,在四边形ABCD中,∠ABC=80°,∠ADC=140°,对角线BD平分∠ABC.求证:BD是四边形ABCD的“相似对角线”;(3)如图3,已知FH是四边形EFCH的“相似对角线”,∠EFH=∠HFG=30°,连接EG,若△EFG的面积为2,求FH的长.【答案】(1)见解析;(2)证明见解析;(3)FH=2.【解析】【分析】(1)先求出AB,BC,AC,再分情况求出CD或AD,即可画出图形;(2)先判断出∠A+∠ADB=140°=∠ADC,即可得出结论;(3)先判断出△FEH∽△FHG,得出FH2=FE•FG,再判断出EQ=FE,继而求出FG•FE=8,即可得出结论.【详解】(1)由图1知,AB=,BC=2,∠ABC=90°,AC=5,∵四边形ABCD是以AC为“相似对角线”的四边形,当∠ACD=90°时,△ACD∽△ABC或△ACD∽△CBA,∴或,∴CD=10或CD=2.5同理:当∠CAD=90°时,AD=2.5或AD=10,(2)∵∠ABC=80°,BD平分∠ABC,∴∠ABD=∠DBC=40°,∴∠A+∠ADB=140°∵∠ADC=140°,∴∠BDC+∠ADB=140°,∴∠A=∠BDC,∴△ABD∽△BDC,∴BD是四边形ABCD的“相似对角线”;(3)如图3,∵FH是四边形EFGH的“相似对角线”,∴△EFG与△HFG相似,∵∠EFH=∠HFG,∴△FEH∽△FHG,∴,∴FH2=FE•FG,过点E作EQ⊥FG于Q,∴EQ=FE•sin60°=FE,∵FG×EQ=2,∴FG×FE=2,∴FG•FE=8,∴FH2=FE•FG=8,∴FH=2.【点睛】本题考查了相似三角形的综合题,涉及到新概念、相似三角形的判定与性质等,正确理解新概念,熟练应用相似三角形的相关知识是解题的关键.5.(2018·江苏镇江·9分)(1)如图1,将矩形ABCD折叠,使BC落在对角线BD上,折痕为BE,点C落在点C′处,若∠ADB=46°,则∠DBE的度数为23 °.(2)小明手中有一张矩形纸片ABCD,AB=4,AD=9.【画一画】如图2,点E在这张矩形纸片的边AD上,将纸片折叠,使AB落在CE所在直线上,折痕设为MN(点M,N分别在边AD,BC上),利用直尺和圆规画出折痕MN(不写作法,保留作图痕迹,并用黑色水笔把线段描清楚);【算一算】如图3,点F在这张矩形纸片的边BC上,将纸片折叠,使FB落在射线FD上,折痕为GF,点A,B分别落在点A′,B′处,若AG=,求B′D的长;【验一验】如图4,点K在这张矩形纸片的边AD上,DK=3,将纸片折叠,使AB落在CK所在直线上,折痕为HI,点A,B分别落在点A′,B′处,小明认为B′I所在直线恰好经过点D,他的判断是否正确,请说明理由.【解答】解:(1)如图1中,∵四边形ABCD是矩形,∴AD∥BC,∴∠ADB=∠DBC=46°,由翻折不变性可知,∠DBE=∠EBC=∠DBC=23°,故答案为23.(2)【画一画】,如图2中,【算一算】如图3中,∵AG=,AD=9,∴GD=9﹣=,∵四边形ABCD是矩形,∴AD∥BC,∴∠DGF=∠BFG,由翻折不变性可知,∠BFG=∠DFG,∴∠DFG=∠DGF,∴DF=DG=,∵CD=AB=4,∠C=90°,∴在Rt△CDF中,CF==,∴BF=BC﹣CF=,由翻折不变性可知,FB=FB′=,∴DB′=DF﹣FB′=﹣=3.【验一验】如图4中,小明的判断不正确.理由:连接ID,在Rt△CDK中,∵DK=3,CD=4,∴CK==5,∵AD∥BC,∴∠DKC=∠ICK,由折叠可知,∠A′B′I=∠B=90°,∴∠IB′C=90°=∠D,∴△CDK∽△IB′C,∴==,即==,设CB′=3k,IB′=4k,IC=5k,由折叠可知,IB=IB′=4k,∴BC=BI+IC=4k+5k=9,∴k=1,∴IC=5,IB′=4,B′C=3,在Rt△ICB′中,tan∠B′IC==,连接ID,在Rt△ICD中,tan∠DIC==,∴tan∠B′IC≠tan∠DIC,∴B′I所在的直线不经过点D.。
2018届中考数学全程演练《第45课时:实验操作型问题》有答案

第45课时 实验操作型问题(50分)一、选择题(每题10分,共10分)1.[2016·宁波]如图45-1,小明家的住房平面图呈长方形,被分割成3个正方形和2个长方形后仍是中心对称图形.若只知道原住房平面图长方形的周长,则分割后不用测量就能知道周长的图形的标号为 (A)A .①②B .②③C .①③D .①②③二、填空题(每题10分,共10分)2.[2017·绍兴]把标准纸一次又一次对开,可以得到均相似的“开纸”.现在我们在长为22,宽为1的矩形纸片中,画两个小矩形,使这两个小矩形的每条边都与原矩形的边平行,或小矩形的边在原矩形纸的边上,且每个小矩形均与原矩形纸相似,然后将它们剪下,则所剪得的两个小矩形纸片周长之和的最大值是__154+42__.【解析】 ∵在长为22,宽为1的矩形纸片中,画两个小矩形,使这两个小矩形的每条边都与原矩形纸的边平行,或小矩形的边在原矩形的边上,且每个小矩形均与原矩形纸相似, ∴要使所剪得的两个小矩形纸片周长之和最大,则这两个小矩形纸片长与宽的和最大. ∵矩形的长与宽之比为22∶1,∴剪得的两个小矩形中,一个矩形的长为1, 宽为1×122=24, ∴另外一个矩形的长为22-24=724, 宽为724×122=78,∴所剪得的两个小矩形纸片周长之和的最大值是2⎝ ⎛⎭⎪⎫1+24+724+78=42+154. 三、解答题(共30分)图45-13.(15分)[2016·南充]如图45-2,矩形纸片ABCD,将△AMP和△BPQ分别沿PM和PQ折叠(AP >AM),点A和点B都与点E重合;再将△CQD沿DQ折叠,点C落在线段EQ上点F处.(1)判断△AMP,△BPQ,△CQD和△FDM中有哪几对相似三角形?(不需说明理由)(2)如果AM=1,sin∠DMF=35,求AB的长.解:(1)△AMP ∽△BPQ∽△CQD,∵四边形ABCD是矩形,∴∠A=∠B=∠C=90°,根据折叠的性质可知:∠APM=∠EPM,∠EPQ=∠BPQ,∴∠APM+∠BPQ=∠EPM+∠EPQ=90°,∵∠APM+∠AMP=90°,∴∠BPQ=∠AMP,∴△AMP∽△BPQ,同理:△BPQ∽△CQD,根据相似的传递性,△AMP∽△CQD;(2)∵AD∥BC,∴∠DQC=∠MDQ,根据折叠的性质可知:∠DQC=∠DQM,∴∠MDQ=∠DQM,∴MD=MQ,∵AM=ME,BQ=EQ,∴BQ=MQ-ME=MD-AM,∵sin∠DMF=DFMD=35,∴设DF=3x,MD=5x,∴BP=P A=PE=3x2,BQ=5x-1,∵△AMP∽△BPQ,∴AMBP=APBQ,∴13x2=3x25x-1,图45-2解得x =29或x =2, 又∵AP >AM ,∴x =29时,AP =13<AM , ∴x =29时,不符合题意, ∴AB =6.4.(15分)[2016·宁波]在边长为1的小正方形组成的方格纸中,若多边形的各顶点都在方格纸的格点(横竖格子线的交错点)上,这样的多边形称为格点多边形.记格点多边形内的格点数为a ,边界上的格点数为b ,则格点多边形的面积可表示为S =ma +nb -1,其中m ,n 为常数. (1)在图45-3的方格纸中各画出一个面积为6的格点多边形,依次为三角形、平行四边形(非菱形)、菱形;图45-3(2)利用(1)中的格点多边形确定m ,n 的值. 解:(1)如答图;第4题答图(2)三角形:a =4,b =6,S =6; 平行四边形:a =3,b =8,S =6; 菱形:a =5,b =4,S =6; 任选两组数据代入S =ma +nb -1, 解得m =1,n =12.(30分)5.(15分)提出问题:(1)如图45-4①,在等边△ABC中,点M是BC上的任意一点(不含端点B,C),连结AM,以AM为边作等边△AMN,连结CN.求证:∠ABC=∠ACN;类比探究(2)如图45-4②,在等边△ABC中,点M是BC延长线上的任意一点(不含端点C),其他条件不变,(1)中结论∠ABC=∠ACN还成立吗?请说明理由;拓展延伸(3)如图45-4③,在等腰△ABC中,BA=BC,点M是BC上的任意一点(不含端点B,C),连结AM,以AM为边作等腰△AMN,使顶角∠AMN=∠ABC.连结CN.试探究∠ABC与∠ACN 的数量关系,并说明理由.图45-4解:(1)证明:∵△ABC,△AMN是等边三角形,∴AB=AC,AM=AN,∠BAC=∠MAN=60°,∴∠BAM=∠CAN,∴△BAM≌△CAN(SAS),∴∠ABC=∠ACN;(2)结论∠ABC=∠ACN仍成立.理由:∵△ABC,△AMN是等边三角形,∴AB=AC,AM=AN,∠BAC=∠MAN=60°.∴∠BAM=∠CAN.∴△BAM≌△CAN;∴∠ABC=∠ACN;(3)∠ABC=∠ACN.理由:∵BA=BC,MA=MN,∠ABC=∠AMN,∴∠BAC=∠MAN,∴△ABC∽△AMN,∴ABAM=ACAN.∵∠BAM=∠BAC-∠MAC,∠CAN=∠MAN-∠MAC,∴∠BAM=∠CAN,∴△BAM∽△CAN,∴∠ABC=∠ACN.6.(15分)[2016·南充]如图45-5,点P是正方形ABCD内一点,点P到点A,B和D的距离分别为1,22,10.△ADP沿点A旋转至△ABP′,连结PP′,并延长AP与BC相交于点Q.(1)求证:△APP′是等腰直角三角形;(2)求∠BPQ 的大小; (3)求CQ 的长.图45-5 第6题答图解:(1)证明:因为△ABP ′是由△ABP 顺时针旋转90°得到, 则AP =AP ′,∠P AP ′=90°, ∴△APP ′是等腰直角三角形; (2)∵△APP ′是等腰直角三角形, ∴∠APP ′=45°,PP ′=2, 又∵BP ′=10,BP =22, ∴PP ′2+BP 2=BP ′2, ∴∠BPP ′=90°, ∵∠APP ′=45°,∴∠BPQ =180°-∠APP ′-∠BPP ′=45°;(3)过点B 作BE ⊥AQ 于点E ,则△PBE 为等腰直角三角形, ∴BE =PE ,BE 2+PE 2=PB 2, ∴BE =PE =2,∴AE =3,∴AB =AE 2+BE 2=13,则BC =13, ∵∠BAQ =∠EAB ,∠AEB =∠ABQ =90°, ∴△ABE ∽△AQB ,∴AE AB =AB AQ ,即313=13AQ ,∴AQ =133,∴BQ =AQ 2-AB 2=2313, ∴CQ =BC -BQ =133.(20分)7.(20分)[2017·娄底]如图45-6①,在△ABC 中,∠ACB =90°,AC =4 cm ,BC =3 cm ,如果点P 由点B 出发沿BA 的方向向点A 匀速运动,同时点Q 由点A 出发沿AC 方向向点C 匀速运动,它们速度均是1 cm/s ,连结PQ ,设运动时间为t (s)(0<t <4),解答下列问题:图45-6(1)设△APQ 的面积为S ,当t 为何值时,S 取得最大值?S 的最大值是多少?(2)如图②,连结PC ,将△PQC 沿QC 翻折,得到四边形PQP ′C ,当四边形PQP ′C 为菱形时,求t 的值;(3)当t 为何值时,△APQ 是等腰三角形?解:(1)由勾股定理,得AB =5; 由题意得BP =AQ =t ,AP =5-t . 如答图①过点P 作PD ⊥AC 于点D , 则△APD ∽△ABC ,∴PD 3=5-t 5,解得PD =3-35t , ∴S =12t ⎝ ⎛⎭⎪⎫3-35t =-310⎝ ⎛⎭⎪⎫t -522+158,∴当t =52时,S 取得最大值是158;第7题答图① 第7题答图②(2)连结PP ′交AC 于点D , ∵PQP ′C 是菱形,∴PP ′与QC 互相垂直平分,∴AD =t +4-t 2=t2+2, PD =3-35t ,AP =5-t .由勾股定理得⎝ ⎛⎭⎪⎫t 2+22+⎝ ⎛⎭⎪⎫3-35t 2=(5-t )2,解得t 1=2013,t 2=20(舍去);第7题答图③ 第7题答图④(3)△APQ 是等腰三角形,①当AP =AQ 时,t =5-t ,则t =52;②当P A =PQ 时,如答图③,作PE ⊥AC 于E , ∵cos ∠A =45,则AE =45(5-t ), 又∵AP =PQ ,∴AE =12AQ =t2,∴45(5-t )=t 2,∴t =4013;③当QA =QP 时,如答图④,作QF ⊥AB 于点F , ∴AF =45t ;∴85t =5-t ,∴t =2513.综上所述,当t =52或t =2513或t =4013时,△APQ 是等腰三角形.。
2018年全国各地中考数学模拟题分类53实验应用型问题(

53.实验应用型问题一、填空题1、(赵州二中九年七班模拟)用含30角的两块同样大小的直角三角板拼图形,下列五种图形:①平行四边形,②菱形,③矩形,④直角梯形,⑤等边三角形。
其中可以被拼成的图形是(只填正确答案的序号)。
答案:①③⑤二、解答题1.(2018年重庆江津区七校联考)我市某销售商2009年从果农处共收购并销售了100吨荔枝,平均收购价为6元/千克,平均售出价为7元/千克。
2018年适当提高了收购价,同时,为适应市场需求,用2009年销售荔枝赚得的年利润的50%作为投资,购买了一些荔枝精包装的加工设备和材料,荔枝精加工后,销售价提高部分没有超过原销售价的一半。
由于对荔枝的精选,2018年的购销量有所减少。
经过前期市场调查表明,同2009年相比,每吨平均收购价增加的百分数︰每吨平均销售价增加的百分数︰年购销量减少的百分数=2.5︰5︰1。
⑴该销售商2009年的年利润为多少?⑵若该销售商预计2018年所获的年利润,除收回购买荔枝精包装的加工设备和材料的投资外,还赚了22万元的利润,问2018年他们购销量减少的百分数为多少?答案:(1) (7-6)×100×1000=100000(元)(2) 设2018年购销量减少的百分数为,由题意得:化简:解得:(舍去) =10%∆折叠,使点A与点2.(2018年杭州市西湖区模拟)如图①,将一张直角三角形纸片ABC∆的对称轴EF∆为等腰三角形;再继续将纸片沿CBE C重合,这时DE为折痕,CBE折叠,这时得到了两个完全重合的矩形(其中一个是原直角三角形的内接矩形,另一个是拼合成的无缝隙、无重叠的矩形),我们称这样两个矩形为“叠加矩形”.B第23题图①图②图③(1)如图②,正方形网格中的ABC∆能折叠成“叠加矩形”吗?如果能,请在图②中画出折痕;(2)如图③,在正方形网格中,以给定的BC为一边,画出一个斜三角形ABC,使其顶点A在格点上,且ABC∆折成的“叠加矩形”为正方形;(3)若一个三角形所折成的“叠加矩形”为正方形,那么它必须满足的条件是什么?答案:(1)(2)…………4分…………8分图②图③(说明:只需画出折痕.)(说明:只需画出满足条件的一个三角形;答案不惟一,所画三角形的一边长与该边上的高相等即可.)(3)三角形的一边长与该边上的高相等的直角三角形或锐角三角形.……………10分3、(北京四中2018中考模拟14)如图是一个可折叠的钢丝床的示意图,这是展开后支撑起来放在地面上的情况,如果折叠起来,床头部分被折到床面之上了(这里的A、B、C、D各点都是活动的)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年中考数学总复习实验操作类问题专题综合训练题1.如图,将正方形纸片三次对折后,沿图中AB线剪掉一个等腰直角三角形,展开铺平得到的图形是( )2. 如图是甲、乙两张不同的矩形纸片,将它们分别沿着虚线剪开后,各自要拼一个与原来面积相等的正方形,则( )A.甲、乙都可以 B.甲、乙都不可以C.甲不可以、乙可以 D.甲可以、乙不可以3. 如图,在锐角三角形纸片ABC中,AC>BC,点D,E,F分别在边AB,BC,CA 上.(1)已知DE∥AC,DF∥BC.①判断:四边形DECF一定是什么形状?②裁剪:当AC=24 cm,BC=20 cm,∠ACB=45°时,请你探索:如何剪四边形DECF,能使它的面积最大,并证明你的结论;(2)折叠:请你只用两次折叠,确定四边形的顶点D,E,C,F,使它恰好为菱形,并说明你的折法和理由.4. 如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,点F在边AC上,并且CF =2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,求点P到边AB距离的最小值.5. 如图,已知AD∥BC,AB⊥BC,AB=3,点E为射线BC上一个动点,连结AE,将△ABE沿AE折叠,点B落在点B′处,过点B′作AD的垂线,分别交AD,BC 于点M,N.当点B′为线段MN的三等分点时,求BE的长.6. 手工课上,老师要求同学们将边长为4 cm的正方形纸片恰好剪成六个等腰直角三角形,聪明的你请在下列四个正方形中画出不同的剪裁线,并直接写出每种不同分割后得到的最小等腰直角三角形的面积.(注:不同的分法,面积可以相等)7. 在数学活动课上,老师要求学生在5×5的正方形ABCD网格中(小正方形的边长为1)画直角三角形,要求三个顶点都在格点上,而且三边与AB或AD都不平行.画四种图形,并直接写出其周长(所画图象相似的只算一种).8. 矩形纸片ABCD中,AB=5,AD=4.(1)如图1,能否在矩形纸片ABCD中裁剪出一个最大面积的正方形?若能,试求该面积,并说明理由;(2)用矩形纸片ABCD剪拼成一个面积最大的正方形.要求:在图2中画出裁剪线,以及拼成的正方形示意图,并且该正方形的顶点都在网格的格点上.9. 在一副直角三角板ABC和DEF中,∠BAC=90°,AB=AC=6,∠FDE=90°,DF=4,DE=4.将这副直角三角板按如图1所示位置摆放,点B与点F重合,直角边BA与FD在同一条直线上.现固定△ABC,将△DEF沿射线BA方向平行移动,当点F运动到点A时停止运动.(1)如图2,当△DEF运动到点D与点A重合时,设EF与BC交于点M,求∠EMC 的度数和BF的长;(2)如图3,在△DEF运动过程中,当EF经过点C时,求CF和BF的长;(3)在△DEF的运动过程中,设BF=x(x>0),两块三角板重叠部分的图形为三角形时,试求x的范围.10.将一副三角尺(在Rt△ACB中,∠ACB=90°,∠B=60°;在Rt△EDF中,∠EDF=90°,∠E=45°)如图摆放,点D为AB的中点,DE交AC于点P,DF经过点C.将△EDF绕点D顺时针方向旋转角α(0°<α<60°),DE′交AC于点M,DF′交BC于点N,求PMCN的值.11. 如图①,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.(1)操作发现:如图②,固定△ABC ,使△DEC 绕点C 旋转.当点D 恰好落在AB 边上时,填空: ①线段DE 与AC 的位置关系是 ;②设△BDC 的面积为S 1,△AEC 的面积为S 2,则S 1与S 2的数量关系是_ . (2)猜想论证:当△DEC 绕点C 旋转到图③所示的位置时,小明猜想(1)中S 1与S 2的数量关系仍然成立,并尝试分别作出了△BDC 和△AEC 中BC ,CE 边上的高,请你证明小明的猜想. (3)拓展探究:已知∠ABC =60°,点D 是其角平分线上一点,BD =CD =4,DE∥AB 交BC 于点E(如图④),若在射线BA 上存在点F ,使S △DCF =S △BDE ,请直接写出相应的BF 的长.12. 如图,在平行四边形ABCD 中,以点A 为圆心,AB 长为半径画弧交AD 于点F ,再分别以点B ,F 为圆心,大于12BF 长为半径画弧,两弧交于一点P ,连结AP并延长交BC于点E,连结EF.(1)四边形ABEF是________;(选填矩形、菱形、正方形、无法确定)(2)AE,BF相交于点O,若四边形ABEF的周长为40,BF=10,求AE的长,∠ABC 的度数.13. 动手实验:利用矩形纸片(图1)剪出一个正六边形纸片;利用这个正六边形纸片做一个如图2无盖的正六棱柱(棱柱底面为正六边形).(1)做一个这样的正六棱柱所需最小的矩形纸片的长与宽的比为多少?(2)在(1)的前提下,当矩形的长为2a时,要使无盖正六棱柱侧面积最大,正六棱柱的高为多少?并求此时矩形纸片的利用率.(矩形纸片的利用率=无盖正六棱柱的表面积÷矩形纸片的面积)参考答案:1. A 解析:根据题意直接动手操作得出,也可以将操作后的图形放到四个选项中去比较.2. A 解析:根据图形可得甲可以拼一个边长为2的正方形,图乙可以拼一个边长为5的正方形.3. 解:(1)①∵DE∥AC,DF ∥BC ,∴四边形DECF 是平行四边形 ②作AG⊥BC,交BC 于G ,交DF 于H ,∵∠ACB =45°,AC =24,∴AG =12×AC 2=122,设DF =EC =x ,平行四边形的高为h ,则AH =122-h ,∵DF ∥BC ,∴△ADF ∽△ABC ,∴DF BC =122-h 122,即x 20=122-h122,∴x =122-h 122×20,∵S =xh =h ·122-h 122×20=20h -526h 2,∴h =-b 2a =-202×-526=62,∴AH =122-62=62=12AG ,∴AF =FC ,∴在AC 中点处剪四边形DECF ,能使它的面积最大(2)先折∠ACB 的平分线(使CB 落在CA 上),压平,折线与AB 的交点为点D ,再折DC 的垂直平分线(使点C 与点D 重合),压平,折线与BC ,CA 的交点分别为点E ,F ,展平后四边形DECF 就是菱形.理由:对角线互相垂直平分的四边形是菱形解析:(1)②设DF =EC =x ,根据△ADF ∽△ABC 得出比例关系式,然后进行转换,即可得出平行四边形的高h 与x 之间的函数关系式,从而可得平行四边形的面积S 关于h 的二次函数表达式,就可求出S 最大时h 的值;(2)先折出∠ACB 的角平分线,再折出角平分线的垂直平分线,由对角线互相线垂直平分的四边形是菱形即可得出.4. 解:如图,延长FP 交AB 于M ,当FP⊥AB 时,点P 到AB 的距离最小.∵∠A =∠A,∠AMF =∠C=90°,∴△AFM ∽△ABC ,∴AF AB =FMBC ,∵CF =2,AC =6,BC=8,∴AF =4,AB =AB 2+BC 2=10,∴410=FM8,∴FM =3.2,∵PF =CF =2,∴PM =1.2,∴点P 到边AB 距离的最小值是1.25. 解:如图,由翻折的性质,得AB =AB′,BE =B′E,①当MB′=2,B ′N =1时,设EN =x ,得B′E=x 2+1, △B ′EN ∽△AB ′M ,EN B′M =B′E AB′,即x 2=x 2+13,x 2=45,BE =B′E=45+1=355; ②当MB′=1,B ′N =2时,设EN =x ,得B′E=x 2+22, △B ′EN ∽△AB ′M ,EN B′M =B′E AB′,即x 1=x 2+43,解得x 2=12,BE =B′E=12+4=322,则BE 的长为322或3556.解:(1)第一种情况下,分割后得到的最小等腰直角三角形是△AEH,△BEF,△CFG,△DHG,每个最小的等腰直角三角形的面积是(4÷2)×(4÷2)÷2=2×2÷2=2(cm2)(2)第二种情况下,分割后得到的最小等腰直角三角形是△AEO,△BEO,△BFO,△CFO,每个最小的等腰直角三角形的面积是(4÷2)×(4÷2)÷2=2×2÷2=2(cm2)(3)第三种情况下,分割后得到的最小等腰直角三角形是△AHO,△DHO,△BFO,△CFO,每个最小的等腰直角三角形的面积是(4÷2)×(4÷2)÷2=2×2÷2=2(cm2)(4)第四种情况下,分割后得到的最小等腰直角三角形是△AEI,△OEI,每个最小的等腰直角三角形的面积是(4÷2)×(4÷2)÷2÷2=2×2÷2÷2=1(cm2)解析:按等腰直角三角形的特点进行分割、连结对角线,连结对边中点都可以得到等腰直角三角形.7.解:如图1,三角形的周长=25+10;如图2,三角形的周长=42+25;如图3,三角形的周长=52+34;如图4,三角形的周长=32+108. 解:(1)能.要在矩形纸片ABCD中裁剪出的一个正方形面积最大,则所裁剪的正方形的边长最大只能等于原长方形的宽,即4,所以最大面积是16 (2)由剪拼前后所得正方形的面积和原长方形的面积相等可知,剪拼成的面积最大的正方形的边长是4×5=25,所以先将长方形的长边分为4和1两部分,然后将4×4的大正方形部分剪成4个斜边为25的直角三角形,将1×4的长方形剪成4个边长为1的小正方形,具体剪拼方法如下图:9. 解:(1)三角板ABC 中,∠BAC =90°,AB =AC ,∴∠B =∠ACB=45°,∠E =30°,∠EMC =15°. 三角板DEF 中,∠FDE =90°,DF =4,BF =AB -DF =2 (2)由平移可知:∠ACF=∠E=30°.在Rt △ACF 中,cos ∠ACF =AC CF ,tan ∠ACF =AFAC ,∴CF =AC cos ∠ACF =6cos30°=43,AF =AC·tan ∠ACF =6×tan30°=23,∴BF =AB -AF =6-2 3 (3)如图,x 的范围是6-23≤x <6解析:(1)利用三角形的外角性质或者三角形的内角和即可求得答案;(2)解直角三角形AFC 即可;(3)操作后观察图形,需要分类讨论. 10. 解:3311. (1) DE ∥AC S 1=S 2解:(1)①由旋转可知AC =DC ,∵∠C =90°,∠B =∠E=30°, ∴∠BAC =∠CDE=60°,∴△ADC 是等边三角形,∴∠ACD =60°, 又∵∠CDE=60°,∴DE ∥AC ②过D 作DN⊥AC 交AC 于点N , 过E 作EM⊥AC 交AC 延长线于M ,过C 作CF⊥AB 交AB 于点F. 由①可知:△ADC 是等边三角形,DE ∥AC ,∴DN =CF ,DN =EM , ∴CF =EM ,∵∠ACB =90°,∠B =30°,∴AB =2AC , 又∵AD=AC ,∴BD =AC ,∵S 1=12 CF·BD,S 2=12AC·EM,∴S 1=S 2(2) ∵∠DCE=∠ACB=90°,∴∠DCM +∠ACE=180°,∵∠ACN +∠ACE=180°,∴∠ACN =∠DCM, 又∵∠CNA=∠CMD=90°,AC =CD ,∴△ANC ≌△DMC ,∴AN =DM ,又∵CE=CB ,∴S 1=S 2 (3) 作DF 1∥BC 交BA 于点F 1,作DF 2⊥BD 交BA 于点F 2.按照(1)(2)求解的方法可以计算出BF 1=433,BF 2=83312. 解:(1)菱形 (2)103,120° 13. 解:(1)2∶ 3(2)设高为x ,S =-43x 2+6ax ,当x =34a 时, S =334a 2,此时,底面积=338a 2,334a 2+338a 2=938a 2,利用率=916。