2018年中考数学专题训练 专题一 几何题型(中点m型)(无答案)
2018年浙江中考数学复习方法技巧专题一:数形结合思想训练(含答案)

方法技巧专题一 数形结合思想训练数形结合思想是指从几何直观的角度,利用几何图形的性质研究数量关系,寻求代数问题的解决方法(以形助数),或利用数量关系来研究几何图形的性质解决几何问题(以数助形)的一种数学思想.一、选择题1.我们学习了一次函数、二次函数和反比例函数,回顾学习过程,都是按照列表、描点、连线得到函数的图象,然后根据函数的图象研究函数的性质,这种研究方法主要体现的数学思想是( )A .演绎B .数形结合C .抽象D .公理化2.若实数a ,b ,c 在数轴上对应的点如图F 1-1所示,则下列式子中正确的是( )图F 1-1A .ac >bcB .|a -b |=a -bC .-a <-b <-cD .-a -c >-b -c3.[2017·怀化] 一次函数y =-2x +m 的图象经过点P (-2,3),且与x 轴、y 轴分别交于点A 、B ,则△AOB 的面积是( )A .12 B.14C .4D .8 4.[2017·聊城] 端午节前夕,在东昌湖举行的第七届全民健身运动会龙舟比赛中,甲、乙两队500米的赛道上,所划行的路程y (m )与时间x (min)之间的函数关系式如图F 1-2所示,下列说法错误的是( )图F 1-2A .乙队比甲队提前0.25 min 到达终点B .当乙队划行110 m 时,落后甲队15 mC .0.5 min 后,乙队比甲队每分钟快40 mD .自1.5 min 开始,甲队若要与乙队同时到达终点,甲队的速度需提高到255 m /min5.[2016·天津] 已知二次函数y =(x -h )2+1(h 为常数),在自变量x 的值满足1≤x ≤3的情况下,与其对应的函数值y 的最小值为5,则h 的值为( )A .1或-5B .-1或5C .1或-3D .1或36.[2017·鄂州 ] 如图F 1-3,抛物线y =ax 2+bx +c 的图象交x 轴于A (-2,0)和点B ,交y 轴负半轴于点C ,且OB =O C.下列结论:①2b -c =2;②a =12;③ac =b -1;④a +bc>0.其中正确的个数有( )图F 1-3A .1个B .2个C .3个D .4个 二、填空题7.如图F 1-4是由四张全等的矩形纸片拼成的图形,请利用图中空白部分面积的不同表示方法,写出一个关于a ,b 的恒等式:________.图F 1-48.[2017·十堰] 如图F 1-5,直线y =kx 和y =ax +4交于A (1,k ),则不等式kx -6<ax +4<kx 的解集为________.图F 1-59.《庄子·天下篇》中写道:“一尺之棰,日取其半,万世不竭”意思是:一根一尺的木棍,如果每天截取它的一半,永远也取不完,如图F 1-6所示.由图易得:12+122+123+…+12n =________.图F 1-610.当x =m 或x =n (m ≠n )时,代数式x 2-2x +3的值相等,则x =m +n 时,代数式x 2-2x +3的值为________. 11.已知实数a 、b 满足:a 2+1=1a ,b 2+1=1b ,则2018|a -b |=________.12.[2017·荆州] 观察下列图形:图F 1-7它们是按一定规律排列的,依照此规律,第9个图形中共有________个点. 13.(1)观察下列图形与等式的关系,并填空:图F 1-8(2)观察图F 1-9,根据(1)中结论,计算图中黑球的个数,用含有n 的代数式填空:图F 1-91+3+5+…+(2n -1)+(________)+(2n -1)+…+5+3+1=__________. 三、解答题14.[2016·菏泽] 如图F 1-10,在平面直角坐标系xOy 中,抛物线y =ax 2+bx +2过B (-2,6),C (2,2)两点. (1)试求抛物线的解析式;(2)记抛物线顶点为D ,求△BCD 的面积;(3)若直线y =-12x 向上平移b 个单位所得的直线与抛物线段BDC (包括端点B 、C )部分有两个交点,求b 的取值范围.图F 1-10参考答案1.B 2.D 3.B 4.D5.B [解析] (1)如图①,当x =3,y 取得最小值时,⎩⎪⎨⎪⎧h >3,(3-h )2+1=5,解得h =5(h =1舍去);(2)如图②,当x =1,y 取得最小值时,⎩⎪⎨⎪⎧h <1,(1-h )2+1=5,解得h =-1(h =3舍去). 6.C [解析] 在y =ax 2+bx +c 中,当x =0时,y =c ,∴C (0,c ),∴OC =-c .∵OB =OC ,∴B (-c ,0).∵A (-2,0),∴-c 、-2是一元二次方程ax 2+bx +c =0的两个不相等的实数根,∴-c ·(-2)=c a ,∵c ≠0,∴a =12,②正确;∵a =12,-c 、-2是一元二次方程12x 2+bx +c =0的两个不相等的实数根,∴-c +(-2)=-b12,即2b -c =2,①正确;把B (-c ,0)代入y =ax 2+bx +c ,得0=a (-c )2+b ·(-c )+c ,即ac 2-bc +c =0.∵c ≠0,∴ac -b +1=0,∴ac =b -1,③正确;∵抛物线开口向上,∴a >0.∵抛物线的对称轴在y 轴左侧,∴-b2a <0,∴b >0.∴a +b >0.∵抛物线与y 轴负半轴交于点C ,∴c <0.∴a +bc<0,④不正确. 7.(a -b )2=(a +b )2-4ab8.1<x <52 [解析] 将A (1,k )代入y =ax +4得a +4=k ,将a +4=k 代入不等式kx -6<ax +4<kx 中得(a +4)x -6<ax +4<(a +4)x ,解不等式(a +4)x -6<ax +4得x <52,解不等式ax +4<(a +4)x 得x >1,所以不等式的解集是1<x <52.9.1-12n (或2n-12n )10.3 11.112.135 [解析] 第1个图形有3=3×1=3个点; 第2个图形有3+6=3×(1+2)=9个点; 第3个图形有3+6+9=3×(1+2+3)=18个点; …第n 个图形有3+6+9+…+3n =3×(1+2+3+…+n )=3n (n +1)2个点.当n =9时, =135个点. 13.解:(1)1+3+5+7=16=42.观察,发现规律,第一个图形:1+3=22,第二个图形:1+3+5=32,第三个图形:1+3+5+7=42,…, 第(n -1)个图形:1+3+5+…+(2n -1)=n 2. 故答案为:42;n 2. (2)观察图形发现:图中黑球可分三部分,1到n 行,第(n +1)行,(n +2)行到(2n +1)行, 即1+3+5+…+(2n -1)+[2(n +1)-1]+(2n -1)+…+5+3+1 =[1+3+5+…+(2n -1)]+(2n +1)+[(2n -1)+…+5+3+1] =n 2+2n +1+n 2 =2n 2+2n +1.故答案为:2n +1;2n 2+2n +1.14.解:(1)由题意,得⎩⎪⎨⎪⎧4a -2b +2=6,4a +2b +2=2,解得⎩⎪⎨⎪⎧a =12,b =-1.∴抛物线的解析式为y =12x 2-x +2.(2)如图,∵y =12x 2-x +2=12(x -1)2+32,∴抛物线的顶点坐标是(1,32).由B (-2,6)和C (2,2)求得直线BC 的解析式为y =-x +4. ∴对称轴与直线BC 的交点是H (1,3). ∴DH =32.∴S △BDC =S △BDH +S △CDH =12×32×3+12×32×1=3.(3)如图.①由⎩⎪⎨⎪⎧y =-12x +b ,y =12x 2-x +2消去y ,得x 2-x +4-2b =0.当Δ=0时,直线与抛物线只有一个公共点,∴(-1)2-4(4-2b )=0,解得b =158.②当直线y =-12x +b 经过点C 时,b =3.③当直线y =-12x +b 经过点B 时,b =5.综上,可知158<b ≤3.。
2018年贵州省中考数学压轴题汇编解析:几何综合 (1)

2018年全国各地中考数学压轴题汇编(贵州专版)几何综合参考答案与试题解析一.选择题(共6小题)1.(2018•贵阳)如图,在菱形ABCD中,E是AC的中点,EF∥CB,交AB于点F,如果EF=3,那么菱形ABCD的周长为( )A.24B.18C.12D.9解:∵E是AC中点,∵EF∥BC,交AB于点F,∴EF是△ABC的中位线,∴EF=BC,∴BC=6,∴菱形ABCD的周长是4×6=24.故选:A.2.(2018•遵义)如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于E、F,连接PB、PD.若AE=2,PF=8.则图中阴影部分的面积为( )A.10B.12C.16D.18解:作PM⊥AD于M,交BC于N.则有四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形,∴S△ADC=S△ABC,S△AMP=S△AEP,S△PBE=S△PBN,S△PFD=S△PDM,S△PFC=S△PCN,∴S△DFP=S△PBE=×2×8=8,∴S阴=8+8=16,故选:C.3.(2018•贵阳)如图,A、B、C是小正方形的顶点,且每个小正方形的边长为1,则tan∠BAC的值为( )A.B.1C.D.解:连接BC,由网格可得AB=BC=,AC=,即AB2+BC2=AC2,∴△ABC为等腰直角三角形,∴∠BAC=45°,则tan∠BAC=1,故选:B.4.(2018•遵义)如图,四边形ABCD中,AD∥BC,∠ABC=90°,AB=5,BC=10,连接AC、BD,以BD为直径的圆交AC于点E.若DE=3,则AD的长为( )A.5B.4C.3D.2解:如图,在Rt△ABC中,AB=5,BC=10,∴AC=5过点D作DF⊥AC于F,∴∠AFD=∠CBA,∵AD∥BC,∴∠DAF=∠ACB,∴△ADF∽△CAB,∴,∴,设DF=x,则AD=x,在Rt△ABD中,BD==,∵∠DEF=∠DBA,∠DFE=∠DAB=90°,∴△DEF∽△DBA,∴,∴,∴x=2,∴AD=x=2,故选:D.5.(2018•安顺)已知⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=8cm,则AC的长为( )A.2cm B.4cm C.2cm或4cm D.2cm或4cm 解:连接AC,AO,∵⊙O的直径CD=10cm,AB⊥CD,AB=8cm,∴AM=AB=×8=4cm,OD=OC=5cm,当C点位置如图1所示时,∵OA=5cm,AM=4cm,CD⊥AB,∴OM===3cm,∴CM=OC+OM=5+3=8cm,∴AC===4cm;当C点位置如图2所示时,同理可得OM=3cm,∵OC=5cm,∴MC=5﹣3=2cm,在Rt△AMC中,AC===2cm.故选:C.6.(2018•铜仁市)在同一平面内,设a、b、c是三条互相平行的直线,已知a与b的距离为4cm,b与c的距离为1cm,则a与c的距离为( )A.1cm B.3cm C.5cm或3cm D.1cm或3cm解:当直线c在a、b之间时,∵a、b、c是三条平行直线,而a与b的距离为4cm,b与c的距离为1cm,∴a与c的距离=4﹣1=3(cm);当直线c不在a、b之间时,∵a、b、c是三条平行直线,而a与b的距离为4cm,b与c的距离为1cm,∴a与c的距离=4+1=5(cm),综上所述,a与c的距离为3cm或3cm.故选:C.二.填空题(共8小题)7.(2018•贵阳)如图,点M、N分别是正五边形ABCDE的两边AB、BC上的点.且AM=BN,点O是正五边形的中心,则∠MON的度数是 72 度.解:连接OA、OB、OC,∠AOB==72°,∵∠AOB=∠BOC,OA=OB,OB=OC,∴∠OAB=∠OBC,在△AOM和△BON中,∴△AOM≌△BON,∴∠BON=∠AOM,∴∠MON=∠AOB=72°,故答案为:72.8.(2018•遵义)如图,△ABC中.点D在BC边上,BD=AD=AC,E为CD的中点.若∠CAE=16°,则∠B为 37 度.解:∵AD=AC,点E是CD中点,∴AE⊥CD,∴∠AEC=90°,∴∠C=90°﹣∠CAE=74°,∵AD=AC,∴∠ADC=∠C=74°,∵AD=BD,∴2∠B=∠ADC=74°,∴∠B=37°,故答案为37°.9.(2018•贵阳)如图,在△ABC中,BC=6,BC边上的高为4,在△ABC的内部作一个矩形EFGH,使EF在BC边上,另外两个顶点分别在AB、AC边上,则对角线EG长的最小值为 .解:如图,作AQ⊥BC于点Q,交DG于点P,∵四边形DEFG是矩形,∴AQ⊥DG,GF=PQ,设GF=PQ=x,则AP=4﹣x,由DG∥BC知△ADG∽△ABC,∴=,即=,则EF=DG=(4﹣x),∴EG====,∴当x=时,EG取得最小值,最小值为,故答案为:.10.(2018•遵义)如图,在菱形ABCD中,∠ABC=120°,将菱形折叠,使点A恰好落在对角线BD上的点G处(不与B、D重合),折痕为EF,若DG=2,BG=6,则BE的长为 2.8 .解:作EH⊥BD于H,由折叠的性质可知,EG=EA,由题意得,BD=DG+BG=8,∵四边形ABCD是菱形,∴AD=AB,∠ABD=∠CBD=∠ABC=60°,∴△ABD为等边三角形,∴AB=BD=8,设BE=x,则EG=AE=8﹣x,在Rt△EHB中,BH=x,EH=x,在Rt△EHG中,EG2=EH2+GH2,即(8﹣x)2=(x)2+(6﹣x)2,解得,x=2.8,即BE=2.8,故答案为:2.8.11.(2018•安顺)如图,C为半圆内一点,O为圆心,直径AB长为2cm,∠BOC=60°,∠BCO=90°,将△BOC绕圆心O逆时针旋转至△B′OC′,点C′在OA上,则边BC扫过区域(图中阴影部分)的面积为 π cm2.(结果保留π)解:∵∠BOC=60°,△B′OC′是△BOC绕圆心O逆时针旋转得到的,∴∠B′OC′=60°,△BCO=△B′C′O,∴∠B′OC=60°,∠C′B′O=30°,∴∠B′OB=120°,∵AB=2cm,∴OB=1cm,OC′=,∴B′C′=,∴S扇形B′OB==π,S扇形C′OC==,∵∴阴影部分面积=S扇形B′OB+S△B′C′O﹣S△BCO﹣S扇形C′OC=S扇形B′OB﹣S扇形C′OC=π﹣=π;故答案为:π.12.(2018•黔西南州)已知一个菱形的边长为2,较长的对角线长为2,则这个菱形的面积是 2 .解:依照题意画出图形,如图所示.在Rt△AOB中,AB=2,OB=,∴OA==1,∴AC=2OA=2,∴S菱形ABCD=AC•BD=×2×2=2.故答案为:2.13.(2018•铜仁市)在直角三角形ABC中,∠ACB=90°,D、E是边AB上两点,且CE所在直线垂直平分线段AD,CD平分∠BCE,BC=2,则AB= 4 .解:∵CE所在直线垂直平分线段AD,∴CE平分∠ACD,∴∠ACE=∠DCE.∵CD平分∠BCE,∴∠DCE=∠DCB.∵∠ACB=90°,∴∠ACE=∠ACB=30°,∴∠A=60°,∴AB===4.故答案为:4.14.(2018•黔西南州)如图,已知在△ABC中,BC边上的高AD与AC边上的高BE交于点F,且∠BAC=45°,BD=6,CD=4,则△ABC的面积为 60 .解:∵AD⊥BC,BE⊥AC,∴∠AEF=∠BEC=∠BDF=90°,∵∠BAC=45°,∴AE=EB,∵∠EAF+∠C=90°,∠CBE+∠C=90°,∴∠EAF=∠CBE,∴△AEF≌△BEC,∴AF=BC=10,设DF=x.∵△ADC∽△BDF,∴=,∴=,整理得x2+10x﹣24=0,解得x=2或﹣12(舍弃),∴AD=AF+DF=12,∴S△ABC=•BC•AD=×10×12=60.故答案为60.三.解答题(共9小题)15.(2018•贵阳)如图,在平行四边形ABCD中,AE是BC边上的高,点F是DE的中点,AB与AG关于AE对称,AE与AF关于AG对称.(1)求证:△AEF是等边三角形;(2)若AB=2,求△AFD的面积.解:(1)∵AB与AG关于AE对称,∴AE⊥BC,∵四边形ABCD是平行四边形,∴AD∥BC,∴AE⊥AD,即∠DAE=90°,∵点F是DE的中点,即AF是Rt△ADE的中线,∴AF=EF=DF,∵AE与AF关于AG对称,∴AE=AF,则AE=AF=EF,∴△AEF是等边三角形;(2)记AG、EF交点为H,∵△AEF是等边三角形,且AE与AF关于AG对称,∴∠EAG=30°,AG⊥EF,∵AB与AG关于AE对称,∴∠BAE=∠GAE=30°,∠AEB=90°,∵AB=2,∴BE=1、DF=AF=AE=,则EH=AE=、AH=,∴S△ADF=××=.16.(2018•遵义)如图,正方形ABCD的对角线交于点O,点E、F分别在AB、BC上(AE<BE),且∠EOF=90°,OE、DA的延长线交于点M,OF、AB的延长线交于点N,连接MN.(1)求证:OM=ON.(2)若正方形ABCD的边长为4,E为OM的中点,求MN的长.解:(1)∵四边形ABCD是正方形,∴OA=OB,∠DAO=45°,∠OBA=45°,∴∠OAM=∠OBN=135°,∵∠EOF=90°,∠AOB=90°,∴∠AOM=∠BON,∴△OAM≌△OBN(ASA),∴OM=ON;(2)如图,过点O作OH⊥AD于点H,∵正方形的边长为4,∴OH=HA=2,∵E为OM的中点,∴HM=4,则OM==2,∴MN=OM=2. 17.(2018•贵阳)如图,AB为⊙O的直径,且AB=4,点C在半圆上,OC⊥AB,垂足为点O,P为半圆上任意一点,过P点作PE⊥OC于点E,设△OPE的内心为M,连接OM、PM.(1)求∠OMP的度数;(2)当点P在半圆上从点B运动到点A时,求内心M所经过的路径长.解:(1)∵△OPE的内心为M,∴∠MOP=∠MOC,∠MPO=∠MPE,∴∠PMO=180°﹣∠MPO﹣∠MOP=180°﹣(∠EOP+∠OPE),∵PE⊥OC,即∠PEO=90°,∴∠PMO=180°﹣(∠EOP+∠OPE)=180°﹣(180°﹣90°)=135°,(2)如图,∵OP=OC,OM=OM,而∠MOP=∠MOC,∴△OPM≌△OCM,∴∠CMO=∠PMO=135°,所以点M在以OC为弦,并且所对的圆周角为135°的两段劣弧上(和);点M在扇形BOC内时,过C、M、O三点作⊙O′,连O′C,O′O,在优弧CO取点D,连DA,DO,∵∠CMO=135°,∴∠CDO=180°﹣135°=45°,∴∠CO′O=90°,而OA=2cm,∴O′O=OC=×2=,∴弧OMC的长==π(cm),同理:点M在扇形AOC内时,同①的方法得,弧ONC的长为πcm,所以内心M所经过的路径长为2×π=πcm.18.(2018•遵义)如图,AB是半圆O的直径,C是AB延长线上的点,AC的垂直平分线交半圆于点D,交AC于点E,连接DA,DC.已知半圆O的半径为3,BC=2.(1)求AD的长.(2)点P是线段AC上一动点,连接DP,作∠DPF=∠DAC,PF交线段CD于点F.当△DPF为等腰三角形时,求AP的长.解:(1)如图1,连接OD,∵OA=OD=3,BC=2,∴AC=8,∵DE是AC的垂直平分线,∴AE=AC=4,∴OE=AE﹣OA=1,在Rt△ODE中,DE==2;在Rt△ADE中,AD==2;(2)当DP=DF时,如图2,点P与A重合,F与C重合,则AP=0;当DP=PF时,如图4,∴∠CDP=∠PFD,∵DE是AC的垂直平分线,∠DPF=∠DAC,∴∠DPF=∠C,∵∠PDF=∠CDP,∴△PDF∽△CDP,∴∠DFP=∠DPC,∴∠CDP=∠CPD,∴CP=CD,∴AP=AC﹣CP=AC﹣CD=AC﹣AD=8﹣2;当PF=DF时,如图3,∴∠FDP=∠FPD,∵∠DPF=∠DAC=∠C,∴△DAC∽△PDC,∴,∴,∴AP=5,即:当△DPF是等腰三角形时,AP的长为0或5或8﹣2.19.(2018•安顺)如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A 作BC的平行线交BE的延长线于点F,连接CF.(1)求证:AF=DC;(2)若AC⊥AB,试判断四边形ADCF的形状,并证明你的结论.(1)证明:连接DF,∵E为AD的中点,∴AE=DE,∵AF∥BC,∴∠AFE=∠DBE,在△AFE和△DBE中,,∴△AFE≌△DBE(AAS),∴EF=BE,∵AE=DE,∴四边形AFDB是平行四边形,∴BD=AF,∵AD为中线,∴DC=BD,∴AF=DC;(2)四边形ADCF的形状是菱形,理由如下:∵AF=DC,AF∥BC,∴四边形ADCF是平行四边形,∵∴∵AD为中线∴AD=BC=DC,∴平行四边形ADCF是菱形;20.(2018•铜仁市)如图,在三角形ABC中,AB=6,AC=BC=5,以BC为直径作⊙O 交AB于点D,交AC于点G,直线DF是⊙O的切线,D为切点,交CB的延长线于点E.(1)求证:DF⊥AC;(2)求tan∠E的值.(1)证明:如图,连接OC,∵BC是⊙O的直径,∴∠BDC=90°,∴CD⊥AB,∵AC=BC,∴AD=BD,∵OB=OC,∴OD是△ABC的中位线∴OD∥AC,∵DF为⊙O的切线,∴OD⊥DF,∴DF⊥AC;(2)解:如图,连接BG,∵BC是⊙O的直径,∴∠BGC=90°,∵∠EFC=90°=∠BGC,∴EF∥BG,∴∠CBG=∠E,Rt△BDC中,∵BD=3,BC=5,∴CD=4,S△ABC=,6×4=5BG,BG=,由勾股定理得:CG==,∴tan∠CBG=tan∠E===.21.(2018•安顺)如图,在△ABC中,AB=AC,O为BC的中点,AC与半圆O相切于点D.(1)求证:AB是半圆O所在圆的切线;(2)若cos∠ABC=,AB=12,求半圆O所在圆的半径.解:(1)如图,作OE⊥AB于E,连接OD,OA,∵AB=AC,点O是BC的中点,∴∠CAO=∠BAO,∵AC与半圆O相切于D,∴OD⊥AC,∵OE⊥AB,∴OD=OE,∵AB径半圆O的半径的外端点,∴AB是半圆O所在圆的切线;(2)∵AB=AC,O是BC的中点,∴AO⊥BC,在Rt△AOB中,OB=AB•cos∠ABC=12×=8,根据勾股定理得,OA==4,由三角形的面积得,S△AOB=AB•OE=OB•OA,∴OE==,即:半圆O所在圆的半径为.22.(2018•贵阳)如图,在矩形ABCD中,AB═2,AD=,P是BC边上的一点,且BP=2CP.(1)用尺规在图①中作出CD边上的中点E,连接AE、BE(保留作图痕迹,不写作法);(2)如图②,在(1)的条件下,判断EB是否平分∠AEC,并说明理由;(3)如图③,在(2)的条件下,连接EP并廷长交AB的廷长线于点F,连接AP,不添加辅助线,△PFB能否由都经过P点的两次变换与△PAE组成一个等腰三角形?如果能,说明理由,并写出两种方法(指出对称轴、旋转中心、旋转方向和平移距离)解:(1)依题意作出图形如图①所示,(2)EB是平分∠AEC,理由:∵四边形ABCD是矩形,∴∠C=∠D=90°,CD=AB=2,BC=AD=,∵点E是CD的中点,∴DE=CE=CD=1,在△ADE和△BCE中,,∴△ADE≌△BCE,∴∠AED=∠BEC,在Rt△ADE中,AD=,DE=1,∴tan∠AED==,∴∠AED=60°,∴∠BCE=∠AED=60°,∴∠AEB=180°﹣∠AED﹣∠BEC=60°=∠BEC,∴BE平分∠AEC;(3)∵BP=2CP,BC=,∴CP=,BP=,在Rt△CEP中,tan∠CEP==,∴∠CEP=30°,∴∠BEP=30°,∴∠AEP=90°,∵CD∥AB,∴∠F=∠CEP=30°,在Rt△ABP中,tan∠BAP==,∴∠PAB=30°,∴∠EAP=30°=∠F=∠PAB,∵CB⊥AF,∴AP=FP,∴△AEP≌△FBP,∴△PFB能由都经过P点的两次变换与△PAE组成一个等腰三角形,变换的方法为:将△BPF绕点B顺时针旋转120°和△EPA重合,①沿PF折叠,②沿AE 折叠.23.(2018•黔西南州)如图1,已知矩形AOCB,AB=6cm,BC=16cm,动点P从点A出发,以3cm/s的速度向点O运动,直到点O为止;动点Q同时从点C出发,以2cm/s 的速度向点B运动,与点P同时结束运动.(1)点P到达终点O的运动时间是 s,此时点Q的运动距离是 cm;(2)当运动时间为2s时,P、Q两点的距离为 6 cm;(3)请你计算出发多久时,点P和点Q之间的距离是10cm;(4)如图2,以点O为坐标原点,OC所在直线为x轴,OA所在直线为y轴,1cm长为单位长度建立平面直角坐标系,连结AC,与PQ相交于点D,若双曲线y=过点D,问k的值是否会变化?若会变化,说明理由;若不会变化,请求出k的值.解:(1)∵四边形AOCB是矩形,∴OA=BC=16,∵动点P从点A出发,以3cm/s的速度向点O运动,∴,此时,点Q的运动距离是cm(2)如图1,由运动知,AP=3×2=6cm,CQ=2×2=4cm,过点P作PE⊥BC于E,过点Q作QF⊥OA于F,∴四边形APEB是矩形,∴PE=AB=6,BE=6,∴EQ=BC﹣BE﹣CQ=16﹣6﹣4=6,根据勾股定理得,PQ=6,故答案为6;(3)设运动时间为t秒时,由运动知,AP=3t,CQ=2t,同(2)的方法得,PE=6,EQ=16﹣3t﹣2t=16﹣5t,∵点P和点Q之间的距离是10cm,∴62+(16﹣5t)2=100,∴t=或t=;(4)k的值是不会变化,理由:∵四边形AOCB是矩形,∴OC=AB=6,OA=16,∴C(6,0),A(0,16),∴直线AC的解析式为y=﹣x+16①,设运动时间为t,∴AP=3t,CQ=2t,∴OP=16﹣3t,∴P(0,16﹣3t),Q(6,2t),∴PQ解析式为y=x+16﹣3t②,联立①②得,﹣x+16=x+16﹣3t,∴x+x=3t,∴5tx﹣16x+16x=3t,∴x=,∴y=,∴D(,)∴k=×=是定值.。
2018年广州中考数学一模几何综合压轴题专题汇编

2018一模几何综合题汇编例题分析例题1、(18真光一模)已知,在矩形ABCD 中,AB =a ,BC =b ,动点M 从点A 出发沿边AD 向点D 运动. (1)如图1,当b =2a ,点M 运动到边AD 的中点时,请证明∠BMC =90°;(2)如图2,当b >2a 时,点M 在运动的过程中,是否存在∠BMC =90°,若存在,请给与证明;若不存在,请说明理由;(3)如图3,当b <2a 时,(2)中的结论是否仍然成立?请说明理由.例题2、(18增城一模)如图所示,在边长为2的正方形ABCD 中,以点D 为圆心,DC 为半径作⌒AC ,点E 在AB 上,且与A ,B 两点均不重合,点M 在AD 上,且ME =MD ,过点E 作EF ⊥ME ,交BC 于点F ,连接DE ,MF .(1)求证:EF 是⌒AC所在的⊙ D 的切线; (2)当MA =34时,求MF 的长;(3)试探究:△MFE 能否是等腰直角三角形?若是,请直接写出MF 的长度;若不能,请说明理由.例题3、(18越秀外国语一模)如图,在平面直角坐标系中,O为原点,四边形ABCO是矩形,点A,C的坐标分别是A(0,2)和C(2,0),点D是对角线AC上一动点(不与A,C重合),连结BD,作DE⊥DB,交x轴于点E,以线段DE,DB为邻边作矩形BDEF.(1)填空:点B的坐标为;(2)是否存在这样的点D,使得△DEC是等腰三角形?若存在,请求出AD的长度;若不存在,请说明理由;(3)①求证:=;②设AD=x,矩形BDEF的面积为y,求y关于x的函数关系式(可利用①的结论),并求出y 的最小值.例题4、(18培正一模)在□ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F.(1)在图1中证明CE=CF;(2)若∠ABC=90°,G是EF的中点(如图2),直接写出∠BDG的度数;(3)若∠ABC=120°,FG∥CE,FG=CE,分别连接DB、DG(如图3),求∠BDG的度数.例题5(18天河一模)如图1,在半径为2的扇形AOB中,∠AOB等于90°,点C是⌒AB上的一个动点(不与点A、B重合)OD⊥BC,OE⊥AC,垂足分别为点D,点E.(1)当BC=2时,求线段OD的长及⌒BC;(2)在点C的运动过程中,△DOE中是否存在长度保持不变的边或度数保持不变的角?如果存在,请指出并求其长度或度数(只求一种即可);如果不存在,请说明理由;(3)作DF⊥OE于点F(如图2),当DF2+EF=y,BD=x,求y关于x的函数关系式,并求出DF2+EF的最大值.例题6、如图,等腰△ABC中,AC=BC,点O在A B边上,以O为圆心的圆与AC相切于点C,交AB边于点D,EF为⊙O的直径,EF⊥BC于点G.(1)求证:D是弧EC的中点;(2)如图2,延长CB交⊙O于点H,连接HD交OE于点K,连接CF,求证:CF=OK+DO;(3)如图3,在(2)的条件下,延长DB交⊙O于点Q,连接QH,若DO=256,KG=2,求QH.强化训练1、(18天河一模)我们把两条中线互相垂直的三角形称为“中垂三角形”,例如图1,图2,图3中,AF,BE是△ABC的中线,AF⊥BE,垂足为P.像△AB C这样的三角形均为“中垂三角形”.设BC=a,AC=b,AB=c.特例探索(1)如图1,当∠ABE=45°,c=4时,a=,b=;如图2,当∠ABE=30°,c=4时,a=,b=;归纳证明(2)请你观察(1)中的计算结果,猜想a2,b2,c2三者之间的关系,用等式表示出来,并利用图3证明你发现的关系式;拓展应用(3)如图4,在平行四边形ABCD中,点E,F,G分别是AD,BC,CD的中点,BE⊥EG,AD=25,AB=3.求AF的长.2、(18三中一模)如图,C为∠AOB的边OA上一点,OC=6,N为边OB上异于点O的一动点,P是线段CN上一点,过点P分别作PQ∥OA交OB于点Q,PM∥OB交OA于点M.(1)若∠AOB=60°,OM=4,OQ=1,求证:CN⊥OB.(2)当点N在边OB上运动时,四边形OMPQ始终保持为菱形.①问:﹣的值是否发生变化?如果变化,求出其取值范围;如果不变,请说明理由.②设菱形OMPQ的面积为S1,△NOC的面积为S2,求的取值范围.3、(18培正一模)定义:有一组邻边相等,并且它们的夹角是直角的凸四边形叫做等腰直角四边形.(1) 如图1 ,等腰直角四边形ABCD,AB = BC ,ABC = 90゜,①若AB = CD = 1 , AB∥CD ,求对角线BD的长;②若AC⊥BD ,求证:AD = CD .(2) 如图2,在矩形ABCD中,AB = 5 , BC = 9 ,点P是对角线BD上一点,且BP = 2PD ,过点P作直线分别交边AD,BC于点E,F,使四边形ABFE是等腰直角四边形,求AE的长.4(18越秀外国语一模)如图,已知⊙O的直径AB=14,弦BC=10,点D为弧AC的中点,过点D作DE ⊥BC,交BC延长线于点E.(1)求证:DE是⊙O的切线;(2)求BE的长.5、(18荔湾区一模)如图,在矩形ABCD中,∠CAB=30°,BC=43cm,将△ABC沿AC边翻折,使点B到点B’,AB’与DC相交于点O.(1)求证:△ADC≌△ABC;(2)点P(不与点A重合)时线段AB’上一动点,沿射线AB’的方向以2cm/s的速度匀速运动,请你求出△APC的面积S与运动时间t之间的函数关系式,并写出自变量t的取值范围;(3)在(2)中,以AP、BP、BC的长为边能否构成直角三角形?若能,求出点P的位置;若不能,请说明理由.6、(18汇景一模).在平行四边形ABCD中,点E,F分别在边AD,AB上(均不与顶点重合),且∠BCD=120°,∠ECF=60°.(1)如图1,若AB=AD,求证:△AEC≌△BFC;(2)如图2,若AB=2AD,过点C作CM⊥AB于点M,求证:①AC⊥BC;②AE=2FM;(3)如图3,若AB=3AD,试探究线段CE与线段CF的数量关系.课后训练1、(18华侨一模)1如图,已知线段AB=2,MN⊥AB于点M,且AM=BM,P是射线MN上一动点,E,D 分别是P A、PB的中点,过点A、M、D的圆与BP的另一交点C(点C在线段BD上),连结AC,DE(1)当∠APB=28°时,求∠B和⌒CM的度数;(2)求证:AC=AB(3)在点P的运动过程中①当MP=4时,取四边形ACDE一边的两端点和线段MP上一点Q,若以这三点为顶点的三角形是直角三角形,且Q为锐角顶点,求所有满足条件的MQ的值;②记AP与圆的另一个交点为F,将点F绕点D旋转90°得到点G,当点G恰好落在MN上时,连结AG、CG、DG、EG,直接写出△ACG与△DEG的面积之比.2、(18海珠区一模).如图,在菱形OABC 中,已知点B (8,4),C (5,0),点D 为OB 、AC 交点,点P 从原点出发向x 轴正方向运动;(1)在点P 运动过程中,若∠OPB =90°,求出点P 坐标; (2)在点P 运动过程中,若∠PDC +∠BCP =90°,求出点P 坐标;(3)点P 在(2)的位置时停止运动,点M 从点P 出发沿x 轴正方向运动,连接BM ,若点P 关于BM 的对称点P ’到AB 所在的直线的距离为2,求此时点M 的坐标.3、(18广雅一模) 如图,在△ABC 中,AB =AC =5,cos B =45,点P 为边BC 上一动点,过点P 作射线PE 交射线BA 于点D ,∠BPD =∠BAC ,以点P 为圆心,PC 长为半径作⊙P 交射线PD 于点E ,连接CE ,设BD =x ,CE =y .(1)当⊙P 与AB 相切时,求⊙P 的半径;(2)当点D 在BA 的延长线上时,求y 关于x 的函数解析式,并写出x 的取值范围;(3)在CE 的垂直平分线上存在一点O ,使得OB =OC ,连接OP ,当OP =54时,求AD 的长.4、(18广大附中一模)如图,矩形ABCD 的边AB =3cm ,AD =4cm ,点E 从点A 出发,沿射线AD 移动,以CE 为直径作圆O ,点F 为圆O 与射线BD 的公共点,连接EF ,CF ,过点E 作EG ⊥EF ,EG 与圆O 相交于点G ,连接CG .(1)试说明四边形EFCG是矩形;(2)当圆O与射线BD相切时,点E停止移动,在点E移动的过程中,矩形EFCG的面积是否存在最大值或最小值?若存在,求出这个最大值或最小值;若不存在,说明理由;求点G移动路线的长.图(a)图(b)6(18聚贤一模)在锐角△ABC中,AB=4,BC=5,∠ACB=45°,将△ABC绕点B按逆时针方向旋转,得到△A1BC1.(1)如图1,当点C1在线段CA的延长线上时,求∠CC1A1的度数;(2)如图2,连接AA1,CC1,若△ABA1的面积为4,求△CBC1的面积;(3)如图3,点E为线段AB中点,点P是线段AC上的动点,在△ABC绕点B按逆时针方向旋转过程中,点P的对应点是点P1,求线段EP1长度的最大值与最小值.7(一八年16中一模)已知菱形ABCD的边长为1.∠ADC=60°,等边△AEF两边分别交边DC,CB于点E,F.(1)特殊发现:如图1,若点E,F分别是边DC,CB的中点.求证:菱形ABCD对角线AC,BD交点O 即为等边△AEF的外心;(2)若点E,F始终分别在边DC,CB上移动.记等边△AEF的外心为点P.①猜想验证:如图2.猜想△AEF的外心P落在哪一直线上,并加以证明;②拓展运用:如图3,当△AEF面积最小时,过点P任作一直线分别交边DA于点M,交边DC的延长线于点N,试判断1DM+1DN是否为定值?若是,请求出该定值;若不是,请说明理由.8(18三中一模)如图,在平面直角坐标系x O y中,边长为2的等边△OAB的顶点B再第一象限,顶点A在x轴的正半轴上,另一等腰△OCA的顶点C在第四象限,OC=AC,∠C=120°.现有两动点P、Q分别从A、O两点同时出发,点Q以每秒1个单位的速度沿OC向点C运动,点P以每秒3个单位的速度沿A→O→B运动,当其中一个点到达终点时,另一个点也随即停止.(1)求在运动过程中形成的△OPQ的面积S与运动时间t之间的函数关系,并写出自变量t的取值范围;(2)在等边△OAB的边上(点A除外)存在点D,使得△OCD为等腰三角形.请直接写出符合条件的点D的坐标;(3)如图(2),现有∠MCN=60°,其两边分别为OB、AB交于点M、N,连接MN,将∠MCN绕着点C旋转(0°<旋转角<60°),使得M、N始终在边OB和边AB上,试判断在这一过程中,△BMN的周长是否发生变化?若没变化,请求出其周长;如发生变化,请说明理由.9(18番禺一模)如图,△OAB中,OA=OB=5,∠AOB=80°,以点O为圆心,3为半径的优弧分别交OA,OB于点M,N.(1)点P在右半弧上(∠BOP是锐角),将OP绕点O逆时针旋转80°得OP′.求证:AP=BP′;(2)点T在左半弧上,若AT与弧相切,求点T到OA的距离;(3)设点Q在优弧上,当△AOQ的面积最大时,直接写出∠BOQ的度数.。
中考数学平面几何压轴(三角形与四边形)训练15题(精选无答案)

中考平面几何压轴(三角形与四边形)训练15题(精选)1.如图,四边形ABCD 是平行四边形,且对角线AC , BD 交于点O ,点M , N 分别在AD , BC 上,且AM = CN ,点E ,F 分别是BD 与AN ,CM 的交点.(1)求证:OE = OF ;(2)连接BM 交AC 于点H ,连接HE ,HF ;(i)如图2,若HE ∥AB ,求证: FH ∥AD ;(ii)如图3,若四边形ABCD 为菱形且DM = 2AM ,∠EHF=60°,求AC BD 的值.2.(1)如图①,在矩形ABCD 的AB 边上取一点E ,将ΔADE 沿DE 翻折,使点A 落在BC 上的A′处,若AB =6,BC =10,求AEEB 的值;(2)如图②,在矩形ABCD 的BC 上取一点E ,将四边形ABED 沿DE 翻折,使点B 落在DC 的延长线上B′处,若BC ·CE =24,AB =6,求BE 的值;(3)如图③,在ΔABC 中,∠BAC =45°,AD ⊥BC ,垂足为点D ,AD =10,AE =6,过点E 作EF ⊥AD 交AC 于点F ,连接DF ,且满足∠DFE =2∠DAC ,直接写出BD+53EF 的值.3. 在正方形ABCD 中,AB =10, AC 是对角线,点O 是AC 的中点,点E 在AC 上,连接DE ,点C 关于DE 的对称点是C',连接DC' ,EC'.(1) 如图1,若DC'经过点O ,求证:OC ′CE = √22. (2) 如图2,连接CC',BC',若∠ADC' = 2∠CBC',求CC'的长;(3) 当点B , C', E 三点共线时,直接写出CE 的长.4.如图,正方形ABCD中,点M在边BC上,点E是AM的中点,连接ED,EC.(1)求证:ED= EC;(2)将BE绕点E逆时针旋转,使点B的对应点B′落在AC上,连接MB′.当点M在边BC上运动时(点M不与B,C 重合),判断△CMB′的形状,并说明理由.(3)在(2)的条件下,已知AB= 1,当∠DEB′=45°时,求BM的长.5.如图,在正方形ABCD中,点M、N在直线BD上,连接AM,AN并延长交BC、CD于点E、F,连接EN.(1)如图1,若M,N都在线段BD上,且AN = NE,求∠MAN;(2)如图2.当点M在线段DB 延长线上时,AN = NE,(1)中∠MAN的度数不变,判断BM,DN,MN之间的数量关系并证明;(3)如图3,若点M在DB的延长线上,N在BD的延长线上,且∠MAN=135°(i)AB=√6,MB=√3,求DN.(ii)求证:2AM2 - MB 2= MN2 - BN2.6.如图,在RtΔABC与RtΔBDE中,∠BAC=∠BDE=90°,∠ABC=∠DBE=α.(1)如图1,当α= 60°,且点E为BC的中点时,若AB=2,连接AD.求AD的长度;(2)如图2,若α≠ 60°,且点E为BC中点时,取CE中点F,连接AF、DF。
2018年全国各省市中考数学几何压轴题

海璧:2018全国中考几何压轴题【2018安徽】图1,Rt△ABC中,∠ACB=90°,点D为边AC上一点,DE⊥AB于点E,点M为BD中点,CM 的延长线交AB于点F.(1)求证:CM=EM(2)若∠BAC=50°,求∠EMF的大小(3)如图2,若△DAE≌△CEM,点N为CM的中点,求证:AN∥EM【2018福建】如图1,四边形ABCD内接于⊙O,AC为直径,DE⊥AB交AB于点E,交⊙O于点F.(1)延长DC、FB相交于点P,求证:PB=PC(2) 如图2,过点B作BG⊥AD于点G,交DE于H.若AB=3,DH=1,∠OHD=80°,求∠EDB 的度数.【2018兰州】如图AB为⊙O的直径,C为⊙O上一点,D为BA延长线上一点,∠ACD=∠B. (1)求证:DC为⊙O的切线(2)线段DF分别交AC、BC于点E、F且∠CEF=45°,⊙O的半径为5,sinB=35,求CF的长.【2018定西】点O是△ABC的边AB上一点,⊙O与边AC相切于点E,与边BC,AB分别相交于点D,F,且DE=EF.(1)求证:∠C=90°(2)当BC=3,sinA=时,求AF的长.【2018广州】在四边形ABCD中,∠B=60°,∠D=30°,AB=BC.(2)连接BD,探究AD,BD,CD三者之间的数量关系,并说明理由;(3)若AB=1,点E在四边形ABCD内部运动,且满足AE2=BE2+CE2,求点E运动路径的长度.【2018深圳】如图9,⊙O是ABC=,2BC=,cos ABC∆的外接圆,AB AC∠=。
点D为AC上的动点,连接AD并延长,交BC的延长线于点E.(1)试求AB的长(2)试判断AD AE的值是否为定值?若为定值,请求出这个定值,若不为定值,请说明理由(3)如图10,连接BD,过点A作AH⊥BD于点H,连接CD,求证:BH CD DH=+【2018贵阳】如图,在矩形ABCD中,AB═2,AD=,P是BC边上的一点,且BP=2CP.(2)如图②,在(1)的条体下,判断EB是否平分∠AEC,并说明理由(3)如图③,在(2)的条件下,连接EP并廷长交AB的廷长线于点F,连接AP,不添加辅助线,△PFB能否由都经过P点的两次变换与△PAE组成一个等腰三角形?如果能,说明理由,并写出两种方法(指出对称轴、旋转中心、旋转方向和平移距离)【2018安顺】在△ABC中,AB=AC,O为BC的中点,AC与半圆O相切于点D.(1)求证:AB是半圆O所在圆的切线(2)若cos∠ABC=,AB=12,求半圆O所在圆的半径【2018铜仁】在三角形ABC中,AB=6,AC=BC=5,以BC为直径作⊙O交AB于点D,交AC于点G,直线DF是⊙O的切线,D为切点,交CB的延长线于点E.(1)求证:DF⊥AC(2)求tan∠E的值【2018遵义】AB是半圆O的直径,C是AB延长线上的点,AC的垂直平分线交半圆于点D,交AC于点E,连接DA,DC.已知半圆O的半径为3,BC=2.(1)求AD的长(2)点P是线段AC上一动点,连接DP,作∠DPF=∠DAC,PF交线段CD于点F.当△DPF为等腰三角形时,求AP的长【2018海南】已知,如图1,在▱ABCD 中,点E 是AB 中点,连接DE 并延长,交CB 的延长线于点F .(1)求证:△ADE ≌△BFE(2)如图2,点G 是边BC 上任意一点(点G 不与点B 、C 重合),连接AG 交DF 于点H ,连接HC ,过点A 作AK ∥HC ,交DF 于点K①求证:HC=2AK②当点G 是边BC 中点时,恰有HD=n •HK (n 为正整数),求n 的值【2018河北】如图15,点A 在数轴上对应的数为26,以原点O 为圆心,OA 为半径作优弧AB ,使点B 在O 右下方,且34tan =∠AOB ,在优弧AB 上任取一点P ,且能过P 作直线l ∥OB 交数轴于点Q ,设Q 在数轴上对应的数为x ,连接OP(1)若优弧AB 上一段AP⌒ 的长为π13,求∠AOP 的度数及x 的值 (2)求x 的最小值,并指出此时直线l 与AB 所在圆的位置关系(3)若线段PQ 的长为12.5,直接写出这时x 的值【2018大庆】AB 是⊙O 的直径,点E 为线段OB 上一点(不与O ,B 重合),作EC ⊥OB ,交⊙O 于点C ,作直径CD ,过点C 的切线交DB 的延长线于点P ,作AF ⊥PC 于点F ,连接CB .(1)求证:AC 平分∠FAB(2)求证:BC 2=CE •CP(3)当AB=43且CP CF =43时,求劣弧的长度【2018哈尔滨】已知:⊙O 是正方形ABCD 的外接圆,点E 在上,连接BE 、DE ,点F 在上连接BF 、DF ,BF 与DE 、DA 分别交于点G 、点H ,且DA 平分∠EDF .(1)如图1,求证:∠CBE=∠DHG(2)如图2,在线段AH 上取一点N (点N 不与点A 、点H 重合),连接BN 交DE 于点L ,过点H 作HK ∥BN 交DE 于点K ,过点E 作EP ⊥BN ,垂足为点P ,当BP=HF 时,求证:BE=HK(3)如图3,在(2)的条件下,当3HF=2DF 时,延长EP 交⊙O 于点R ,连接BR ,若△BER 的面积与△DHK 的面积的差为47,求线段BR 的长【2018黄石】在△ABC中,E、F分别为线段AB、AC上的点(不与A、B、C重合).(1)如图1,若EF∥BC,求证:(2)如图2,若EF不与BC平行,(1)中的结论是否仍然成立?请说明理由(3)如图3,若EF上一点G恰为△ABC的重心,,求的值【2018荆门】AB为⊙O的直径,C为⊙O上一点,经过点C的切线交AB的延长线于点E,AD⊥EC交EC的延长线于点D,AD交⊙O于F,FM⊥AB于H,分别交⊙O、AC于M、N,连接MB,BC.(1)求证:AC平分∠DAE(2)若cosM=,BE=1,①求⊙O的半径;②求FN的长【2018武汉】在△ABC 中,∠ABC =90°、(1) 如图1,分别过A 、C 两点作经过点B 的直线的垂线,垂足分别为M 、N ,求证:△ABM ∽△BCN(2) 如图2,P 是边BC 上一点,∠BAP =∠C ,tan ∠PAC =552,求tanC 的值 (3) 如图3,D 是边CA 延长线上一点,AE =AB ,∠DEB =90°,sin ∠BAC =53,52 AC AD ,直接写出tan ∠CEB 的值【2018天门】问题:如图①,在Rt △ABC 中,AB=AC ,D 为BC 边上一点(不与点B ,C 重合),将线段AD 绕点A 逆时针旋转90°得到AE ,连接EC ,则线段BC ,DC ,EC 之间满足的等量关系式为 ;探索:如图②,在Rt △ABC 与Rt △ADE 中,AB=AC ,AD=AE ,将△ADE 绕点A 旋转,使点D 落在BC 边上,试探索线段AD ,BD ,CD 之间满足的等量关系,并证明你的结论应用:如图③,在四边形ABCD 中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD 的长【2018孝感】如图,△ABC 中,AB=AC ,以AB 为直径的⊙O 交BC 于点D ,交AC 于点E ,过点D 作DF ⊥AC 于点F ,交AB 的延长线于点G .(1)求证:DF 是⊙O 的切线(2)已知BD=2 ,CF=2,求AE 和BG 的长【2018十堰】已知正方形ABCD 与正方形CEFG ,M 是AF 的中点,连接DM ,EM .(1)如图1,点E 在CD 上,点G 在BC 的延长线上,请判断DM ,EM 的数量关系与位置关系,并直接写出结论;(2)如图2,点E 在DC 的延长线上,点G 在BC 上,(1)中结论是否仍然成立?请证明你的结论;(3)将图1中的正方形CEFG 绕点C 旋转,使D ,E ,F 三点在一条直线上,若13AB =,5CE =,请画出图形,并直接写出MF 的长.【2018宜昌】在矩形ABCD中,AB=12,P是边AB上一点,把ΔPBC沿直线PC折叠,顶点B的对应点是点G,过点B作BE⊥CG,垂足为E且在AD上,BE交PC于点F.(1)如图1,若点E是AD的中心,求证:ΔAEB≌ΔDEC(2)如图2,①求证:BP=BF②当AD=25,且AE<DE时,求cos∠PCB的值③当BP=9时,求BE·EF的值【2018长沙】在∆ABC 中,AD 是边B C 上的中线,∠BAD =∠CAD ,CE//AD ,CE 交B A 的延长线于点E,BC =8,AD =3.(1)求CE的长(2)求证:∆ABC为等腰三角形(3)求∆ABC的外接圆圆心P与内切圆圆心Q之间的距离【2018常德】已知正方形ABCD中AC与BD交于O点,点M在线段BD上,作直线AM交直线DC于E,过D 作DH⊥AE于H,设直线DH交AC于N.(1)如图1,当M在线段BO上时,求证:MO=NO;(2)如图2,当M在线段OD上,连接NE,当EN∥BD时,求证:BM=AB;(3)在图3,当M在线段OD上,连接NE,当NE⊥EC时,求证:AN2=NC•AC.【2018郴州】在矩形ABCD中,AD>AB,点P是CD边上的任意一点(不含C,D两端点),过点P作PF∥BC,交对角线BD于点F.(1)如图1,将△PDF沿对角线BD翻折得到△QDF,QF交AD于点E求证:△DEF是等腰三角形(2)如图2,将△PDF绕点D逆时针方向旋转得到△P'DF',连接P'C,F'B.设旋转角为α(0°<α<180°)①若0°<α<∠BDC,即DF'在∠BDC的内部时,求证:△DP'C∽△DF'B②如图3,若点P是CD的中点,△DF'B能否为直角三角形?如果能,试求出此时tan∠DBF'的值,如果不能,请说明理由【2018衡阳】在Rt△ABC中,∠C=90°,AC=BC=4cm,动点P从点C出发以1cm/s的速度沿CA匀速运动,同时动点Q从点A出发以cm/s的速度沿AB匀速运动,当点P到达点A时,点P、Q同时停止运动,设运动时间为t(s).(1)当t为何值时,点B在线段PQ的垂直平分线上?(2)是否存在某一时刻t,使△APQ是以PQ为腰的等腰三角形?若存在,求出t的值;若不存在,请说明理由;(3)以PC为边,往CB方向作正方形CPMN,设四边形QNCP的面积为S,求S关于t的函数关系式.【2018娄底】C、D是以AB为直径的⊙O上的点,=,弦CD交AB于点E.(1)当PB是⊙O的切线时,求证:∠PBD=∠DAB(2)求证:BC2﹣CE2=CE•DE(3)已知OA=4,E是半径OA的中点,求线段DE的长【2018湘潭】AB是以O为圆心的半圆的直径,半径CO⊥AO,点M是上的动点,且不与点A、C、B重合,直线AM交直线OC于点D,连结OM与CM.(1)若半圆的半径为10①当∠AOM=60°时,求DM的长②当AM=12时,求DM的长(2)探究:在点M运动的过程中,∠DMC的大小是否为定值?若是,求出该定值;若不是,请说明理由【2018永州】如图1,在△ABC中,矩形EFGH的一边EF在AB上,顶点G、H分别在BC、AC上,CD是边AB 上的高,CD交GH于点I.若CI=4,HI=3,AD=.矩形DFGI恰好为正方形.(1)求正方形DFGI的边长(2)如图2,延长AB至P.使得AC=CP,将矩形EFGH沿BP的方向向右平移,当点G刚好落在CP上时,试判断移动后的矩形与△CBP重叠部分的形状是三角形还是四边形,为什么?(3)如图3,连接DG,将正方形DFGI绕点D顺时针旋转一定的角度得到正方形DF′G′I′,正方形DF′G′I′分别与线段DG、DB相交于点M,N,求△MNG′的周长【2018岳阳】已知在Rt △ABC 中,∠BAC=90°,CD 为∠ACB 的平分线,将∠ACB 沿CD 所在的直线对折,使点B 落在点B ′处,连结AB',BB',延长CD 交BB'于点E ,设∠ABC=2α(0°<α<45°).(1)如图1,若AB=AC ,求证:CD=2BE(2)如图2,若AB ≠AC ,试求CD 与BE 的数量关系(用含α的式子表示)(3)如图3,将(2)中的线段BC 绕点C 逆时针旋转角(α+45°),得到线段FC ,连结EF 交BC 于点O ,设△COE 的面积为S 1,△COF 的面积为S 2,求(用含α的式子表示)【2018株洲】已知AB 为⊙O 的直径,AB=8,点C 和点D 是⊙O 上关于直线AB 对称的两个点,连接OC 、AC ,且∠BOC <90°,直线BC 和直线AD 相交于点E ,过点C 作直线CG 与线段AB 的延长线相交于点F ,与直线AD 相交于点G ,且∠GAF =∠GCE(1)求证:直线CG 为⊙O 的切线(2)若点H 为线段OB 上一点,连接CH ,满足CB =CH①△CBH ∽△OBC②求OH +HC 的最大值A【2018益阳】如图1,矩形ABCD中,E是AD的中点,以点E直角顶点的直角三角形EFG的两边EF,EG分别过点B,C,∠F=30°.(1)求证:BE=CE(2)将△EFG绕点E按顺时针方向旋转,当旋转到EF与AD重合时停止转动。
2018年中考数学压轴题汇编几何综合1

2018年中考数学压轴题汇编几何综合1 2018年全国各地中考数学压轴题汇编(广西专版)几何综合参考答案与试题解析一.选择题(共8小题)1.(2018•广西)如图,分别以等边三角形ABC的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB=2,则莱洛三角形的面积(即阴影部分面积)为()A.B.C.2D.2解:过A作AD⊥BC于D,∵△ABC是等边三角形,∴AB=AC=BC=2,∠BAC=∠ABC=∠ACB=60°,∵AD⊥BC,∴BD=CD=1,AD=BD=,∴△ABC的面积为=,S扇形BAC==π,∴莱洛三角形的面积S=3×π﹣2×=2π﹣2,故选:D.2.(2018•桂林)如图,在正方形ABCD中,AB=3,点M在CD的边上,且DM=1,△AEM与△ADM关于AM所在的直线对称,将△ADM按顺时针方向绕点A旋转90°得到△ABF,连接EF,则线段EF的长为()A.3 B.C.D.解:如图,连接BM.∵△AEM与△ADM关于AM所在的直线对称,∴AE=AD,∠MAD=∠MAE.∵△ADM按照顺时针方向绕点A旋转90°得到△ABF,∴AF=AM,∠FAB=∠MAD.∴∠FAB=∠MAE∴∠FAB+∠BAE=∠BAE+∠MAE.∴∠FAE=∠MAB.∴△FAE≌△MAB(SAS).∴EF=BM.∵四边形ABCD是正方形,∴BC=CD=AB=3.∵DM=1,∴CM=2.∴在Rt△BCM中,BM==,∴EF=,故选:C.解法二:如图,过E作HG∥AD,交AB于H,交CD于G,作EN⊥BC于N,则∠AHG=∠MGE=90°,由折叠可得,∠AEM=∠D=90°,AE=AD=3,DM=EM=1,∴∠AEH+∠MEG=EMG+∠MEG=90°,∴∠AEH=∠EMG,∴△AEH∽△EMG,∴==,设MG=x,则EH=3x,DG=1+x=AH,∴Rt△AEH中,(1+x)2+(3x)2=32,解得x1=,x2=﹣1(舍去),∴EH==BN,CG=CM﹣MG==EN,又∵BF=DM=1,∴FN=,∴Rt△AEN中,EF==,故选:C.3.(2018•广西)如图,矩形纸片ABCD,AB=4,BC=3,点P在BC边上,将△CDP沿DP折叠,点C落在点E处,PE、DE分别交AB于点O、F,且OP=OF,则cos∠ADF的值为()A.B.C.D.解:根据折叠,可知:△DCP≌△DEP,∴DC=DE=4,CP=EP.在△OEF和△OBP中,,∴△OEF≌△OBP(AAS),∴OE=OB,EF=BP.设EF=x,则BP=x,DF=DE﹣EF=4﹣x,又∵BF=OB+OF=OE+OP=PE=PC,PC=BC﹣BP=3﹣x,∴AF=AB﹣BF=1+x.在Rt△DAF中,AF2+AD2=DF2,即(1+x)2+32=(4﹣x)2,解得:x=,∴DF=4﹣x=,∴cos∠ADF==.故选:C.4.(2018•贵港)如图,在△ABC中,EF∥BC,AB=3AE,若S四边形BCFE=16,则S△ABC=()A.16 B.18 C.20 D.24解:∵EF∥BC,∴△AEF∽△ABC,∵AB=3AE,∴AE:AB=1:3,∴S△AEF :S△ABC=1:9,设S△AEF=x,∵S四边形BCFE=16,∴=,解得:x=2,∴S△ABC=18,故选:B.5.(2018•梧州)如图,AG:GD=4:1,BD:DC=2:3,则AE:EC的值是()A.3:2 B.4:3 C.6:5 D.8:5解:过点D作DF∥CA交BE于F,如图,∵DF∥CE,∴=,而BD:DC=2:3,∴=,则CE=DF,∵DF∥AE,∴=,∵AG:GD=4:1,∴=,则AE=4DF,∴==.故选:D.6.(2018•贵港)如图,在菱形ABCD中,AC=6,BD=6,E是BC边的中点,P,M分别是AC,AB上的动点,连接PE,PM,则PE+PM的最小值是()A.6 B.3C.2D.4.5解:如图,作点E关于AC的对称点E′,过点E′作E′M⊥AB于点M,交AC于点P,则点P、M即为使PE+PM取得最小值,其PE+PM=PE′+PM=E′M,∵四边形ABCD是菱形,∴点E′在CD上,∵AC=6,BD=6,∴AB==3,=AC•BD=AB•E′M得×6×6=3•E′M,由S菱形ABCD解得:E′M=2,即PE+PM的最小值是2,故选:C.7.(2018•玉林)如图,∠AOB=60°,OA=OB,动点C从点O出发,沿射线OB 方向移动,以AC为边在右侧作等边△ACD,连接BD,则BD所在直线与OA所在直线的位置关系是()A.平行B.相交C.垂直D.平行、相交或垂直解:∵∠AOB=60°,OA=OB,∴△OAB是等边三角形,∴OA=AB,∠OAB=∠ABO=60°①当点C在线段OB上时,如图1,∵△ACD是等边三角形,∴AC=AD,∠CAD=60°,∴∠OAC=∠BAD,在△AOC和△ABD中,,∴△AOC≌△ABD,∴∠ABD=∠AOC=60°,∴∠DBE=180°﹣∠ABO﹣∠ABD=60°=∠AOB,∴BD∥OA,②当点C在OB的延长线上时,如图2,同①的方法得出OA∥BD,∵△ACD是等边三角形,∴AC=AD,∠CAD=60°,∴∠OAC=∠BAD,在△AOC和△ABD中,,∴△AOC≌△ABD,∴∠ABD=∠AOC=60°,∴∠DBE=180°﹣∠ABO﹣∠ABD=60°=∠AOB,∴BD∥OA,故选:A.8.(2018•贺州)如图,AB是⊙O的直径,且经过弦CD的中点H,已知sin∠CDB=,BD=5,则AH的长为()A.B.C.D.解:连接OD,如图所示:∵AB是⊙O的直径,且经过弦CD的中点H,∴AB⊥CD,∴∠OHD=∠BHD=90°,∵sin∠CDB=,BD=5,∴BH=4,∴DH==4,设OH=x,则OD=OB=x+3,在Rt△ODH中,由勾股定理得:x2+42=(x+3)2,解得:x=,∴OH=;∴AH=OA+OH=,故选:B.二.填空题(共9小题)9.(2018•柳州)如图,在Rt△ABC中,∠BCA=90°,∠DCA=30°,AC=,AD=,则BC的长为2.解:过A作AE⊥CD,交CD的延长线于E,过D作DF⊥BC于F,Rt△AEC中,∠ACD=30°,AC=,∴AE=,CE=,Rt△AED中,ED===,∴CD=CE﹣DE=﹣=,∵DF⊥BC,AC⊥BC,∴DF∥AC,∴∠FDC=∠ACD=30°,∴CF=CD=,∴DF=,∵DF∥AC,∴△BFD∽△BCA,∴,∴=,∴BC=2,故答案为:2.10.(2018•贵港)如图,将矩形ABCD折叠,折痕为EF,BC的对应边B'C′与CD 交于点M,若∠B′MD=50°,则∠BEF的度数为70°.解:∵∠C'=∠C=90°,∠DMB'=∠C'MF=50°,∴∠C'FM=40°,设∠BEF=α,则∠EFC=180°﹣α,∠DFE=∠BEF=α,∠C'FE=40°+α,由折叠可得,∠EFC=∠EFC',∴180°﹣α=40°+α,∴α=70°,∴∠BEF=70°,故答案为:70°.11.(2018•梧州)如图,点C为Rt△ACB与Rt△DCE的公共点,∠ACB=∠DCE=90°,连接AD、BE,过点C作CF⊥AD于点F,延长FC交BE于点G.若AC=BC=25,CE=15,DC=20,则的值为.解:如图,过E作EH⊥GF于H,过B作BP⊥GF于P,则∠EHG=∠BPG=90°,又∵∠EGH=∠BGP,∴△EHG∽△BPG,∴=,∵CF⊥AD,∴∠DFC=∠AFC=90°,∴∠DFC=∠CHF,∠AFC=∠CPB,又∵∠ACB=∠DCE=90°,∴∠CDF=∠ECH,∠FAC=∠PCB,∴△DCF∽△CEH,△ACF∽△CBP,∴==,==1,∴EH=CF,BP=CF,∴=,∴=,故答案为:.12.(2018•玉林)小华为了求出一个圆盘的半径,他用所学的知识,将一宽度为2cm的刻度尺的一边与圆盘相切,另一边与圆盘边缘两个交点处的读数分别是“4”和“16”(单位:cm),请你帮小华算出圆盘的半径是10cm.解:如图,记圆的圆心为O,连接OB,OC交AB于D,∴OC⊥AB,BD=AB,由图知,AB=16﹣4=12cm,CD=2cm,∴BD=6,设圆的半径为r,则OD=r﹣2,OB=r,在Rt△BOD中,根据勾股定理得,OB2=AD2+OD2,∴r2=36+(r﹣2)2,∴r=10cm,故答案为10.13.(2018•贵港)如图,在Rt△ABC中,∠ACB=90°,AB=4,BC=2,将△ABC 绕点B顺时针方向旋转到△A′BC′的位置,此时点A′恰好在CB的延长线上,则图中阴影部分的面积为4π(结果保留π).解:∵△ABC中,∠ACB=90°,AB=4,BC=2,∴∠BAC=30°,∠ABC=60°,AC=2.∵将△ABC绕点B顺时针方向旋转到△A′BC′的位置,此时点A′恰好在CB的延长线上,∴△ABC≌△A′BC′,∴∠ABA′=120°=∠CBC′,∴S阴影=S扇形ABA′+S△ABC﹣S扇形CBC′﹣S△A′BC′=S扇形ABA′﹣S扇形CBC′=﹣=﹣=4π.故答案为4π.14.(2018•玉林)如图,在四边形ABCD中,∠B=∠D=90°,∠A=60°,AB=4,则AD的取值范围是2<AD<8.解:如图,延长BC交AD的延长线于E,作BF⊥AD于F.在Rt△ABE中,∵∠E=30°,AB=4,∴AE=2AB=8,在Rt△ABF中,AF=AB=2,∴AD的取值范围为2<AD<8,故答案为2<AD<8.15.(2018•贺州)如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连接BB',若∠A′B′B=20°,则∠A的度数是65°.解:∵Rt△ABC绕直角顶点C顺时针旋转90°得到△A′B′C,∴BC=B′C,∴△BCB′是等腰直角三角形,∴∠CBB′=45°,∴∠B′A′C=∠A′B′B+∠CBB′=20°+45°=65°,由旋转的性质得∠A=∠B′A′C=65°.故答案为:65°.16.(2018•玉林)如图,正六边形ABCDEF的边长是6+4,点O1,O2分别是△ABF,△CDE的内心,则O1O2=12+4.解:过A作AM⊥BF于M,连接O1F、O1A、O1B,∵六边形ABCDEF是正六边形,∴∠A==120°,AF=AB,∴∠AFB=∠ABF=(180°﹣120°)=30°,∴△AFB边BF上的高AM=AF=(6+4)=3+2,FM=BM=AM=3+6,∴BF=3+6+3+6=12+6,设△AFB的内切圆的半径为r,=S+S+S,∵S△AFB∴×(3+2)×(3+6)=×r+×r+×(12+6)×r,解得:r=3,即O1M=r=3,∴O1O2=2×3+6+4=12+4,故答案为:12+4.17.(2018•贺州)如图,正方形ABCD的边长为12,点E在边AB上,BE=8,过点E作EF∥BC,分别交BD、CD于G、F两点.若点P、Q分别为DG、CE的中点,则PQ的长为2.解:作QM⊥EF于点M,作PN⊥EF于点N,作QH⊥PN交PN的延长线于点H,如右图所示,∵正方形ABCD的边长为12,BE=8,EF∥BC,点P、Q分别为DG、CE的中点,∴DF=4,CF=8,EF=12,∴MQ=4,PN=2,MF=6,∵QM⊥EF,PN⊥EF,BE=8,DF=4,∴△EGB∽△FGD,∴,即,解得,FG=4,∴FN=2,∴MN=6﹣2=4,∴QH=4,∵PH=PN+QM,∴PH=6,∴PQ==,故答案为:2.三.解答题(共11小题)18.(2018•广西)如图,在▱ABCD中,AE⊥BC,AF⊥CD,垂足分别为E,F,且BE=DF.(1)求证:▱ABCD是菱形;(2)若AB=5,AC=6,求▱ABCD的面积.(1)证明:∵四边形ABCD是平行四边形,∴∠B=∠D,∵AE⊥BC,AF⊥CD,∴∠AEB=∠AFD=90°,∵BE=DF,∴△AEB≌△AFD∴AB=AD,∴四边形ABCD是菱形.(2)连接BD交AC于O.∵四边形ABCD是菱形,AC=6,∴AC⊥BD,AO=OC=AC=×6=3,∵AB=5,AO=3,∴BO===4,∴BD=2BO=8,=×AC×BD=24.∴S平行四边形ABCD19.(2018•柳州)如图,△ABC为⊙O的内接三角形,AB为⊙O的直径,过点A作⊙O的切线交BC的延长线于点D.(1)求证:△DAC∽△DBA;(2)过点C作⊙O的切线CE交AD于点E,求证:CE=AD;(3)若点F为直径AB下方半圆的中点,连接CF交AB于点G,且AD=6,AB=3,求CG的长.解:(1)∵AB是⊙O直径,∴∠ACD=∠ACB=90°,∵AD是⊙O的切线,∴∠BAD=90°,∴∠ACD=∠DAB=90°,∵∠D=∠D,∴△DAC∽△DBA;(2)∵EA,EC是⊙O的切线,∴AE=CE(切线长定理),∴∠DAC=∠ECA,∵∠ACD=90°,∴∠ACE+∠DCE=90°,∠DAC+∠D=90°,∴∠D=∠DCE,∴DE=CE,∴AD=AE+DE=CE+CE=2CE,∴CE=AD;(3)如图,在Rt△ABD中,AD=6,AB=3,∴tan∠ABD==2,过点G作GH⊥BD于H,∴tan∠ABD==2,∴GH=2BH,∵点F是直径AB下方半圆的中点,∴∠BCF=45°,∴∠CGH=∠CHG﹣∠BCF=45°,∴CH=GH=2BH,∴BC=BH+CH=3BH,在Rt△ABC中,tan∠ABC==2,∴AC=2BC,根据勾股定理得,AC2+BC2=AB2,∴4BC2+BC2=9,∴BC=,∴3BH=,∴BH=,∴GH=2BH=,在Rt△CHG中,∠BCF=45°,∴CG=GH=.20.(2018•广西)如图,△ABC内接于⊙O,∠CBG=∠A,CD为直径,OC与AB 相交于点E,过点E作EF⊥BC,垂足为F,延长CD交GB的延长线于点P,连接BD.(1)求证:PG与⊙O相切;(2)若=,求的值;(3)在(2)的条件下,若⊙O的半径为8,PD=OD,求OE的长.解:(1)如图,连接OB,则OB=OD,∴∠BDC=∠DBO,∵∠BAC=∠BDC、∠BDC=∠GBC,∴∠GBC=∠BDC,∵CD是⊙O的直径,∴∠DBO+∠OBC=90°,∴∠GBC+∠OBC=90°,∴∠GBO=90°,∴PG与⊙O相切;(2)过点O作OM⊥AC于点M,连接OA,则∠AOM=∠COM=∠AOC,∵=,∴∠ABC=∠AOC,又∵∠EFB=∠OMA=90°,∴△BEF∽△OAM,∴=,∵AM=AC,OA=OC,∴=,又∵=,∴=2×=2×=;(3)∵PD=OD,∠PBO=90°,∴BD=OD=8,在Rt△DBC中,BC==8,又∵OD=OB,∴△DOB是等边三角形,∴∠DOB=60°,∵∠DOB=∠OBC+∠OCB,OB=OC,∴∠OCB=30°,∴=,=,∴可设EF=x,则EC=2x、FC=x,∴BF=8﹣x,在Rt△BEF中,BE2=EF2+BF2,∴100=x2+(8﹣x)2,解得:x=6±,∵6+>8,舍去,∴x=6﹣,∴EC=12﹣2,∴OE=8﹣(12﹣2)=2﹣4..(2018•桂林)如图1,已知⊙O是△ADB的外接圆,∠ADB的平分线DC交AB于点M,交⊙O于点C,连接AC,BC.(1)求证:AC=BC;(2)如图2,在图1的基础上做⊙O的直径CF交AB于点E,连接AF,过点A 做⊙O的切线AH,若AH∥BC,求∠ACF的度数;(3)在(2)的条件下,若△ABD的面积为,△ABD与△ABC的面积比为2:9,求CD的长.解:(1)∵DC平分∠ADB,∴∠ADC=∠BDC,∴,∴AC=BC(2)连接AO并延长交BC于I交⊙O于J,∵AH是⊙O的切线且AH∥BC,∴AI⊥BC,由垂径定理得,BI=IC,∵AC=BC,∴IC=AC,在Rt△AIC中,IC=AC,∴∠IAC=30°∴∠ABC=60°=∠F=∠ACB,∵FC是直径,∴∠FAC=90°,∴∠ACF=180°﹣90°﹣60°=30°;(3)过点D作DG⊥AB,连接AO由(1)(2)知,△ABC为等边三角形,∵∠ACF=30°,∴AB⊥CF,∴AE=BE,∴,∴AB=,∴,在Rt△AEC中,CE=AE=9,在Rt△AEO中,设EO=x,则AO=2x,∴AO2=AE2+OE2,∴,∴x=6,∴⊙O的半径为6,∴CF=12,∵,∴DG=2,过点D作DP⊥CF,连接OD,∵AB⊥CF,DG⊥AB,∴CF∥DG,∴四边形PDGE为矩形,∴PE=DG=2,∴CP=PE+CE=2+9=11在Rt△OPD中,OP=5,OD=6,∴DP==,∴在Rt△CPD中,根据勾股定理得,CD==2.22.(2018•贵港)如图,已知⊙O是△ABC的外接圆,且AB=BC=CD,AB∥CD,连接BD.(1)求证:BD是⊙O的切线;(2)若AB=10,cos∠BAC=,求BD的长及⊙O的半径.(1)证明:如图1,作直径BE,交⊙O于E,连接EC、OC,则∠BCE=90°,∴∠OCE+∠OCB=90°,∵AB∥CD,AB=CD,∴四边形ABDC是平行四边形,∴∠A=∠D,∵OE=OC,∴∠E=∠OCE,∵BC=CD,∴∠CBD=∠D,∵∠A=∠E,∴∠CBD=∠D=∠A=∠OCE,∵OB=OC,∴∠OBC=∠OCB,∴∠OBC+∠CBD=90°,即∠EBD=90°,∴BD是⊙O的切线;(2)如图2,∵cos∠BAC=cos∠E=,设EC=3x,EB=5x,则BC=4x,∵AB=BC=10=4x,x=,∴EB=5x=,∴⊙O的半径为,过C作CG⊥BD于G,∵BC=CD=10,∴BG=DG,Rt△CGD中,cos∠D=cos∠BAC=,∴,∴DG=6,∴BD=12.23.(2018•梧州)如图,AB是⊙M的直径,BC是⊙M的切线,切点为B,C 是BC上(除B点外)的任意一点,连接CM交⊙M于点G,过点C作DC⊥BC 交BG的延长线于点D,连接AG并延长交BC于点E.(1)求证:△ABE∽△BCD;(2)若MB=BE=1,求CD的长度.(1)证明:∵BC为⊙M切线∴∠ABC=90°∵DC⊥BC∴∠BCD=90°∴∠ABC=∠BCD∵AB是⊙M的直径∴∠AGB=90°即:BG⊥AE∴∠CBD=∠A∴△ABE∽△BCD(2)解:过点G作GH⊥BC于H∵MB=BE=1∴AB=2∴AE=由(1)根据面积法AB•BE=BG•AE∴BG=由勾股定理:AG=,GE=∵GH∥AB∴∴∴GH=又∵GH∥AB①同理:②①+②,得∴∴CD=24.(2018•贵港)已知:A、B两点在直线l的同一侧,线段AO,BM均是直线l的垂线段,且BM在AO的右边,AO=2BM,将BM沿直线l向右平移,在平移过程中,始终保持∠ABP=90°不变,BP边与直线l相交于点P.(1)当P与O重合时(如图2所示),设点C是AO的中点,连接BC.求证:四边形OCBM是正方形;(2)请利用如图1所示的情形,求证:=;(3)若AO=2,且当MO=2PO时,请直接写出AB和PB的长.解:(1)∵2BM=AO,2CO=AO∴BM=CO,∵AO∥BM,∴四边形OCBM是平行四边形,∵∠BMO=90°,∴▱OCBM是矩形,∵∠ABP=90°,C是AO的中点,∴OC=BC,∴矩形OCBM是正方形.(2)连接AP、OB,∵∠ABP=∠AOP=90°,∴A、B、O、P四点共圆,由圆周角定理可知:∠APB=∠AOB,∵AO∥BM,∴∠AOB=∠OBM,∴∠APB=∠OBM,∴△APB∽△OBM,∴(3)当点P在O的左侧时,如图所示,过点B作BD⊥AO于点D,易证△PEO∽△BED,∴易证:四边形DBMO是矩形,∴BD=MO,OD=BM∴MO=2PO=BD,∴,∵AO=2BM=2,∴BM=,∴OE=,DE=,易证△ADB∽△ABE,∴AB2=AD•AE,∵AD=DO=DM=,∴AE=AD+DE=∴AB=,由勾股定理可知:BE=,易证:△PEO∽△PBM,∴=,∴PB=当点P在O的右侧时,如图所示,过点B作BD⊥OA于点D,∵MO=2PO,∴点P是OM的中点,设PM=x,BD=2x,∵∠AOM=∠ABP=90°,∴A、O、P、B四点共圆,∴四边形AOPB是圆内接四边形,∴∠BPM=∠A,∴△ABD∽△PBM,∴,又易证四边形ODBM是矩形,AO=2BM,∴AD=BM=,∴=,解得:x=,∴BD=2x=2由勾股定理可知:AB=3,BM=325.(2018•玉林)如图,在△ABC中,以AB为直径作⊙O交BC于点D,∠DAC=∠B.(1)求证:AC是⊙O的切线;(2)点E是AB上一点,若∠BCE=∠B,tan∠B=,⊙O的半径是4,求EC的长.(1)证明:∵AB是直径,∴∠ADB=90°,∴∠B+∠BAD=90°,∵∠DAC=∠B,∴∠DAC+∠BAD=90°,∴∠BAC=90°,∴BA⊥AC,∴AC是⊙O的切线.(2)解:∵∠BCE=∠B,∴EC=EB,设EC=EB=x,在Rt△ABC中,tan∠B==,AB=8,∴AC=4,在Rt△AEC中,∵EC2=AE2+AC2,∴x2=(8﹣x)2+42,解得x=5,∴CE=5.26.(2018•贺州)如图,在△ABC中,∠ACB=90°,O、D分别是边AC、AB的中点,过点C作CE∥AB交DO的延长线于点E,连接AE.(1)求证:四边形AECD是菱形;(2)若四边形AECD的面积为24,tan∠BAC=,求BC的长.(1)证明:∵点O是AC中点,∴OA=OC,∵CE∥AB,∴∠DAO=∠ECO,在△AOD和△COE中,,∴△AOD≌△COE(ASA),∴AD=CE,∵CE∥AB,∴四边形AECD是平行四边形,又∵CD是Rt△ABC斜边AB上的中线,∴CD=AD,∴四边形AECD是菱形;(2)由(1)知,四边形AECD是菱形,∴AC⊥ED,在Rt△AOD中,tan∠DAO=,设OD=3x,OA=4x,则ED=2OD=6x,AC=2OA=8x,由题意可得:,解得:x=1,∴OD=3,∵O,D分别是AC,AB的中点,∴OD是△ABC的中位线,∴BC=2OD=6.27.(2018•玉林)如图,在▱ABCD中,DC>AD,四个角的平分线AE,DE,BF,CF的交点分别是E,F,过点E,F分别作DC与AB间的垂线MM'与NN',在DC 与AB上的垂足分别是M,N与M′,N′,连接EF.(1)求证:四边形EFNM是矩形;(2)已知:AE=4,DE=3,DC=9,求EF的长.解:(1)证明:过点E、F分别作AD、BC的垂线,垂足分别是G、H.∵∠3=∠4,∠1=∠2,EG⊥AD,EM⊥CD,EM′⊥AB∴EG=ME,EG=EM′∴EG=ME=ME′=MM′同理可证:FH=NF=N′F=NN′∵CD∥AB,MM′⊥CD,NN′⊥CD,∴MM′=NN′∴ME=NF=EG=FH又∵MM′∥NN′,MM′⊥CD∴四边形EFNM是矩形.(2)∵DC∥AB,∴∠CDA+∠DAB=180°,∵,∠2=∠DAB∴∠3+∠2=90°在Rt△DEA,∵AE=4,DE=3,∴AB==5.∵四边形ABCD是平行四边形,∴∠DAB=∠DCB,又∵∠2=∠DAB,∠5=∠DCB,∴∠2=∠5由(1)知GE=NF在Rt△GEA和Rt△CNF中∴△GEA≌△CNF∴AG=CN在Rt△DME和Rt△DGE中∵DE=DE,ME=EG∴△DME≌△DGE∴DG=DM∴DM+CN=DG+AG=AB=5∴MN=CD﹣DM﹣CN=9﹣5=4.∵四边形EFNM是矩形.∴EF=MN=428.(2018•贺州)如图,AB是⊙O的弦,过AB的中点E作EC⊥OA,垂足为C,过点B作直线BD交CE的延长线于点D,使得DB=DE.(1)求证:BD是⊙O的切线;(2)若AB=12,DB=5,求△AOB的面积.(1)证明:∵OA=OB,DB=DE,∴∠A=∠OBA,∠DEB=∠DBE,∵EC⊥OA,∠DEB=∠AEC,∴∠A+∠DEB=90°,∴∠OBA+∠DBE=90°,∴∠OBD=90°,∵OB是圆的半径,∴BD是⊙O的切线;(2)过点D作DF⊥AB于点F,连接OE,∵点E是AB的中点,AB=12,∴AE=EB=6,OE⊥AB,又∵DE=DB,DF⊥BE,DB=5,DB=DE,∴EF=BF=3,∴DF==4,∵∠AEC=∠DEF,∴∠A=∠EDF,∵OE⊥AB,DF⊥AB,∴∠AEO=∠DFE=90°,∴△AEO∽△DFE,∴,即,得EO=4.5,∴△AOB的面积是:=27.2018年全国各地中考数学压轴题汇编(贵州专版)几何综合参考答案与试题解析一.选择题(共6小题)1.(2018•贵阳)如图,在菱形ABCD中,E是AC的中点,EF∥CB,交AB于点F,如果EF=3,那么菱形ABCD的周长为()A.24 B.18 C.12 D.9解:∵E是AC中点,∵EF∥BC,交AB于点F,∴EF是△ABC的中位线,∴EF=BC,∴BC=6,∴菱形ABCD的周长是4×6=24.故选:A.2.(2018•遵义)如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于E、F,连接PB、PD.若AE=2,PF=8.则图中阴影部分的面积为()A.10 B.12 C.16 D.18解:作PM⊥AD于M,交BC于N.则有四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形,=S△ABC,S△AMP=S△AEP,S△PBE=S△PBN,S△PFD=S△PDM,S△PFC=S△PCN,∴S△ADC=S△PBE=×2×8=8,∴S△DFP8=16,∴S阴=8+故选:C.3.(2018•贵阳)如图,A、B、C是小正方形的顶点,且每个小正方形的边长为1,则tan∠BAC的值为()A.B.1 C.D.解:连接BC,由网格可得AB=BC=,AC=,即AB2+BC2=AC2,∴△ABC为等腰直角三角形,∴∠BAC=45°,则tan∠BAC=1,故选:B.4.(2018•遵义)如图,四边形ABCD中,AD∥BC,∠ABC=90°,AB=5,BC=10,连接AC、BD,以BD为直径的圆交AC于点E.若DE=3,则AD的长为()A.5 B.4 C.3D.2解:如图,在Rt△ABC中,AB=5,BC=10,∴AC=5过点D作DF⊥AC于F,∴∠AFD=∠CBA,∵AD∥BC,∴∠DAF=∠ACB,∴△ADF∽△CAB,∴,∴,设DF=x,则AD=x,在Rt△ABD中,BD==,∵∠DEF=∠DBA,∠DFE=∠DAB=90°,∴△DEF∽△DBA,∴,∴,∴x=2,∴AD=x=2,故选:D.5.(2018•安顺)已知⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=8cm,则AC的长为()A.2cm B.4cm C.2cm或4cm D.2cm或4cm解:连接AC,AO,∵⊙O的直径CD=10cm,AB⊥CD,AB=8cm,∴AM=AB=×8=4cm,OD=OC=5cm,当C点位置如图1所示时,∵OA=5cm,AM=4cm,CD⊥AB,∴OM===3cm,∴CM=OC+OM=5+3=8cm,∴AC===4cm;当C点位置如图2所示时,同理可得OM=3cm,∵OC=5cm,∴MC=5﹣3=2cm,在Rt△AMC中,AC===2cm.故选:C.6.(2018•铜仁市)在同一平面内,设a、b、c是三条互相平行的直线,已知a 与b的距离为4cm,b与c的距离为1cm,则a与c的距离为()A.1cm B.3cm C.5cm或3cm D.1cm或3cm 解:当直线c在a、b之间时,∵a、b、c是三条平行直线,而a与b的距离为4cm,b与c的距离为1cm,∴a与c的距离=4﹣1=3(cm);当直线c不在a、b之间时,∵a、b、c是三条平行直线,而a与b的距离为4cm,b与c的距离为1cm,∴a与c的距离=4+1=5(cm),综上所述,a与c的距离为3cm或3cm.故选:C.二.填空题(共8小题)7.(2018•贵阳)如图,点M、N分别是正五边形ABCDE的两边AB、BC上的点.且AM=BN,点O是正五边形的中心,则∠MON的度数是72度.解:连接OA、OB、OC,∠AOB==72°,∵∠AOB=∠BOC,OA=OB,OB=OC,∴∠OAB=∠OBC,在△AOM和△BON中,∴△AOM≌△BON,∴∠BON=∠AOM,∴∠MON=∠AOB=72°,故答案为:72.8.(2018•遵义)如图,△ABC中.点D在BC边上,BD=AD=AC,E为CD的中点.若∠CAE=16°,则∠B为37度.解:∵AD=AC,点E是CD中点,∴AE⊥CD,∴∠AEC=90°,∴∠C=90°﹣∠CAE=74°,∵AD=AC,∴∠ADC=∠C=74°,∵AD=BD,∴2∠B=∠ADC=74°,∴∠B=37°,故答案为37°.9.(2018•贵阳)如图,在△ABC中,BC=6,BC边上的高为4,在△ABC的内部作一个矩形EFGH,使EF在BC边上,另外两个顶点分别在AB、AC边上,则对角线EG长的最小值为.解:如图,作AQ⊥BC于点Q,交DG于点P,∵四边形DEFG是矩形,∴AQ⊥DG,GF=PQ,设GF=PQ=x,则AP=4﹣x,由DG∥BC知△ADG∽△ABC,∴=,即=,则EF=DG=(4﹣x),∴EG====,∴当x=时,EG取得最小值,最小值为,故答案为:.10.(2018•遵义)如图,在菱形ABCD中,∠ABC=120°,将菱形折叠,使点A 恰好落在对角线BD上的点G处(不与B、D重合),折痕为EF,若DG=2,BG=6,则BE的长为 2.8.解:作EH⊥BD于H,由折叠的性质可知,EG=EA,由题意得,BD=DG+BG=8,∵四边形ABCD是菱形,∴AD=AB,∠ABD=∠CBD=∠ABC=60°,∴△ABD为等边三角形,∴AB=BD=8,设BE=x,则EG=AE=8﹣x,在Rt△EHB中,BH=x,EH=x,在Rt△EHG中,EG2=EH2+GH2,即(8﹣x)2=(x)2+(6﹣x)2,解得,x=2.8,即BE=2.8,故答案为:2.8.11.(2018•安顺)如图,C 为半圆内一点,O 为圆心,直径AB 长为2cm ,∠BOC=60°,∠BCO=90°,将△BOC 绕圆心O 逆时针旋转至△B′OC′,点C′在OA 上,则边BC 扫过区域(图中阴影部分)的面积为 π cm 2.(结果保留π)解:∵∠BOC=60°,△B′OC′是△BOC 绕圆心O 逆时针旋转得到的,∴∠B′OC′=60°,△BCO=△B′C′O ,∴∠B′OC=60°,∠C′B′O=30°,∴∠B′OB=120°,∵AB=2cm ,∴OB=1cm ,OC′=,∴B′C′=,∴S 扇形B′OB ==π, S 扇形C′OC ==,∵ ∴阴影部分面积=S 扇形B′OB +S △B′C′O ﹣S △BCO ﹣S 扇形C′OC =S 扇形B′OB ﹣S 扇形C′OC =π﹣=π;故答案为:π.12.(2018•黔西南州)已知一个菱形的边长为2,较长的对角线长为2,则这个菱形的面积是2.解:依照题意画出图形,如图所示.在Rt△AOB中,AB=2,OB=,∴OA==1,∴AC=2OA=2,=AC•BD=×2×2=2.∴S菱形ABCD故答案为:2.13.(2018•铜仁市)在直角三角形ABC中,∠ACB=90°,D、E是边AB上两点,且CE所在直线垂直平分线段AD,CD平分∠BCE,BC=2,则AB=4.解:∵CE所在直线垂直平分线段AD,∴CE平分∠ACD,∴∠ACE=∠DCE.∵CD平分∠BCE,∴∠DCE=∠DCB.∵∠ACB=90°,∴∠ACE=∠ACB=30°,∴∠A=60°,∴AB===4.故答案为:4.14.(2018•黔西南州)如图,已知在△ABC中,BC边上的高AD与AC边上的高BE交于点F,且∠BAC=45°,BD=6,CD=4,则△ABC的面积为60.解:∵AD⊥BC,BE⊥AC,∴∠AEF=∠BEC=∠BDF=90°,∵∠BAC=45°,∴AE=EB,∵∠EAF+∠C=90°,∠CBE+∠C=90°,∴∠EAF=∠CBE,∴△AEF≌△BEC,∴AF=BC=10,设DF=x.∵△ADC∽△BDF,∴=,∴=,整理得x2+10x﹣24=0,解得x=2或﹣12(舍弃),∴AD=AF+DF=12,=•BC•AD=×10×12=60.∴S△ABC故答案为60.三.解答题(共9小题)15.(2018•贵阳)如图,在平行四边形ABCD中,AE是BC边上的高,点F是DE的中点,AB与AG关于AE对称,AE与AF关于AG对称.(1)求证:△AEF是等边三角形;(2)若AB=2,求△AFD的面积.解:(1)∵AB与AG关于AE对称,∴AE⊥BC,∵四边形ABCD是平行四边形,∴AD∥BC,∴AE⊥AD,即∠DAE=90°,∵点F是DE的中点,即AF是Rt△ADE的中线,∴AF=EF=DF,∵AE与AF关于AG对称,∴AE=AF,则AE=AF=EF,∴△AEF是等边三角形;(2)记AG、EF交点为H,∵△AEF是等边三角形,且AE与AF关于AG对称,∴∠EAG=30°,AG⊥EF,∵AB与AG关于AE对称,∴∠BAE=∠GAE=30°,∠AEB=90°,∵AB=2,∴BE=1、DF=AF=AE=,则EH=AE=、AH=,=××=.∴S△ADF16.(2018•遵义)如图,正方形ABCD的对角线交于点O,点E、F分别在AB、BC上(AE<BE),且∠EOF=90°,OE、DA的延长线交于点M,OF、AB的延长线交于点N,连接MN.(1)求证:OM=ON.(2)若正方形ABCD的边长为4,E为OM的中点,求MN的长.解:(1)∵四边形ABCD是正方形,∴OA=OB,∠DAO=45°,∠OBA=45°,∴∠OAM=∠OBN=135°,∵∠EOF=90°,∠AOB=90°,∴∠AOM=∠BON,∴△OAM≌△OBN(ASA),∴OM=ON;(2)如图,过点O作OH⊥AD于点H,∵正方形的边长为4,∴OH=HA=2,∵E为OM的中点,∴HM=4,则OM==2,∴MN=OM=2.17.(2018•贵阳)如图,AB为⊙O的直径,且AB=4,点C在半圆上,OC⊥AB,垂足为点O,P为半圆上任意一点,过P点作PE⊥OC于点E,设△OPE的内心为M,连接OM、PM.(1)求∠OMP的度数;(2)当点P在半圆上从点B运动到点A时,求内心M所经过的路径长.解:(1)∵△OPE的内心为M,∴∠MOP=∠MOC,∠MPO=∠MPE,∴∠PMO=180°﹣∠MPO﹣∠MOP=180°﹣(∠EOP+∠OPE),∵PE⊥OC,即∠PEO=90°,∴∠PMO=180°﹣(∠EOP+∠OPE)=180°﹣(180°﹣90°)=135°,(2)如图,∵OP=OC,OM=OM,而∠MOP=∠MOC,∴△OPM≌△OCM,∴∠CMO=∠PMO=135°,所以点M在以OC为弦,并且所对的圆周角为135°的两段劣弧上(和);点M在扇形BOC内时,过C、M、O三点作⊙O′,连O′C,O′O,在优弧CO取点D,连DA,DO,∵∠CMO=135°,∴∠CDO=180°﹣135°=45°,∴∠CO′O=90°,而OA=2cm,∴O′O=OC=×2=,∴弧OMC的长==π(cm),同理:点M在扇形AOC内时,同①的方法得,弧ONC的长为πcm,所以内心M所经过的路径长为2×π=πcm.18.(2018•遵义)如图,AB是半圆O的直径,C是AB延长线上的点,AC的垂直平分线交半圆于点D,交AC于点E,连接DA,DC.已知半圆O的半径为3,BC=2.(1)求AD的长.(2)点P是线段AC上一动点,连接DP,作∠DPF=∠DAC,PF交线段CD于点F.当△DPF为等腰三角形时,求AP的长.解:(1)如图1,连接OD,∵OA=OD=3,BC=2,∴AC=8,。
2018重庆中考数学第24题有关中点的专题训练

2018重庆中考数学第24题有关中点的专题训练一、证明是中点的问题-------基本方法是利用共圆或作平行线或利用等腰三角形1、在ABC ∆与ADF ∆中,90BAC DAF ∠=∠=,AB AC =,AD AF =,DF 的延长线交BC 于点E ,连接BD 、CF .(1)如图1,当点C A D 、、三点在同一直线上,且AC =,AF CE 的长; (2)如图2,当90AFC ∠=时,求证:E 是BC 的中点;方法一:连接AE ,利用A 、D 、B 、E 共圆。
方法二:作平行线2、(重庆市沙坪坝区初2018届初三上期期末考试)AB CD EABM图1 图24、已知:在Rt△ABC中,CD是斜边AB上的中线,点E是直角边AC上一点,连接DE、BE.(1)若DE⊥AB且BC=3,AC=4,如图1,求△CDE的面积;(2)∠AED=∠BEC,如图2,求证:F是CD的中点.方法一:方法二:方法三:5、重庆一中初2018届初三上期期末方法一:(利用共圆和等腰三角形)连接BE 方法二:连接AD二、已知中点问题-----基本方法是利用平行线构造全等或倍长中线或构造中位线。
1、(重庆市万州区初2018届初三上期期末)2、重庆南开(融侨)中学初2018级初三上阶段测试三如图1,在△ABC 中,∠ACB=90°,AC=BC ,D 为AB 上一点,连接CD ,将CD 绕点C 顺时针旋转90°至CE ,连接AE.(1)的长;,求,若连接AB AE CD ED 4255,==(2)如图2,若点F 为AD 的中点,连接EB 、CF ,求证:CF⊥EB.方法一:利用中位线 方法二:利用倍长中线三、构造中点问题-----基本方法是构造中位线。
(重庆实验外国语学校初2018届初三上期期末)24.如图,Rt△ABC与Rt△BCD在线段BC的异侧,AB=BC,∠ABC=∠BCD=90°.5,BD=31,求CD的长;(1)如图1,已知AC=2(2)如图2,将Rt△BCD绕着点B逆时针旋转90°得到Rt△BAF,点C、D的对应点分别是点A、F,连接CF和AD.过点B作BH⊥CF于点H,交AD于点M.求证:CF=2BM.方法一:延长DB至G,使BG=BD,连接AG。
2018届中考数学复习 专题21 平面几何初步(点、线、面、角、相交线与平行线等)试题(B卷,含解析)

平面几何初步一、选择题1. ( 福建福州,3,3分)如图,直线a ,b 被直线c 所截,∠1和∠2的位置关系是A .同位角B .内错角C .同旁内角D .对顶角【答案】B【逐步提示】本题考查了同位角、内错角、同位角和对顶角的识别,解题的关键是认识三线八角,根据内错角的定义可得答案.【详细解答】解:直线a ,b 被直线c 所截,∠1与∠2是内错角,故选择B .【解后反思】三线八角中的某两个角是不是同位角、内错角或同旁内角,完全由那两个角在图形中的相对位置决定.在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线. 【关键词】内错角;同位角;同旁内角;对顶角2. ( 甘肃省武威市、白银市、定西市、平凉市、酒泉市、临夏州、张掖市等9市,6,3分)如图,AB ∥CD ,DE ⊥CE ,∠1=34º,则∠DCE 的度数为( )A . 34º B.54º C. 66º D . 56º1BE第6题图【答案】D 【逐步提示】本题考查了平行线的性质,解题的关键是将线的位置关系转化为角的数量关系,应用平行线的性质:两直线平行线内错角相等得出∠EDC 的度数,再利用直角三角形两锐角互余得出∠DCE 的度数. 【详细解答】解:∵AB ∥CD ,∴ ∠EDC =∠1=34°.∵DE ⊥CE ∴ ∠DEC =90°,∴∠EDC +∠DCE =90°.∴∠DCE =90°-34°=56º,故选择D .【解后反思】本题考查了平行线的性质即两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.【关键词】平行线的性质;垂直的定义;直角三角形的性质; 3. ( 甘肃省天水市,5,4分)如图,直线AB ∥CD ,OG 是∠EOB 的平分线,∠EFD =70°,则∠BOG 的度数是( ) A .70° B .20° C .35° D .40°【答案】C【逐步提示】本题考查了平行线的性质和角平分线的定义,解题关键是注意两直线平行,相关的同位角相等、内错角相等及同旁内角互补.要求∠BOG 的度数,关键是先求∠EOB 的度数,这可根据∠EFD =70°,联想到两直线CO A B D E FG平行,同位角相等解决.【详细解答】解:∵AB∥CD,∴∠EOB=∠EFD=70°.又∵OG平分∠EOB,∴∠BOG=12∠EOB=12×70°=35°.故选择C.【解后反思】平行线间的角离不开同位角、同旁内角,及内错角等知识,另外还要和三角形的内角和定理,及外角等于与它不相邻的两内角和知识相联系,只要从这些方面思考,就不难得到解决.【关键词】平行线的性质;角的平分线.4.(广东茂名,5,3分)如图,直线a、b被直线c所截,若a∥b,∠1=60°,那么∠2的度数为()A.120°B.90°C.60°D.30°【答案】C【逐步提示】本题考查了平行线的性质,解题的关键是识别出图中的∠1、∠2是两条平行直线a、b被第三条直线c截出的一组相等的同位角.直接利用“两直线平行,同位角相等”解题即可.【详细解答】解:∵a∥b,∴∠1=∠2. ∵∠1=60°,∴∠2=60°.故选择C .【解后反思】“两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补”这是由直线的位置关系得出角的数量关系,“同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行;”这是由角的数量关系得出直线的位置关系,这里体现了数形结合的思想.【关键词】同位角;平行线的性质5.(贵州省毕节市,8,3分)如图,直线a//b,∠1=85°,∠2=35°,则∠3=()(第8题图)A. 85°B. 60°C. 50°D. 35°【答案】C【逐步提示】本题考查平行线的性质,三角形外角和定理,解题的关键是能从图中发现∠3与∠1、∠2的联系.【详细解答】解:如图,∵a//b,∴∠4=∠3.又∵∠1=∠2+∠4,∴∠4=∠1-∠2=85°-35°=50°,∴∠3=50°,故选择C.【解后反思】此类问题容易出错的地方是找不到图形中角与角之间的数量关系.【关键词】平行线的性质;三角形外角和定理6.(河北省,13,2分)如图,将□ABCD沿对角线AC折叠,使点B落在点B’处.若∠1=∠2=44°,则∠B为()A.66°B.104°C.114°D.124°【答案】C【逐步提示】根据平行线的性质和折叠的性质得到∠BAC=12∠B’AB=12∠1=22°,再在△ABC中根据三角形内角和定理求得∠B的度数.【详细解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠B’AB=∠1=44°.根据折叠的性质可知∠BAC=12∠B’AB=12×44°=22°.又∵∠2=44°,∴∠B=180°-22°-44°=114°,故答案为选项C.【解后反思】折叠问题是属于轴对称变换,折叠后图形的形状和大小不变,三角形折叠后得到的三角形与原三角形全等,对应边和对应角相等.【关键词】平行四边形的性质;平行线的性质;折叠;三角形内角和定理7.(湖北省黄冈市,3,3分)如图,直线a∥b,∠1=550,则∠2= ()A.350B.450C. 550D.650【答案】C【逐步提示】本题考查了平行线的性质“两直线平行,同位角相等”及对顶角的性质“对顶角相等”,解题的关键是能观察出∠1与∠2之间的联系而不走弯路.由图易发现,∠1的对顶角与∠2是同位角,a∥b是沟通∠1与∠2的桥梁.【详细解答】解:如图,∵a∥b,∴∠3=∠2.∵∠3=∠1,∴∠2=∠1=55°,故选择C.【解后反思】此类题主要考查形式为选择或填空,解决此类题型常用的方法是根据平行线的性质:两直线平行同位角相等、两直线平行内错角相等,两直线平行同旁内角互补,结合对顶角相等或邻补角和为180°,直接求出正确答案后做出选择.【关键词】平行线的性质;对顶角。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题一中点M型基本条件:①∠PMQ=∠B=∠C;②M是BC的中点基本结论:①△EMF∽△EBM∽△MCF.②EM平分∠BEF,FM平分∠EFC.③EM2=EB·EF,FM2=FC·EF.常见特例:特例一:条件:①等边△ABC;②∠MPN=60°,③P是BC的中点。
特例二:条件:①等腰直角△ABC,AC=BC,∠C=90°;②∠EDF=45°;③点D是AB的中点。
特例三:条件:①AB=AC;②∠BAC=120°,∠EDF=30°,③D是BC的中点。
特例四:条件:①矩形ABCD;②∠GEF=90°,③E是AB的中点。
特例五:条件:①直角梯形ABCD中,AB∥CD,∠A=90°;②E是AD的中点;③∠BEC=90°。
巩固练习:1.已知:梯形ABCD中,AD∥BC,∠A=90°,E为AB的中点,若AD=2,BC=4,∠CED=90°,则CD长为。
2.如图,在正方形ABCD中,点E、F在边BC、CD上,若AE=2,EF=1,AF=5,则正方形的边长为。
3.已知:等边△ABC中,AB=8,点D为AB的中点,点M为BC上一动点,以DM为一边,在点B异侧作等边△DMN。
DN交AC于点F,当∠DAN=90°时,则FN的长为。
4.如图,以矩形OABC的邻边OA、OC分别为x轴、y轴的正方向建立平面直角坐标系,F为线段OA上的一点,将△COF沿直线CF翻折,点O落在AB的中点E处,且OC=6.(1)求直线EF的解析式;(2)将直线EF绕点F逆时针旋转90°,得到直线m,直线m交y轴于点D,求点D的坐标。
特例一特例二特例三特例四特例五巩固1巩固2巩固31.如图,在△ABC中,AB=AC,∠BAC=α,点D为BC边的中点,BE⊥AC于E,DF⊥AB于F.(1)当00<α<900,(如图1),求证:AE+2BF=AB;(2)当900<α<1800,(如图2),则AE、BF、AB之间的数量关系;(3)在(1)的条件下,过点D作DG∥AB,交AC于G,且DF=GE=3时(如图3),求BF的值。
2.已知:直角梯形ABCD,AB∥CD,∠ABC=90°,AB=BC,E为射线BC上一点,连接AE,过点E作AE的垂线,分别交直线AB、直线CD于点G和F.(1)当点E在BC上时(如图1),求证:BE=BG+CF.(2)当点E在BC的延长线上时(如图2),猜想BE、BG和CF的数量关系,并证明你的猜想;(3)在(2)的条件下,设AE交CD于点H,若CH=92BE,AB=2,且CD<34,求EG的长。
图1图2“A ”字型专题1. 已知,在正方形ABCD 中,点E 是边AB 上一点,点G 在边AD 上,连接EG ,EG =DG ,作EF ⊥EG ,交边BC 于点F(图1)。
(1) 求证:AE +CF =EF ;(2) 连接正方形ABCD 的对角线AC ,连接DF ,线段AC 与线段DF 相交于点K (图2),探究线段AE 、AD 、AK 之间的数量关系,直接写出你的结论 。
(3) 在(2)的条件下,连接线段DE 与线段AC 相交于点P ,(图3)若AK =82,△BEF的周长为24,求PK 的长。
2. 如图,在△ABC 中,AB =2AC ,点D 在BC 上,且∠CAD =∠B ,点E 在AB 的中点,连接CE ,CE 与AD 交于点G ,点F 在BC 上,且∠CEF =∠BAC. (1) 若∠BAC =90°,如图1,求证:EG +EF =2AC ;(2) 若∠BAC =120°,如图2,此时线段EG 、EF 、AC 三者之间的数量关系为 ; (3) 在(2)的条件下,在∠BAD 的内部作∠DAM =60°,∠DAM 的一边AM 交BC 于点M ,AM 与CE 交于点N ,若AC =2,求线段MN 的长。
图1E 图2E图3图1图23. 已知,在△ABC 中, BC =AC ,∠MCN =21∠ACB ,CM 交AB 于点E ,过点B 作BF ⊥CB 交CN 于点F.(1) 当 ∠ACB =90°(如图1所示)时,求证:BE -AE =2BF ;(2) 当∠ACB =120°(如图2所示)时,线段BE 、AE 与BF 之间的数量关系为 ; (3) 在(2)的条件下,FB 、CE 的延长线相交于点G ,连接AG 、FE ,直线AG 、FE 交于点H,若AC =6,BF =BE ,求AH 的长。
“X ”字型专题1. 已知,A 、C 分别为∠BOE 两边上的两点,D 为∠BOE 内一点,DC ∥OB ,DA ∥OE ,连接OD 、AC 相交于点F ,G 为FD 上一点,过点G 的直线交OE 于Q ,交CD 于点P ,交AD 于点N ,交OB 于点M.(1) 若FG =31FD 时(如图1),求证:PQ +MN =PN ; (2) 若FG =21FD 时(如图1),且△OAC 为等边三角形,OC =4,CQ =3,现将∠DAC 绕点A 顺时针旋转,旋转后AD 所在边交OC 于S ,AC 所在边交CD 于点T ,当旋转到AT ∥MQ 时,连接ST , 求:ST 长。
图1图2备用图图2图12. 如图,已知Rt △ABC 中,∠C =90°,AD 平分∠BAC ,sin ∠BAC =54(即AB BC =54),P 为AB 边上一点,过点P 作PM ⊥BC ,PN ⊥AD 垂足为M 、N 。
(1) 当点M 与点D 重合时,求证:PM =5P N.(2) 当点N 与点重合时,连接AM 交PD 于点E ,将射线PD 绕点P 顺时针旋转45°,交AM 于点F ;若AC =3,求EF 的长。
“M ”字型专题1. 已知,四边形ABCD 中,AD =AB ,AD ∥BC ,∠A =90°,M 为AD 的中点,F 为BC 边上一点,连接MF ,过M 点作ME ⊥MF ,交边AB 于点E 。
(1) 如图1,当∠ADC =90°时,求证:4AE +2CF =CD.(2) 如图2,当∠ADC =135°时,线段AE 、CF 、CD 的数量关系为 . (3) 如图3,在(1)的条件下,连接EF 、EC 、EC 与FM 相交于点K ,线段FM 关于FE 对称的线段与AB 相交于点N ,若NE =310,FC =AE ,求MK 的长。
N ()AAM ()图1图2E图32.如图,已知Rt △ABC 中,∠C =90°,过点B 作∠BAC 平分线AD 的垂线,垂足为D ,AD 交BC 于点E. (1)当AC BC =53时,求证:DE =81AE ; (2)当AC BC =54时,判断DE 、AE 的关系 ;(3)在(2)的条件下,取CD 中点F ,连结EF 并延长交AC 延长线于点G ,交CD 于F ,现有一个45°角顶点与F 重合,将它旋转一边交CG 于点M ,另一边交BC 于点N ,若CM =MG ,AC =3,求CN 的长。
2. 如图1,在△ABC 中,AC =BC ,∠ACB =90°,点D 为AB 边中点,以点D 为顶点,作∠PDQ =90°,DP 、DQ 分别交直线AC 、BC 于E 、F ,分别过点E 、F 作AB 的垂线,垂足分别为M 、N. (1) 求证:EM +FN =22AC. (2) 把∠PDQ 绕点D 旋转,当点E 在线段AC 的延长线上时(如图2)AA特别资料一、基本图形:“A ”字型1. 计算,已知:△ABC 中,DA 交BF 于点E ,AE =ED ,BD :CD =1:2,AC =4,求AF 的值。
2. 已知,△ABC 中,AD 平分∠BAC ,∠BAC =120°,若AC =6,BC =37,求AD 的长。
3. 已知,△ABC 中,AD 平分∠BAC ,DE ∥AC ,EF ∥BC ,AF =2,AB =215,求DE 的长度。
4.已知,D 在BC 的延长线上,DF 交AC 于点E ,E 为AC 的中点,BF =3AF. 求证:BC =2CD.5.已知:△AB C 、△BCE 均为等边三角形,且A 、B 、C 共线, 求证:(1)MN ∥AC (2)MNBC AB 111=+6.已知,△ABC 中,AD 、CE 分别平分∠BAC ,∠ACB ,∠B =60°,求证:(1)AE +CD =AC (2)若AD =5,PC =6,求AE 的长。
二、基本图形:“X ”字型1.已知:Rt △ABC 中,∠ACB =90°,CD ⊥DE ,且DB =BC ,若AE:EC =1:3,AB =5,求AD 的长。
B2.已知:△ABC中,AD⊥BC,BE⊥AC交AD于点F,若∠BAC=45°,CD=1,BD=23求AD的长。
3.已知,矩形ABCD沿BE折叠后C与G重合,若DE=1,CE=2,BC=6,求AF的长。
4.已知:Rt△ABC中,∠BAC=90°,AD⊥BC,BF平分∠ABC,且FC=2AF,求证:BE=EF.5.已知:△ABC中,AB=AC,∠BAC=120°,AB⊥BD,∠DAE=60°,求证:BD+2EC=3AC.6.已知:矩形ABCD沿AE折叠后B与G重合,且CE:BE=1:2,求证:AF-FD=3AB.7.已知:矩形ABCD中,B(8,5),点P(m,0)且0<m<8,点O关于直线PC的对称点为O',直线CO'交直线AB于Q,求m为何值时,△PCQ是以PQ为底边的等腰三角形。
BBC三、基本图形“直射影、斜射影”1.已知:△ABC中,∠BAD=∠C,若AB=4,BD=2,求AD长。
2.已知:△ABC中,AD⊥AC,若AB=AC=6,BD=1,求BC的长。
3.已知:AB⊥CD,∠CED=90°,DF⊥AC交BE于点G,若BG=3,AE=6,求EG的长。
4.已知:AD平分∠BAC,E在BC的延长线上,EF垂直平分AD且CE=2CD,求证:DE=2BD. 5.已知:Rt△ABC中,∠BAC=90°,AD⊥BC,延长AC至E使∠CED=∠CBE,求证:AC=CE .6. 已知:Rt△ABC中,∠BAC=90°,AD⊥BC,E为AD中点,且EF⊥EC,求证:BF=3DF .7.已知:梯形OABC中,BC∥OA,B(3,6),A(8,0)点P(m,n)在AB边上(3<m<8),过P作OA平行线OA,交AC于D,过P作OA的垂线交OA于点E,求,当m为何值时,△ODE为直角三角形?CBBxx8.已知:△ABC中,BC=2AB,P为BC中点,∠ABC=∠APF=120°,且∠ABD=∠C,(1)求证:PF=AE (2)若AD=7,求DE的长。