模电知识总结
模电基础知识总结

模电基础知识总结模拟电子技术(模电)是电子工程的重要基础学科,它研究的是电子元件与电路的工作原理和运行规律。
掌握模电的基础知识对于电子工程师来说至关重要。
本文将对模电的基础知识进行总结,希望能给读者提供一些帮助。
一、电路基础知识在学习模电之前,我们首先需要掌握一些电路的基础知识。
电路是电子工程中最基本的组成单元,它由电源、电阻、电容、电感等元件组成。
在电路中,电流和电压是重要的物理量。
电流表示电子在电路中的流动情况,而电压表示电子在电路中的能量转换。
二、放大器放大器是模电中一类重要的电子元件。
放大器的作用是将输入信号放大,以便输出信号具有较高的幅度。
常见的放大器有三种基本类型:电压放大器、电流放大器和功率放大器。
放大器有许多重要的性能指标,如增益、输入电阻、输出电阻等。
学习模电的过程中,我们需要熟悉这些性能指标的定义和计算方法。
三、滤波器滤波器是模电中用于剔除或改变信号中某些频率分量的电路。
滤波器可以分为低通滤波器、高通滤波器、带通滤波器和带阻滤波器四种类型。
在实际应用中,我们经常需要使用滤波器来对信号进行处理。
了解滤波器的原理和性能对于电路设计至关重要。
四、振荡器振荡器是一种能够产生连续波形信号的电路。
在模电中有两种常见的振荡器:正弦波振荡器和方波振荡器。
振荡器的核心是一个反馈回路,该回路会使得输入信号被放大,并且以振荡的形式反馈给输入端。
振荡器在通信系统、计算机等领域有广泛的应用,掌握振荡器的原理和设计方法是模电学习的重要内容。
五、运算放大器运算放大器(Operational Amplifier)是模电中一种重要的集成电路。
它具有高增益、高输入阻抗和低输出阻抗的特点,在模拟电路中有广泛的应用。
运算放大器可以用于各种电路设计,如放大器、积分器、微分器和比较器等。
学习运算放大器的工作原理和应用是模电学习的核心内容。
六、模电实验模电实验是巩固和应用所学知识的重要环节。
通过实验,我们可以观察电路的实际运行情况,提高动手实践的能力。
数电模电基础知识总结

数电模电基础知识总结在电子技术的领域中,数字电子技术(数电)和模拟电子技术(模电)是两个至关重要的基础分支。
无论是日常生活中的电子设备,还是复杂的工业控制系统,都离不开数电和模电的应用。
接下来,让我们一同走进数电模电的世界,对其基础知识进行一番梳理和总结。
一、模拟电子技术基础知识模拟电子技术主要处理连续变化的电信号,其信号的幅度、频率和相位等参数可以在一定范围内连续取值。
(一)半导体器件半导体是模电的基础材料,常见的半导体器件有二极管、三极管和场效应管等。
二极管具有单向导电性,常用于整流、限幅和钳位等电路。
三极管分为 NPN 型和 PNP 型,它可以实现电流放大作用,是放大器的核心元件。
场效应管则具有输入电阻高、噪声低等优点,在集成电路中应用广泛。
(二)基本放大电路放大电路是模电中的重要内容。
共发射极放大电路、共集电极放大电路和共基极放大电路是常见的三种基本放大电路。
共发射极放大电路具有较大的电压和电流放大倍数,但输入输出电阻适中;共集电极放大电路,又称射极跟随器,其输入电阻高,输出电阻低,电压放大倍数接近于 1,但电流放大倍数较大;共基极放大电路具有较大的频率响应和较宽的通频带。
(三)集成运算放大器集成运放是一种高增益、高输入电阻、低输出电阻的直接耦合放大器。
它在信号运算、处理和产生等方面有着广泛的应用。
通过引入负反馈,可以实现加法、减法、积分、微分等运算功能。
(四)反馈电路反馈在模电中起着重要的作用。
正反馈可以使电路产生自激振荡,常用于正弦波振荡器中;负反馈可以改善放大电路的性能,如提高稳定性、改变输入输出电阻、减小非线性失真等。
(五)功率放大电路功率放大电路的主要任务是在保证信号不失真的前提下,尽可能提高输出功率和效率。
常见的功率放大电路有甲类、乙类和甲乙类功放。
(六)直流电源直流电源包括电源变压器、整流电路、滤波电路和稳压电路等部分。
它为电子设备提供稳定的直流电压。
二、数字电子技术基础知识数字电子技术处理的是离散的数字信号,其信号只有高电平和低电平两种状态,分别用“1”和“0”表示。
模电知识点总结

模电知识点总结1. 电路基本原理电路是电子技术的基础,它是由电阻、电容和电感等元件组成的。
在模拟电子技术中,我们经常需要分析和设计各种电路。
因此,了解电路基本原理是学习模拟电子技术的第一步。
电路分析包括欧姆定律、基尔霍夫定律、节点电压法和网孔电流法等。
这些原理是分析电路的重要工具,可以帮助我们理解电路中各个元件之间的关系。
2. 放大器放大器是模拟电子技术中的重要部分,它的作用是放大电压或电流信号。
放大器包括各种类型,例如运放放大器、电子管放大器和功率放大器等。
学习放大器的原理和特性可以帮助我们设计各种类型的放大器电路。
在实际应用中,放大器经常用于音频放大、信号处理和通信系统等领域。
3. 滤波器滤波器是模拟电子技术中的重要部分,它的作用是通过滤波器电路来处理信号中的不同频率成分。
常见的滤波器包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器等。
了解滤波器的原理和特性可以帮助我们设计滤波器电路以及实现信号处理和分析等功能。
4. 模拟信号处理电路模拟信号处理电路是模拟电子技术的核心内容,它包括各种模拟信号处理和传输电路。
常见的模拟信号处理电路包括模拟加减法器、积分器、微分器、比较器和信号发生器等。
了解这些电路的原理和特性可以帮助我们设计各种模拟信号处理系统和仪器。
5. 模拟数字转换模拟数字转换(ADC和DAC)是模拟电子技术中的重要部分,它的作用是将模拟信号转换为数字信号或将数字信号转换为模拟信号。
了解ADC和DAC的原理和特性可以帮助我们设计各种模拟数字转换电路以及实现数字信号处理和传输等功能。
总之,模拟电子技术是电子工程中的一个重要分支,它在通信、音频、视频和医疗等领域都有广泛的应用。
通过学习模拟电子技术的知识点,我们可以掌握电子技术的基本原理和技能,为未来的工作和研究打下良好的基础。
希望以上总结的知识点能对学习模拟电子技术的朋友们有所帮助。
模电考前知识点总结

模电考前知识点总结模拟电子技术主要研究内容包括模拟电路的设计和分析、模拟信号的处理和传输、模拟电子系统的设计和调试等。
在模拟电子技术中,最基本的理论是基于几种基本电路元件,如二极管、三极管等,建立各种电路方程模型,进而解决各种电子电路问题。
在学习模拟电子技术的过程中,有一些知识点是必须要掌握的。
以下是一些常见的模拟电子技术知识点总结:一、基本电路分析方法1. 谈论母线电力超过220伏特进行电压升降的原理和方法。
2. 需要了解R-L,R-C 串并联电路的等效变换原理及实际应用。
3. 掌握电容电压跟踪积分电路和非积分电路的基本工作原理和参数设计方法。
4. 对于理想电感,理解它在激励下的等效原理。
5. 了解关于画感性理想电感变压器、绕组波音特性原理。
以上是一些基本电路分析方法的知识点总结。
在模拟电子技术中,学生需要通过理论学习和实践操作,熟练掌握这些方法,才能更好地理解和应用模拟电子技术。
二、线性集成电路线性集成电路是模拟电子技术中非常重要的一部分,主要包括放大器、滤波器、示波器、振荡器、计算和计算机等。
掌握了线性集成电路基本的分析与设计方法,可以更好地应用模拟电子技术。
1. 熟悉主要的线性集成电路,了解其特性和使用方法。
2. 了解基于 MOS 器件的模拟 IC 结构、工作原理和指标。
会设计基于 MOS 器件的模拟集成电路电路图。
以上是一些线性集成电路方面的知识点总结。
掌握了这些知识之后,可以更好地理解和应用模拟电子技术,从而更好地解决实际电路问题。
三、信号处理技术在模拟电子技术中,信号处理技术也是一个重要的方面。
掌握了信号处理技术相关知识后,能更好地理解和应用模拟电子技术。
1. 掌握基本信号的表示方法, 变换,系统特性的描述(零-极点,频域与时域的转换)2. 会进行系统励波,知道辨别各种非线性工作特性3. 了解控制工程与信号处理之间的联系和区别4. 实现对系统行为与性能的评估、设计,调节;5. 了解基于 DSP 的数字控制技术,了解模拟电子技术的近期发展,结合数字技术提出新的功能要求。
模拟电路各章知识点总结

模拟电路各章知识点总结第一章:电路基础1.1 电路的基本概念电路是由电气元件(例如电阻、电容、电感等)连接而成的网络。
电路中电流和电压是基本的参数,描述了其中元件之间的相互作用。
电路按照其两个端点的特性可以分为单端口电路和双端口电路。
1.2 电路的基本定律欧姆定律、基尔霍夫定律以及其他电路定律描述了电路中电流和电压之间的关系。
其中欧姆定律描述了电阻元件电流和电压之间的关系,而基尔霍夫定律描述了电路中电流和电压的分布和流动规律。
1.3 电路的等效变换电路中电气元件可以通过等效电路进行简化处理。
例如将若干电阻串并联为一个等效电阻等。
第二章:基本电路元件2.1 电阻电阻是电路中最基本的元件之一,它的作用是阻碍电流的流动。
在电路中,电阻可以通过串联和并联的方式连接。
电阻的阻值与其材料、长度和横截面积有关系。
2.2 电容电容是电路中用来存储电荷的元件,它在电路中具有很多重要的应用。
电容的存储能量与其带电电压和电容量有关。
2.3 电感电感是电路中具有电磁感应作用的元件,其具有对电流变化的响应。
电感的存储能量与其感抗和电流有关。
2.4 理想电源理想电源是电路中常用的元件,可以提供恒定的电压或电流。
其特点是内部阻抗为零或者无穷大。
第三章:基本电路分析方法3.1 直流电路分析直流电路是电路分析中最简单的一种情况。
在直流电路中,电源提供的是恒定电压或电流,不会发生周期性或者随时间改变的变化。
3.2 交流电路分析交流电路分析是在电路中考虑电压和电流随时间变化的情况。
常见的交流电路分析包括使用复数形式进行计算。
3.3 电路的参数测量方法电路中常用的参数测量方法有欧姆表、万用表等。
它们可以测量电阻的阻值、电压的大小以及电流的大小等参数。
第四章:模拟电路设计4.1 放大器设计放大器是模拟电路中广泛应用的电路元件,可以放大电压或者电流的幅值。
常见的放大器有运放放大器、差分放大器等。
4.2 滤波器设计滤波器是可以去除特定频率成分的电路,可以用于信号处理、通信和音频等领域。
模电知识点总结讲义

模电知识点总结讲义第一部分:基本概念1. 电子元件电子元件是指能处理信息的基本部件,包括电阻、电容、电感、二极管、晶体管等。
- 电阻:用于限制电流或降低电压的元件。
- 电容:用于储存电荷或储存能量的元件。
- 电感:用于储存磁场能量或阻碍电流变化的元件。
- 二极管:用于整流、开关、放大等功能的元件。
- 晶体管:用于放大、开关、稳压等功能的元件。
2. 电路电路是由电子元件连接而成的路径,用于传输电流或信号。
- 直流电路:电流方向不变的电路。
- 交流电路:电流方向时而正时而负的电路。
- 数字电路:用于处理数字信号的电路。
- 模拟电路:用于处理模拟信号的电路。
3. 电路分析电路分析是指根据电路中元件的特性和连接关系,计算电压、电流等参数的过程。
- 基尔霍夫定律:电路中各节点的电流代数和为零。
- 欧姆定律:电流与电压成正比,电阻是电压和电流的比值。
- 诺顿定理:任意线性电路均可用一个等效的电压源和串联电阻来替代。
- 戴维南定理:任意线性电路均可用一个等效的电流源和并联电阻来替代。
4. 信号处理信号是指传输信息的载体,信号处理是对信号进行增强、滤波、调制等操作的过程。
- 放大器:用于增强信号幅度的电路。
- 滤波器:用于去除或增强特定频率的电路。
- 调制器:用于将低频信号调制到高频载波上的电路。
第二部分:放大器1. 放大器类型- 基本放大器:包括共射、共集、共底极等类型。
- 差分放大器:用于抑制共模信号的放大器。
- 电压跟随器:用于输出跟随输入信号的放大器。
2. 放大器设计- 选型:根据放大器的功率、频率、噪声等性能要求选择适当的器件。
- 偏置:通过电阻、电容等元件来设置放大器工作点。
- 反馈:通过串联或并联的电阻、电容等元件来控制放大器的增益、带宽等性能。
3. 放大器应用- 信号放大:用于将传感器输出的微弱信号放大到可测量范围。
- 信号传输:用于增强信号以便传输到远处或驱动加载。
第三部分:滤波器1. 滤波器类型- 低通滤波器:允许低频信号通过,阻断高频信号。
模电笔记知识点总结

模电笔记知识点总结一、模拟信号处理1. 模拟信号与数字信号模拟信号是指信号的数值是连续变化的,可以用连续的数学函数表示。
数字信号是指信号的数值是离散的,需要经过模数转换才能表示成数值输出。
模拟信号处理的目的是将模拟信号转换为数字信号,或者将数字信号转换为模拟信号。
2. 采样与保持采样是指将连续的模拟信号按照一定的时间间隔进行取样,得到一系列的离散数值。
保持是指在采样之后,保持所获得的信号值,直到下一次采样。
3. 模拟信号重构模拟信号重构是指将数字信号重新转换为模拟信号。
通常通过数字到模拟转换器(DAC)来实现。
4. 模拟信号滤波模拟信号滤波是指对模拟信号进行频率特性的调整,滤除不需要的频率成分,以及放大需要的频率成分。
常见的滤波器包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器。
5. 模拟信号调制模拟信号调制是指将模拟信号转换为相应的调制信号,以便在传输和处理中更容易应用。
常见的模拟信号调制方式包括调幅调制(AM)、调频调制(FM)和调相调制(PM)。
二、放大器设计1. 放大器的基本原理放大器是一种电路,它可以放大输入信号的幅度,并输出相应的放大信号。
放大器的核心原理是利用晶体管或运算放大器等电子器件的非线性特性,实现信号的增益。
放大器的设计目标通常包括增益、带宽、输入/输出阻抗、噪声等方面的考虑。
2. 放大器的分类放大器可以根据其工作方式、频率响应等特性进行分类。
比较常见的放大器包括运算放大器、差分放大器、共模抑制放大器、功率放大器等。
3. 放大器的频率特性放大器的频率特性是指放大器对不同频率信号的响应。
常见的频率特性包括通频带、截止频率、增益带宽积等。
4. 放大器的非线性失真非线性失真是指放大器输出信号与输入信号之间存在非线性关系,导致输出信号不完全等于输入信号。
常见的非线性失真包括谐波失真、交调失真等。
5. 放大器的稳定性放大器的稳定性是指当放大器输出端负载发生变化时,放大器是否能够保持稳定的工作状态。
模电知识点识点总结

模电知识点识点总结一、电路分析电路分析是模拟电子技术中的基础知识点,它涉及到电路的基本元件、电路定律、戴维南定理、诺顿定理、等效电路、交流电路分析等内容。
在电路分析中,学生需要掌握电路元件的特性和参数,熟练掌握欧姆定律、基尔霍夫电压定律、基尔霍夫电流定律等基本定律,能够准确分析电路中的电压、电流和功率等参数。
二、放大电路放大电路是模拟电子技术中的重要内容之一,它是指通过放大器将输入信号放大的过程。
学生需要掌握放大器的基本分类、放大器的基本参数、放大器的频率特性等知识,理解放大器的工作原理,能够设计各种类型的放大电路。
三、模拟信号处理模拟信号处理是模拟电子技术中的核心内容之一,它涉及到模拟信号的获取、处理、传输和存储等过程。
学生需要掌握模拟信号的采样定理、量化处理、模拟信号滤波等知识,能够设计模拟信号处理系统,提高模拟信号处理的质量和效率。
四、模拟滤波器设计滤波器是模拟电子技术中的重要内容之一,它是指用于对信号进行滤波处理的电路。
学生需要掌握滤波器的分类、滤波器的性能指标、滤波器的设计方法等知识,能够设计各种类型的模拟滤波器,提高信号的质量和准确性。
五、集成电路设计集成电路设计是模拟电子技术中的核心内容之一,它涉及到集成电路的设计原理、工艺流程、器件制造等一系列内容。
学生需要掌握集成电路的基本结构、工作原理、设计方法等知识,能够设计各种类型的集成电路,提高集成电路的性能和可靠性。
总之,模拟电子技术是电子工程中非常重要的一门课程,它涉及到电路分析、放大电路、模拟信号处理、模拟滤波器设计、集成电路设计等方面的知识。
学生在学习模拟电子技术的过程中,需要注重理论与实践相结合,通过实验和项目设计来提高自己的技能水平,从而更好地应用模拟电子技术知识解决实际问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
模电知识总结模电知识总结(1)1、半导体材料制作电子器件与传统的真空电子器件相比有什么特点?答:频率特性好、体积小、功耗小,便于电路的集成化产品的袖珍化,此外在坚固抗震可靠等方面也特别突出;但是在失真度和稳定性等方面不及真空器件。
2、什么是本征半导体和杂质半导体?答:纯净的半导体就是本征半导体,在元素周期表中它们一般都是中价元素。
在本征半导体中按极小的比例掺入高一价或低一价的杂质元素之后便获得杂质半导体。
3、空穴是一种载流子吗? 空穴导电时电子运动吗?答:不是,但是在它的运动中可以将其等效为载流子。
空穴导电时等电量的电子会沿其反方向运动。
4、制备杂质半导体时一般按什么比例在本征半导体中掺杂?答:按百万分之一数量级的比例掺入。
5、什么是N 型半导体? 什么是P 型半导体? 当两种半导体制作在一起时会产生什么现象?答:多数载子为自由电子的半导体叫N 型半导体。
反之,多数载子为空穴的半导体叫P 型半导体。
P 型半导体与N 型半导体接合后便会形成P-N 结。
6、PN 结最主要的物理特性是什么?答:单向导电能力和较为敏感的温度特性。
7、PN 结还有那些名称?答:空间电荷区、阻挡层、耗尽层等。
8、PN 结上所加端电压与电流是线性的吗? 它为什么具有单向导电性?答:不是线性的,加上正向电压时,P 区的空穴与N 区的电子在正向电压所建立的电场下相互吸引产生复合现象,导致阻挡层变薄,正向电流随电压的增长按指数规律增长,宏观上呈现导通状态,而加上反向电压时,情况与前述正好相反,阻挡层变厚,电流几乎完全为零,宏观上呈现截止状态。
这就是PN 结的单向导电特性。
9、在PN 结加反向电压时果真没有电流吗?答:并不是完全没有电流,少数载流子在反向电压的作用下产生极小的反向漏电流。
10、二极管最基本的技术参数是什么?答:最大整流电流zI11、二极管主要用途有哪些?答:整流、检波、稳压等。
12、晶体管是通过什么方式来控制集电极电流的? 答:通过电流分配关系。
13、能否用两只二极管相互反接来组成三极管?为什么?答:否;两只二极管相互反接是通过金属电极相接,并没有形成三极管所需要的基区。
14、什么是三极管的穿透电流?它对放大器有什么影响?答:当基极开路时,集电极和发射极之间的电流就是穿透电流:CBOCEOII)1(β+=,其中是集电极-基极反向漏电流,和都是由少数载流子的运动产生的,所以对温度非常敏感,当温度升高时二者都将急剧增大。
从而对放大器产生不利影响。
因此在实际工作中要求它们越小越好。
CBOICEOICBOI15、三极管的门电压一般是多少?答:硅管一般为0.5伏. 锗管约为0.2伏.16、放大电路放大电信号与放大镜放大物体的意义相同吗? 答:不相同。
17、在三极管组成的放大器中,基本偏置条件是什么?答:发射结正偏;集电结反偏。
18、三极管输入输出特性曲线一般分为几个什么区域?答:一般分为放大区、饱和区和截止区。
19、放大电路的基本组态有几种?它们分别是什么? 答:三种,分别是共发射极、共基极和共集电极。
20、在共发射极放大电路中,一般有那几种偏置电路?答:有上基偏、分压式和集-基反馈式。
21、静态工作点的确定对放大器有什么意义?答:正确地确定静态工作点能够使放大器有最小的截止失真和饱和失真,同时还可以获得最大的动态范围,提高三极管的使用效率。
22、放大器的静态工作点一般应该处于三极管输入输出特性曲线的什么区域?答:通常应该处于三极管输入输出特性曲线的放大区中央。
23、在绘制放大器的直流通路时对电源和电容器应该任何对待?答:电容器应该视为开路,电源视为理想电源。
24、放大器的图解法适合哪些放大器?答:一般适合共射式上基偏单管放大器和推挽式功率放大器。
25、放大器的图解法中的直流负载线和交流负载线各有什么意义?答:直流负载线确定静态时的直流通路参数。
交流负载线的意义在于有交流信号时分析放大器输出的最大有效幅值及波形失真等问题。
26、如何评价放大电路的性能? 有哪些主要指标?答:放大电路的性能好坏一般由如下几项指标确定:增益、输入输出电阻、通频带、失真度、信噪比。
27、为什么放大器的电压增益的单位常常使用分贝?它和倍数之间有什么关系?答:放大器的电压增益的单位常常使用分贝的原因:(1)数值变小,读写方便。
(2)运算方便。
(3)符合听感,估算方便。
二者之间的关系是:)(lg200dBuuAiu=28、放大器的通频带是否越宽越好?为什么?答:不!放大器通频带的宽度并不是越宽越好,关键是应该看放大器对所处理的信号频率有无特别的要求!例如选频放大器要求通频带就应该很窄,而一般的音频放大器的通频带则比较宽。
答:放大器的输入电阻应该越高越好,这样可以提高输入信号源的有效输出,将信号源的内阻上所消耗的有效信号降低到最小的范围。
而输出电阻则应该越低越好,这样可以提高负载上的有效输出信号比例。
30、设计放大器时,对输入输出电阻来说,其取值原则是什么?答:高入低出。
31、放大器的失真一般分为几类?答:单管交流小信号放大器一般有饱和失真、截止失真和非线性失真三类、推挽功率放大器还可能存在交越失真。
32、放大器的工作点过高会引起什么样的失真?工作点过低呢?答:饱和失真、截止失真33、放大器的非线性失真一般是哪些原因引起的?答:工作点落在输入特性曲线的非线性区、而输入信号的极小值还没有为零时会导致非线性失真。
34、微变等效电路分析法与图解法在放大器的分析方面有什么区别?答:可以比较方便准确地计算出放大器的输入输出电阻、电压增益等。
而图解法则可以比较直观地分析出放大器的工作点是否设置得适当,是否会产生什么样的失真以及动态范围等。
35、用微变等效电路分析法分析放大电路的一般步骤是什么?答:1)计算出Q 点中的; EI 2)根据公式)(26)1()(300mVIrEbeβ++Ω=计算出三极管的。
ber3)用微变等效电路绘出放大器的交流通路。
4)根据3)和相应的公式分别计算放大器的输入输出电阻、电压增益等.36、微变等效电路分析法的适用范围是什么?答:适合于分析任何简单或复杂的电路。
只要其中的放大器件基本工作在线性范围内。
37、微变等效电路分析法有什么局限性?答:只能解决交流分量的计算问题,不能用来确定Q 点,也不能用以分析非线性失真及最大输出幅度等问题。
38、影响放大器的工作点的稳定性的主要因素有哪些?答:元器件参数的温度漂移、电源的波动等。
39、在共发射极放大电路中一般采用什么方法稳定工作点?答:引入电流串联式负反馈。
40、单管放大电路为什么不能满足多方面性能的要求?答:放大能力有限;在输入输出电阻方面不能同时兼顾放大器与外界的良好匹配。
41、耦合电路的基本目的是什么?答:让有用的交流信号顺利地在前后两级放大器之间通过,同时在静态方面起到良好地隔离。
42、多级放大电路的级间耦合一般有几种方式?答:一般有阻容耦合、变压器耦合、直接耦合几种方式43、多级放大电路的总电压增益等于什么? 答:等于各级增益之乘积。
44、多级放大电路输入输出电阻等于什么?答:分别等于第一级的输入电阻和末级的输出电阻。
45、直接耦合放大电路的特殊问题是什么? 如何解决?答:零点漂移是直接耦合放大电路最大的问题。
最根本的解决方法是用差分放大器。
46、为什么放大电路以三级为最常见? 答:级数太少放大能力不足,太多又难以解决零点漂移等问题。
47、什么是零点漂移?引起它的主要原因有那些因素?其中最根本的是什么?答:放大器的输入信号为零时其输出端仍旧有变化缓慢且无规律的输出信号的现象。
生产这种现象的主要原因是因为电路元器件参数受温度影响而发生波动从而导致Q 点的不稳定,在多级放大器中由于采用直接耦合方式,会使Q 点的波动逐级传递和放大。
48、什么是反馈? 什么是直流反馈和交流反馈? 什么是正反馈和负反馈?答:输出信号通过一定的途径又送回到输入端被放大器重新处理的现象叫反馈。
如果信号是直流则称为直流反馈;是交流则称为交流反馈,经过再次处理之后使放大器的最后输出比引入反馈之前更大则称为正反馈,反之,如果放大器的最后输出比引入反馈之前更小,则称为负反馈。
49、为什么要引入反馈?答:总的说来是为了改善放大器的性能,引入正反馈是为了增强放大器对微弱信号的灵敏度或增加增益;而引入负反馈则是为了提高放大器的增益稳定性及工作点的稳定性、减小失真、改善输入输出电阻、拓宽通频带等等。
模电知识总结(2)50、交流负反馈有哪四种组态? 答:分别是电流串联、电流并联、电压串联、电压并联四种组态。
51、交流负反馈放大电路的一般表达式是什么? 答:001FAAAF+=。
52、放大电路中引入电流串联负反馈后,将对性能产生什么样的影响?答:对电压增益有削弱作用、提高其增益稳定性、降低失真、提高输入电阻、提高输出电阻等。
53、放大电路中引入电压串联负反馈后,将对性能产生什么样的影响?答:对电压增益有削弱作用、能提高其增益稳定性、降低失真、降低输入电阻、降低输出电阻等。
54、放大电路中引入电流并联负反馈后,将对性能产生什么样的影响?答:对电压增益有削弱作用、能提高其增益稳定性、降低失真、降低输入电阻、提高低输出电阻等。
55、放大电路中引入电压并联负反馈后,将对性能产生什么样的影响?答:对电压增益有削弱作用、能提高其增益稳定性、降低失真、降低输入电阻、降低低输出电阻等。
56、什么是深度负反馈? 在深度负反馈条件下,如何估算放大倍数?答:在反馈放大器中,如001FAAAF+=中01FA+.1,则01FAF≈,满足这种条件的放大器叫深度负反馈放大器,此时的放大器的闭环增益已经完全由反馈系数决定。
57、负反馈愈深愈好吗? 什么是自激振荡? 什么样的反馈放大电路容易产生自激振荡? 如何消除自激振荡? 答:不是。
当负反馈放大电路的闭环增益001FAAAF+=中01FA+=0,则,∞→FA 说明电路在输入量为0时就有输出,称电路产生了自激振荡。
当信号频率进入低频或高频段时,由于附加相移的产生,负反馈放大电路容易产生自激振荡。
要消除自激振荡,就必须破坏产生振荡的条件,改变AF 的频率特性,使1.≠AF。
58、放大电路中只能引入负反馈吗? 放大电路引入正反馈能改善性能吗?答:不是。
能,如自举电路,在引入负反馈的同时,引入合适的正反馈,以提高输入电阻。
59、电压跟随器是一种什么组态的放大器?它能对输入的电压信号放大吗?答:电压跟随器是一种电压串联放大器。
它不能对输入的电压信号放大。
60、电压跟随器是属于什么类型的反馈放大器?答:电压跟随器是一种电压串联反馈放大器。
61、电压跟随器主要用途在哪里?答:电压跟随器主要用途:一般用于多级放大电路的输入级、输出级,也可连接两电路,起缓冲作用。
62、电压跟随器的输入输出特性如何?答:电压跟随器的输入输出特性:输入电阻高,输出电阻低。