07章 抽样和参数估计习题及答案

合集下载

统计基础试题——参数估计和假设检验

统计基础试题——参数估计和假设检验

第七章参数估计和假设检验一、填空题1.在抽样推断中,常用的总体指标有、和。

2.在抽样推断中,按随机原则从总体中抽取的部分单位叫,这部分单位的数量叫。

3.整群抽样是对总体中群内的进行的抽样组织形式。

4.若总体单位的标志值不呈正态分布,只要,全部可能样本指标也会接近于正态分布。

5.抽样估计的方法有和两种。

6.扩大误差范围,可以推断的可靠程度,缩小误差范围则会推断的可靠程度。

7.对总体的指标提出的假设可以分为和。

8.如果提出的原假设是总体参数等于某一数值,这种假设检验称为,若提出的原假设是总体参数大于或小于某一数值,这种假设检验称为。

二、单项选择题1.所谓大样本是指样本单位数在()及以上。

A.50个B.30个C.80个D.100个2.总体平均数和样本平均数的关系是()。

A.总体平均数是确定值,样本平均数是随机变量B.总体平均数是随机变量,样本平均数是确定值C.总体平均数和样本平均数都是随机变量D.总体平均数和样本平均数都是随机变量3.先对总体按某一标志分组,然后再在各组中按随机原则抽取一部分单位构成样本,这种抽样组织方式称为()。

A.简单随机抽样B.机械抽样C.类型抽样D.整群抽样4.用样本指标对总体指标作点估计时,应满足4点要求,其中无偏性是指()。

A.样本平均数等于总体平均数B.样本成数等于总体成数C.样本指标的平均数等于总体的平均数 D.样本指标等于总体指标5.在其它条件不变的情况下,提高抽样估计的可靠程度,其精确度将()。

A.保持不变B.随之扩大C.随之缩小D.无法确定6.在抽样估计中,样本容量()。

A.越小越好B.越大越好C.有统一的抽样比例D.取决于抽样估计的可靠性要求。

7.假设检验中的临界区域是指()。

A.接受域B.拒绝域C.检验域D.置信区间三、多项选择题1.在抽样推断中,抽取样本单位的具体方法有()。

A.重复抽样B.不重复抽样C.分类抽样D.等距抽样E.多阶段抽样2.在抽样推断中,抽取样本的组织形式有()。

参数估计习题及答案

参数估计习题及答案

参数估计习题及答案参数估计在统计学中是一个重要的概念,它涉及到根据样本数据来估计总体参数的过程。

下面,我将提供一些参数估计的习题以及相应的答案,以帮助学生更好地理解这一概念。

习题一:假设有一个班级的学生数学成绩,我们从这个班级中随机抽取了10名学生的成绩,得到样本均值 \(\bar{x} = 85\),样本标准差 \(s = 10\)。

请估计总体均值 \(\mu\)。

答案:根据样本均值 \(\bar{x}\) 来估计总体均值 \(\mu\),我们可以使用以下公式:\[ \hat{\mu} = \bar{x} \]因此,\(\hat{\mu} = 85\)。

习题二:在习题一中,如果我们想要估计总体方差 \(\sigma^2\),我们应该如何操作?答案:总体方差 \(\sigma^2\) 通常使用样本方差 \(s^2\) 来估计,样本方差的计算公式为:\[ s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2 \]其中 \(n\) 是样本大小,\(x_i\) 是第 \(i\) 个观测值。

在这个例子中,\(n = 10\),\(\bar{x} = 85\),\(s = 10\)。

因此,我们可以使用以下公式来估计总体方差:\[ \hat{\sigma}^2 = s^2 = \frac{1}{10-1} \times 10^2 = 100 \]习题三:一个工厂生产的产品长度服从正态分布,样本均值为 \(\bar{x} =50\) 厘米,样本标准差为 \(s = 2\) 厘米。

如果我们知道总体均值\(\mu\) 为 \(50\) 厘米,我们如何估计总体标准差 \(\sigma\)?答案:根据已知的样本均值 \(\bar{x}\) 和样本标准差 \(s\),我们可以使用以下公式来估计总体标准差 \(\sigma\):\[ \hat{\sigma} = s \]因此,\(\hat{\sigma} = 2\) 厘米。

第七章-参数估计

第七章-参数估计
的标准 • 1.无偏性 • 无偏估计量:用多个样本的统计量作为总体参数 的估计值,其偏差的平均数为0。
X 0
• 2.有效性
• 当总体参数的无偏估计不止一个统计量时,无偏
估计变异小者有效性高,变异大者有效性低,即 方差越小越好。
9 0.286 9 0.286 2 23.6 1.73
0.11 2 1.49
• 【例7-7】
• n=31,sn-1=5问的0.95置信区间?
• 解:先求方差的置信区间,当df=30,查χ2表,
2 0.025 47
2 0.975 16.8
2 30 52 30 5 2 47 16.8
正态分布,即Z0.05/2=1.96。
5 0.635 2 31
• 0.95的置信区间为:
5 1.96 0.635 5 1.96 0.635
3.76 6.24
• 二、方差的区间估计
• 根据χ2分布:
2
X X


2
2
2 2 n 1 sn ns 1
第七章 参数估计
思 考
• 例8-1:从某市随机抽取小学三年级学生50名,测 得平均身高为 140cm ,标准差 4 。试问该市小学 三年级学生的平均身高大约是多少?

例8-2:某教师用韦氏成人智力量表测80 名高三学生,M=105。试估计该校高三 学生智商平均数大约为多少?
什么是参数估计
当在研究中从样本获得一组数据后,如何通过 这组数据信息,对总体特征进行估计,也就是 如何从局部结果推论总体的情况,称为总体参 数估计。 • 参数估计: 样本 统计量
• 【例7-2】
• 有一个49名学生的班级,某学科历年考试成绩的

第七章 参数估计-含答案

第七章 参数估计-含答案
D.对于一个参数只能有一个估计值
答案:B
3.假定抽样单位数为400,抽样平均数为300和30,相应的变异系数为50%和20%,试以0.9545的概率来确定估计精度为()。
A.15和0.6B.5%和2%
C.95%和98% D.2.5%和1
答案:C
4.根据10%抽样调查资料,甲企业工人生产定额完成百分比方差为25,乙企业为49。乙企业工人数四倍于甲企业,工人总体生产定额平均完成率的区间()。
C.总体参数取值的变动范围
D.抽样误差的最大可能范围
答案:A
11.无偏性是指( )。
A.抽样指标等于总体指标 B.样本平均数的平均数等于总体平均数
C.样本平均数等于总体平均数 D. 样本成数等于总体成数
答案:B
12.一致性是指当样本的单位数充分大时,抽样指标( )。
A.小于总体指标 B. 等于总体指标
答案:ABC
4.点估计( )。
A.考虑了抽样误差大小B.没有考虑抽样误差大小
C.能说明估计结果的把握程度D.是抽样估计的主要方法
E.不能说明估计结果的把握程度
答案:BE
5.在其它条件不变时,抽样推断的置信度1-α越大,则( )。
A.允许误差范围越大B.允许误差范围越小
C.抽样推断的精确度越高D.抽样推断的精确度越低
答案:D
18.设X~N(μ,σ2)σ为未知,从中抽取n=16的样本,其样本均值为 ,样本标准差为s,则总体均值的置信度为95%的置信区间为()。
答案:C
二、多项选择题
1.在区间估计中,如果其他条件保持不变,置信度与精确度之间存在下列关系( )。
A.前者愈低,后者也愈低B. 前者愈高,后者也愈高
C. 前者愈低,后者愈高D.前者愈高,后者愈低

统计学:抽样估计习题与答案

统计学:抽样估计习题与答案

一、单选题1、从某生产线上每隔55分钟抽取5分钟的产品进行检验,这种抽样方式属于( )。

A.等距抽样B.分层抽样C.整群抽样D.简单随机抽样正确答案:A2、若总体平均数X̅=50,在一次抽样调查中测得x̅=50,则以下说法正确的是( )。

A.抽样极限误差为2B.抽样平均误差为2C.抽样实际误差为2D.以上都不对正确答案:C3、重复抽样条件下,成数的抽样标准误计算公式是( )。

A.√P2(1−P2)/nB.√P(1−P)/nC.√D. P(1−P)/√n正确答案:B4、在其它条件不变情况下,采用重复抽样方式,将允许误差扩大为原来的3倍,则样本容量( )。

A.扩大为原来的9倍B.扩大为原来的3倍C.缩小为原来的1/9倍D.缩小为原来的1/3倍正确答案:C5、如果随着样本容量的增大,估计量的值会越来越靠近总体参数的真值,符合这一要求的估计量被称为( )。

A.无偏估计量B.有效估计量C.一致估计量D.充分估计量正确答案:C6、下列关于抽样标准误的叙述哪个是错误的。

( )A.抽样标准误是抽样分布的标准差B.抽样标准误的理论值是惟一的,与所抽样本无关C.抽样标准误比抽样极限误差小D.抽样标准误只能衡量抽样中的偶然性误差的大小正确答案:C7、简单重复随机抽样条件下,欲使误差范围缩小一半,其他要求不变,则样本容量须( )。

A.增加2倍B.增加3倍C.减少2倍D.减少3倍正确答案:B8、调查某市电话网100次通话,得知通话平均时间为4分钟,标准差为2分钟,在95.45%的置信水平下,估计通话的平均时间为( )。

A.[3.9,5.1]B.[3.8,4.2]C.[3.7,4.3]D.[3.6,4.4]正确答案:D9、从2000名学生中按不重复抽样方法抽取了100名进行调查,其中有女生45名,则样本成数的抽样标准误为( )。

A.0.24%B.4.85%C.4.97%D.以上都不对正确答案:B10、重复抽样条件下,平均数的抽样标准误计算公式是()。

(完整版)第七章抽样推断与检验习题(含答案)

(完整版)第七章抽样推断与检验习题(含答案)

第七章 抽样推断与检验习题一、填空题1.抽选样本单位时要遵守 随机 原则,使样本单位被抽中的机会 均等 。

2.常用的总体指标有 均值 、 成数(比例) 、 方差 。

3.在抽样估计中,样本指标又称为 统计 量,总体指标又称为 参数 。

4.全及总体标志变异程度越大,抽样误差就 越大 ;全及总体标志变异程度越小,抽样误差 越小 。

5.抽样估计的方法有 点估计 和 区间估计 两种。

6.整群抽样是对被抽中群内的 所有单位 进行 全面调查 的抽样组织方式。

7.常用的离散型随机变量分布包括 几何分布 、二项分布和 泊松分布 。

8.简单随机抽样的成数抽样平均误差计算公式是:重复抽样条件下:()n u p ππ-=1;不重复抽样条件下:()⎪⎭⎫⎝⎛---=11N n N nu p ππ。

9.误差范围△,概率度t 和抽样平均误差σ之间的关系表达式为 。

10.对总体指标提出的假设可以分为原假设和 备选假设(备择假设) 。

二、单项选择题1.所谓大样本是指样本单位数在()及以上A 30个B 50个C 80个 D100个2.抽样指标与总体指标之间抽样误差的可能范围是( )A 抽样平均误差B 抽样极限误差C 区间估计范围D 置信区间3.抽样平均误差说明抽样指标与总体指标之间的( )A 实际误差B 平均误差C 实际误差的平方D 允许误差4.成数方差的计算公式( )A P(1-P)B P(1-P)2C )1(P P -D P 2(1-P)5.对入库的一批产品抽检100件,其中有90件合格,最高可以( )概率保证合格率高于80%。

A 95.45%B 99.73%C 68.27%D 90%6.假设检验是检验( )的假设值是否成立A 样本指标B 总体指标C 样本方差D 样本平均数7.在假设检验中的临界区域是( )A 接受域B 拒受域C 置信区间D 检验域8.假设检验和区间估计之间的关系,下列说法正确的是( )A 虽然概念不同,但实质相同B 两者完全没有关系C 互相对应关系D 不能从数量上讨论它们之间的对应关系 222∆=σt n三、简答题1.什么是随机原则?在抽样调查中为什么要遵循随机原则?2.样本和总体有什么区别和联系?3.影响抽样误差的因素有哪些?4.抽样误差、抽样极限误差和概率度三者之间有何关系?5.什么是假设检验?其作用是什么?四、计算题1.工商部门对某超市经销的小包装休闲食品进行重量合格抽查,规定每包重量不低于试以95.45%概率推算:(1)这批食品的平均每包重量是否符合规定要求;(2)若每包食品重量低于30克为不合格,求合格率的范围。

统计学第七章、第八章课后题答案

统计学第七章、第八章课后题答案

统计学复习笔记第七章 参数估计一、 思考题1. 解释估计量和估计值在参数估计中,用来估计总体参数的统计量称为估计量。

估计量也是随机变量。

如样本均值,样本比例、样本方差等。

根据一个具体的样本计算出来的估计量的数值称为估计值。

2. 简述评价估计量好坏的标准(1)无偏性:是指估计量抽样分布的期望值等于被估计的总体参数。

(2)有效性:是指估计量的方差尽可能小。

对同一总体参数的两个无偏估计量,有更小方差的估计量更有效。

(3)一致性:是指随着样本量的增大,点估计量的值越来越接近被估总体的参数。

3. 怎样理解置信区间在区间估计中,由样本统计量所构造的总体参数的估计区间称为置信区间。

置信区间的论述是由区间和置信度两部分组成。

有些新闻媒体报道一些调查结果只给出百分比和误差(即置信区间),并不说明置信度,也不给出被调查的人数,这是不负责的表现。

因为降低置信度可以使置信区间变窄(显得“精确”),有误导读者之嫌。

在公布调查结果时给出被调查人数是负责任的表现。

这样则可以由此推算出置信度(由后面给出的公式),反之亦然。

4. 解释95%的置信区间的含义是什么置信区间95%仅仅描述用来构造该区间上下界的统计量(是随机的)覆盖总体参数的概率。

也就是说,无穷次重复抽样所得到的所有区间中有95%(的区间)包含参数。

不要认为由某一样本数据得到总体参数的某一个95%置信区间,就以为该区间以的概率覆盖总体参数。

5. 简述样本量与置信水平、总体方差、估计误差的关系。

1. 估计总体均值时样本量n 为2. 样本量n 与置信水平1-α、总体方差、估计误差E 之间的关系为与置信水平成正比,在其他条件不变的情况下,置信水平越大,所其中: 2222α2222)(E z n σα=n z E σα2=需要的样本量越大;与总体方差成正比,总体的差异越大,所要求的样本量也越大;与与总体方差成正比,样本量与估计误差的平方成反比,即可以接受的估计误差的平方越大,所需的样本量越小。

(07)第7章 参数估计

(07)第7章  参数估计
统计学
STATISTICS
第 7 章 参数估计
7.1 参数估计的一般问题 7.2 一个总体参数的区间估计 7.3 必要的样本容量的确定
7-1
统计学
STATISTICS
学习目标
1. 2. 3. 4.
估计量与估计值的概念 点估计与区间估计的区别 一个总体参数的区间估计方法 必要的样本容量的确定方法
7-2
统计学
STATISTICS
置信水平
1. 将构造置信区间的步骤重复很多次,置 信区间包含总体参数真值的次数所占的 比重称为置信水平,也叫做置信度 2. 表示为 (1 -

为总体参数未在区间内的比重
相应的 为0.01,0.05,0.10
3. 常用的置信水平值有 99%, 95%, 90%
2. 则,将所有样本均值标准化为t统计量:
t x n ~ t (n 1)
3. 最终,总体均值 在1-置信水平下的置信 区间为: s
x t
2
s
7 - 24
n
统计学
STATISTICS
t 分布
t 分布是类似正态分布的一种对称分布,它通常要比 正态分布平坦和分散。一个特定的t分布依赖于称之 为自由度的参数。随着自由度的增大,分布也逐渐 趋于正态分布
2
n
或 p z
p(1 - p)
2
( 未知时)
n
统计学
STATISTICS
总体比重的区间估计
(例题分析)
解:已知 n=100,p=65% , 1- = 95%, z/2=1.96
p z p (1 p )
2
【例】某城市想 要估计下岗职工 中女性所占的比 重,随机地抽取 了 100 名 下 岗 职 工,其中65人为 女性职工。试以 95%的置信水平 估计该城市下岗 职工中女性比重 的置信区间
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七章 抽样调查1、 抽样调查的目的在于用抽样指标去推断总体指标。

( )2、 不论总体单位数多少都适用抽样调查方法。

( )3、 古典概率是指每次试验中事件等可能出现的条件下,试验前就可计算出来的比率。

( )4、 股票指数在未来的一周内上升可能性的大小指的是主观概率。

( )5、对一个有限总体进行重复抽样,各次抽取的结果是相互独立的。

( )6、对一个无限总体进行不重复抽样,各次抽取的结果是相互独立的。

( )7、抽样极限误差可以大于抽样平均误差,可以小于抽样平均误差,当然也可以等于抽样平均误差。

( )8、对于重复简单随机抽样,若其它条件不变,样本单位数目增加3倍,则样本平均数抽样平均误差将必须减少30%。

( )9、对于重复简单随机抽样,若其它条件不变,要使抽样平均误差减少一半,则抽样单位数目将必须增加1倍。

( )10、抽样误差产生的原因是抽样调查时违反了随机原则。

( ) 11、抽样误差是抽样调查所固有的、无法消除的误差。

( )12、在确定样本单位数目时,若总体成数方差未知,则P 可取0.5。

( )1、 若某一事件出现的概率为1/6,当试验6次时,该事件出现的次数将是()。

1次 大于1次小于1次上述结果均有可能2、 已知一批计算机元件的正品率为80%,现随机抽取n 个样本,其中x 个为正品,则x 的分布服从()。

正态分布二项分布泊松分布超几何分布3、某工厂生产的零件出厂时每200个装一盒,这种零件分为合格与不合格两类,合格率约为99%,设每盒中的不合格数为X ,则X 通常服从( )。

正态分布二项分布泊松分布超几何分布4、 若一个系的学生中有65%是男生,40%是高年级学生。

若随机抽选一人,该学生或是男生或是高年级学生的概率最可能是( )。

0.350.600.80 1.055、 有为朋友从远方来,他乘火车、轮船、汽车、飞机来的概率分别为0.3、0.2、0.1和0.4,如果他乘火车、轮船、汽车来的话,迟到的概率分别为1/4、1/3和1/12,而乘飞机则不会迟到,试求他迟到的概率为( )。

0.150.200.25 0.306、 在第5题中,如果他迟到了,他乘火车来的概率为( )。

0.30.40.5 0.67、 产生抽样误差的主要原因,在于( )。

抽样方法的优劣抽样技术的高低调查组织工作的好坏样本与总体的差异8、 以下错误的概念是:在抽样调查中,抽样误差( )。

不可避免要产生的是可以通过改进调查方式来消除的是可以事先计算出来的其大小是可以控制的9、设一个盒子里装有编号为①②③的三个球,现按考虑顺序的重复抽样方式从中随机抽出两个球组成样本,则样本可能数目为( )。

10、 在总体内部情况复杂,且各单位之间差异程度较大,单位数较多的情况下,一般宜采用( )。

简单随机抽样 类型抽样等距抽样 整群抽样11、 在其它条件不变的情况下,抽样平均误差的大小与抽样单位数目的多少( )。

成正比 成反比 成等比不相干12、 在95.45%的概率保证程度下,当抽样极限误差为0.06时,则抽样平均误差等于( )。

0.020.030.12 0.1813、 抽样成数指标P 值越接近1,则抽样成数平均误差值( )。

越大越小越接近0.5 越接近11、 若某一事件出现的概率为1/6,当试验6次时,该事件出现的次数()。

可能1次 可能大于1次 可能小于1次 一定是2次 上述结果均有可能2、 某种考试有10道判断题,若有一个对题目毫无所知的人,对10道题任意猜测,则其猜对6题的概率和及格(猜对6题以上)的概率分别为()。

0.1 0.2 0.30.40.53、某种考试有10道单项选择题,若有一个对题目毫无所知的人,对10道题任意猜测,则其猜对6题的概率和及格(猜对6题以上)的概率分别为()。

0.0200.0190.0180.0170.0164、抽样调查的特点包括()。

是一种全面调查是一种非全面调查是按随机原则抽取调查单位是用总体中部分单位的指标数值去推断总体指标数值抽样调查中产生的误差可以事先计算并加以控制br>5、抽样误差是指()。

抽样实际误差抽样登记误差系统性误差抽样平均误差抽样极限误差6、抽样调查估计量的优良标准是()。

随机性无偏性及时性有效性一致性7、抽样误差是指()。

总体单位之间的变异程度总体标准差的大小抽样单位数的多少抽样方法的不同抽样组织的方式不同8、必要的样本单位数受哪些因素影响()。

受总体单位之间变异程度的影响<受极限抽样误差的影响受概率保证程度的影响受抽样方法的影响受抽样组织方式的影响9、抽样调查与典型调查的主要区别在于()。

选择单位的原则不同能否计算和控制误差的不同调查目的不同调查的组织方式不同推断是否与概率相联系的不同1、抽样调查是建立在__________基础上的一种科学的调查方法。

2、抽样调查的最大特点和优点,在于可事先计算和控制______________。

3、抽样调查的理论主要是围绕________和__________之间的关系来展开的。

4、某种考试有10道判断题,若有一个对题目毫无所知的人,对10道题任意猜测,猜对的题目数为X,则X服从_______分布,其猜对6题的概率是_______,及格(猜对6题以上)的概率是_________。

5、10个灯泡中5个是好的,5个是坏的,混合在一起,若随机重复抽取2个灯泡,这2个灯泡都是好的概率为________,若第1个和第2个灯泡都是好的,再抽第3个灯泡仍旧是好的概率是__________。

6、正态分布是一种图形为__________的分布。

它是统计学中最重要的分布,应用极为广泛。

7、大数定理是指____________具有稳定性的一系列定理的总称,也称大数法则。

其中最著名的是_______大数定理和_________大数定理。

8、中心极限定理是指_____________的一系列定理的总称。

最常用的有:__________中心极限定理和__________中心极限定理。

9、在抽样调查中,_______是唯一确定的,是固定的量;________是随着抽选方式方法的不同而不同,是一个随机变量。

10、简单随机重复抽样,当样本单位数为900时,则抽样平均误差等于总体标准差的_________。

11、进行简单随机重复抽样,若使抽样平均误差减少25%,则抽样单位数需要增加__________。

12、在所有随机抽样调查方式中,最基本、最常用的方式有______、_______、______、______、________等五种。

1、有三种投资,每种投资成功的概率为1/3,若三种投资相互独立,三种投资中至少有一种成功的概率是多少?2、某专业研究生复试时,有3张考签,3个考生应试,一个人抽一张看后立刻放回,再让另一个人抽,如此3人各抽一次,求抽签结束后,至少有一张考签没有被抽到的概率。

3、某厂生产的每台仪器,可直接出厂的占0.7,需调试的占0.3,调试后出厂的占0.8,不能出厂的不合格品占0.2,现该厂新生产100台仪器(设每台仪器的生产过程相互独立),试求(1)全部能出厂的概率;(2)恰有2台不能出厂的概率;(3)至少有2台不能出厂的概率。

4、某航线的班机,常常有旅客预定票后又临时取消,平均每班机为4人。

若预定票而取消的人数服从泊松分布,现抽查一班机,求(1)正好有4人取消的概率;(2)不超过3人(含3人)的概率;(3)超过6人(含6人)的概率。

5、假设某班期末统计学考试成绩服从正态分布,平均成绩为70分,标准差为12分,要求计算:(1)随机抽取1人,该同学成绩在82分以上的概率;(2)随机抽取9人,其平均成绩在82分以上的概率。

6、某电视台要了解某次电视节目的收视率,随机抽取500户城乡居民作为样本,调查结果,其中有160户城乡居民收视该电视节目,试以95.45%的概率保证程度,(1)推断该电视节目收视率的区间范围;(2)如果使收视率的抽样极限误差缩小为原来的1/2,作下次抽样调查,则需要抽取多少样本单位数?7、某种零件的重量服从正态分布,现从中抽得容量为16的样本,测得其重量(单位:千克)分别为4.8、4.7、5.0、5.2、4.7、4.9、5.0、5.0、4.6、4.7、5.0、5.1、4.7、4.5、4.9、4.9。

在95%的概率保证程度下,试推断该零件平均重量的区间范围。

8、某市有职工80万人,其中国有企业职工25万人,非国有企业职工55万人,现采用类型比例抽样方式对职工收入水平进行调查,调查结果资料如下:根据上述资料,试求:(1)抽样平均数;(2)在95.45%的概率保证程度下,对该市职工月平均收入作区间估计;(3)推算该市职工月收入总额的区间范围。

(一)判断题1、(√)2. (×)3. (√)4. (√)5. (√)6. (×)7. (√)8. (×)9. (×)10.(×)11.(√)12.(√)(二)单项选择题1. ④2. ②3. ②4. ③5. ①6. ③7. ④8. ②9. ①10.②11.②12.②13.②(三)多项选择题1. ①②③2. ②④3. ①⑤4. ②③④⑤5. ①④⑤6. ②④⑤7. ①②③④⑤8. ①②③④⑤9. ①②③④⑤(四)填空题1. 随机原则2. 抽样误差3. 总体;样本4. 二项,;0.2051;0.37705. 0.25;0.56. 单峰钟形对称7. 大量随机变量的平均结果;贝努里;契比雪夫8. 随机变量序列的极限分布渐近于正态分布;独立同分布;棣莫弗—拉普拉斯9. 总体指标;样本指标10. 1/3011. 78%12. 简单随机抽样、类型抽样、等距抽样、整群抽样、多阶段抽样(五)计算题1、2、3、4、5、6、7、8、。

相关文档
最新文档