抽样理论与方法:不等概率抽样
(硕)《抽样技术》第三讲 等概率与不等概率抽样比较研究

三、严格的πPS抽样
n是固定的;一阶包含概率与单 是固定的; 位规模大小严格成比例, 位规模大小严格成比例,即
πi = nZi
1.当 n = 2 的情况下 1.当 布鲁尔估计法: 布鲁尔估计法: 要求: 要求:总体中最大的单位必须小 于全部单位大小总和的 1 2
记第一个被抽取的单位为i 记第一个被抽取的单位为i,第一个单位 成比例的概率抽取。 按与 Z i (1 − Z i ) 成比例的概率抽取。
设从总体中不放回地抽去 n 个 单位, 单位, 令 π i 为第 i 个单位入样的概率 (一阶包含概率). 一阶包含概率). π ij 为第 i 和第 j 个单位同时入 样的概率(二阶包含概率). 样的概率(二阶包含概率).
1. 霍维茨 汤普森估计量 霍维茨-汤普森 汤普森估计量
总体总值的估计量 X ˆ 估计量的方差为
2
( )
ˆ xi XHH M = ∑ m − M n ( n −1) i=1 i 0
第三节 不重复的 不等概率抽样
一、基本概念 1. πPS 抽样:不放回的与单元规模 抽样:
大小成比例的概率抽样称为严格的
πPS 抽样。 抽样。
2. 在不重复的不等概率抽样中,总 在不重复的不等概率抽样中, 体中的每个单位每次被抽中的概率 为 Zi 。
两个单位同时入样概率称为 二阶包含概率。 二阶包含概率。
包含概率的性质: 包含概率的性质:
(1)
∑π
i =1 N
N
i
=n = ( n − 1) π i
(2)
∑π
i≠ j N
ij
1 ∑∑i π ij = 2 n ( n − 1) (3) i =1 j >
N
抽样技术7不等概率抽样

抽样技术:7不等概率抽样1. 引言在进行数据分析和统计研究时,抽样是一种常用的技术。
抽样技术允许我们从总体中选择一个样本,以便推断总体的性质。
在抽样技术中,不等概率抽样是一种常见的方法,它允许我们以非均匀的概率抽取样本。
本文将介绍关于7种不等概率抽样方法的详细信息。
2. 简单随机抽样简单随机抽样是最根本的抽样方法之一,它要求每个个体被选中的概率相等且任意组合都是可能的。
然而,在某些情况下,简单随机抽样可能并不适用,例如当总体分布不均匀时,或者我们希望在样本中增加一定的多样性。
这时,我们可以考虑使用不等概率抽样方法。
3. 整群抽样整群抽样是一种不等概率抽样方法,它将总体划分为假设干个互不重叠的群组〔或称为簇〕,然后从每个群组中抽取样本。
整群抽样可以有效地减少抽样过程中的复杂性,并提高样本的效率。
整群抽样常用于调查社会群体或大型组织等场景。
4. 分层抽样分层抽样是一种根据总体特点进行划分的抽样方法,它将总体划分为假设干个层级或相似的子群〔层〕,然后从每个层中抽取样本。
通过分层抽样,我们可以保证样本在各层中的分布情况与总体相似,从而更为准确地推断总体的特征。
5. 系统抽样系统抽样是一种按照固定间隔选择样本的抽样方法。
它类似于简单随机抽样,但是通过定义一个间隔,我们可以按照一定的规律抽取样本。
例如,我们可以在总体中选取每隔一定数量的个体作为样本。
系统抽样在样本大小较大时表现出较高的效率。
6. 按比例分层抽样按比例分层抽样是一种常用的不等概率抽样方法,它根据总体各层的比例确定各层的样本容量。
比例分层抽样可以使得样本在各层中的分布与总体的比例相对应。
这种抽样方法适用于总体中的各个层存在不同比例的情况。
7. 两阶段抽样两阶段抽样是一种复杂的不等概率抽样方法,它将抽样过程分为两个阶段。
在第一阶段,我们从总体中选择一局部群组〔或称为簇〕,在第二阶段,我们从每个群组中抽取一定数量的样本。
两阶段抽样适用于总体较大或分布复杂的情况下,可以提高抽样的效率。
不等概率抽样的概念和特点

(1)将总体单元按规模分层,对较大单元的层抽样比高一些,特大层的 抽样比甚至可以100%,而较小单元的层抽样比低一些。
(2)采用不等概抽样来减少抽样方差,即赋予每个单元与其规模成比例 的入样概率,然后在估计中采用不同的权数来进行弥补。
分层抽样:抽样选择概率小的单位会有较 高的权数。
n
N
Wi yi n
yi
又如,对于霍维茨——汤普森估计量
YˆHT
yi
i
在入选概率与规模成比例条件下,
的性质为
i
i
nZi
则
YˆHT
n
yi nZ i
1 n
n
yi Zi
YˆHH
πPS抽样的实施
n=2条件下严格的πPS抽样
布鲁尔方法 德宾方法
n >2条件下严格的πPS抽样
inijninn???1?????ininiihtywyy??????iiw?1?n固定条件下的包含概率第i单位入样概率第ij单位都入样概率21kin1in1inikkikiik2iiiyyy1?kkininikiikkihtyyyv???????????????????????????????????????sskkkii2is2iiyy2y1?iikikkiihtyv?????????kkiiik2sksk?kkiiiiikikkihtyyyv??????????????2?jjiinijijjinhtyyy????????????hty?是y的无偏估计i1ji?hty?是?htyv的无偏估计hhy?ppshty?ps其他公式在某种程度上可用这两个公式表现
2拉希里方法
不需要累计,两次随机数决定抽中的单位。 第一次:1-N之间的随机数i 第二次: 1-maxM之间的随机数m 如果Mi> m,第i个单位被抽中
抽样调查:不等概率抽样

总体单元 Yi 规模测度 Mi 0. 在抽取样本单元时,各单元被抽取的概率正比于Mi .
有放回PPS 抽样是常见的一种不等概率抽样方案。每次抽取,第i
单 元Yi 被 抽 中 的 概 率p i
正
比
于
M
响,只有 Mi m时它才入样,因此第 i 个单元入样的概率与
Mi的大小成正比,此时 Zi Mi M0
二、估 值 法
PPS抽样法的估值法的理论依据
定理3.1.1 在有放回PPS抽样下,
是总体总数Y
N
Yi
Yˆ PPS
的无偏估计.
பைடு நூலகம்
1 n
n
i 1
yi pi
i 1
( pi为第i个样本单元yi时的抽取概率,而不是总体中第i单元对应的抽取概率.)
i j ij
j
) yi
yj
,
v2 ( YˆHT
)
Nn
( i
j
ij
i1 ji
ij
) (
yi
i
yj
j
)2 .
注:两估计量均有可能取负值,通过模拟比较,v2较稳定且
较少取负值。
§3.3 Rao-Hartley-Cochran随机分群抽样
拉奥-哈特利-科克伦(1962)
设总体个体单元总数N nM k( 0 k n ) 1. 将总体随机分成n个群 其中k个群有M 1个个体单元,n k个群有M个个体单元; 2. 在每一个群中,以正比于规模测度的概率抽取一个单元 作为样本单元。
估计的均方偏差为:
V(Yˆ PPS
)
《抽样技术》第三讲 等概率与不等概率抽样比较研究[学习课堂]
![《抽样技术》第三讲 等概率与不等概率抽样比较研究[学习课堂]](https://img.taocdn.com/s3/m/38fd182e783e0912a3162a1b.png)
ij
n 1 N 1
N N
n 2
Zi*
Z
* j
n N
2 n
课件类别
27
2)布鲁尔法
样本单位是逐个抽取的.令
Zi
1 n
设第一个单位按与 例的概率抽取。
Zi 1 Zi
1 nZi
成比
剩下的n-1个单位按与 成比例的概率抽取
Zi 1 Zi 1 n r 1
Zi
,
因为 i nZi ,
r 2,3,L , n
B.按单位规模的大小决定入样的概 率,使规模大的单位入样概率大, 规模小的单位入样概率小。
课件类别
3
2)群大小不等的整群抽样 3)初级单位大小不同的阶段
抽样
4)等距抽样中的应用
课件类别
4
3. 优点与不足
1)优点:
比较有效地解决调查的总体单位 与抽样的总体单位不一致、调查 单位在总体中所占的比重不一致 的问题。
?布鲁尔方法的包含概率为??112iiizzz??1jizz?2iiz????????1411212112ijijijniijiizzzzzzzz????????????????23课件类别令?可以写成??1112niiiizzdz?????ij?????1212111212ijijijijijijzzzzdzdzzzdzz?????????????????24课件类别总值估计?方差估计耶茨格伦迪森121212121?2bxxxxxzz??????????????21212121212?ygsbxxvx???????????????25课件类别2
第一个单位按 Zi 的概率抽取;
Zj
第二个单位按 1 Zi 的概率在余
下的N-1个单位中抽取;
07-第七章 不等概率抽样

(7.4)
(7.5)
5
3. 若 n > 1 ,则
ˆ )= v(Y HH
n æ yi ˆ 1 ç - YHH å n(n - 1) i =1 ç è zi
ö ÷ ÷ ø
2
(7.6)
ˆ ) 的无偏估计。 是 V (Y HH ˆ 的 在证明上述性质以前,我们先就 PPS 抽样这种特殊情形,说明 Y HH
*
[1,24] 中的一个随机数为 9,由于 M 4 = 6 < 9 ,因此需要重抽。设第二次抽
到的一组随机数为 (7,15) ,则仍然不满足要求,还需要抽。若再次抽到的随 机数组为 (2,8) ,则由于 M 2 = 10 > 8 ,故第 2 个单元被抽中。如此重复直 到抽到 n 个单元(允许重复)为止。 拉希里法适用于 N 很大的情况,因为它不需要列出如表 7.1 这样的表。 7.2.3 汉森——赫维茨估计量及其性质 对于 多 项 抽样,由于抽样是不等概率的,每个样本单元的 观测 值 ,因此对于总体参数的估计与等概率抽样 y1 , y 2 , , y n 就不再是“平等的” 不同。前已提到,这个估计也与样本单元 Z i 的取值 z1 , z 2 , , z n 有关。汉森 ——赫维茨(Hansen-Hurwitz)提到的对总体总和 Y 的估计如下:
Mi
8 10 17 6 24 9 5 7 4 10
累计 M i 8 18 35 41 65 74 79 86 90 100
代码 1~8 9~18 19~35 36~41 42~65 66~75 76~79 80~86 87~90 91~100
M 0 = 100
在 [1,100] 范围内产生 5 个随机数,设分别为 04,73,25,49 及 82,则 第 1,第 6,第 3,第 5 及第 8 个单元即为抽中的单元。如果我们欲再增加 一个样本单元,产生的随机数为 58,则又对应第 5 个单元,这个单元即为 抽中两次。由于单元愈大,被赋予的代码数就愈多,因此每个单元入样的概
不等概率抽样的方法的应用研究

不等概抽样方法的应用研究99统计992137 石磊【内容摘要】在抽样调查中,不等概抽样是一个重要的内容,如一个地区商场销售额总额的估计,由于大商场与小商场的销售额差异巨大,因此,大商场与小商场不能同等对待。
这时使用不等概率抽样方法可以很好的提高估计值得精度。
在整群抽样或多阶抽样中,常采用不等概抽样,在实际问题中,很少采用一种抽样方法,而常常采用是几种抽样方法有机结合,最常见的方案为多阶不等概抽样。
【关键词】不等概抽样,PPS,πPS,二阶段抽样。
【ABSTRACT】In sample investigation, sample with unequal probabilities is one important content, such as one regional market sales amount estimation of total value, Because emporium and little sales amount of market difference enormous, so, the emporium and little market can put on an equal footing . Use the sampling with unequal probabilities method can kind improvement estimate precision of deserving very at this moment. Besides, in overall to go on and when sampling, go on when sampling to a certain all residence of city to some, To have more very much the same residences in such aspects as economy different block of city this. If use one steps sample, not only trouble, but also the precision estimated is poor.【KEY WORDS】sampling with unequal probabilities PPSπPS two-stage sampling一、不等概抽样的理论基础(一)不等概抽样的概念等概抽样是指总体中的每个单元具有同样的入样概率的随机抽样。
三阶段不等概率抽样设计

三阶段不等概率抽样设计
三阶段不等概率抽样设计是一种常用的抽样方法,用于从整体群体中选择代表性样本。
它将样本选择过程分为三个阶段,每个阶段的概率不等,具体步骤如下:
1. 第一阶段:按照一定的抽样概率,从总体中选择第一阶段的样本单元。
这可能涉及到某些抽样单元的非选择或重复选择,以达到样本的多样性。
2. 第二阶段:在第一阶段选择的样本单元中,按照一定的概率再次进行抽样,选择第二阶段的样本单元。
这个阶段的抽样概率可能与第一阶段有所不同,以达到更好的样本覆盖和精度。
3. 第三阶段:在第二阶段选择的样本单元中,按照一定的概率再次进行抽样,选择最终的样本个体。
同样,这个阶段的抽样概率可能与前两个阶段有所不同。
通过三阶段不等概率抽样设计,可以灵活地选择样本单元,并通过控制抽样概率来保证样本的代表性和可靠性。
这种设计方法在实际应用中可以更好地适应不同的调查需求和场景,提高样本选择的效果。